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Preface

A discussion of the ways in which Greek commentators in the (late)
antiquity tried to explain the origin of Greek mathematics, as well as a his-
torical survey of early cultural contacts between the Greeks and the Near
East can be found in, for instance, van der Wae@igience Awakening 1
(1975 (1954)), 8%.

In the present book, a sequel to the authdrniexpected Links Between
Egyptian and Babylonian MathematjcSingapore: World Scientific
(2005), Greek and Babylonian mathematical texts will be allowed to speak
for themselves.

The following passage, of interest in the present connection, can be
cited from the Preface to niynexpected Links

“My observation that there seems to exist clear links between Egyptian and Baby-
lonian mathematics is in conflict with the prevailing opinion in formerly published
works on Egyptian mathematics, namely that practically no such links exist.
However, in view of the dynamic character of the (writing of the) history of Meso-
potamian mathematics, not least in the last couple of decades, it appeared to me to
behigh time to take a renewed look at Egyptian mathematics against an up-to-date
background in the history of Mesopotamian mathematies!- -

The detailed comparison in this book of a large number of known Egyptian and
Mesopotamian mathematical texts from all periods has led me to the conclusion
that the level and extent of mathematical knowledge must have been comparable in
Egypt and in Mesopotamia in the earlier part of the second millennium BCE, and
that there are also unexpectedly close connections between demotic and “non-
Euclidean” Greek-Egyptian mathematical texts from the Ptolemaic and Roman
periods on one hand and Old or Late Babylonian mathematical texts on the other.”

Also of relevance in the present connection are the following words from
the summing-up in the last few linesldfiexpected Links

“The observation that Greek ostraca and papyri with Euclidean style mathematics
existed side by side with demotic and Greek papyri with Babylonian style mathe-
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matics is important for the reason that this surprising circumstance is an indication
that when the Greeks themselves claimed that they got their mathematics from
Egypt, they can really have meant that they got their mathematical inspiration from
Egyptian texts with mathematics of the Babylonian type. To make this thought

much more explicit would be a natural continuation of the present investigation.”

The following deliberation is in agreement with the cited passages:

The simplest way of explaining the many parallels found in this book
between (certain parts of) Greek mathematics and Old or Late Babylonian
mathematics is to assume tiraincient Greece elementary education in
mathematics for young students (not necessarily intending to become
mathematicians) was conducted in terms of metric algebra in the Babylo-
nian style Here “metric algebra” is a convenient name for the very special
kind of mathematics, withn elaborate combination of geometry, metrol-
ogy, and linear or quadratic equationghich is first documented in proto-
Sumerian texts from the end of the fourth millennium BC, and which pre-
vailed in Mesopotamia without much change to the Seleucid period close
to the end of the first millennium BC. During the 2500 years of its exist-
ence alreadypeforethe dawn of Greek mathematics, this kind of mathe-
matics ought to have had ample opportunity to spread to more or less
distant neighbors of Mesopotamia itself. That this hypothesis is correct in
the case of Egypt was demonstratetimexpected LinksTo show that it
may be correct also in the case of ancient Greece is the object of the dis-
cussion below.

It is important to understand that one of the obstacles in the way for a
better understanding of possible relations between Greek and Babylonian
mathematics is the circumstance that Greek mathematics is documented
mainly through copies of copies of important manuscripts with advanced
mathematics, while Old Babylonian mathematics is documented mainly
through clay tablets with relatively low level mathematics, written by me-
diocre scribe school students, and Late Babylonian/Seleucid mathematics
is documented only through a small number of texts, for the simple reason
that in the second half of the first millennium BC clay tablets had been re-
placed by more easily perishable materials as the preferred medium for
writing. For these reasons, it is difficult to know what Greek mathematics
at a lower level was like, and equally difficult to find out how advanced
Old and Late Babylonian mathematics at a higher level may have been.
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It is also important to understand that since the heated but inconclusive
debate about Greek “geometric algebra” in the late 1970’'s, much has
happened in the study of Babylonian mathematics. Thus many new
mathematical cuneiform mathematical texts have been published since
then, several of them with unexpected and astonishing revelations about
the scope of Babylonian and pre-Babylonian mathematics, and many of
the earlier published mathematical cuneiform texts have been explained in
new, and much more satisfactory ways. Therefore, it is now obvious that
the mentioned debate was conducted against a background of regrettably
insufficient knowledge about the true nature of Babylonian mathematics.

More or less accidentally, the dedicated search in this book for parallels
between Greek and Babylonian mathematics has, in addition, resulted in a
rather extensive survey of certain important parts of Greek mathematics,
as well as in new answers to a number of open problems in the history of
Greek mathematics.

Here follows a brief survey of the contents of the book:

Chapter 1is a continuation and more or less definite conclusion of the
debate about what has been known as the “geometric algebra” in Euclid’s
Elementdl. In this chapter it is shown that far from being Greek reformu-
lations in geometric terms of Babylonian (non-geometric) algebra, the
propositions inElementdl| are abstract, non-metric reformulations of a
well defined set of basic equations or systems of equations in Babylonian
metric algebra that is ofquadratic and linear equations or systems of
equations for the lengths and areas of geometric figures

Strictly speakingElementdl is not about “geometry” at all, in the lit-
eral sense of the word, which is ‘land-measuring’.

Characteristically, as a consequence of the different Greek and Babylo-
nian approaches to geometry, diagrams illustrating non-metric proposi-
tions in theElementsare what may be called “lettered diagrams”, while
diagrams illustrating Babylonian metric algebra problems are “metric
algebra diagrams” with explicit indications of relevant lengths and areas.

As a whole Elementdl is a well organized “theme text” of the same
kind as similarly well organized Babylonian mathematical theme texts.

Chapter 2 begins with a presentation of Euclid’s prookdfl.47, and
of Pappus’ proof of a generalizationklf 1.47. Then follows a discussion
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of the OB (Old Babylonian) forerunner Bf. 1.47, “the OB diagonal rule

(for rectangles)”. It is suggested that the rule may have been discovered ac-
cidentally in connection with the study of “rings of four rectangles (or four
right triangles)™* The argument is supported by the recent discovery of an
OB “hand tablet” with a picture ofring of three trapezoidg he hand tab-

let is published in the authorA Remarkable Collection of Babylonian
Mathematical TextdNew York: Springer (2007).

Chapter 3is a confrontation of Greek rules for the generation of pairs
of numbers (integers) such that the sum of their squares is also a square
with OB rules for the generation of “diagonal triples”, rational sides of
right triangles. The Greek rules are attributed to Euclid (lenitha
X.28/29), Pythagoras, and Plato, while the OB rule is manifested in a num-
ber of OB “igi-igi.bi problems”, as well as in the famous OB table text
Plimpton 322.

Chapter 4 begins with a discussion of Euclid’s important lemigia
X.32/33, which says, essentially, that a right triangle is divided into two
right sub-triangles similar to the whole triangle by the height against the
hypothenuse. That this result was known also in Babylonian mathematics
is demonstrated by an OB problem for a right triangle divided by use of a
recursive procedure into a “chain of similar right sub-triangles”.

Chapter 5 contains a completely new approach to the study of the no-
toriously difficult tenth book of th&lementsilt is shown that the theory of
inexpressible straight lines E. X is based on a number of fundamental
lemmas and propositions such as the lemmas X.28/29, X.32/33, X.41/42,
and the propositions X.17-18, X.30, X.33, X.54, X.57, X.60, all of which
can best be explained by use of Babylonian metric algebra. As a matter of
fact, a particularly great role is playedih X by “quadratic-rectangular
systems of equations of type B5”, by which is meant problems where both
the sum of the squares of two unknowns and the product of the unknowns
are given. Such problems appear as well in Babylonian mathematics.

Also discussed in this chapter is the relation between Euclid's “para-
bolic application of areas” ikl. .44 and Babylonian “metric division”.

1. Note that, since angles was a relatively unknown concept in OB mathematics, it is less
anachronistic to speak of OB “right triangles” than of OB “right-angled triangles”.
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Chapter 6is devoted to a discussionBfementdV, a well organized
theme text concerned mainly with “figures within figures”. It is shown,
through a great number of examples, that figures within figures was a pop-
ular subject also in Babylonian mathematics.

Chapter 7 explains in terms of metric algebra the cutting of a straight
linein extreme and mean ratin El. VI.30, as well as the theory of the reg-
ular pentagon and the equilateral triangl&IinX111.1-12. It is pointed out
that the proposition&l. XIIl.1-11 can be interpreted as a “metric analysis”
of the regular pentagaelative to the radius of the circumscribed circle
while a (hypothetical) corresponding Babylonian metric analysis of the
regular pentagon necessarily would have openagiadive to the side of
the pentagon

The relation of such a metric analysis of the regular pentagon (alterna-
tively the regular octagon) to the theory of inexpressible straight lines in
El. X is investigated.

The chapter ends with a survey of examples of regular polygons and
related objects in Babylonian mathematics.

Chapter 8is an account in terms of metric algebra of the construction
of regular polyhedra inscribed in sphere€inXIll.13-18. The account
highlights the role played in some of these constructions by the diagonal
rule in three dimensions.

Then follows the presentation of a Kassite (post-OB) text with the com-
putation of the interior diagonal of a gate by use of the diagonal rule in
three dimensions, and of another Kassite text with the computation of the
weight of a colossal ‘horn-figure’ (icosahedron), constructed by use of 20
equilateral triangles with sides measuring 3 cubits and made of copper
sheets 1 inch thick. Both texts are published in the autRarsarkable
Collection(2007).

Chapter 9begins with Euclid’s demonstrationt. X11.3-7 of (essen-
tially) the fact that every triangular prism can be cut into three triangular
pyramids, each one of which has a volume equal to one third of the volume
of the prism. Then follows a discussion of texts showing that OB mathe-
maticians could compute correctly the volumes of various kinds of whole
and truncated pyramids, as well as of whole and truncated cones. The man-
ner of computation of the volume of a “ridge pyramid” in an OB mathe-
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matical text is compared with the dissections usdsl.iXIl.3-7 and with
similar dissections used by the famous Chinese mathematician Liu Hui in
his commentary to problems in the Chinese mathematical clegsic
Chapters It is pointed out that there are indications that also Babylonian
mathematicians knew about similar dissections of prisms and pyramids.

Chapter 10contains a detailed discussion in terms of Babylonian met-
ric algebra of Euclid’s parabolic, elliptic, and hyperbolic “application of
areas” proposition&l. 1.43-44, El. VI1.24-29 andData 57-59, 84-85. In
addition, a completely new explanation is given of Euclid’s intriguing
propositionData 86, which is here shown to give the detailed solution to
a complicated “quadratic-rectangular system of equations of type B6”,
related to the already mentioned quadratic-rectangular systems of equa-
tions of type B5 in the proofs &l. X.54 and X.57.

Chapter 11 begins with an account of some of the most interesting
propositions in Euclid’s lost boo®n Divisions known mainly from an
abstract published by a 10th century Persian geometer. Particular attention
is given in this account to problems where triangles or trapezoids are di-
vided by lines parallel to the base, and to an appealing proposition where
the problem of dividing a triangle in two parts in a certain ratio by a line
through a given point in the interior of the triangle is reduced to the prob-
lem of solving a certain quadratic equation.

Then follows a detailed discussion of numerous OB parallels in the
form of problems for triangles or trapezoids divided in certain ratios by
one or several transversals parallel to or orthogonal to the base. Among
these problems are several of the most interesting and sophisticated of alll
known Babylonian mathematical problems. In particular, a completely
new explanation is given here of an OB quite sophisticated “boundary
value problem”, where a trapezoid with known base and top is divided into
a chain of three rational bisected sub-trapezoids.

The “confluent trapezoid bisections” in a couple of OB mathematical
texts show that OB mathematicians knew how to combine a solution to an
indeterminate quadratic equation of the formsgé.sq.s, = 2 - sqd with
a solution to the indeterminate quadratic equatiom $csq.b = 1 in such
a way that the result is a new solution to the first equation

An interesting observation is that the famous “Bloom of Thymaridas”
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is a generalization of a system of equations connected with an OB method
for the construction of solutions to trapezoid bisection problems.

Chapter 12 compares Hippocrategjuadrature of lunesvith various
Old and Late Babylonian computations of the areas and diameters of cer-
tain figures with curved boundaries, in particular certain double circle seg-
ments, but also “concave squares” and “concave triangles”.

Chapter 13contains a discussion of a large number of examples of par-
allels to Babylonian metric algebra in Diophantdsthmetica Thus, for
instance Arithmetical is organized precisely like an OB theme text with
equations or systems of equations for one or two unknowns. Particularly
interesting here is the appearance of the \ptasmatikénthe meaning of
which has been debated. However, it is likely that when a problem is called
plasmatikénthat means that it is ‘representable’, namely by a metric alge-
bra diagram. It is also interesting that tierismsappearing in certain
problems are conditions for the existence of solutions which seem to have
been derived from the study of such diagrams.

In Arithmeticall, some “basic examples” which are usually explained
by reference to the “chord method”, can just as well be explained by refer-
ence to metric algebra problems for triangles or trapezoids inscribed in
circles, or by reference to trapezoids divided into parallel stripes. Simi-
larly, the interesting and well known method of “approximation to limits”
in Ar. “V”.9, which can be explained by a variant of the chord method, can
just as easily be explained with reference to the OB method of “confluent
trapezoid bisections”.

Diophantus’ extremely interesting but obscure constructioirin
[11.19 of a square number equal to a sum of two squares in four different
wayscan with advantage be explained in terms of metric algebra with ref-
erence to a “birectangle” (a quadrilateral with two opposite right angles).
This construction, too, seems to be intimately connected with the OB
method of confluent trapezoid bisections and with the OB rule for the com-
position of a solution to an indeterminate quadratic equation of the form
S.S,+ Sq.5¢ = 2 - sqd with a solution to the indeterminate quadratic equa-
tion sq.a+ sq.b=1.

An indeterminate “price and number problem” which appears totally
out of context inAr. “vV”.30, is closely related to similar OB problems
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leading to systems of linear equations, but it is interesting also because it
is solved by use of solutions to “quadratic inequalities” obtained through
“completion of the square”.

Arithmetica“VI” which is concerned with indeterminate equations for
right triangles, has, lik@rithmetical, precisely the same form as an OB
theme text. The construction problém “VI".16: To find a right-angled
triangle in which the bisector of an acute angle is ratioaglpears ir.

“VI” totally out of context, and is solved by what looks like metric algebra.

One of the few occurrences Babylonianmathematics of indetermi-
nate equations is particularly interesting because it equates (in a totally
artificial way) the interest on a loan with a square, a cube, or a “cube-
minus-1", the latter term meaning a “quasi-cube” of the form “aube
squaran”. It is interesting to note in this connection thafin “VI” all the
undetermined right hand sides of equations are, likewise, either a square,
a cube, a “quasi-square”, or a “quasi-cube”.

Heron’s well knowrarea rule for trianglesthe Indian mathematician
Brahmagupta’s closely relateatea rule for cyclic quadrilateralsand
Ptolemy’s and Brahmaguptadséagonal rules for cyclic quadrilaterabsre
treated together i€hapter 14 It is shown that all these rules can be de-
rived in simple and straightforward ways by use of metric algebra, as long
as no other cyclic quadrilaterals are considered tifi@mgles, rectangles,
symmetric trapezoids, and birectangles or “cyclic orthodiagonals”

In Chapter 15 Theon of Smyrna’s “side and diagonal numbers algo-
rithm” is explained in terms of an “ascending chain of birectangles”. It is
shown that a similar construction works just as well when the equation sq.
d = 2 is replaced by more general equations of the formp =s§q.q - D
—1or sgp=sqg.q-D + 1, whereD = sq.d.

In this connection is discussed also a previously never clearly under-
stood OB mathematical table text which may be related to an “ascending
spiral chain of trapezoids”. An OB “ascending and descending chain of
trapezoids with fixed diagonals” is considered in Appendix 1.

Chapter 16is devoted to a detailed discussion of two methods for the
approximation of “square sides” (square roots) used in Heron's collected
works. One method, which is essentially the same as a Babylonian “square
side rule” is used in the great majority of cases. A second, more accurate
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method is explained here in terms of “third approximations”, by which is
meant approximations obtained through a kind of repeated composition of
an initial approximation with itself, resulting in a “formal third power”.

Interestingly, the use of third approximations can explain not only
Heron’s accurate square side approximations, but also the well known and
much debated Archimedian accurate estimates for sgs. 3, as well as the
accurate square side approximations in Ptolei@ytgtaxid.10.

The chapter ends with a discussion of Babylonian square side approxi-
mations and of examples of an elegant OB method of eliminating square
factors from an area number before the computation of its square side.

In Chapter 17it is suggested that Theodorus of Cyrene’s famous irra-
tionality proof for square sides of non-square numbers, mentioréthin
etetus 147 C-Dcan have been carried out by use of a “descending chain
of birectangles”, of the same form as #weendingchain of birectangles
used in Chapterl5 for the explanation of Theon’s side and diagonal num-
bers algorithm. The irrationality proof by use of such a descending chain
of birectangles works only as long as a solution (in integers) is known to
the equation sgp=sq.q -D + 1, whereD is the given non-square number.

If the pairp, g is a solution to an equation of this kind, it is convenient to
call p/g an “optimal approximation” to sgb.. As it turns out, it is easy to
find such optimal approximations for all non-square numbers (inteDers)
from 2 to 17, wheD = 13 by use of a “third approximation” of the kind
discussed in Chapter 16, but notlibr 19. This circumstance may explain
why Theodorus stopped his demonstration after reaching th®cadéd.
(The casd = 18 can be neglected, since sgs. 18 = 3 - sgs. 2.)

There is an interesting connection between the explanation above of
Theodorus’ irrationality proof and Brahmagupta’'s well known observa-
tion that he could find a solution to the equationpsg.sq.q - D + 1 in
every case when he already knew a solution to the equatipr=sq).q -
D+r,withr =—=1, + 2, or + 4. As a matter of fact, the method used by
Brahmagupta in the non-trivial cages + 4 can be explained in terms of
“formal third powers”.

In Chapter 18it is observed that the HeronMetrica is a typically
Greek (Euclidean) mathematical hand book, while the “pseudo-Heronic”
Geometricais a compilation of various sources, some of them clearly in-
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fluenced by Babylonian mathematics. The chapter contains, among other
things, surprisingly simple new explanations of the solution procedures in
Geom 24.1-2 for a couple of indeterminate problems for the areas and
perimeters of a pair of rectangles. Another interesting problem discussed
in this chapter, with an obvious relation to a number of Babylonian math-
ematical problems, is concerned with the sides of a right triangle at a dis-
tance of 2 feet from a right triangle with given sides. The chapter is
concluded with an explanation of an intricdteision of figures problem

in Metrica 3.4, which can be reduced to a rectangular-linear system of
equations for two segments of one side of a triangle.

In Appendix 1, a new OB mathematical problem text of extraordinary
interest is published jointly with J. Marzahn, curator of the collections of
clay tablets at the Vorderasiatisches Museum, Berlin. The text begins with
a diagram showing a chain of five trapezoids, all with the diagonal 3. The
explicit computation of the various sides and transversals of this chain of
trapezoids demonstrates that OB mathematicians were familiar with Ptole-
my’s diagonal rule in the case of symmetric trapezoids, and that they had
found, in addition, an elegant rule for the construction of a linked pair of
symmetric trapezoids with diagonals of the same length. The recursive
procedure used for the computation of the sides and transversals in the
chain of five trapezoids starts with the central trapezoid and continues with
ascending and descending chains of trapezoids, much like the ascending
and descending chains of birectangles discussed in Chs. 15 and 17 above.

The book ends witAppendix 2, which is a catalog of all plane and sol-
id geometric figures appearing, in one way or another, in Mesopotamian
mathematical texts. There are also an index of texts, an index of subjects,
a bibliography, and a comparative set of Mesopotamian, Egyptian, and
Greek timelines showing periods of documented mathematical activities.

The work with the manuscript for this book has been supported by
The Royal Society of Arts and Sciences in Gothenburg,

Wilhelm och Martina Lundgrens Vetenskapsfonant]

Gunvor och Josef Anérs Stiftelse.

September 1, 2006 Joran Friberg
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Chapter 1

Elements Il and Babylonian Metric Algebra

The enigmatic nature of EuclidElementdl and the related proposi-
tions El. VI1.28-29' (Heath, TBE I-lll (1956); HGM 1 (1981), 379-380;
Christianidis €d), CHGM (2004), Part 6) has given rise to a heated debate
among historians of mathematics, summarized by Artmapeifon 24
(1991)) in the following words:

“Traditionally VI.28 and 29 have been considered under the rubric ‘geometrical
algebra’, a concept introduced by Zeuthen (1896), 7, following Tannery (1882).
Subsequently Neugebauer (1936), van der Waerden (1954), Freudenthal (1977) and
Weil (1978) adapted and extended Tannery’s and Zeuthen’s position. Heath followed
Tannery in his comments on I.5 and 6, which he interpreted as solutions to quadratic
equations. This traditional position was attacked by Szab6 (1969), Unguru (1975) and
Unguru and Rowe (1981), (1982). Van der Waerden (1954), 118-126 gives a clear state-
ment of the position of the proponents of ‘geometrical algebra’. His main claims are:

(i) The real content of VI.28 and 29 is algebraic (as solutions of quadratic equations);
geometry is only a mode of expression.

(i) Geometrical algebra originated with the Pythagoreans, who took it (somehow)
from the Babylonians.

(iif) The Greeks had to use a geometrical formulation of the theory of quadratic equa-
tions because they had no other way to deal with incommensurable magnitudes.”

Since those words were written, one of the basic premises for the whole
controversy has been shown to be invalid. Thus, it has been demonstrated
by Hgyrup, through a detailed analysis of the technical vocabulary in
mathematical cuneiform texts, that Old Babylonian (OB) mathematicians
understood quadratic equations in terms of the dimensions and areas of
rectangles and othereasurable geometric magnitudasd not primarily
in terms of anything like our school algebra. (See, for instance, Hayrup,
LWS(2001).) Subsequently, it has been shown by Fritiayl28 (1997),

1. A useful survey of the contents of all the thirteen books of Eudligsentss given
online by D. E. Joyce, <http://aleph0.clarku.edu/~djoyce/java/elements/elements.html>.

1



2 Amazing Traces of a Babylonian Origin in Greek Mathematics

Ch. 1) that also Late Babylonian mathematicians used a similar “metric al-
gebra” in order to visualize and solve quadratic equations. Intriguingly, the
roots of the Old and Late Babylonian metric algebra can be traced back to
examples of “metric squaring” and “metric division” in Old Akkadian and
Early Dynastic mathematical texts, half a millennium older than the better
known Old Babylonian mathematical texts (Fribe@dLJ 2005/2;RC
(2007), Apps. 6-7)), and perhaps even to the surprising “field expansion
procedure” in proto-cuneiform texts from the end of the 4th millennium
BCE (Friberg AfO 44/45 (1997/98)RC, Sec. 8.1 b).

The changed premises will make it possible to resolve the mentioned
controversy by showing, in this chapter, that the alleged “geometrical alge-
bra” in Euclid’'sElementsll is of the same nature as closely related results
in Old and Late Babylonian metric algebra, and that therefore the assump-
tion that the Greeks had to use a geometric reformulation of an originally
purelyalgebraictheory of quadratic equations “because they had no other
way to deal with incommensurable magnitudes” must be false.

1.1. Greek Lettered Diagramsvs. OB Metric Algebra Diagrams

The style of Euclid’s exposition in Book Il of Hdementss shown by
the following analysis of the text of one of the propositions in Book II:

El. 1.5 (Heath,TBE 1(1956)) begins witla statement in general terms

If a straight line is cut into equal and unequal segments,

the rectangle contained by the unequal segments of the whole

together with the square on the straight line between the points of section
is equal to the square on the half.

Then followsa more comprehensible reformulation of the statement in
terms of a suitable diagram

For let a straight lin@B be cut into equal segmentsCat

and into unequal segmentsgt

| say that the rectangle containedAly, DB together with the square @D

is equal to the square @B.

A C D B

2. The ideas discussed in this chapter were presented Atuligen-Heiberg Centenary
Symposium on Current Studies in Ancient Greek Mathem@tigenhagen, August, 1994.
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In a careful construction of the following complete diagram, step by step,
this initial diagram is then extended into a combination of rectangles and
squares, where lettered vertices are introduced in alphabetic order:

A C D B
10

H M
K L] N
P

E G F

For let the squar€EFBbe described 0€B, and letBE be joined,;
throughD let DG be drawn parallel to eith€E or BF (cutting BE in H),
throughH again letKM be drawn parallel to eithéB or EF,

and again through let AK be drawn parallel to eith€L or BM.

Since the diagon&8E has been drawn, the proof of the statement can begin
with an application of the “diagonal complements ruleEinl.43:

Then, since the complemeBH is equal to the complemeHF,
let (the squarelpM be added to each;
therefore the whole (rectangléM is equal to the whole (rectang@f.

Next, by a transitivity argument,

But (the rectangleCM is equal to (the rectanglé),
since (the segmerf)L is also equal to (the segmeGip;
therefore (the rectanglé)L is also equal to (the rectang@l.

Hence the following intermediate result:

Let (the rectangleCH be added to each;
therefore the whole (rectangléH is equal to the gnomddOP.

This intermediate result is rephrased in terms of the initial diagram:

But AH is (equal to) the rectangle (contained Ai), DB, for DH is equal tdDB,
therefore the gnomoNOP s also equal to the rectangle (containedAly) DB.

The last step of the procedure is the completion of the gnomon to a square:

Let (the squarellG, which is equal to the square 6D, be added to each;
therefore the gnomoNOP and (the squard)G

are equal to the rectangle contained\; DB and the square d@D.

But the gnomomMOP and (the squard)G are the whole squafeEFB,
which is described 06B;

therefore the rectangle containedAly, DB together with the square @D
is equal to the square @B. Therefore etc.
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The consequent use of lettered vertices in all geometric diagrams is per-
haps the most visually striking feature of Greek mathematics of the kind
that one meets in EuclidEementsThe lettered vertices are used not only
in the diagrams themselves but also in the text, in all references to the
diagrams. In the example above, straight lines are named after their end-
points, as iMAB, CD, etc, rectangles or squares after their vertices, as in
‘the square orCB, or ‘the squareCEFB, or simply ‘(the squarePM’,
and ‘the rectangle contained BY, DB’, or simply ‘(the rectanglepL’,
and so on. There are never any metrological or numerical specifications for
given plane or solid figures or their parts, such as their lengths, angles, ar-
eas, or volumes. The device that is used, perhaps a bit too cleverly, in order
to avoid any mention of lengths, arees, is to say that one straight line
is ‘equal to’ another straight line, or that one plane figure is ‘equal to’ an-
other plane figuregtc.In the statement in the example above, for instance,

a rectangle and a square are said to be equal to another square.

The situation is completely different in Babylonian mathematical
cuneiform texts, where in all diagrams showing plane or solid figures,
straight lines are denoted by their lengths and/or suitable names such as
‘the upper length’, ‘the middle length’, ‘the lower length’, ‘the first
length’, ‘the second lengthétc, and where similarly areas or volumes are
denoted by numbers and/or suitable names. (A good example is IM 55357.
See Sec. 4.3 below.) The numbers or names for the lengths are normally
placed alongside the figures in their proper places, while the numbers for
the areas or volumes are placed inside the figures. The situation is similar
in Egyptian hieratic or demotic mathematical papyri, and even in Greek-
Egyptian mathematical papyri from the Ptolemaic and Roman periods.
(See the many examples in Fribedd, (2005).)

There is another obvious fundamental difference between the example
above and a typical Babylonian mathematical texElIf.5, the object of
the text is tgprovethat two geometric figures ‘are equal’. The object of a
Babylonian mathematical text is nearly alwaysdmputesomething. So,
how can there be any kind of relation between a Greek tex&llike5 and
Babylonian mathematics? To begin to see why, one has to see what be-
comes of the lettered diagramkh I1.5 if the letters are removed and in-
stead lengths and areas with their numerical values are explicitly
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indicatedin the Babylonian style. In Fig. 1.1.1 below, a (hypothetical)
example of such a diagram in the Babylonian style is shown to the left, and
a modernized version in the same style to the right.

50 D
- 30 length 20 u S
: : |
pay 10 field A S
8 10 & A p/2
5| 25 4 qlz‘
sq.q/2

Fig. 1.1.1. A diagram in the Babylonian style (left), and a modernized version (right).

The names used for the long and short sides of a rectangle in OB math-
ematical texts were normally the Sumerian terr§slength’ andsag
‘front’. The most commonly chosen values for the length and the front
were 30 and 20 length units (Suminda = c. 6 meters, or 1/Gfinda =1
dm). In the diagram above, to the left, the length is 30, the front 20, the sum
of the length and the front 50, and half that sum 25. The area of the rectan-
gleis 30 - 20 = 10 (- 60), the area of the small square is sq. 5 = 25, and the
area of the large square is sq. 25 =10 25 =10 (- 60) + 25.

The numerical example shows how Babylonian mathematicians could
arrive at interesting results through experimentation with numerical values
for the parameters of a geometric figure. Another way in which they could
find new insights was through shrewd observation. Thus, for instance, it is
known that OB mathematicians were familiar with what they callga
dalbani ‘the field between’ two plane geometric figures.

In the example in Fig. 1.1.2he field between two concentric and
parallel squaress what may be called a “square band”. Now, if you want
to divide the square band equally into four simple pieces, you can do it in
several ways. In particular, you can divide the square band into four equal
rectangles, as in Fig. 1.1.2, left, or into four “square corners” (what the
Greeks called “gnomons”), as in Fig. 1.1.2, right. Evidently, the area of
any one of the four square corners is then equal to thé\arfeany one of
the four rectangles. It is also clear from the figure thpti# the side of
nigin kiditum ‘the outer square’ angithe side ohigin gerbitum ‘the in-
ner square’, then the area of the whole square bandps-ssg.q, while
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the area of one of the square corners i/t sqg/2. In Fig. 1.1.2, right,
the notationg andg have been chosen for the sumsand the difference
u—s, respectively, where = ug, the ‘length’, an=sag, the ‘front’.

u s p
A A A
A u 5
q p ——a-g p
A 1
A A
A S
u-s=A sq.p/2-sq.g/2=A

Fig. 1.1.2. Two simple ways of dividing a square band into four equal pieces.

Rectangles, squares, and square corners played a dominant role in OB
metric algebra. Often, the first step in the solution of a given metric algebra
problem was a transformation of the problem into one of a small number
of OB “basic” metric algebra problems (FribeRJA 7(1990), Sec. 5.7 c):

Two basicrectangular-linear systems of equations

Bla: u-s=A, u+ts=p
Blb: u-s=A, u—-s=q
Two basicadditive quadratic-linear systems of equations
B2a: squ+sg.s=S u+s=p
B2b: squ+sg.s=S u-s=q
Two basicsubtractive quadratic-linear systems of equations
B3a: squ-sq.s=D, u+s=p
B3b: squ-sqgs=D, u-s=q
Three basiguadratic equations
B4a: sqs+q-s=A
B4b: squ-q-u=A
B4c: p-u—-squ=A
The important thing to remember is that all these types of rectangular-
linear, quadratic-linear, or simply quadratic metric algebra problems were
actuallyvisualized as problems for rectangles and squares

Below, the thirteen propositions HIL.2-14 will be compared with this

list of nine OB basic metric algebra problems.
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1.2.El. 1.2-3 and the Three Basic Quadratic Equations

The propositiorEl. II.1 states that if two straight lines are given, and if
one of them is divided into a number of segments, then the rectangle con-
tained by the given lines is ‘equal to’ the (sum of) the rectangles contained
by the second line and the segments of the first. The purpose of this prop-
osition is not at all clear, although it is likely that the proposition is meant
as a reminder dhe additivity of area. In this sense, it paves the way for
the following two propositiongl. 1.2 andEl. 1.3.3

El. 1.2

If a straight line is cut at random,
the rectangléscontained by the whole and both of the segments
are equal to the square on the whole.

El. 1.3

If a straight line is cut at random,

the rectangle contained by the whole and one of the segments
is equal to the rectangle contained by the segments,

and the square on the mentioned segment.

A C B A C B

D F E F D E
Fig. 1.2.1. Diagrams igl. II.2 (left), andEl. 11.3 (right).

The diagram irEl. 1.2 (Fig. 1.2.1, left) is replaced in Fig. 1.2.2 below
by a diagram in the (modernized) Babylonian style, which shows that for
any triple of straight lines (of length) s andq, with u—s = q, the state-
ment inEl. 11.2 saying, essentially, that, by the additivity of areas,

u-s+u-@U-s)=sqg.u
can be reformulatédasa quadratic equation of type B4b

sq.u—q-u=A, where A=u-s.

3. All translations of propositions in tli#ementsare borrowed from HeatABE (1956).
4. Note the pluralCf. the remark in VitracEA (1990), I: 328, fn. 3.
5. Contrary to Euclid who avoids talking about one plane figul#ractedrom another.
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Alternatively, the same statement can be reformulatedrastangular-
linear system of equations of type Blb
u-s=A, u-s=gq.

See again the diagram in Fig. 1.2.2

ElLI.2:u-stu-(u-9) =sq.u

q S
B4b: sq.uu—q-u=A
Blb: u-s=A, u-s=q
(Hereu, s, g arestraight lines sq.u asquarewith
" A the sideu, and u - s arectanglewith the sides, s.

Simultaneouslyy, s, g denote théengthsof the
straight lines with these names, while sand

u - sdenote thareasof the square and the rectangle
with these names.)

Fig. 1.2.2. The diagram &l. 11.2 replaced by a diagram in the Babylonian style.
Therefore, the purpose &l. 1.2 may have been, essentially, to demon-
strate that anguadratic equation of type B#b

sq.u—q-u=A
is equivalent to aectangular-linear system of equations of type:Blb

u-s=A, u-s=gq.’

Fig. 1.2.3 below shows that there am® ways of similarly replacing
the diagram irkl. 1.3 with a diagram in the Babylonian style. According
to the interpretation in Fig. 1.2.3, left, the statemerilinll.3, saying,
essentially, that

u-s=UuU-9-s+sqg.s
can be reformulated agjaadratic equation of type B4da

sq.s+q-s=A, where A=u-s.

Alternatively, the same statement can be reformulatedrastangular-
linear system of equations of type B1b

u-s=A, u-s=gq.

6. Necessarily witly andA positive, ifu andq are interpreted as lengths ahds an area.
7. Necessarily witls positive ands less tharu.
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Therefore, one purpose Bf. 11.3 may have been to demonstrate that any
quadratic equation of type B#a

sg.s+q-s=A
is equivalent to aectangular-linear system of equations of type:B1b

u-s=A, u-s=gq.

u p
q S s u
S A ul A
ElLIL3: u-s=(Uu-9)-s+sq.s ElLIL3: (U+9s) -u=u-s+sq.u
B4a: sq.s+q-s=A B4c: p-u-squ=A
Blb: u-s=A, u-s=q Bla:u-s=A, u+s=p

Fig. 1.2.3. Two possible interpretations of the diagrafl.ifl.3.

According to the interpretation in Fig. 1.2.3, right, the statemek in
I1.3 can be reformulated aggaadratic equation of type B4c

p-u—sq.u=A, where A=u-s.
Alternatively, the same statement can be reformulatedrastangular-
linear system of equations of type Bla

u-s=A, u+s=p.
Therefore, another purposefi 11.3 may have been to demonstrate that
anyquadratic equation of type B4c

p-u—sq.u=A
is equivalent to aectangular-linear system of equations of type :Bla

u-s=A, u+s=p.

8. With some obvious restrictions because of the geometric interpretation.
9. With some obvious restrictions because of the geometric interpretation.
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1.3.El. 1.4, 1.7 and the Two Basic Additive Quadratic-Linear
Systems of Equations

El. Il.4

If a straight line is cut at random,
the square on the whole is equal to the squares on the segments,
and twice the rectangle contained by the segments.

El. 1.7

If a straight line is cut at random,

the square on the whole and that on one of the segments, both together,

are equal to twice the rectangle contained by the whole and the said segment,
and the square on the remaining segment.

A C B A C B

D F E D N E

Fig. 1.3.1. Diagrams i&l. II.4 (left), andEl. 11.7 (right).
In Fig. 1.3.2, left, below, the line AB is callgglits segments ands.
The statement i&l. 1.4 can then be interpreted as saying that
sq. U+s)=sq.u+sg.s+2u-s
This equation, in its turn, can be reformulated in the following way:
sq.p=S+2A where p=u+s, S=squ+sq.s and A=u-s.
Therefore, the purpose &l. 1.4 may have been, essentially, to demon-
strate that anguadratic-linear system of equations of type B2a
Sg.u+sg.s=S, uts=p
is equivalent to aectangular-linear system of equations of type:Bla
u-s=A, u+s=p where A=(sq.p—9/2.
The interpretation dEl. 1.7 in Fig. 1.3.2, right, is not quite as straight-

forward, since in order to get an interpretation wtidrél.4 andEl. 11.7
are closely related, one has to assume that the diagraliry is only
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the upper right corner of a larger diagram, based on two concentric and

parallel squares. If this assumption is allowed, the given straight line AB

in EL. 1.7 can be called, and its arbitrary segmergandq, whereq is the

side of the inner square. The statemerilifl.7 can then be interpreted

as saying that
sg.u+sg.s=2u-s+sq. 1-9).

This equation, in its turn, can be reformulated in the following way:
S=2A+sg.q where g=u-s S=squ+sqgs and A=u-s.

Therefore, the purpose &l. II.7 may have been, essentially, to demon-

strate that anguadratic-linear system of equations of type B2b
sq.u+sg.s=S, u-s=p

is equivalent to aectangular-linear system of equations of type:Blb
u-s=A, u-s=q where A=(S--sq.g)/2.

u P s q Y7
A SQ.S| S Al sO.s| s
I A
sa.q | q
sg.u A |u - |
El. 11.4: ELIL7:
sq.U+s)= sq.u+sq.s+2u-s Sg.U+5sq.S=2u-s+sqg. -9
B2a: B2b :
sg.u+sg.s=S, u+s=p Sg.u+sg.s=S, u—-s=q
C u-s=A=(sq.p-9)/2 C u-s=A=(S-sq.g)/2

Fig. 1.3.2. Interpretations of the diagram&inll. 4 andEl. 11.7.

In Sec. 1.4 below it will be shown how systems of equations of type
B2a (or B2b) can be solved by useEbfll.4 in combination withEl. II. 5
(or by use oEl. 1.7 in combination withEl. 11.6).

Similarly, it will be shown how quadratic equations of type B4a (or B4b
or B4c) can be solved by usei Il. 3 in combination withEl. 11.6 (or
El. 1.2 in combination withEl. 1.6, or El. 1.3 in combination with
El. 11.5). See Figs. 1.2.2 and 1.2.3 above.
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1.4.El. 11.5-6 and the Two Basic Rectangular-Linear

Systems of Equations

ElLII. 5

If a straight line is cut into equal and unequal segments,

the rectangle contained by the unequal segments of the whole,

together with the square on the straight line between the points of section,
is equal to the square on the half.

ElLI.6

If a straight line is bisected and a straight line is added to it in a straight line,

the rectangle contained by the whole with the added straight line, and the added straight
line, together with the square on the half, is equal to

the square on the straight line made up of the half and the added straight line.

A C D B A c B D
0 Ay
K L N
HZ P
K Ll N
P
E G F E G F

Fig. 1.4.1. The diagrams Hl. 11.5 (left), andEl. 11.6 (right).
The proofs oEl. II. 5 andEl. Il. 6, respectively, both start by assuming

that the straight line AB in the associated diagram is the given line.

In Fig. 1.4.2, left, the given straight line AB is callgdand so on, as

above. Then, the statementdh II.5 can be interpreted as saying that

(p—9) -s+sq. pl2 —s) = sq.p/2.

This equation, in its turn, can be reformulated in the following way:

A+sq.0/2=sqp/2 where A=u-s, pru+s and g=u-s.

Therefore, the purpose &l. 11.5 may have been, essentially, to demon-
strate that anyectangular-linear system of equations of type:Bla

u-s=A, uts=p

can be solved as follows (with sgs. meaning “the square-sidé%f”):

(u—9/2 =g/2 = sgs. (sqp/2 —A),

10. With some obvious restrictions because of the geometric interpretation.
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u=p/2+g/2 =p/2 + sgs. (sop/2 —A),

s=pl2 —g/2 =p/2 — sqs. (sqp/2 —A).
Here sgs. (short for “square side”) stands for the side of a given square.
Note that when both andq are knownu ands can be found as the “half-
sum” and “half-difference”, respectively, pfandg.

p ——u
u S —Qq— S
s i s ‘ i i S ‘
A T2 L A pi2
e L] _joe]
sqg.g/2 sg.9/2
El.Il5: El. 1.6 :
(p—9:'s +sq. p/l2—9 =sq.p/2 (q+9 s +sq.92=sq. @2+5)
Bla: u-s=A, u+s=p Blb: u-s=A, u-s=q
C sg.92=sqpl2—-A, etc. C sq.pl2=A+sqg.0/2, etc.

Fig. 1.4.2. Interpretations of the diagram&lnll. 5 andEl. 11.6.

In Fig. 1.4.2, right, the given straight line AB is callgdand so on.
Then, the statement H. 1.6 can be interpreted as saying that

(q+s)-s+sq.02=sq. ¢2 +s).
This equation, too, can be reformulated in the following way:

sq.p/2 = A+sq.g/2 where A=u-s, pru+s and g=u-s.
Therefore, the purpose &l. [1.6 may have been, essentially, to demon-
strate that anyectangular-linear system of equations of type :B1b

u-s=A, u-s=q
can be solved as follows:

(u+9/2 =p/l2 =sqgs. A+ s0.9/2),

u=p/2 +g/2 =sgs. A + sq.09/2) +g/2,

s=p/l2 -g/2 = sgs. A + s0.09/2) —q/2.

As mentioned above, the solutioretguadratic-linear system of equa-
tions of type B2aan be obtained by useef. 11.4 in combination witHel.
I1.5. Indeed, suppose that

SqQ.u+sg.s=S, uts=p.
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ThenEl 1l.4 can be used to show that
u-s=A, u+s=p where A=(sq.p—-9/2.

In combination withEl. 11.5, this shows that
(u—9/2 =g/2 = sgs. (sqp/2 —A) = sgs. §2 — sqp/2).

Consequently,

u=p/2 +g/2 =p/2 + sgs. §2 — sqp/2),
s=pl2 -g/2 =p/2 — sqs.F2 — sq.p/2).

Similarly, of course, in the case of a system of equations of type B2b.
In the same wayg quadratic equation of, for instance, type B4a be
solved by use dEl. Il. 3 in combination witrEl. I1.6. Indeed, if
sg.s+(g-S=A,
then it can be shown by usekif 11.3 that ifu =s + g, then
u-s=A, u-s=q.
Therefore, in view oEl. Il. 6,
s=sqs. A+ s0.9/2) —g/2.

1.5.El. 11.8 and the Two Basic Subtractive Quadratic-Linear
Systems of Equations

El. 1.8

If a straight line is cut at random,

four times the rectangle contained by the whole and one of the segments,

together with the square on the remaining segment, is equal to

the square described on the whole and the mentioned segment as on one straight line.

A C B D
---T
M G
: K
o \ P
R
s{le
E H L F

Fig. 1.5.1. The diagram ial. 11.8.
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In Fig. 1.5.2 below, the given straight line AB is callednd the two
segments into which it is cut are caledndq. If also, as usualj + sis
calledp, then the statement El. 11.8 can be interpreted as saying that

4u-s+sq.0—9=sq9.(0+9 (cf. Fig. 1.1.2))
This equation, in its turn, can be reformulated in the following way:
4A=D where A=u-s, p=u+s gq=u-s and D =sq.p—sq.qg.
In other words, if
sq.p—sq.q=D,
then
D=4A=4u-s=2u-2s
(Note that 21 and 2s can be interpreted &lse length of the mid-linand
the width respectively, of the square corner formed by removing a square
of sidep from a square of sidg as in Fig. 1.5.2.)
Thereforeany rectangular-linear system of equations of type: B3a
sq.p—sqqg=D, p+q=2u
can be solved by use Bf. 11.8 as follows:

p—q=2s=D/2y,
p=u+s=u+D/(4u),
g=u-s=u-D/(4u).

p

u S El. 1.8 :
A s 4u-s+sq. (-9 =sqg.(+9)

B3a-b:

A S sq.p—sqq=D
p+g=2u (orp-g=29
A A u C 4A=2u-2s=D,

sq.q q p—-qgq=2s=D/2u
(orp+g=2u=D/2s), etc.

Fig. 1.5.2. Interpretation of the diagranEhI. 8.

One would now expect a further proposition related to the case of a
rectangular-linear system of equationstygfe B3b However, this addi-
tional proposition was omitted by the author&dfIl, obviously because
this case, too, can be taken care of by udd.df.8.
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1.6.El. 11.9-10, Constructive Counterparts toEl. Il.4 and I1.7

It Secs. 1.2-1.5 above, it was demonstrated that first half of
Elements Il, comprising the seven propositions El. 11.2-8, can be interpret-
ed as a catalog of various steps in the geometric solution procedures for
the nine basic problems of OB metric algebra, six kinds of quadratic-lin-
ear or rectangular-linear systems of equations, and three kinds of qua-
dratic equationsIn this first half ofEl. I, all the proofs are based on
manipulations with squares and rectangles

It will be shown below thathe second half of Elements Il, comprising
the six propositions El. 11.9-14, can be interpreted as a parallel catalog of
various steps in geometric solution procedures for six of the nine basic
problems of OB metric algebra, namely the six kinds of quadratic-linear
or rectangular-linear systems of equatiohsthis second half dl. 11, all
the proofs are based amanipulations with right triangles and circles.

El. 11.9

If a straight line is cut into equal and unequal segments,

the squares on the unequal segments of the whole

are double of the square on the half and of the square on the straight line
between the points of section.

El. 11.10

If a straight line is bisected, and a straight line is added to it in a straight line,

the square on the whole with the added straight line

and the square on the added straight line, both together,

are double of the square on the half,

and of the square described on the straight line made up of the half

and the added straight line as on one straight line.

In Fig. 1.6.1 left, below, the given straight linegh|1.9 is calledp, and
the unequal parts @fare calleds ands, just as in the interpretation of the
diagram inEl. 1.4, in Fig. 1.3.2 above.

A considerable part of the proof Bf. I.9 is devoted to a careful con-
struction of the various parts of the plane figure shown in the diagram. The
most essential part of that plane figure consists of two right triangles with
the sideay, sanda, b, respectively, joined along a common diagonal of
lengthd. A plane figure of this kind can be called a “birectangle”, because
it has two right angles.
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The most essential part of the plane figure appearing in the diagram for
El. 11.10 consists of twgartly overlappingright triangles with the sides
u, sanda, b, respectively, joined along a common diagonal of ledgth
plane figure of this kind can be called an “overlapping birectangle”.

p/2 q/2 S
u

ELL 1.9 : El. 11.10 :
sg.u + sg.s= 2 (sq.p/2 + sq.0/2) sg.u + sg.s= 2 (sq.p/2 + sq.0/2)
B2a: B2b :
sq.u+sg.s=S=sg.d, u+s=p sq.u+sg.s=S=sg.d, u-s=q

C g2=s0s.§2-sqp/2), etc. C pl2=sgs.§2-5sqq/2), etc.

Fig. 1.6.1. Interpretations of the diagram&Inll.9, andEl. I1.10.

The simple proof of the proposition H. 11.9 is based on repeated
applications of the “diagonal rule” i&l. 1.47. On one hand,

sq.d=sg.a+sg.b=2sqp/2 + 2 sqg/2,
sincea andb are the diagonals of twalf-squareswith the sideg/2 and
g/2. On the other hand,

sq.d=sqg.u+ sg.s.
Therefore,

sg.u + sg.s= 2 (sq.p/2 + sq.0/2).
The proof of the similar proposition H. 11.10 is similar.

The purpose oEl. 11.9 may have been to show that amyadratic-
linear system of equations of type B2a

sq.u+sg.s=S u+s=p, withSandp given,
can be solved as follows: The diagram in Fig. 1.6.1, left, is constructed,
with d = sgs.S. Then it can be shown, as in the prooEbfll. 9, that

S =squ+sqg.s=2 (sqp/2 + sq.q/2).
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Consequently ands can be computed in the following way:

(u—19/2 =g/2 = sgs. §2 - sqp/2),
u=p/2 +g/2 =p/2 + sgs. §2 — sqp/2),
s=p/l2 -g/2 =p/2 — sqs.F2 — sq.p/2).

Similarly, of courseEl. 11.10 can be interpreted as a geometric solution
procedure fom quadratic-linear system of equations of type:B2b

sq.u+sg.s=S u-s=q, withSandqgiven.

The reason wh¥l Il. 9 and 10 can be understood as “constructive
counterparts” tdl. 1.4 and 7 will be disclosed below, in Sec. 1.9.

1.7.El.11.11* and I1.14*, Constructive Counterparts to El. 11.5-6
El. 11.11

To cut a given straight line so that
the rectangle contained by the whole and one of the segments
is equal to the square on the remaining segment.

El. 1.14
To construct a square equal to a given rectilineal figure.
F G
H
A H B
E
B
G E F
C K D C D

Fig. 1.7.1. The diagrams Hl. 11.11 andEl. 1.14.

In these two propositions, the authoiEdémentdl has chosen to con-
sidertwo particularly important construction®lated to two propositions
that would have been the “constructive counterpart&ltd. 5, 6.

In the diagram foEl. I1.11 (Fig. 1.7.1, left), AB is the given straight
line. The first step of the solution to the stated construction problem is to
construct the square ABDC with sides of lengtAC is bisected at E, and
the diagonal BE is drawn. A point F on the extension of AC is found such
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that EF = BE. (This can be done most easily by finding the intersection of
an extension of AC with a circle through B with center E.) The square
AFGH is drawn on AF, and the side GH is extended to K. With this, the
construction is completed, and it remains to prove that the given line AB
is cut by H in the desired way.

The construction il 11.11 can be explained as follows: In Fig. 1.7.1,
left, leth be the length of AB = AC, letbe the length of AF, lat=s+h
be the length of CF, and IpR2 =s + h/2 be the length of EF = BE. Then,

s+h/2 =EF and h/2 = EA.
Now, according tdl. I1.6,
CF - AF +sg. EA =sq. EF = sq. EB.
In other words,
u-s+sq.h/2 = sq.p/2.
An application of the diagonal rule El. 1.47 then shows that
u-s=sg.h where his the given length of AB.
This means thahe rectangle FGKC is equal to the square ABBI€nce,
if the rectangle AHKC is subtracted from both, it follows that also the rect-

angle HBDK is equal to the square FGHA. Therefore the point H divides
AB in the desired way.

o2 g2 s —p2— g2 s
u u

ElLIL11*: sq.h+s0.0/2 = sq.p/2 El. 11.14* sq.h + sq.g/2 = sq.p/2
Blb: u-s=A=sqg.h, u-s=q Bla: u-s=A=sqg.h, u+s=p
C pl2=sgs.A +5sq.02), etc. C g/2=sqs. (sqp/2 -A), etc.

Fig. 1.7.2. The general ideas behiidlIl.11 andEl. 11.14.

What is going on here is revealedsh VI.30, where it is shown that if
a straight line AB is divided in the way describecEinll.11, then it is
“divided in extreme and mean ratio”. Note that the diagragl.ii.11 is
nearly identical with the diagram Ei. VI.30.
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Now, consider the construction of the diagram in Fig. 1.7.2, left. Begin
by assuming thaq is a given length and a given area, and construct a
right triangle with the sideg/2 andh = sgs.A. Then, according to the
diagonal rule irEl. 1.47, the diagonal of the right triangle is also known. If
it is calledp/2, then

A+ s0.0/2 =sg.h +sq.g/2 = sq.p/2.

Next, construct a semicircle with the radpi2 and with its center at the
lower left vertex of the right triangle. The result is the diagram shown in
Fig. 1.7.2, left. Let

u=p/2 +g/2 =sgs. A +s9.0/2) +q/2,

s=pl2 —-g/2 =sqgs. A+ s0.09/2) —g/2.

Then

u+s=p, u-s=q,
and it can be shown geometrically, as in Fig.1.1.2 above, that

u-s=sq.p/2-sqg/2 sothatu-s=sqg.h=A.

Therefore, the lengthsands constructed in this way with departure from
the given quantities andA are solutions to the followingectangular-
linear system of equations of type Blb

u-s=A=sqh, u-s=q.

It is important to realize thgtroposition El. II.11 in the form that
Euclid gave to it is, essentially, the special case when h = q of the more
general proposition El. I11.11%, illustrated by the diagram in Fig. 1.7.2, left.

Now, consider instead the diagram in Fig. 1.7.2, right, related to the
diagram in Fig. 1.7.2, left. Begin by assuming that a given length and
A a given area, and construct a right triangle with the diaggdand the
uprighth = sgs.A. Then, according to the diagonal ruleEh 1.47, the
length of the base of the right triangle is also known. CglRit Then

sq.p/2 —A =sq.p/2 — sqh = sq.09/2.
Next, construct a semicircle with the radpl2 and with its center at the

lower left vertex of the right triangle. The result is the diagram shown in
Fig. 1.7.2, right. Let

u=p/2 +g/2 =p/2 + sgs. (sgp/2 —A),
s=p/l2 -g/2 =p/2 —sgs. (sqp/2 —A).
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Then
u+s=p, u-s=q,

and it can be proved as above that the lengtusds constructed in this
way with departure from the given quantitgsndA are solutions t@
rectangular-linear system of equations of type Bla

u-s=A=sqg.h, u+s=p.

What does this result have to do wigh 11.14, where Euclid shows
how to “construct a square equal to a given rectilineal figure™? The prop-
osition is illustrated by the diagram in Fig. 1.7.1, right. Euclid begins by
constructing a rectangle equal to the given figure (which is a paraphrase
for a rectangle of given area)®y use oEl. 1.45. How he then continues
can be explained as follows: He let6BE) ands (ED) be the sides of the
rectangle with the given ardaand constructs a semicircle with the diam-
eterp =u + s (BF). Next, he constructs a perpendicular, whose length may
be calledh, in the semicircle from the point (E) where the diameter of the
semicircle is divided into two segments of lengthands, and draws a
right triangle with the given upright side(EH), the given diagonad/2
(HG), and the basg’2 —s =g/2 (GE). This is, essentially, the same con-
struction as in Fig. 1.7.2, right. Then he notes that, accordigl tio5,

u-s+sq.q/2 =sq.p/2.

In view of the diagonal rule i&l. 1.47, this means that
sq.h=1sqg.p/2 —sqQ/2 =u -sS=A,

whereh is the length of the upright side of the right triangle, and where
is the given area. Therefoteijs the side of a square with the given area.
Essentially, what Euclid does in his constructiofEinll.14 is that he
starts withany rectangle with the given aréa say one with the sides s
=A, 1. He then constructs the diagram in Fig. 1.7.2, right, in the case when
p =u +s. In this way, he manages to construct the kidéa square with
the given ared, as the upright side of a right triangle. Therefore, proposi-
tion El. 11.14 in theinvertedform that Euclid chose to give to it (withand
s, hence als@ andq, given from the beginning rather thArandp) may
very well have replaced an original propositiEinil.14* in some earlier,
now lost, version of th&lemens, one which showed how to construct a
solutionu, sto a rectangular-linear system of equations of type.Bla
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1.8.El. 11.12-13, Constructive Counterparts toEl. 11.8
El. 11.12

In obtuse-angled triangles the square on the side subtending the obtuse angle
is greater than the squares on the sides containing the obtuse angle

by twice the rectangle contained by one of the sides about the obtuse angle,
namely that on which the perpendicular falls, and the straight line cut off outside
by the perpendicular towards the obtuse angle.

El. 11.13

In acute-angled triangles the square on the side subtending the acute angle

is less than the squares on the sides containing the acute angle

by twice the rectangle contained by one of the sides about the acute angle,

namely that on which the perpendicular falls, and the straight line cut off within

by the perpendicular towards the acute angle.

Just as the pair of propositioBk Il. 9-10 were shown above to be con-
cerned with pairs of right trianglgsined in two different ways along a
common diagonalso the pair of propositiortsl. 11.12, 13 are concerned
with pairs of right trianglegined in two different ways along a common
upright side (perpendicular)Thus, in Fig. 1.8.1, right (below), two right
triangles areaddedto each other, joined along a common upright side,
while in Fig. 1.8.1, left, one right trianglessbtractedrom another right
triangle, to which it is joined along a common upright side.

ElL 112 : El. 11.13:
sq.c=sq.a+sqg.b+2b-q sq.c=sqg.a+sqg.b -2b-q
B3b: B3a:
sq.p—-sqq=D, p-g=h sq.p—-sqq=D, p+q=b,
with D =sg.c—sg.a with D =sq.c—sg.a
C 2b-q=D-sq.b, etc. C 2b-q=sq.b-D, etc.

Fig. 1.8.1. Interpretations of the diagram&Inll.12 andEl. 11.13.
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With the notations introduced in Fig. 1.8.1, left, the prodElofil.12
proceeds as follows:

sq.p=sg.b+sg.q+2b-q El. 1.4

sg.p +sq.h=sqg.b+sq.q+sqg.h+2b-q

sq.c=sq.b+sq.a+2b-q El.1.47
Similarly in the case d&l. I1.13, with the notations in Fig. 1.8.1, right:

sq.b+sg.g=2b-q+sq.p ELlIL7

sg.b+sg.q+sq.h=2b-q+sqg.p+sg.h

sg.b+sg.a=2b-q+sq.c El. .47

sg.c=sg.b+sg.a-2b-q
The purpose oEl. 11.12 may have been to demonstrate that any
subtractive quadratic-linear system of equations of type B3b
sg.p—sqg.p=D, p—qg=hb, withD andb given,
can be solved as follows: Exprd3ss a square-difference, for instance as
D=D-1=sqc-sg.a with c=(D +1)/2,a=(D-1)/2.
(Cf. Fig. 1.1.2.) Then it follows from the resultkn. II. 12 that
2b-qg=D-sq.b.
Therefore,
q=0D-sqb)/(2b), p=pP-9+q=b+qg=(D +sq.b)/(2b).
In a similar way, the purpose Bf. [1.13 may have been to demonstrate
that anysubtractive quadratic-linear system of equations of type B3a
sq.p—sqg.p=D, p+qg=b, withD andb given,
can be solved as follows: Exprd3ss a square-difference,
D =sqg.c—-sqg.a
Then it follows from the result iEl. II. 13 that
2b-g=sg.b-D,
so that
g=(sq.b-D)/(2b), p=(+ ) —q=b-qg=(sq.b+D)/(2h).
It may seem a bit strange thatkh 11.12-13 the case of the obtuse-
angled triangle precedes the case of the acute-angled triangle. The reason

can be that, as pointed out above, the prodlofi.12 makes use d&l.
1.4, while the proof oEl. I1.13 makes use of tHater propositionEl. 11.7.
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1.9. Summary The Three Parts ofElements |

The discussion above aimed to demonstrate Elehentsll can be
divided into three distinct parts with obvious relations to the nine basic
equations or systems of equations in OB metric algebra:

A. ELIL(1), 2, 3: related to the basic quadratic equations

B. EI I1.4-8: related to the basic quadratic- or rectangular-linear systems of equations

C. ELIL.9-14: related to the same quadratic- or rectangular-linear systems of equations
The question then naturally arises why work that was already done in part
B of Elementdl is repeated in a different way in part C. The answer to this
question may be as follows:

Itis possible that a lost Greek forerunneEtementsl, call it Elements
[I*, was written in imitation of a Babylonian theme text with the same sub-
ject. (See below, Sec. 1.12, for examples of OB theme texts.) Presumably,
Elementdl* contained only parts A and B, possibly with Babylonian style
metric algebra diagrams rather than the lettered diagrams preferred by
Euclid, and with solutions to concrete metric algebra problems instead of
abstract geometric propositions. Then, somebody may have reacted to the
circumstance that the solutions to the metric algebra problems in part B of
ElementdI* were analytic and non-constructiyen the sense that the dia-
grams associated with the forerunnergltdl.4-8 cannot be drawn accu-
rately untilafter the solutions to the stated metric algebra problems have
been found. Therefore, the non-constructive solutions in part B were com-
plemented with alternativeynthetic and constructivaolutions in part C,
consisting of forerunners tl. 11.9-14.

Take, for instance, a renewed look at the Bhifl.9-10. Suppose that
p is agiven lengthand thatS = sq.d is the area of a square wildes of
given length dThen a solution to the metric algebra problem

B2a: squ+sg.s=S=sq.d, u+s=p
can be constructed in the following way:

Draw a straight line of length, as in Fig. 1.9.1, left. Bisect the straight
line, and erect a perpendicular of lengf at its midpoint. Complete a
half-square with the straight line of lengilas its diagonal and base. Then
draw a circle of radiud with its center at one of the endpoints of the given
straight line. Draw a perpendicular to the given straight line from the point
where the circle intersects that half-square. This perpendicular cuts the
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given straight line into two segments. Call the lengths of the segments
ands. Thensis also the length of the perpendicular from the point of inter-
section of the circle and the half-square. Therefore, it is clean,thé a
solution to the stated metric algebra problem of type B2a.

As mentioned above (Fig. 1.6.1), this construcgeemetricsolution
to the problem can be transformed into the followimgfric solution:

u=p/2 +sgs. §2 —sqp/2), s=p/2-sqs.H2 - sqp/2.

d s
s
p s
u Hisg d
u
B2a: sq.u+sgq.s=S=sq.d B2b: sq.u+sq.s=S=sq.d
u+s=p (p>d u-s=q (q<d)

Fig. 1.9.1. Geometric constructions of solutions in possible forerunngtslk®, 10.

A similar constructive solution to the metric algebra problem of type
B2b is illustrated in Fig. 1.9.1, right. It is a likely forerunnekEtoll.10.

In a similar way, consider the following likely forerunners to the pair
El. [1.11* andEl. 11.14* (Fig. 1.7.2), the proposed forerunner&toll.11
and 11.14. First, suppose thais agiven lengthand thatA = sq.h is the
given areaof a square. Then a solution to the metric algebra problem

Blb: u-s=A=sq.h, u—-s=q
can be constructed in the following way: Draw a rectangle with sides of
lengthqg andh, as in Fig. 1.9.2, left, and draw a semicircle with its center
at the midpoint of one of the sides of lengtland passing through the two
opposite vertices of the rectangle. Then the diameter of the circle is cut into
three segments of which one is the side of the rectangle of lgnigéhs
be the common length of the remaining two segments Aat+ g, and let
p =u+s. Thenp/2 is the length of the radius of the semicircle. Therefore,
by the diagonal rule, s@/2 — sq.g/2 = sg.h. On the other hand,

sq.p/2 —sqg/2 =u - s.
(See Fig. 1.1.2.) Consequently; s= sg.h, and it follows thau, sis a
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solution to the mentioned metric algebra problem of type B1b.

u Il SJ u 1L SJ

Blb: u-s=A=sg.h, u-s=q Bla: u-s=A=sq.h,u+s=p
Fig. 1.9.2. Geometric constructions of solutions in possible forerunngtslkd 1*, 14*.

A similar constructive solution to the metric algebra problem of type
Bla is illustrated in Fig. 1.9.2, right. It is a likely forerunneEtoll.14*.

Note: Ashortcoming in the proposed constructive solutions to systems of
equations of types Bla-b or B2a-b depicted in Figs. 1.9.1-2 is that they are
based on the assumption that the square dideslh of SandA, respec-
tively, are known. Apparently, Euclid observed this shortcoming in the
mentioned constructive solutions, and that is why he included a description
of the geometric construction of square sidekisEl. Il. 14. Having in-
sertedEl. 11.14 in Elementdl, he did not bother to include al&d. 11.14*

(Fig. 1.7.2, right), for which the diagram would be, essentially, the same.

Consider, finally, the following likely forerunners to the faiir11.12,
El. 11.13. Suppose that, b, g are given lengths of the three sides of a tri-
angle Then a geometric solution to the metric algebra problems

B3a-b: squ-sqs=D=sq.a-sqb, u—-s=q (or u+s=p)
can be constructed as in Fig. 1.9.3. The uncomplicated details of the argu-
ment are left to the readers.

B3b: sq.u-sg.s=D, u-s=q B3a: sq.u—-sqs=D, u+s=p
D =sqg.a—sq.b D =sg.a-sqgb

Fig. 1.9.3. Geometric constructions of solutions in possible forerunngtslkd 2, 13.
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1.10. An Old Babylonian Catalog Text with Metric Algebra Problems

There does not exist any known OB mathematical text that is an exact
parallel toElementdl, or to any one of the three parts of it. On the other
hand, there do exist examplesQ catalog texts or theme texts with met-
ric algebra problemswhich therefore in a restricted sense can be called
forerunners tdclementdl. One such text iBM 80209 a small clay tablet
from the OB city Sippar, now in the collections of the British Museum in
London. The interpretation of that text given in Fribd@$S33 (1981) will
be partly repeated here.

BM 80209 is a very special kind of theme text, namely a very brief but
systematically arranged “catalog” of metric algebra problems of a number
of different types, each represented by one or several numerical examples.
There are no solution procedures and no answers to the stated problems.

Here is an abbreviated transliteration and translation of the text. In the
transliteration, square brackets indicate destroyed parts of the text, Sume-
rian words are written in normal style, and Akkadian (that is, Babylonian)
words in italics. (Sumerian terms were used in Babylonian mathematical
texts in much the same way as words of Greek or Latin origin are used in
modern mathematical texts.) Sexagesimal numbers are written as they are
in the original text, without zeros and without any indication of where the
fractional part of a number begins.

BM 80209

[--:ta im]-ta-har a.8a mi-nu-um
[Sum-ma) 20.ta im-ta-har dal mi-nu-um
[Sum-m]a 10.ta im-ta-har di-ik-Sum mi-nu-um

Sum-ma A a.§a gar mi-nu-um

a s w DN e

a-na a.$a gar ¢ u$ dah P
i-na a.§a gur ¢ us ba.zi Q
6. a.sa 2 gar ul.gar 4 glr ugu gar 10 diri

7. a.sa gur dal glr u si-hi-ir-ti gar ul.gar-ma A

1. --- each itigqualsided. The field is what?
2. If 20 each it is equalsided, the transversal is what?
3. If 10 each it is equalsided, the expansion is what?
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4. If Ais the field, the arc is what?
5. To the field of the arc (times) the length | addeB,
From the field of the arc (times) the length | tore of@.
6. The fields of 2 arcs | joine®, Arc over arc 10 beyond.
7. The field of the arc, the transversal of the arc, the go-around of the arc | pined,

(In the translation, destroyed parts of the text are written in italics.)

For various reasons, it is advisable to liteeal translationsof Baby-
lonian mathematical texts. In the translation above, the literal translations
‘equalsided’, ‘field’, and ‘arc’ correspond to the modern terms ‘square’,
‘area’, and ‘circle’. The ‘transversal’ of a square is its diagonal, while the
‘transversal’ of a circle is its diameter. The circumference of a circle is
called its ‘arc’, its ‘length’, or its ‘go-around’. ‘Tear off’ means ‘subtract’,
and ‘arc over arc is 10 beyond’ means that the circumference of one circle
is 10 (length units) longer than the circumference of another circle.

The very convenient approximatian= appr. 3 is used in all Babylo-
nian mathematical texts. More precisely, the #&e@ad the diametet of
a circle are expressed as follows in terms of the arc (circumferance)

A=5:a where ‘5'’means;05=5/60=1/12 =apprLl/4

d=20-a where ‘20’ means ;20 = 20/60 = 1/3 = appk. 1/

In addition to sexagesimal fractions, such as the circle constants ‘5’ and
‘20, there are also two other kinds of fractions of numbers that appear in
Babylonian mathematical texts. One kind is the “basic fractions”

3 (=1/3)

2'(=1/2)

3" (=2/3)

6" (= 5/6)
for which there existed special signs in the cuneiform script. Another kind
are the “reciprocals”

1/n, where n=4,5,6, ..., often written in Sumerian in the forigi.n.gal.

In 88 4-7 of the catalog text BM 80209, the coefficieghtB, Q, S, and
c are allowed to take various values, so that there are several examples of
each type of problem. In quasi-modern notations, the contents of BM
80209 can be described as follows. (The answers, which are not given in
the text, are listed in the last column. A minor numerical error in the text
is corrected here.)
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BM 80209, table of contents (sexagesimal numbers with floating values)
1. sgs=7? s=[-]
2. sgs=A d=7? s=20 d=20-1245110
3. expansion ofs=7? s=10 (meaning unknown)
4. 5sgqa=A, a="? A= 820 a=10
A= 21320 a=40
A= 32820 a=>50
A= 5 a=1(- 60)
5. 5sga+c-a=P, a=? c= 2 P=825 a=10
5sga-c-a=Q, a=? Q=815 a=10
c= 1 P=830 a=10
Q=810 a=10
c= 13 P=83320 a=10
Q=80640 a=10
c= 12 P=835 a=10
Q=805 a=10
c= 13" P=83640 a=10
Q=80320 a=10
c= 11/4 P=833230 a=10
Q=80730 a=10
c= 11/5 P=832 a=10
Q=808 a=10
6. 5sga+5sqb=S a-b=10, a,b="? S=41 40 a=20,b=10
S=32820 a=40,b=30
S=4140 a=50,b=40
S=82820 a=1(-60)b=50
7. 5sga+20a+a=B, a="? B=83320 a=10
B=1 a=20
B=155 a=30

B =306 40 a=40

1.11. A Large Old Babylonian Catalog Text of a Similar Kind

Another similar, but much more extensive, OB catalog text with metric
algebra problems without answersTiIS 5, from the ancient city Susa
(Western Iran). Here is an abbreviated transliteration and translation, with
several corrected readings of crucial but misunderstood words in the
original edition of the text in Bruins and RuttdiMS(1961):
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TMS5
la. s nigin ¢ u$-ia mi-nu
1b.  [c u$-ia bnigin mi-ng
1c. nigin 4 c us-ia gar.gar-ma €
1d. nigin ugu c us$ d diri
2a. snigin ¢ a.8a mi-nu
2b. ¢ a.8a A nigin mi-nu
3a. s nigin a.8a ¢ u§ mi-nu
3b a.3awna.3a c u§ gar.gar-ma S
3c. a.Saugua.sacus Ddiri
4a. a-na a.$a nigin-ia ¢ us§ dah-ma P
4b.  i-na a.$a nigin-ia ¢ u$ zi-ma Q
4c. ¢ nigin ugu a.sa D diri
4d. ¢ nigin ki-ma a.8a [--]-ma
nigin.ba a.sa ab-ni mi-nu ib.si u [--]-ma
¢ a.8a it-ba-al ib.tagy a.8a D nigin mi-nu
7a. p nigin ki-di-tum d me-Sé-tum nigin ger-bi-tum mi-nu
7b. ¢ nigin ger-bi-tum d me-§é-tum nigin ki-di-tum mi-nu
7c.  p nigin ki-di-tum g nigin ger-bi-tum ul.gar a.§a 2 nigin mi-nu
7d. a.83a 2 nigin ul.gar-ma S p nigin ki-di-tum qer-bi-tum mi-nu
7e. a.$a 2 nigin ul.gar-ma S g nigin ger-bi-tum ki-di-tum mi-nu
7f.  a.83 2 nigin ul.gar-ma S u$-$i-na gar.gar-ma b nigin mi-nu
[  RTTTTPTPTITS
8a. [---Inigin ger-bi-tim [---]ger-bi-tum nigin mi-nu
8b. D] a.8a dal-ba-ni d me-Sé-tum nigin ki-di-tum u ger-bi-tum mi-nu
8c. Da.sa dal-ba-ni c nigin ki-di-tim nigin ki-di-tum ger-bi-tum mi-nu
9a. pnigin ki-di-tum g mur r nigin ger-bi-tum a.§a dal-ba-an dal-ba-ni mi-nu
9b. a.3a dal-ba-an dal-ba-ni E u§-§i-na ul.gar-ma b nigin mi-nu
9c. a.$a dal-ba-an dal-ba-ni E mur ugu nigin d nigin mi-nu
4 22 mu.bi nigin.mes§
la. sisthe equalside (times) my length is what?
1b. c (times) my length is b. The equalside is what?
1lc. Equalside and(times) my length | addee,
1d. Equalside oves (times) the length id beyond.
2a. sisthe equalside (times) the field is what?
2b. c(times) the field iA. The equalside is what?
3a. sisthe equalside. The field of(times) the length is what?



3b.
3c.

4a.
4b.
4c.
4d.

7a.
7b.
7c.
7d.

Te.

9a.

9b.

9c.
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The field and the field af (times) the length | heape§,
The field over the field af (times) the length iB beyond.

To the field of my equalside(times) the length | addeB,
From the field of my equalsidgtimes) the length I tore of€Q.
c (times) the equalside over the fieldDdeyond.

c (times) the equalside is like the field [---]

(meaning not clear)
c (times) the field he took away. The remaining fiel®isThe equalside is what?

p the outer equalside,the distance. The inner equalside is what?
g the inner equalsidel the distance. The outer equalside is what?
p the outer equalside,the inner equalside.
The join of the fields of the 2 equalsides is what?
The fields of two equalsides | joinesl,
p is the outer equalside. The inner equalside is what?
The fields of two equalsides | join&l,
gis the inner equalside. The outer equalside is what?
The fields of two equalsides | joined,
Their lengths | heaped, The equalsides are what?
(several problems missing)

(badly preserved)

D is the field betweerd the distance.

The outer and inner equalsides are what?

D is the field between.

c (times) the outer equalside is the inner equalside. The inner equalside is what?

p is the outer equalsidg,the middleyr the inner equalside.

The field between between is what?

The field between betweenHsTheir lengths | joined,.

The equalsides are what?

The field between betweendsThe middle over the <inner> equalsidelis
The equalsides are what?

The theme offMS5 isproblems for squared his is confirmed by the
subscript which states that the text contains ‘4 22 (262) cases of squares’.
It is interesting to note that the cuneiform sidgin, which in this text

stands for ‘equalside’ has the form of a square. The relatechgigum,
which stands for ‘equalsides’ has the form of two adjoining squares. Note
also that it is difficult to establish the exact meaning of ‘equalside’. Thus,
for instance, ‘the length of the equalside’ metres side of the square
while ‘the field of the equalside’ meatise area of the square
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In quasi-modern notations, the problem3MS5 can be explained as
follows:

TMS5, table of contents

la. s given c-s=7? 20 values foc
1b lc-s given s=7] 20 values foc
lc s+c:s given s=7? 20 values foc
1d s-c-s given s=7? 17 values foc
2a. s given c-sqs="7? 19 values foc
2b c-sgs given s=? 19 values foc
3a. s given sq.€-s)=7? 20 values far
3b sgs+sqg.€-s) given s=? 20 values foc
3c sqs—sq. € S) given s=? 20 values foc
4a. sgs+c-s given s=? 27 values foc
4b sgs-c-s given s=? 27 values foc
4¢c c-s—sqQs given s=? 3 values foc
4d c-s=sq.s s=? 1 value foc
5 (meaning not clear) 1 problem

6 sq.s—C-SQ. S given s=7? 5 values foc
7a. p and p-0q)/2 given q="? 1 problem
7b g and p-0q)/2 given p=7? 1 problem
7c¢ p andq given sqp+sqg="7? 1 problem
7d sqp+sg.q andp given q="7? 1 problem
7e sqp +sg.qg andg given p=7? 1 problem
7f sq.p+sg.q andp+q given p.q=" 1 problem
............................................................................................... (10 prob|ems m|SS|ng’))
8a. p and p—q given q="7? 1 problem
8b sgqp-sqq andp-—q given p,g="7? 1 problem
8c sgp-sqg.q given, g=c-p q="? 2 values foc
9a. p,mq given sq.m-sq.q="? 1 problem
9b sgm-sq.g and p+m+q given p,mq="? 1 problem
9c sqm-sq.g and m—q given p,mq="? 1 problem

Note: In 9b-c it is tacitly assumed tht-q=q—r.

In 88 1-4 ofTMS5, the given values of the coefficienare allowed to
vary in the same way as the given values of the coefficieng§ 5 of BM
80209 (Sec. 1.10 above), but much more extensively. Here is a list of given
values ofc and the corresponding values of the solutidthe asked for
length of the square side):
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C S Cc S Cc S

1 30 1 35 1 10 05 35=5.7

2 7 1111

3 27 21111 405=5-7-7
4 17 1 6 25

3" 127 117 55=5.11

2' 717 2117

3 7217 1 12 50 1005=5-11-11
4 1 405( 3"2'3'117

34 77 23"2'3'117 625=5-7-11
13" 277

12 177 1250=2-5-7-11
13 1277

14 1 55

134 11

22 211

33

44

Probably in order to save space, the values givenifothis text make
use of some otherwise undocumented notations for fractions. Take, for
instance the most complicated examples, those of the values 3" 2'3' 11 7
and 2 3" 2'3'11 7. They appea8ii ¢ in the two lines

nigin u 3" 2' 3' 11 7us-ia gar.gar-ma 12 51 06 40

nigin u 2 3" 2' 3' 11 7us-ia gar.gar-ma 12 52 13 20.

This means that
$+3"2'3'117s=1251 0640, ands+23"2' 3 117s=1252 13 20.

This and other examples together show that what is meant here is
3"2'3'117-s=2/3-1/2-13-1/11 - U/% -

and
23"2'3117s=2-2/3-1/2-1/3-1/11 - 14 -

It is likely that the student who got these equations as problems to solve

was assumed to make use of the rule of false value, a frequently used meth-
od in Babylonian mathematics. He would then start with a tentative value

for s, such as
s=7-11=117 (77).
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Using this tentative value, and working with sexagesimal numbers in
“relative place value notation” without zeros, he would then find that
2/3-1/2-1/3-111-17-117=2/3-1/2-1/3-1/11-11=2/3-1/2-1/3 -1
=2/3-1/2-20=2/3-10 =6 40.
Therefore, keeping track of the relative size of the computed fraction of
117, he could conclude that
S*+3"2'3117s*=117+640=117 06 40,
where
117 06 40 = 1/10 - 12 51 06 40.

This means that=10 -s* =10 -1 17 = 12 50 is the correct solution to the
first of the mentioned equations. It is left to the interested reader to show
that it is also the solution to the second equation.

Note the following important connection betwd&dviSs and the expla-
nation ofElementdl suggested in Secs. 1.2, 1.3, and 1.5 above: The prob-
lems inTMS 5 § 4 a-carebasic quadratic equationsf types B4a, B4b,
and B4c. Similarly, the problems fMS5 8 7 f(and probably the lost 8§

7 g) arebasic additive quadratic-linear system of equatiohtypes B2a
(and B2b). Finally, the problem TMS5 § 8 bis asubtractive quadratic-
linear system of equatiomnd type B3b.

In TMS 5 88 7-9are also of interest in this connection, because they
demonstrate quite clearly that OB mathematicians were familiar with the
concepts otoncentric and parallel squareand gjuare bands(Cf. the
discussion of Fig. 1.1.2 in Sec. 1.1 above.)

Fig. 1.11.1. The concentric squares and square bafd43® 8§ 7, 8, and 9.
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In TMS5 § 7, and § 8 b, two squares have the sides 30 and 20, respec-
tively. It is silently assumed that the two squares are concentric and paral-
lel. The distance between the squares is 5.

In § 8 c, two cases are considered. In the first case, the area of the ‘space
between’, that is of the square band, is 20 (- 60), and the length of the inner
square is 1/7 of the length of the outer square, with 1/7 written simply as
‘7. The solution procedure, which is not given in the text, is simple, since
the lengthg of the inner square can be found as the solution to the equation

sq. (7g) —sg.g=20 (- 60), and sqg.7—sg.1=48,

sothat 48 sqg=20 (- 60), hence sg=25, and

q=>5,p=35.

In the second case, the area of the square band is 16 40 (- 60), and the
length of the inner square is 1/7 - 1/7 of the length of the outer square, with
1/7 - 1/7 written simply as 7 7°. In this case,

sq. (499) —sq.g=20 (- 60), and sqg.49-sqg.1=4001-1=40 (- 60),

sothat 40 sqq=16 40, hence sq.=25, and

q=5,p=405.

In TMS 5 § 9, there are three concentric squares and two square bands.
It is silently assumed that the middle square is halfway between the other
two. The sides of the three squares are simply 30, 20, and 10.

1.12. Old Babylonian Solutions to Metric Algebra Problems

1.12 a. Old Babylonian problems for rectangles and squares

The two OB catalog texts with metric algebra problems discussed in
Secs. 1.10 and 1.11 above are well organized but lack both answers and
explicit solution procedures to the stated problems.

BM 13901 (NeugebaueMKT 3(1937); HayrupLWS(2002), 288) is
of a different type, theme textvith metric algebra problems. It is a large
text containing 23 exercises for squareach with a complete solution
procedure The table of contents below, where the exercises are listed in
their order of appearance in the text, reveals that BM 13901 is a mathemat-
ical “recombination text”, by which is meaatsomewhat disorganized
collection of more or less closely related mathematical exercises from a
number of sources.
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BM 13901, table of contents (sexagesimal numbers with floating values)

la. sg.s+s=45 s=30

1b sg.s-s=1430 s=30

lc sqs—3'sqs+3's=20 s=30

1d sqs—3'sqs+s=44640 s=20

le sgs+s+3's=55 s=30

1f sq.s+3"'s=35 s=30

1lg 7s+11sp=615 s=30

2a. sg.p+sq.q=2140, p+g=50 p=30, q=20
2b sgq.p+sq.q=2140, p—q=10 p=30, q=20
2c sqp+sq.q=2115 qg=p-1/7p p=330, q=3
2d sqp+sq.q=2815 p=q+1/7q p=4, q=330
2e sg.p+sq.q=2140,p-g=10 p=30, q=20
2f sq.p+s0.=2820, q=1/4p p=40, q=10
2g sgp+sqg.q=2525,g=3"p+5 p=30, q=25

4 sqg.p +sg.q + sq.r + sq.s= 27 05,
q=3"p,r=2'q,s=3'r

p=30,9g=20,r=15,s=10

1h sqs—3's=5 s=30
3a. sqp+sq.q+sq.r=1012 45,
q=1/7p,r =1/7q p=2430, =330, r=30
3b sqp+sqg.q+sqr=2320,p—q=gq-r=10 p=30, gq=20,r=10
2h sgqp+sg.q+sq.p—q) =2320, p+gq=50 p=30, q=20
....................................................................................... (3 exercises |0$t)
1li 4s+sq.s=4140 s=10
3c sgp+sg.q+sq.r=2910,
q=3"p+5, r=2'q+230 p=30, q=20, r=10

Four of the exercises in BM 13901 are closely associated with the
theme of parts A and B @lementdl. (See Sec. 1.9 above.) These four
exercises will be discussed separately below.

BM 13901 § 1 aliteral translation explanation (relative values)

The field and my equalside | heaped, 45. ssgs=A=45

1, the going-out, you set. Spt 1

The halfpart of 1 you break. /2 =30

30 and 30 you make eat each other. gi21= sg. 30 =15

15 to 45 you add. A+sq.02=45+15=1
1 makes 1 equalsided. sgs.1=1

30 that you made eat itself, q/2 =30

inside 1 you tear out. subtracted from 1 = 30
30 is the equalside s=30.



1.12. Old Babylonian Solutions to Metric Algebra Problems 37

See (Hayrupl-WS(2002), 50) for a transliteration of this text, and for
a literal translation, differing in some details from the one proposed here.
It is, by the way, not easy to find adequate literal translations of the terms
in a Babylonian mathematical text, since there is afteexact correspon-
dence between Babylonian and modern mathematical t&levertheless,
it is advisable to use literal translations, for the reason that OB mathemat-
ical terminology was not standardized. The fact that crucial elements of the
terminology are different in texts from different sites and different periods
ought to be apparent in the translations.

Besides, the use of non-literal translations can obscure important fine
points of the text, such as the fact, first pointed out by Hoyrdoil7
(1990), that OB mathematicians used different terms for several different
kinds of addition, several different kinds of multiplicatietc. Thus, for
instance, in the text abovethen two lengths are multiplied with each
othe, the term used is that the numbers for the two lengths “eat each other”
(and become replaced by a number for an area).

Note in the explanation the use of the abbreviations sq. for the square
of a length number and sgs. for the square side of an area number. (The use
of modern notations for squares and square roots would be anachronistic.)

The term ‘going-out’ (Akkwasitum ‘that which goes out’) in this text
refers to the coefficieryg in the quadratic equation sgi+ g - s=A. It has
to be understood aslength numbemwhich explains why it is possible to
add together the area numberssand the produdj - s. In the present case,
whenq = ‘1’, the phrase ‘the field and my equalside’ has to be understood
as sqs+ 1 -s, where both sgsand 1 sarearea numbers

Note, by the way, that it is not absolutely clear what it means that in this
text the going-out is equal to ‘1’. Hayrup is of the opinion that it means that
g =1 length unit, and is then forced to interpret the answer ‘30 is the equal-
side’ as meaning that the computed side of the square is ;30 = 1/2 length
unit. However, there is plenty of evidence that plane figures in OB
mathematical texts were normally (but perhaps not always) thought of as
actual fields with the size of their sides in the rangderis or sixtie®f
the length unihinda (= about 6 meters). Since the situation is unclear, it
may be a good idea to stay neutral on this issue and interpreteithas
lor100=1-60and ‘30" adgther30o0r ;30 =30 - 1/60.
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The quadratic equation in BM 13901 § 1a is of tde. The solution
procedure can be interpreted as a combination of the ideas I&hing@
and I1.6. (Fig. 1.2.3, left, and Fig. 1.4.2, right.) See Fig. 1.12.1 below:

q S q/2 s

>
7

Bda: sg.s+C-S=A i
d | sq. g2 02

s+ /2 =sgs. A +sq.9/2)
Fig. 1.12.1. A geometric explanation of the solution procedure in BM 13901 § 1 a.

Note that if it is assumed here tlsat ‘30" = 30, then sgs= ‘15" = 15 00
and consequently = ‘45’ = 45 00 andy = ‘1’ = 1 00!

Now, consider insteaBM 13901 § 1 b(Hayrup,LWS(2002), 52):

BM 13901 § 1 hliteral translation explanation (floating values)

My equalside inside the field | tore out, 14 30. sgs=A=1430

1, the going-out, you set. gt 1

The halfpart of 1 you break. g/2=30

30 and 30 you make eat each other. 0f)= sq. 30 = 15

15 to 14 30 you add. sq.q/2A+= 15 + 14 30 = 14 30 15(!)
14 30 15 makes 29 30 equalsided. sgs. 14 30 15 =29 30

30 that you made eat itself, Recall thé& = 30

to 29 30 you add. 30 is the equalside 30 added to 29 30s=30

The problem in BM 13901 § 1 b can be interpreted as a quadratic equa-
tion of typeB4b, sq.s—q-s=A, with q="'1". The most likely interpreta-
tion of the solution procedure is that it is a combination of the ideas behind
El. 1.2 and 11.6 (Figs. 1.2.2 and 1.4.2, right). See Fig. 1.12.2 below:

Note that in § 1b the computed valueud§ again ‘30’, but whes =
30, then in Fig. 1.12.2, left, the going-@t ‘1’ cannot possibly have the
value 1 00, which is greater than 30. Indeed, in a geometric interpretation
like the one in Fig. 1.12.2, the differen&e g must be a (positive) length
number. For this reason, the author of BM 13901 apparently chose to in-
terpret ‘the going-out is 1’ in 8 1 b as meaning thatl, notq = 1 00!
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s—q/2

q/2

B4b: sq.s—q-s=A
s—qg/2 =sgs.A +sq.9/2)
Fig. 1.12.2. A geometric explanation of the solution procedure in BM 13901 § 1 b.
Next, consideBM 13901 § 2 aHgyrup,op. cit, 66):

BM 13901 § 2 aliteral translation explanation (floating values)
The fields of my two equalsides | heaped, 21 40,psgsq.q=S=21 40

and my equalsides | heaped, 50. p+q=2u=50

The halfpart of 21 40 you break. S§2=1050

10 50 you write down. make a note$2 = 10 50

The halfpart of 50 you break. u=(P+Qq)/2=50/2=25

25 and 25 you make eat each other. usgsg. 25 =10 25

10 25 inside 10 50 you tear out. S§2-squ=1050-1025=25
25 makes 5 equalsided. sq¥2(—squ) =sgs. 25=5s
5 to the first 25 you add, u+s=25+5=30

30 is the first equalside. p=30

5 inside the second 25 you tear out, u-s=25-5=20

20 is the second equalside. g=20

The problem in BM 13901 § 2 a can be interpreted as a quadratic-linear
system of equations of type B2a, p&. sq.q=S p +g = 2u. The solution
procedure is based on the identity

sq.s=92-squ when sgp+sg.q=S, p=u+sand q=u-s.

BM 13901 § 2 b (Hgyrump. cit, 68) is similar:

BM 13901 § 2 b literal translation explanation (floating values)
The fields of my two equalsides | heaped, 21 40.psgsq.q=S=21 40
Equalside over equalside is 10 beyond. p—q=10

The halfpart of 21 40 you break. S§2=1050

10 50 you write down. make a note$2 = 10 50

The halfpart of 10 you break. ptqgi2=s=5
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5 and 5 you make eat each other. ssgsg.5=25

25 inside 10 50 you tear out. S2-s50s=1050-25=1025
10 25 makes 25 equalsided. S@2(sgs) =25=u

25 you write down twice. make two notesust 25

5 that you made eat itself Recall tsat 5

to the first 25 you add, u+s=25+5=30

30 is the equalside. p=30

5 inside the second 25 you tear out, u-s=25-5=20

20 is the second equalside. g=20

The problem in BM 13901 § 2 b can be interpreted as a quadratic-linear
system of equations of type B2b, p&: sq.q=S, p—q = 2s. The solution
procedure is based on the identity

sq.u=92-sqgqs when sgp+sq.q=S, p=u+sand q=u-s.

In LWS(2002), 67-70, Figs. 10-12, Hayrup presents three different pos-
sible configurations in terms of squares and rectangles which the OB math-
ematicians may have used to prove identities like the ones mentioned
above. There is, however, a fourth possible, and perhaps more plausible,
configuration, which Hgyrup did not consider in this connection (but
which he did consider elsewheos. cit, 259, Fig. 67).

or

q q
s d d s
u s u s
p p

(sq.p +sq.9)/2 =S/2 =sq.d = sq.u + sq.s
p=u+s, q=u-s

Fig. 1.12.3. Left: A geometric explanation of BM 13901 § 2 a-b. REjhtl.9.

Indeed, in Fig. 1.12.3 above, left,
sg.d (= the area of the oblique square) = (s6.59.q)/2.

This is so because ddjplus the areas of four right triangles = ggwhile
sg.d minus the areas of four right triangles = ggsee Fig. 2.3.2, right).
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On the other hand, in view of the diagonal rule (Sec. 2.3), it is also true that

sq.d =sqg.u+sg.s, where u=(p+q)/2, ands= (p-q)/2.

Therefore,

S2 =squ+sg.s when sqgp+sq.q=S, (p+q)/2=uand p-q)/2=s.

The identity that can be derived in this way by use of the configuration
in Fig. 1.12.3, left, can also derived by use of a birectangle as in the proof
of El. 1.9 (Fig. 1.6.1 above, left). That this is no coincidence is shown in
Fig. 1.12.3 above, right.

MS 5112is a large fragment of a mathematical recombination text with
metric algebra problems, published in Frib&t@,(2007), Sec. 11.2 n. The
text is late OB, maybe younger. It is inscribed on the obverse with a num-
ber of metric algebra problems f&guaresand on the reverse with metric
algebra problems faoectangles There are explicit solution procedures for
all the problems. One of the problems on the reverse is a rectangular-linear
system of equations of type Blb:

MS 5112 § 11literal translation explanation

Length (and) front (I) made eat each other, u-s=A

1 ¢&se the field. =1¢&Se = 10 00 squareinda
The length over the front is 10 beyond. u—s=qg=10 finda)

The length (and) the front are what? u,s=7?

You with your doing: Do it like this:

1/2 of 10 that the length over the front a/2=10/2=5

is beyond crush,

5 steps of 5 (make) eat (each other), 25. g&)=sg. 5=25

To 10 the field add, 10 25. A+sq.0/2=1000+25=1025
What is it equalsided? sqé\ ¢ sq.g/2) =sgs. 1025=7?
25 each way equalsided. soB.Hsq.q/2) = 25 =p/2
Twice write it down. Write down 25 p/2 twice.

5 that was eaten to the 1st 25 add, 30. pl2+g2=25+5=30
30ninda is the length. u=p/l2 +g/2=30

From the second 25 the 5 tear off, 20 pl2—qg/2=25-5=20
20ninda is the front. s=pl2-g/2=20

The geometric model on which, apparently, both the question and the
solution procedure in MS 5112 § 11 are based is obviously an OB forerun-
ner to the construction #l. 11.6 (see Figs. 1.4.1 and 1.4.2 above, right).
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1.12 b. Old Babylonian problems for circles and chords

The examples discussed in Sec. 1.12 a above make it clear that parts A
and B ofElementdl (ELl. 11.2-11.8) have many OB forerunners in the form
of metric algebra problems fequares and rectangle#t is also easy to
find examples of OB forerunners to part CedémentdI (El. 1l. 9-11.14),
in the form of metric algebra problems fight triangles and circlesAs
suggested above, maybe the pair of exercises BM 13901 § 2 a-b is one such
example. Further examples will be offered in the discussions of OB “igi-
igi.bi problems” in Secs. 3.2-3 below, and in the discussion of an OB
geometric algorithm in Appendix 1.

For some reason, there are few known metric algebra problems specif-
ically for circles in the known corpus of OB mathematical texts.

obv.

Fig. 1.12.4. TMS1. A school boy’s hand tablet with a diagram of a triangle in a circle.

An interesting first example iIBMS 1 (Bruins and RuttefMS(1961);
Fig. 1.12.4 above). This is a relatively late OB “hand tablet” from the
ancient city Susa, with a diagram of a “symmetrisbgceleystriangle and
its circumscribed circle. The triangle is constructed as two right triangles
with the sides 50, 40, 30, glued together along a common side of length 40.



1.12. Old Babylonian Solutions to Metric Algebra Problems 43

The object of the exercise was probably to compute the radius of the cir-
cumscribed circle. This can have been done, essentially, in the following
way: Letd/2, 92, b/2 be the sides of the small right triangle width = the
radius and witl¥/2 = 1/2 the front of the symmetric triangle (in the diagram
called2' sag ‘1/2 of the front’). Therd andb can be found as the solutions
to the followingsubtractive quadratic-linear system of equations

sq.d/2 — sq.b/2 = sq.92 = sq. 30 = 15 00

d/2 +b/2 = 40 (the height of the symmetric triangle)

Apparently it was known that then

di2 —b/2 = (sq.d/2 - sq.b/2)/(d/2 +b/2) = 15 00 / 40 = 15 - 1;30 = 22;30, so that

di2 = (40 + 22;30)/2 = 31;15p/2 = (40 — 22;30)/2 = 8;45.

The correctly computed values are recorded in the diagram as ‘31 15
the length’ and ‘8 45’, respectively. It is, by the way, easy to check that the
diagram isamazingly accurateThe person who made the diagram must
have known quite well how to work with ruler and compass.

Presumably, he started by drawing, very carefully, a triangle with the
sides proportional to 1 00, 50, 50, with the front 1 00 vertical and facing to
the left, in agreement with an OB convention. Next, he found the midpoint
on the front. (Euclid shows how to bisect a given straight liri.ih10,
with reference to the constructionsihl.1 and 1.9.) Then he drew a line
from there to the opposite vertex of the triangle, a line which necessarily
turned out to be horizontalCf{. the remark in Hayrud,WS(2002), 265
that “the angle between the height and the base is as right as can be con-
trolled on the photo”.) The next step of the construction must have been to
find the center of the circumscribed circle. How this was done is not
known, of course, but it is likely that it was done by use of the method dem-
onstrated by Euclid i&l. IV.5, with reference tdel. 1.11.)

The next example is taken fromS 3049 (Friberg,RC (2007), Sec.
11.1), a small fragment of an OB mathematical recombination text, where
only one exercise§(1 g is preserved on the obverse:

MS 3049 § 1 aliteral translation explanation

An arcl curved, A circle

20 the transversal, The diameterds 20

and 2 that which went down'! A chord is p = 2 below the top

The upper (= lefjransversalis) what? The chord="?
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You: Do it like this:

20, the transversal, break, then 10 you see, d/2 =10

10, the descent that like a string is set. 10 = the “vertical” radius
Turn back, then solve(?). Continue like this:

20, the transversal, break, 10 you see. di2=10

10, a copy, lay down, Write dowdi2 = 10 again

let (them) eat each other, then 1 40 you see.  d/2g= 1 40
2, the upper descent, from 10, the descent d/2 —p=
that like a string is set tear off, then 8 you see. 10-2H/8 =

8 let eat itself, then 1 04 you see. k@ =104

1 04 from 1 40 that you 8a sq.d/2 —sqb/l2=140-104
tear off, then 36 you see =36=s

Its likeside let come up, then 6 you see. sgs. 36 =/8 =

To two repeat, then 2-6=

12, the uppetransversal you see. s = the chord

Such is the dag. Done

The straightforward solution procedure is explained in Fig. 1.12.5, left
Given are the diameteérof a circle and the distanpeof a chord from the
circumference of the circle along a radius orthogonal to the chord. The
length of the chord is computed by use of the diagonal rule (see Ch. 2
below), applied to the tripld/2, 5/2, b/2.

Q (’/5@
)

s2

b=d-2p

Fig. 1.12.5. Left: MS 3049 § 1 a. Right: BM 85194 # 21.

11. According to an OB convention, in cuneiform texts ‘up’ is to the left and ‘down’ to the
right. The well known explanation is that the cuneiform script was originally written in ver-
tical columns, but at some (unknown) point of time, the direction of writing seems to have
changed so that texts became written in horizontal rows. After this rotation of the direction
of writing, the meaning of ‘up’ and ‘down’ had changed correspondingly.
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The strange way of calling half the diameter of the circle ‘that (which)
like a string is set’ is not known from any other Babylonian mathematical
text. It may refer to the fact that if a piece of string has one end point fixed,
then upon rotation of the stretched string the other end point of the string
describes a circle. Therefore a radius of a circle can be likened to a ‘string’.
(There is no competing word for the radius of a circle used in any other
known mathematical cuneiform text.)

On the reverse of MS 3049, a subscript says that the text (originally)
contained 6 problems for circles (and also 5 problems for squares, 1 for a
triangle, etc.). Although only 1 of these 6 problems has happened to be pre-
served, it is a reasonable conjecture that the 6 circle problems resulted
from the 6 possible ways of choosing 2 of the 4 paraméierss/2, and
b/2 as thegiven pair of parameteris the problem. In 8§ 1 a, the given pair
of parameters id andp. The remaining possible choices of given pairs of
parameters ard ands/2, d andb/2, p ands/2, p andb/2, s/2 andb/2. In
TMS1, by the way (Fig. 1.12.4), the given parameters areld/2 + b/2.

BM 85194 another OB mathematical recombination text contains two
problems for circles## 21-22(Hayrup,LWS(2002), 272):

BM 85194 ## 21-22literal translation explanation
1 the arc, The circumference &= 1 00
2 that which | went down. A chord ip = 2 below
The transversal (is) what? The chasd ?
You: Do it like this:
2 square, 4 you see. p2=2-2=4
4 from 20, the transversal, tear off, d=a/3=20,d-2p=20-4
16 you see. =16b
20, the transversal, square, 6 40 you see. dscsq. 20 =6 40
16 square, 4 16 you see. bg=sq. 16 =224
4 16 from 6 40 tear off, 2 24 you see. desq.b=640-224
2 24 is what equalsided? sgs. 2 24
12 equalsided, the transversal. =18=
Such is the doing. Done
If an arc 1 | curved, a=100
12 the transversal. s=12
That which | went down? p=7?
You: Do it like this:

20, the transversal, square, 6 40 you see. d=a/3 =20, sqd =sq. 20 =6 40
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12 square, 2 24. sg=sq.12=224

From 6 40 tear off, 4 16 you see. d¢-sg.s=4 16 =sqgb

16 is what equalsided? 4 equalsided. sgs. 16 = 4 (error for sgs. 4 16 = 16)
(In) half 4 break, 2 you see, 1/2 - 4 = 2 (cheating)

2 that which you went down. p = 2 (the correct answer)

The doing. Done

The stated problem in BM 85194 # 21 is closely related to the problem
in MS 3049 § 1. The only difference is that in BM 85194 # 21 the circum-
ferencea = 3d is given (with the usual Babylonian approximatior
appr. 3), while in MS 3049 § 1 the diametkiis given directly. The
straightforward solution procedure in # 21 is based on a geometric con-
struction like the one in Fig. 1.12.5, right. It is an interesting variant of the
solution procedure based on the construction in Fig. 1.12.5, left. Note that
because the sides of the triangle in the circle to the right are twice as long
as the sides in the right triangle in the circle to the left, it is “obvious” that
in the figure to the righthe triangle with its diagonal along the diameter
is a right triangle (Cf. a similar remark in Hgyrup,WS(2002), 274.)

In BM 85194 # 22, the stated problem is to fjethen the circumfer-
encea = 3d and the chord are given. The solution is corrupt, but leads
nevertheless to the correct answer (known in advance from # 21).

A dressed up problem, closely, although indirectly, related to the circle
problems discussed above is probkein BM 85196 like BM 85194 an
OB mathematical recombination text from the ancient city Sippar. This is
the well known “pole-against-a-wall problem”, discussed before by sever-
al authors, for instance, FribergM 8 (1981), Muroi,KK 30 (1991),
Hayrup,LWS(2002), 275, MelvilleHM 34 (2004), 151.

BM 85196 # 9 literal translation explanation

A pole. 30, areed, at a wall is placed equally.c =30 (;30ninda =1 reed)
Above, 6 it went down, S=6

below,what did it move aw&y b=?

You: Do it like this:

30 square, 15 you see. 8= 15

6 from 30 tear off24 you see. €s=30-6=24

24 square, 9 36 you see. 0=—-6) =sq. 24 =9 36

9 36 from15 tear off 5 24 you see. sq—sq.€—s)=15-936=524
5 24 what is it equalsided? sgs. 524

18 it is equalsided. =18
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18 on the ground it moved away. b=

If 18 on the ground, Conversely, given that 18
above, what did it go down? s=7?

18 square, 5 24 you see. b sg.18=524

5 24 from 15 tear off, 9 36 you see. 66:50.b=15-524=936
9 36, what its it equalsided? sgs. 9 36

24 it is equalsided. =24

24 from 30 tear off, c—-a=30-24

6 you see, (what) it went down. = 6=

The doing. Done

In this dressed up problem, the stated question is as follows:

A wooden pole with the length 1 reed = hiada (about 3 meters) at first stands up-
right against a wall of the same height. Then it starts sliding so that its upper end moves
straight down ;0@Ginda. How much does its lower end move along the ground?
The situation is illustrated in Fig. 1.12.6, left, where it is assumed that
a pole of lengtle at first was standing upright along a wall of heighits
top then slid down the distansand its foot slid out a corresponding dis-
tanceb. The set task is to finkd if ¢ ands are given. The connection be-
tween this dressed up problem and straightforward circle problems of the
kinds discussed above is demonstrated in Fig. 1.12.6, right.

1. candsgiven. Findb.

2.c andb given. Finds. | K

b S b .-~

1
[

Fig. 1.12.6. BM 85196 # 9. A pole-against-a-wall problem.

The solution to the stated problem is obtained without effort by use of
the diagonal rule. It is found thiat= ;18ninda. This result is then checked
by a reversal of the problem.

The pole-against-a-wall problem in the form given to it in BM 85169
# 9is in itself quite trivial and uninteresting. Yet it is important for a couple
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of reasons. One reason is that dressed up problems like this one are quite
rare in OB mathematics. The other reason is that the problem type reap-
pears in a Seleucid mathematical recombination text and in an Egyptian
mathematical recombination text, both from the latter third of the first mil-
lennium BCE (See FriberglL (2005), Sec. 3.1 b)

As mentioned above, the corpus of known OB metric algebra problems
for circles and chords is small, compared to the related corpus of known
metric algebra problems for squares and rectangles. Yet this fact may in
part be due to unlucky circumstances. Thus, it is clear that all known OB
problems for circles and chords are isolated exercises in mathematical re-
combination texts. It is likely that there once existed one or several exten-
sive and well organized OB mathematical theme texts with relatively large
numbers of such problems, from which exercises like MS 3049 § 1 a-[f],
BM 85194 ## 21-22, and BM 85169 # 9 were borrowed. Be that as it may,
there appears to be a close relation between on one hand such OB problems
for circles and chords, and on the other hghdl.11 and 11.14, and their
hypothetical forerunneigl. 11.11* and 11.14* (Sec. 1.7 above).

1.12 c. Old Babylonian problems for non-symmetric trapezoids

The only known OB predecessorsgbll.12 and 11.13 (see Fig. 1.8.1)
can be found inVAT 7351, a mathematical cuneiform text from the
ancient city Uruk. That text is extensively discussed in Frihdrd2005),

Sec. 3.7 &2Here is the text of the last one of the four exercises in that text:

VAT 7531 # 4 literal translation

2 43 30 the long length, 1 56 30 the short length,

1 37 30 the upper (= left) front, 1 30 30 the lower (= right) front.

Its area, how much it is, find out,

then to 5 brothers equally divide it, and (each) soldier show him his stake.

Properly speaking, VAT 7531 # 4 is assignmentather than an exer-
cise, since the question is not followed by a solution procedure and an an-
swer. The object considered in the text is a quadrilateral field with the
given lengths 2 43;30 and 1 56;3(1(da), and the given fronts 1 37;30
and 1 30;30r(inda). The field is to be divided equally among 5 brothers.

12. See now also the trapezoid diagonal problem in VAT 8393 in Appendix 1 below.
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The form of the given field is not uniquely determined by the four sides.
However, it must have been (silently) understood that the field should have
the form of a trapezoid composed of a central rectangle and two flanking
non-equal triangles (Fig. 1.12.7).

— 15630 ——MMM
i
= e
8 e
2 Ll
1| O
i
(28) (28) (28) (32;45) (37;30) (9;30)
— 243;30 47—

Fig. 1.12.7. VAT 7531 # 4. A trapezoidal field divided in five equal parts.

If the rectangle is removed, what remains is a non-symmetric (scalene)
triangle with the sides 1 37;30, 1 30;30, and the base 47. Evidently, the OB
author of this text was confident that his students knew how to compute the
height of a non-symmetrisg¢aleng triangle! The way they would have
done it was probably as follows: La&th, ¢ be the sides of the triangle, and
suppose that the heightagainst the sidb dividesb into the segments
andq, wherep is greater thag. (See above, Fig. 1.8.1, right.) Then,

p+g=b and

sg.c —sq.p = sg.a—sq.q (by the diagonal rule, since both are equal tdsg.

This leads to guadratic-linear system of equatiofts p andq:

p+g=b and sgp-sq.q =sqg.c-sqg.a
This quadratic-linear system of equations can be solved by use of metric
algebra. The solution can take several forms, for instance the following:

p={sq.b+ (sq.c-sq.a)}/(2 b), g={sq.b-(sq.c—sqg.a)}/(2 b).
With ¢, a,b=1 37;30, 1 30;30, 47, these equations show that

p = 37;30, = 9;30.
It is then easy to compule= 1 30. The remaining part of the solution pro-
cedure for VAT 7531 # 4 is straightforward.
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The result above shows that the triangle with the sides 1 37;30, 1 30;30,
47 is composed of two right triangles with the sides 1 37;30, 1 30, 37;30 =
7;30 - (13, 12, 5) and 1 30;30, 1 30, 9;30 = 30 - (301, 300, 19), glued to-
gether along a common side of length 1 30. This is clearly an OB prede-
cessor to what is commonly known as “Heronic triangle€ft. ¢he
discussion of the pseudo-Hero@eometrical2 in Sec. 18.2 below.)

1.13. Late Babylonian Solutions to Metric Algebra Problems

1.13 a. Problems for rectangles and squares

The discussion above 6B forerunners t&lementd! will be rounded
off in this section with a discussion of solution procedures for metric
algebra problems iw 23291, aLate Babyloniarmathematical recombi-
nation text from Uruk, early in the second half of the first millennium BCE
(Friberg, BaM 28 (1997)). W 23291 and the related t&{t23291-x
(Friberg, et al, BaM 21 (1990)) are both concerned with the interesting
topic ofa great variety of ways of measuring surface content

The first paragraph of W 23291 contains what lookstlieebeginning
of a well organized theme text with metric algebra problems

W 23291 § 1: Common seed measure and some basic problems in metric algebra

1a The seed measure of a hundred-cubit-square. Metric squaring

1b A rectangle of given front and seed measure. Metric division

1c A square of given seed measure. Metric square side computation

1d Arectangle of given side-sum and seed measure. Basic problem Bla

1 e Arectangle of given side-difference and seed measure. Basic problem Blb
1f A square band of given width and seed measure. Basic problem B3b

1g Acircle of given seed measure divided into five circular bands of given width

In 8§ 1 of W 23 291, the surface content of every square, rectangle, or
other plane figure mentioned, is expressed in terms of “seed measure”, by
which is meant a capacity measpreportional, in a certain ratio, to the
area of the figure in questioMore precisely, the seed measure applied in
§ 1 is what may be called “common seed measure” (csm), the particular
kind of seed measure characterized by the followgngub $e.numun
‘seed constant’:

13
Cs= ‘20" = ;20barig (= 1/3barig) on each square of side 1 00 cubits (= 60 cubits).



1.13. Late Babylonian Solutions to Metric Algebra Problems 51

The barig (Akk. parsikty was the “basic unit” of Late Babylonian
capacity measure, in the sense thetagesimal multiplesf the barig

were used in computations involving capacity measures and in references
to metrological constants like the seed constant.

In the present text, just as in the related text W 23291-X, a:dhudd -
and-cubit formatis used in many of the solution procedures. What this
means is that the solution of a given problem is presented twice, first in a
“ninda section” where theinda (= 6 m.) is the basic unit of length mea-
sure, then in a parallel “cubit section” where the cubit (= 1/2 m.) is the
basic unit. In the cubit sections, the seed constant for common seed mea-
sure is ‘20" = 1/3 barig./sq. (60 c.), as explained above. Inithéa sec-
tions it is, equivalently,

Cs= ‘48’ = 48barig on each square of side 1 fda (= 60ninda).

The equivalence of the two alternative expressions is obvious, since

1 00 cubits = minda, so that sq. (60 cubits) = sq. bnda) = 25 sqninda.
Therefore,

1/3barig / sq. (60 cubits) = 1/Barig / 25 sgninda
=12 -12 - 1/Barig / sq. (60ninda) = 48 barig / sq. (60ninda).

The nindasection of a solution procedure is preceded by the phrase
Sum-ma 5 am-mat-ka ‘if 5 is your cubit’.

This phrase refers to the circumstance that whenitida (= 12 cubits)

is chosen as the basic unit of length measure, then 1 cubit is equal to 1/12
= 5/60 = ;05 of that basic unit. For a similar reason, the cubit sections are
preceded by the phrase

Sum-ma 1 am-mat-ka ‘if 1 is your cubit’.

The seed measure of a hundred-cubit-square. Metric squaring

W 23291 § 1 aliteral translation explanation

13. Note that the use of zeros and separators in the transliteration of numbers in a mathe-
matical cuneiform text tends to destroy the inherent simplicity of the definitions of various
Babylonian mathematical and metrological “constants”. So, for example, the seed constant
for common seed measure was not understood as ;00825 q. cubit. Nor was it un-
derstood as ;2@arigkq.(60 cubits). Instead it was almost certainly understood as ‘20’
times the area, with the silent understandingwn the sides of a rectangle amount to a

few sixties of cubits, then the seed measure of the rectangle amounts twaaifgw
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1 hundred cubits length, 1 hundred cubits front. A square with thessidE00 c.

What shall the seed be? c=7

If 5 is your cubit: If you count with ninda:

8 20 is 1 hundred cubits. s=100 c. =100/12 n. = 8;20 n.

8 20 steps of 8 20 go,1 09 26 40. A=sq.8;20 n. =1 09;26 40 sqg. n.
1 09 26 40 steps of 48 go, C=c-A='48"-A

55 33 20, Han 3 1/3sila of seed. =,;55 33 2arig = 5ban 3 1/3 s.
If 1 is your cubit: If you count with cubits:

1 40 is 100 cubits. s=100c.=140c.

1 40 steps of 1 40 go, 2 46 40. A=sg.140c.=24640sq.c.

2 46 40 steps of 20 go, 55 33 20, C=c¢-A="20"- A=,55 33 2(arig
5ban 3 1/3sila of seed. =%an 3 1/3sila.

The problem stated and solved in § 1 a of W 23291 can be explained as
follows: A square of side 100 cubits may be called a “hundred-cubit-
square”, or simply a “100-c.-square”. As is shown by Late Babylonian
metrological tables, notabBE 20/1,30 (see FriberdzMS 3(1993), 399),

a “hundred-cubit” was occasionally used, in addition to the cubit and the
ninda, as théhird basic unit of Late Babylonian length measure. For this
reason, it would be convenient to have at hatiuird value of the seed
constant for common seed measure, in addition toa&g./sq. (60 nin-

da) and ;2M®arig /sq. (60 c), namely the common seed measure (csm) of
a hundred-cubit-square. In W 23291 § 1 a this value is computed twice. In
the nindasection, it is computed in the following way:

If, as in the present text, 1 n. = 12 c., then 1 c. = ;05 n. Therefore,

thesideof the 100-cubit-square &= 100 ¢. = 100 - ;05 n. = 8;20 n., so that

theareaof the 100-cubit-square &= sq. (100 c.) = sg. (8;20 n.) =1 09;26 40 sq. n.

Note that all computations are carried out here in the traditional Baby-
lonian way, that is by use of sexagesimal arithmetic. That is so in spite of
the fact that in the statements of the problems in W 23291 § 1 linear
measures are expressedlasimalmultiples of the cubit!

Next, an application of the appropriate value of the seed constant
proves that theeed measuref the 100.cubit-square is

C =48 barig - 1 09;26 40 /sq. 1 00 = ;55 326ig.

The final step of the computation is to convert this sexagesimal multi-
ple of thebarig into aconventionally expressed capacity numbgris
can be done, most conveniently, in the following way. (The computation
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is based on the fact that fractions of taeig when multiplied by a factor
6 yield multiples of the sub-unitan, and that fractions of thein when
multiplied by another factor 6 yield multiples of the smaller subsiit
C =55 33 2(barig = 6 - ;55 33 2Ban = 5;33 20ban
=5ban + 6 - ;33 2@ila = 5ban 3;20sila = 5b4an 3 1/3sila.
In thecubit sectiorof § 1 a, the computation of the common seed mea-
sure of a hundred-cubit-square proceeds in an entirely parallel way.

s=8 1/3 ninda s=100 cubits

,C: . ,C= R C=c¢,-sqs
5 ban 3 1/3 silg 5 ban 3 1/3 sila

c,=48 ¢=20

Fig. 1.13.1. W 23291 § 1 a. Metric squaring. The seed measure of a 100-cubit-square.

A rectangle of given front and seed measure. Metric division

W 23291 § 1 bliteral translation explanation

1 hundred cubits front. s =100 cubits

The length, what shall it be long, u="2?

so that there will be gur ofseed? if, in additionC =1 gur =5 barig
Since you do not know: Do it like this:

The opposite of the front of the field raise, Compute the reciprocal of the front
and steps of the opposite of and multiply with the reciprocal

the seed constant you go, of the seed constant

and the seed that was said to you go, and multiply with the seed measure
the length you will see. then you will se the length

If 5 is your cubit: If you count with ninda:

8 20 is 1 hundred cubits. s=100 cubits = 8; 2@inda

The opposite of 8 20, 7 12. rec=rec.820=712

7 12 steps of 1 15 go, 9. rec.rec.g=712-115=9

9 steps of 5 go, 45. 45 as much as segec. g-C=9.5=45

the length of your field you will set. u=45

If 1 is your cubit: If you count with cubits:

1 40 is 1 hundred cubits. s=1 40 cubits = 100 cubits

The opposite of 1 40, 36. rec=rec. 140 =36

36 steps of 3 go, 1 48. res.rec. g=36-3=148
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1 48 steps of 5 go, 9, that <for> 1 40 cubits seaec.¢g-C=148-5=9
as much as the length you will set. uAwhens = 1 40 cubits

The statement of the problem in the first three lines of § 1 b is followed
by ageneral computation rulbeaded by the phraseu nu zu-i ‘since
you do not know'. It is easily checked that the two parallel solution proce-
dures in thainda and cubit sections of the paragraph aredifferent but
equivalent numerical implementatioakthis general computation rule.

The computation in each of the two cases is straightforwarchihlda
section, for instance, begins with the computation of the reciprocals of the
given front (100 cubits) and (although not explicitly in the text) of the
reciprocal of the seed consta#8”. Note that all computations are carried
out in terms ofelative (floating) sexagesimal numbers without any indi-
cation of their absolute size.

The answer is given in relative sexagesimal numbers as

u = ‘45" in theninda section andi = ‘9" in the cubit section.
Since the length is always greater than the front in Babylonian mathemat-
ical texts dealing with rectangles, the obvious interpretation of this result
in relative numbers is that the lengtlis equal to 45 ninda = 9 00 cubits.
It is easy to verify that, with this value for

the areaA = 45ninda - 8;20ninda = 6 15 sqninda = ;06 15 - sq. (60inda).
Therefore, as required,

the seed measuf@= 48 - ;06 15 barig = 5 barig.

The result of the dual computation is summarized in Fig. 1.13.2 below.

(u= 45 ninda) g (u=9 00 cubits) g
C=1lgur=5barig | C=1gur=5barig |8
o =

1 1

c,=48 © c,=20 ¢

C=¢-u-s © wu=rec.g-recs-C
Fig. 1.13.2. W 23291 § 1 b. Metric division.

A square of given seed measure. Metric square side computation

W 23291 § 1 cliteral translation explanation
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The field, what each shall | make equalsided  Which are the equal sides (of a square)

so that Igur 2 ban will be the seed? with seed measugeut 2ban?

Since you do not know: Do it like this:

The seed that was said to you, Take the mentioned seed measure
— what was said multiply it with

steps of the seed constant, the <reciprocal of> the seed constant
you go, the length. compute the square side

If 5 is your cubit: If you count with ninda:

5 20 steps of 1 15 go, 6 40, C-res.g=520-115=640

of which 20 each way take. 6 40 =sq. 20

20ninda each way you make equalsided. s= 20 <ninda> is the square side

If 1 is your cubit: If you count with cubits:

5 20 steps of 3 go, 16, C-res.¢=520-3=16

of which 4 each way take. 16 =sq. 4

2 hundred 4@ubitseach s=4 00 = 240 <cubits>

you make equalsided. is the square side

This exercise is quite straightforward. The given seed measure is
lgur 2ban =5 1/3barig = 5;20 barig>,

and the computed square side is
20ninda = 20 - 12 cubits = 240 cubits.

It is interesting that the cubits are counted decimally in the answer.

s= 20 ninda s= 240 cubits
C= C= C=c¢-sgs
1 gur 2 ban 1 gur 2 ban (@
= 5;20 barig = 5;20 barig s=sgs. (rec. & C)

Fig. 1.13.3. W 23291 § 1 c. Metric square side computation.

A rectangle of given side-sum and seed measure. Basic problem Bla

W 23291 § 1 dliteral translation explanation

A field of 1ban seed. C=1ban (= ;10barig)

Length and front heap, it is 1 30 cubits. u+s=1 30 cubits (= 7;3@inda)
The length, what shall it be, u="?

and the front what shall it be? s=7?

Since you do not know: Do it like this:
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1/2 to the heap, 1 30 cubits, raise,
45 cubits equalsided,

to the constant of seed [raise] it.
1ban of seed out of it lift,

the opposite of the constant you raise to it,
<and bring (out)>

to 45 cubits add on, the length,
from 45 cubits lift, the front.

If 5 is your cubit:

Length and front, 7 30, 1/2 of it, 3 45, take.
3 45 steps of 3 45 you go, 14 03 45
and steps of 48 go, 11 15,

1 07 30ban-measures.

1béan, 10, from 11 15 lift,

1 15 the remainder.

115 steps of 1 15,

1 33 45, of which 1 15 each take.
115to 345join,

5ninda, the length,

1 15 from 3 45 lift,2 30, the front.
If 1 is your cubit:

1 30 cubits, 1/2 of it, 45, take,

45, steps of 45 go, 33 45,

33 45 steps of 20 go,

the seed, 11 15.

1béan, 10, from 11 15 lift,

1 15 the remainder.

1 15 steps of 3 go,

3 45, of which 15 each — take.
15 to 45 join

1-sixty cubits, the length,

from 45 lift, 30 cubits, the front.

Amazing Traces of a Babylonian Origin in Greek Mathematics

1/2 - the sum 1 30
= 45 cubits, squared
times the seed congtant ¢
subtra@@ = 1ban
times gec. ¢
<Compute the square side>
add 45 cubits, you get the length
Subtract 45 cubits, you get the front
If you count with ninda:
uHs)/2=pl2=730/2=345
®8.= sq. 345 =14 03 45
s-C5qp/2=48-140345=1115
=1;07 3hn
¢ sqp2-C=1115-10
=115 (z ¢sq.p/2 —A))
times 115 (=reg. c
=13345=5sq.115 (@2p.
pl2+g/l2=345+115
=5
pl2-q2=345-115=230s
If you count with cubits:
p/2=130/2=45
42 = sq. 45 =33 45
s€s0.p/2 =20 - 3345
=1115
¢ sqp2-C=1115-10
=115 (z ¢sq.p/2 —A))
times 3 (=reg. c
=345 =sq. 15 (g/2).
p/2 +g/2 =45+ 15
=1 - 60 cubitsi=
p/2 —g/2 = 30 cubits s

In the present exercise, 8§ 1 d, justas in 88 1 b and 1 ¢ above, the ques-
tion is followed by ageneral computation rulbeaded by the phraseu
nu zu-u ‘since you do not know’. It is interesting to note thatin § 1 d the
author of the text has not been quite successful in his formulation of a gen-
eral computation rule, since he explicitly mentions the half-sum of the
sides of the rectangle as ‘45 cubits’ instead of just as ‘1/2 the heap’.

In the cuneiform text, there is no figure accompanying exercise 8§ 1 d.
Yet the wording of the solution procedure is such that there can be no
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doubt whatsoever that the author of the problem had in mjebetric
interpretation of the given problem and its solution. The most likely can-
didate for such an interpretation is based on a set-up like the one in Fig.
1.13.4 below, nearly identical with the set-up in Fig. 1.4.2 above, left, the
suggested Babylonian style interpretation of the diagragi.iH.5. The

only difference is the use of seed measure instead of area measure.

p
u s In the cubit section:
s i c |s ‘ Given:
‘ —Z_] P2 p= 130 cubitsC = 1 ban = ;10 barig
77777 a/2 ‘ ¢, = ;20 barig/ sqg. (1 00 cubits)
C. - $0.0/2 Computed:
C - $0.0/2 = ¢ - sq.p/2—C =01 15 barig
sq.q/2 = 3 45 sq. ¢. = sq. (15 cubits)

u= pl2+gl2=45c¢c.+15c.=100c.
Cg-u-s=C s= pl2-g2=45c.—15c.=30c.

Fig. 1.13.4. W 23291 § 1 d. A rectangle of given side-sum and seed measure.

A rectangle of given side-difference and seed measure. Type Blb

The problem stated W 23291 § 1 as to find the lengtlu and fronts
of a rectangle, if the seed measure of the rectangleda # sila, and if
the length exceeds the front by 10 cubits. This is a routine variation of the
problem in 8 1 d, and it can be solved by an obvious modification of the
solution procedure in that paragraph. Thus, if the given side-difference is
calledq = 10 cubits, then s@y/2 = 25 sq. cubits, and, € sq.q/2 = ;08 20
barig, since ¢ = ;20barig/sq. (60 cubits). On the other hand, the given
seed measure of the rectangl€s 1ban 4sila = ;16 40barig, since (in
this Late Babylonian text) Barig = 6ban and lbarig = 6sila.There-
fore,C+ - s0.0/2 = ;16 48 2Darig = ¢ - Sqp/2. Hence, sqp/2 = 50 25
sq. cubits, ang/2 = 55 cubits. Thus, finaljyu = (55 + 5) cubits = 1 00
cubits = 5ninda, ands = (55 — 5) cubits = 50 cubits =mMnda 2 cubits.

The problem in W 23291 § 1 e is of course, except for the use of seed
measure instead of area measardyasic rectangular-linear system of
equations of type Bllit is, therefore, related tl. 11.6.
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A square band of given width and seed measure. Type B3b

The statement of the problem\W 23291 § 1 fand the associated gen-
eral computation rule are both completely lost. Nevertheless, the fortunate
circumstance that almost the whole cubit section of the solution procedure
is preserved allows a reconstruction of most of the problem.

W 23291 § 1f, literal translation explanation

If 1 is your cubit: If you count with cubits:

10 is 10 cubits. s =10 cubits = 10

The opposite of l@aise, 6. recs=rec. 10=6

6 steps of 3 you go, 18. res: rec.g=6-3=18

18 steps of 10, han, raise, 3. recs-rec.¢-C=18-10=3
3, its 4th raise, 45. res. rec. ¢-C/4 = 3/4 =45 =u
10 from 45 lift, 35 the remainder. u—-s=45-10=35

35 cubits equalsided. q=35

[ .................................................. ] q+25:[35+20:55;p]

The form of this solution procedure, and the position of W 23291 § 1 f
in the text, between the better preserved 8 1 e and § 1 g, makes it fairly cer-
tain that the problem stated in 8 1 f was to find the sides of the squares
bounding a square band, when the width (10 cubits) and the seed measure
(1 ban) of the square band are given. The way in which a solution to this
problem could be found is illustrated in Fig. 1.13.5 below.

The problem treated in W 23291 § 1f can be formulated as follows. Let
the square band be interpreted as the difference of two parallel and concen-
tric squares with the sidgsandq, respectively. Themp andq can be
computed as the solutions to the followisigbtractive quadratic-linear
system of equations of type B3b
Cs - (sg.p—sqg.g=C=1béan, —-q)/2=s=10 cubits, p,q="?

In modern terminology, all that is required to solve a problem of this
type is an application of the algebraic “conjugate rule”

sq.p—sq.q=(P+0q) - (p-0),
followed by a straightforward division. Anetric counterpart of this
algebraic conjugate rule can be based on the observation that a square band

can be constructed in two ways, either as the space between two parallel
(and, if so desired, concentric) squares with the sidgsr as a ring of
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four rectangles with the sidess. In the present text, where surface con-
tent is measured in terms of seed measure, the resulting “metric conjugate
rule” takes the following form:

C=cs'(sg.p—sq.q)=4-cg-u's=4-cs - (p+q)2 - (p-09)2.
Accordingly, the recorded solution procedure in W 23291 § 1 f corre-
sponds to the solution formula

u:(p+q)/2:]/(;s.1/s.g4’ p=u+s g=u-s

u P S
: In the cubit section.
cia Given:
""" q u s= (p—0q)/2 =10 cubitsC = 1 ban = ;10 barig
q Cs = ;20 barig/sg. (1 00 cubits)
______ Computed:
' s 1/s- 1lg - C/4 = 45 cubits =u = (p + q)/2
u—s= 35 cubits g

(g + 2s=55 cubits )
s (sap—sq.q)=C
Cc,-u-s=Cl/4

Fig. 1.13.5. W 23291 § 1 f. A square band of given width and seed measure.

The metric algebra problem in W 23291 § 1 f is obviously closely re-
lated toEl. Il. 8, which can be seen if, for instance, Fig. 1.13.5 is compared
with Fig. 1.5.2. Note however, that Euclid chose to operate mati
concentricparallel squares, and that, as a consequence of this choice, in
El 1.8 the difference between the two squares takes the form of a square
corner (agnomon rather than that of a square band.

1.13 b. Problems for circles

A circle of given seed measure divided into five bands of equal width

W 23291 § 1 gliteral translation explanation

A field of 1 barig seed | curved. A circle of seed measure 1 barig
Steps 4, 1 each, and four inner circles

the decrease came down. with 1 ninda’s distance

What each are the arcs | curved, What are the arcs (circumferences)
from the outermost arc of all the circles

to the innermost arc? from the first to the last?
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Since you do not know:

1 steps of 6 go, 6.

6 from [---] 30 lift, 24 the remainder,
the second arc.

6 from 24 lift, 18 the remainder,
18, the third arc.

6 from 18 lift, 12 the remainder
12, the fourth arc.

6 from 12 lift, 6 the remainder,
6, the fifth arc.

6 is the innermost arc field

he will take off.

Do it like this:
1.-6=6
30-6=24
the second arc.
24-6=18

the third arc
18-6=12
the fourth arc
12-6=6

the fifth arc
6 is arc of the innermost circle

since6-6=0

This exercise is only loosely related to the six preceding metric algebra
problems. Note, in particular, that there is no general computation rule, and
no separateinda and cubit sections. (The basic unit of length measure is
theninda.) It is also likely that essential parts of the problem have been
omitted both at the beginning and at the end of the problem.

30
24 C=c,-;05 - sqa,
18 C, =48 barig/sg. (1 00 ninda)
12 G
6 a=sgs. (l/ig- 12 -C)
d=:;20-a
@ 1)1)1)1
Example:
C =1 barig
&

a= 30 nindad = 10 ninda

Fig. 1.13.6. W 23291 § 1 g. A circle of given seed measure. Five circular bands.

Thus, after it has been stated that the seed measure of the given circle
is 1barig, the arca and the diametat of the circle must have been com-
puted, but this is not done explicitly in the text. To find the arc of a circle
when the seed measure of the circle is given is a problem of the same type
as the one in W 23291 § 1 c, to find the side of a square of given seed
measure. The omitted computation should have had the following form:

Cs' ;05 -sga=C=1lbarig, G=48barig/sqg. (60ninda) (1/4 = appr. ;05)

a=sgs. (l/g- 12C) = sgs. (15 00 saninda) = 30ninda,
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d=;20 -a=10ninda (1L =appr. ;20)

The preserved part of the solution procedure can be explained as
follows: If the width of each one of the circular bandsistlda, then the
diameter of each band is equal to the diameter of the preceding band minus
2ninda, and the arc of each band is equal to the arc of the preceding band
minus 6ninda (counting withL = appr. 3). This gives the arcs listed in the
text, 30, 24, 18, 12, andnfnda.

The computation of the seed measure of each one of the five circular
bands has, for some reason, been omitted from the text of § 1g.

In the closely related Late Babylonian mathematical recombination text
W 23291-x(Friberg,et al, BaM 21 (1990)) there are, among other things,
parallels to four of the seven exercises in W 23291 § 1. It is interesting to
compare the parallel exercises with each other, for the reason that the ex-
ercises in W 23291-x resemble OB mathematical exercises more than what
the corresponding exercises in W 23291 do.

Here is, first, the text of the parallel in W 23291-x to W 23291 § 1 g:
A circle of given circumference divided into five bands of equal width

a; = 100 ninda d, = 20 ninda
a, = 48 ninda d, = 16 ninda
a; = 36 ninda d; =12 ninda
a, = 24 ninda d,=8 ninda
ag = 12 ninda d; = 4 ninda

Aj=1 48sar
A,=1 243ar
A;=1 0Osar
A, = 368ar
Ag = 128ar

Fig. 1.13.7. The diagram associated with W 23291-x § 2.

W 23291-x § 2literal translation explanation

1 (= the first) arc-field 1(60yinda | curved. A circle of arc 1 Ofinda
Steps, 4, ainda each 4 inner circles with a distance of
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as decrease | made come up. ni2da between each pair

What each are the fields? The areas between the circles = ?
(Fig.) (Fig.)

54 steps of 2, 1 48, 54.2=148

1(iku) 83ar is the outermost decrease. #1 83ar (the area of band 1)

42 steps of 2, 1 24, 42 - 2=124

1/2(iku) 343ar is the 2nd decrease. = Yk 343ar (the area of band 2)

30 steps of 2, 1, 30-2=100

1/2(iku) 103ar is the 3rd decrease. = lif2u 103ar (the area of band 3)

18 steps of 2, 36, 18-2=36

363ar is the 4th decrease. = 86r (the area of band 4)

12 steps of 12, 2 24, 12-12=224

2 24 steps of 5 go, 12, 224 -5=12

1235ar is the 5th and innermost decrease. Fd2(area of the innermost circle)

Heap them, all of them areiR(q). Check: 3ku = the total area

In this exercise, four circular bands, all of widtimihda,are broken
off from a circle of given arc length 1 00 n. The exercise is illustrated by
a diagram, exhibiting the arcs of the five circles bounding the circular
bands, the diameters of those circles, andatba measuresf the four
circular bands and the innermaost circular core. In the solution procedure,
only the computation of the area measures of the circular bands is express-
ly indicated. The use of traditional area measure as well as the absence of
a general computation rule and of separateda and cubit sections are
some conspicuous features of the first three exercises on W 23291-x, in-
cluding this one. It is likely that these initial exercises were copied with
only superficial changes from some OB mathematical text. The parallel
text W 23 291 § 1 g, on the other hand, may be viewed as a Late Babylo-
nianrevised editiorof a text like W 23291-x § 2, with the OB area measure
replaced by the Late Babylonian seed measure.

In this connection it may be noted that it is likely that the purpose of
computations with theinda as the basic length unit in thenda sections
of Late Babylonian mathematical exercises was to make students familiar
with the Old Babylonianway of counting, so that they would be able to
understand Old Babylonian mathematical texts. In Late Babylonian non-
mathematical texts, theubitis always the basic length measure.

The other parallels to W 23291 § 1 in W 23291-x are the exercises in
8§ 4 of the latter text. They are reproduced here, in literal translation.
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W 23291-x § 4 a-d

§ 4 a. Rules for the computation of areas of rectangles and square sides

Reeds, such that

1-ninda-reed length, 1-ninda-reed front
is 18ar.

If 5 is your cubit:

The line steps of ditto and steps of 1 go.
Steps of 1, each take.

If 1 is your cubit:

The line steps of ditto and steps of 25 go.

Steps of 2 24, each take.
§ 4 b. Example of metric squaring

1 suppan the length,

and 1suppan the front.
What are th&ar?

If 5 is your cubit:

5 is thesuppan.

5 steps of 5 go, 25, Zar.
If 1 is your cubit:

1 is thesuppan.

1 steps of 1 go, 1,

1 steps of 25 go, 25, 24ar.

Reed measure (surface content) when
length and front both = 1 ninda
makes Kar.
If you count with ninda:
The area of a squars =1sq.
The side of a square is sg8) (1 -
If you count with cubits:
The area of a square =2&.
The side of a square is sqgs. &) 24 -

Length and front both equal to
Isuppan
What is that iBar?
If you count with ninda:
5 (ninda) = Lsuppan
5.5-1=25(saqinda) = 253ar
If you count with cubits:
1 (- 60 cubits) = tuppan
1-1=1( sq. (60 cubits))
1-1-25=25=2r

§ 4 c. Example of metric square side computation

[---] of 258ar.

The equalside shall be what?
If 5 is your cubit:

Each of 25 take.

<asuppan is the equalside>.
If 1 is your cubit:

25 steps of 2 24 go,

1, of which each take,
asuppan is the equalside.

§ 4 d. Example of metric division

The front is 41ginda).

The length, what shall it be long,
so that it is 2@ar?

If 5 is your cubit:

The 4th-part, 15,

A squareof 253ar
What is the square side?
If you count with ninda:
The square side of 25 f$ada)
=5 (ninda) <zdppan>
If you count with cubits:
25-.224
=1 (- sg. (60 cubits)), the square side
=1 (- 60 cubits) mibpan

S=4 (pninda).

u="7?

if, in addition A=u-s=203ar

If you count with ninda:
$~1/4=;15
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15 steps of 20 go, 5, d/A=15- 20 = 51(inda)
asuppan, itis long. u=>5 (inda) = Lsuppan

If 1 is your cubit: If you count with cubits:

The 48th-part, 1 15, SE 48 cubits), s=1/48 = ;01 15
1 15 steps of 2 24 go, 3. 115.224=3

3 steps of 20 go, 1. 320 =1 (- 60 cubits)

< asuppan, it is long.> <u=1 (- 60 cubits) = duppan>

It is obvious that W 23291-x § 4 is another example of (the beginning
of) a theme text with metric algebra problems, just like W 23291 § 1. The
brief and idiomatic style of the text makes the literal translation quite hard
to read, so that the explanation in the right column is indispensable.

Anyway, this is what is going on here: In § 4 a, a rule is first formulated
for the computation of areas odéctanglesin terms of the uniSar =
1 squarerinda. When lengths are expressed in termsiofia, the rule is
simply thatA = 1 -u - s. However, when lengths are expressed in terms of
cubits, the rule takes the forfn= ;00 25 u - s, for the reason that

1 sqg. cubit = 1 sq. (;0binda) = ; 00 25 sgninda = ;00 253ar.

In 8 4 a, a rule is formulated also for the computation of the “square
side” of a given area. When lengths are expressed in termiad{, the
rule is simply that the length of the square side=ssgs. (1 A), a length
number such that sq=A. However, when lengths are counted in cubits,
the rule is that the square sides s sgs. (2 24 A), for the reason that

18ar =1 sqninda =1 sq. (12 cubits) = 2 24 sq. cubits.

In § 4 b-d, examples of the most basic metric algebra problems are
worked through. The computations are quite simple although they are
somewhat complicated by repeated references to the OB length unit

1 suppan = 5ninda = 1 00 cubits.

A Seleucid pole-against-a-wall problem

The OB pole-against-a-wall problem in BM 85196 # 9 (see above, Fig.
1.12.6) has a counterpartB 34568 # 1AH@yrup,LWS(2002), 391 ff),
an isolated exercise in a large mathematical recombination text from the
Seleucid period in Mesopotamia (the last third of the 1st millennium
BCE).

The question in this exercise can be rephrased as:
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A reed of unknown length at first stands upright against a wall of the same height.
Then it starts sliding so that its upper end moves straight down 3 cubits.

At the same time, its lower end moves away from the wall 9 cubits.

What is the length of the reed, how far up the wall does the reed reach?

With the notations in Fig. 1.12.6 above, the question takes the form
s= 3 cubits, b=9 cubits. ¢c=?, a="?
The obvious way of solving this problem would be to proceed as follows:
sq.c—sg.a=sq.b=sqg.9, c—a=s=3.
This isa subtractive quadratic-linear system of equations of type B3b
BM 34568 # 12, the solution to this problem is given in the form
c=(sqg.b+sq.9)/2-15=(sq. 9 +sq. 3)/2 - 1/3 =45 - 1/3 = 15,
sq.a=s0.c—sqg.b=sq.15—-sq.9=224a=sqgs. 224 =12.
One way in which the solution can have been obtained in this form is illus-
trated in Fig. 1.13.8 below. The problem is then interpreted as a problem
for a “semichord” in a semicircle. If the semichord, of lergttiivides the
diameter of the semicircle in two parts of lengttends, then
(u+9)/2 =c (the radius), Y—s)/2 =a, and consequently
u-s=sq. {u+9)/2) —sqg. {i—9)/2) = sq.b.
(Cf. the proof ofEl. 11.14 and Fig. 1.7.2, right.) It follows that
c-s=(u+9)/2-s=(s-u+sq.s)/2=(sqb+sqg.s)/2, sothatc=(sq.b+sq.s)/2- 1/s.

b ands given. me-e
Find c anda. ! N
1 \
c c=(Uu+9)/2
! \
s u | ' u-s=sg.b
c ," N
a a c / c-s =(sq.b+sq. 9)/2
b SL b

Fig. 1.13.8. BM 34568 # 12. A Seleucid pole-against-a-wall exercise.

Note that the same geometric configuration, with various permutations
of the given parameters, is behind the three pole-against-a-wall problems
in BM 34568 # 121§ ands given) and BM 85196 # % @nds, orc andb
given), as well as behind the proposed forerunBeis 11* andEl 1l 14*
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to El 11.11 andEL Il 14 (b anda, orc andb given; see Fig. 1.7.2).

It is interesting that further examples of the pole-against-a-wall prob-
lem appear in 8 8 g-h ¢f.Cairo J. E. 89127-30, 89137-48n Egyptian
demotic mathematical text from the third century BCE (ParR&ipP
(1972) ## 30-31; FriberdJL (2005), Sec. 3.1 b). The solution method is
the same in the demotic text as in BM 34568 # 12.

The problem type reappears in § Lidfer Mahameletha Latin manu-
script based on Islamic sources, compiled in Spain in the 12th century by
a Christian traveller (Sesian@ent.30 (1987)). Here is the first part of the
text of the third exercise in § 1 (my translation):

Another example. If a ladder, | don’t know how long, standing against a wall of the

same height and moved 6 cubits from the foot of the wall descends from the top of

the wall two cubits, then how much is the length?

You do it like this: Multiply 6 with itself, and 2 with itself, and subtract the smaller

product from the larger, and 32 will remain. Of which the half, which is 16, divide

by 2 cubits, and 8 will come out. To which add 2 cubits, and it makes 10, and so

much is the height of the ladder or the wall.

In this exerciseb = 6 cubitss = 2 cubits, and the solution is given as
c=(sqb-sq.9/2s+s=(sq.6—-sq9.2)/2-2+2=8+2=10.

This is clearlynotthe same solution method as the one in BM 34568 # 12.

(Cf. also Troptke GE 4(1940), Sec. 4.2.3.1.1.)

Seleucid parallels toEl. 11.14* (systems of equations of type Bla)

AO 6484is another large Seleucid mathematical recombination text of
mixed content. In that text, § 7 is a series of fagi-igi.bi problems”
(Friberg,RC(2007), Appendix 7). The most interesting of those problems
is 8 7 a, because of the extreme values of the given data in that exercise.

AO 6484 § 7 aliteral translation explanation

igi andigi.bi 2 00 00 33 20. igi +igi.bi =p =200 00 33 20
igi andigi.bi how much.. igi and igi.bi = ?

- 30 go, then 1 00 00 16 40. p/2 =100 00 16 40

10000 16 40 1 00 00 16 40 go, sg.p/2 =sg. 1 00 00 16 40
thenl1 00 00 33 20 04 57 46 40. =10000 3320045746 40
1 from inside (it) remove, s@2-1

then remains 33 <20> 04 37 46 40. =33 <20> 04 37 46 40

What- what may | go, sgs. 33 <20> 04 37 46 40
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then33 <20> 04 37 46 40? =?

44 43 20 - 44 43 20 go, sg. 44 43 20

then 33 <20> 04 376440. =33<20>04 37 46 40

44 43 20 to 1 00 00 16 40 repeat, 10000 16 40 + 44 43 20
thenl 00 45, thegi. =100 45 4gi

44 04 43 20 from 1 00 00 16 40 reve, 100001640-444320
then59 15 33 20, thégi.bi. =59 15 33 20 #gi.bi

In this exercise, the ternigi andigi.bi denote a “reciprocal pair” of
sexagesimal numbers, by which is meant any pair of (positive) sexagesi-
mal numbers such that their product is equal to ‘1’ (any power of 60).
Therefore, the question in the exercise can be interpreterkatangular-
linear system of equations of type Bifdahe followingspecial form

igi - igi.bi = 1, igi + igi.bi = 2 00 00 33 20.

Presumably the Seleucid mathematicians used some kind of geometric
model to help them find a solution procedure, just like their OB predeces-
sors had done. Two candidates for such a model are shown in Fig. 1.13.9
below. The one to the left is the “square-difference model” relatéd to

I1.5 (Fig. 1.4.2, left). The one to the right is the “semi-chord model”, relat-
ed toEl. 1.14* (Fig. 1.7.2, right).

— igi
p/2
g N
'S 4
2 v 4
%_ ,,,,,,,,,, 1 -%

igi.bi g/2 p/2
igi

Fig. 1.13.9. Two possible geometric models for the solution procedure in AO 6484 § 7 a.

Assume that the given number 2 00 00 33 20 in AO 6484 § 7 a (written
with a special sign for internal zeros) can be interpreted as, for instance,
2;00 00 33 20 (2 plus a very small fractional part). Then the successive
steps of the solution procedure in the text can be explained as follows:

p/2 =2;003320/2=1,;0016 40
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sg.p/2 = 1;00 00 33 20 04 57 46 40

sg.0/2 = sq.p/2 — 1 =;00 00 33 20 04 37 46 40

/2 =;00 44 43 20

igi =p/2 +q/2 = 1;00 16 40 + ;00 44 43 20 = 1;00 45 (= 81/80)

igi.bi =p/2 —g/2 = 1;00 16 40 — ;00 44 43 20 =;00 59 15 33 20 (= 80/81)

The curious choice of data is best explained by the semi-chord model. Ap-
parently, the purpose of the exercise was to show thakta@mely thin
right triangle can be constructed by letting the sides of the triangle be

c,b,a=p/2,1,q/2 = Ggi +igi.bi)/2, 1, {gi —igi.bi)/2,
whereigi andigi.bi are the sides of mearly square rectangleith the
area 1. Cf. Friberg,RC (2007), Appendix 8, Fig. A8.5.))

1.14. Old Akkadian Square Expansion and Square Contraction Rules

It is known (see Friberg;DLJ (2005:2), Figs. 8 and 10) that already
mathematicians in the Old Akkadian period in Mesopotamia (ca. 2340-
2200 BCE) may have been familiar with the “square expansion rule”

sq. U+ =sq.u+sg.s+2u-s,
and with the closely related “square contraction rule”
sg. U—9) =sq.u+sq.s—2u-s.

These rules are clearly tl@@d Akkadian forerunners to El. 1.4 and
I1.7. (Compare Fig. 1.14.1 below with Fig. 1.3.2 above.)

u s s
T T
u-s isqss u-sisqss
- L |
l l
} sgQ.u | u-s u
sq.u ju-s|u |
| |
| |
| |
| |
| |

sq. U+s)=squ+sqs+2u-s sq. U—s)=sq.u+sq.s—2u-s

Fig. 1.14.1. The Old Akkadian square expansion and square contraction rules.
Thus, for instance, in the Old Akkadian mathematical exefiftse 36
(Friberg,op. cit, Fig. 7), the area is given of a square with the side
11lninda 1 1/2 1/4 seed-cubit = Iinda + 1/8 - 1hinda + 1/4 seed-cubit.
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(1 n. = 6 seed-cubits.) The area was probably computed by use of a repeat-
ed application of the square expansion rule, as follows:

1. sq.(1G. +1/8 - 1h.) =sq. 1n. +2 - 1/8 - sq. 16. + sq. 1/8 - sq. 10 n.

2. sq.(1G. +1/8 - 1h. + 1/4 s.C.)

=sq.(1@. +1/8 - 1h.) + 2 - (10n. + 1/8 - 1n.) - 1/4 s.c. + sq. 1/4 s.c.

For the details of the computation, which is quite complicated because of
the involvement of various Old Akkadian units for length and area mea-
sure, the reader is referred to Fribeyp, cit.

Similarly, in the Old Akkadian mathematical exercBBA 37, for
instance (Fig. 5.3.2 below), the area is given of a square with the side

184r ninda 5gés ninda — 1 seed-cubit {4r =60 - 60, kés = 60).
The area was probably computed by use of an application of the square ex-
pansion rule, followed by an application of the square contraction rule. For
the complicated details of the computation, see Frilogrggit.

It is known through a number of examples that the mentioned rules
were applied in various situations also by OB mathematicians.

1.15. The Long History of Metric Algebra in Mesopotamia

The oldest known examples of metric algebra are applications of a
“field expansion procedure” in proto-cuneiform texts from the end of the
4th millennium BCE (FribergAfO 44/45 (1997/98)UL (2005), Fig.
2.1.15.) The aim of the field expansion procedure seems to have been to
find rectangles of given area with the lengths of the sides of the rectangle
in a given ratio.

Next in time, in the small corpus of known mathematical texts from the
Old Akkadian (Sargonic) period, c. 2340-2200 BCE, there are several
known, quite elaborate examples ragtric squaring(such as the ones
mentioned in Sec. 1.14 above) andtric division possibly also an even
more elaborate example of theetric computation of a side of a square
with given areaMoreover, although the known examples of Old Akka-
dian metric squaring and metric division problems are written only one or
two at a time on small clay tablets, they appear to have been excerpted
from systematically arranged theme tex@&. Eriberg,CDLJ (2005:2).)

In the large corpus of OB mathematical texts, metric algebra is, as is
well known, one of the most popular subjects. The extensive discussion in
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Secs. 1.10-1.12 above shows that there are several known examysé#s of
organized OB theme texts with metric algebra problémsarticular met-
ric algebra problems for one, two, or several squares.

In Sec. 1.13 it was shown that examples exist alswedif organized
Late Babylonian/Seleucid theme texts with metric algebra problems,
resembling such OB theme texts. Several features suggest that those Late
Babylonian/Seleucid texts were written in direct imitation of OB models.

Thus, for instance, the problem for concentric circles in W 23291-x § 2
is indistinguishable, at least in translation, from an OB mathematical text.
It measures length ininda and surface content in squarada ($ar),
although in Late Babylonian cuneiform texts lengths are normally mea-
sured in cubits or reeds (= 7 cubits) and surface content in either seed mea-
sure or “reed measure” (the length of a rectangle with the given surface
content and with one side equal to precisely 1 reed).

Also the fragment of a theme textin W 23291 § 4 measures surface con-
tent insar, expressly defined as 1 square ninda. It shows its dependence
on an OB archetype by having a sepanatela section, and in the cubit
section the cubit is 1/12 ofrenda, which implies that the cubit is 1/6 of
areed, as in OB texts, not 1/7.

The problem for concentric circles in W 23291 8 4 g is more removed
from its OB archetype by measuring surface content in terms of seed mea-
sure, but it still measures lengthsniimda. The metric algebra problems
in W 23291 § 1 b-f also measure surface content in terms of seed measure
and have separatgnda and cubit sections, with the cubit equal to 1/12
ninda in the cubit sections.

Summing up, it is now possible to conclude that metric algebra prob-
lems were studied systematically in Mesopotamian scribe schools during
a time span of at least 2000 years, from the Old Akkadian to the Late Baby-
lonian period. The investigation has also shown that, at least in some
respectsLate Babylonian mathematics was directly influenced by OB
mathematics, actually in the same way that OB mathematics must have
been inspired by Old Akkadian mathematithis is not an unexpected
conclusion, and it is supported but other facts not mentioned here. Still, it
is remarkable, since the terminology used in Late Babylonian mathemati-
cal texts is in many ways different from the terminology used in corre-
sponding OB mathematical texts.
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Thus, whenElementsll, or more likely a lost Greek forerunner to
Elementdl was written in imitation of some oriental archetype, it was only
the last link in an extremely long chain of theme texts with metric algebra
problems. The heated debate over the question whether some of the prop-
ositions inElementd| were Greekgeometric reformulationsf Babylo-
nianalgebracan now be laid to rest. In realitglementdl appears instead
to have been a diredtanslation into non-metric and non-numerical
“geometric algebra” of key results from Babyloniaetric algebralt is
noteworthy that, in spite of this translation, Greek geometric algebra still
relied onthe same geometric models Babylonian metric algebra.
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Chapter 2

El. 1.47 and the Old Babylonian Diagonal Rule

2.1. Euclid’s Proof ofEl. .47

The propositiorEl. 1.47 begins with the following statement:

In right-angled triangles the square on the side subtending the right angle
is equal to the squares on the sides containing the right angle.

The well known diagram accompanying the proposition (see, for instance,
Heath,ETBE 1(1956)) is reproduced below:

H

D L E

Fig. 2.1.1. The diagram accompanykigl.47.

In spite of the complicated diagram, Euclid’s proof is relatively simple.
It begins with a careful construction of the diagram. The rest of the proof
can, essentially, be divided into the following steps:

1. The triangle ABD is equal to the triangle FBC El.Q.4)
2. The rectangle BL is equal to twice the triangle ABD El. (41)
3. The square GB is equal to twice the triangle FBC El. 1(41)

73
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4. Therefore, the rectangle BL is equal to the square GB
5. Similarly, the rectangle CL is equal to the square HC
6. Therefore, the whole square BDEC is equal to the two squares GB, HC

Steps 1-3 of Euclid’'s proof are separately illustrated below, in a set of
unlettered diagrams

1 €l 1.4)
- -
< <
i} i}
N ™

Fig. 2.1.2. Steps 1-3 of Euclid’s proofef 1.47

2.2. Pappus’ Proof of a Generalization oEl. 1.47

An alternative, but closely related prooftif1.47 was given by Pappus
in Collections V.1 (see, for instance, Heath] BE 1(1956), 366). Pappus
showed that his proof could be used also for the proof of a generalized
proposition, where the right-angled triangle is replaced by an arbitrary
triangle, and where the given squares on two of the sides of the triangle are
replaced by arbitrary given parallelograms on the two sides. Undoubtedly,
the new proof is more interesting than the generalizatidh. 6#47.

Pappus’ new proof is illustrated by the following diagram:
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L M
D /N
K C

A

Fig. 2.2.1. The diagram illustrating Pappus’ proof of his generalizati&h bfi7.

In Fig. 2.2.2 below, the basic idea in Pappus’ proof is illustrated by a
sequence of diagrams in the most interesting case, that of given squares on
the length and the front of a right triangle. The right triangle is interpreted

here as one half of a rectangle.

1 (EI. 1.36)

2 (El. 1.36)

Fig. 2.2.2. An illustration of the basic idea in Pappus’s pro&i.df47.
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2.3. The Original Discovery of the OB Diagonal Rule for Rectangles

Euclid’s own proof ofEl. 1.47 is based on two propositions from
Elementd, namelyEl. |.4 andEl. 1.41.

El. 1.4 is acongruence theoremtating that itwo sides and the angle
contained by those two sidiesone triangle are equal to two sides and the
angle contained by those two sides in another triangle, then also the
remaining sideand theremaining anglesn the first triangle are equal to
the remaining side and the remaining two angles in the other triangle, and
the two triangles aresgual’, presumably in the sense that they have the
same area. Euclid’s proof Bi. 1.4 is far from a wonder of lucidity.

El. 1.41 is atransformation theoreratating that if a parallelogram and
a triangle havéhe same basand staypetween the same paralletben the
parallelogram iseéqual’ to twice the triangle

Pappus’ proof oEl. 1.47, which is simpler than Euclid’s proof, is based
on only one proposition frofalementd, namelyEl. 1.36.

El. 1.36 is anothetransformation theorepstating that if two parallel-
ograms havéhe same basand staypetween the same parallethen the
two parallelograms arequal’.

It is well known that the “diagonal rule” stated as a propositidal.in
.47 was an integral part of OB mathematics 1500 years before the time of
Euclid 14 However, Babylonian mathematicians felt no need for formal
statements of theorems and formal proofs. Therefore, it is not known how
they would have formulated a proof of their diagonal faldevertheless,
it is clear that they could never have contemplated proofs like the ones for-
mulated by Euclid and Pappus, illustrated in Figs. 2.1-2 and 2.2.1-2 above,
since concepts such asglesandparallelogramswere unknown in Baby-
lonian mathematics. Propositions suclikhs.4, El. 1.36, ancEl. 1.41 can-
not have had any Babylonian counterparts.

More interesting than the question of how Babylonian mathematicians
could have formulated a proof of the diagonal rule, if they had had the

14. A attempted survey of all known Old or Late Babylonian applications of the diagonal
rule can be found in Friber&C (2007), Appendix 8, Sec. A8 f.

15. In an attempted search for the original proof of the rule there would be no shortage of
candidates. Thus, in Loomi$he Pythagorean Propositiof1968), there are listed 109
“algebraic” proofs of the proposition, 225 “geometric” proefs,
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inclination to do so, is the question how they actually can dseevered

the rule in the first place. A step towards a possible answer to this question
is the observation that Pappus’ proof&bfl.47, in the slightly modified
version of it shown in Fig. 2.2.2, is closely related to the proof “by inspec-
tion” shown in Fig. 2.3.1 below:

Fig. 2.3.1. A proof by inspection closely related to Pappus’ proof.

The diagram in Fig. 2.3.1, right, may, in its turn, be closely related to
the actuahccidentaldiscovery of the diagonal rule, which may have taken
place in the way described below:

OB mathematicians were familiar with the idea of concentric (and par-
allel) squares, and called a square band bounded by two concentric squares
a ‘field between’. Various mathematical exercises for two or three concen-
tric squares are listed in the OB catalog text Bruins and Rutten (IRts)

5 (Sec. 1.11 above). TMS5 8 9 b-dt is silently assumed thahe square

is halfway between two other squameghe sense thdhe distance from

the outer square to the middle square is equal to the distance from the mid-
dle square to the inner square

There is, however, another way in which a middle square can be said to
be halfway between two given concentric (and parallel) squares. That is
whenthe area between the outer square and the middle square is equal to
the area between the middle square and the inner sg8appose that an
OB mathematician tried to figure out how to construct a square halfway,
in this sense, between two given squares. How could he do it? There are
two answers to this question:

1. Thesquare bandetween the two given concentric squares can be
divided by the diagonals of the outer square &ting of four trapezoids.

(see Fig. 2.3.2 below, left), The problem is therefore reduced to the prob-
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lem of finding a transversal parallel to the base of a given trapezoid and
dividing the trapezoid into two parts of equal area. This “trapezoid bisec-
tion problem” and its solution were both well known in OB mathematics.

It appears to have been known even by Old Akkadian mathematicians, five
hundred years before the time of the OB mathematicians. (See Sec. 11.3 a
below.)

2. Alternatively, the square band between the two given concentric
squares can be divided ingoring of four rectanglegFig. 2.3.2 below,
right). Each triangle is divided into two halves of equal area by its diago-
nal. Therefore, the combined areatwod inner square plus four half rect-
anglesis halfway between the area of the outer square and the area of the
inner square. Moreover, it is naively obvious from inspection of Fig. 2.3.2,
right, that the combination of the inner square plus the four half rectangles
is anobliquely placed squaréuching the outer square at four points.
Actually, itisthe square on the diagonafl any one of the four rectangles.

p
p u S
d .
5 A2
A2l 9 u
d q i | p
A2
’// A2 d \ S
A= (sq.p—sq.q)/4 sg.d = (sq.p + sq.0)/2
sq.d = (sq.p + sg.9)/2 ={sqg. U+9) +sqg. —9s)}/2

=sg.u+sq.s

Fig. 2.3.2. A square halfway in area between two given concentric squares.
Consequently, the area of the square on the diaghredpressedn
terms of the pair of square sides p anid q
sg.d = (sq.p + sq.0)/2.
On the other hand, expressederms of the “dual pair” of rectangle sides
u and sthe area of the square on the diagonal is

sq.d=sg.q+4 -A2={sq. U+9) +sq. (—9}2 =sq.u+sq.s.
Therefore, the Babylonian diagonal rule may very well have been acciden-
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tally discovered by someone who was actually more interested in finding
a square halfway in area between two given concentric squares! If this was
really the way in which the diagonal rule was discovered, it istladsbrst

proof the diagonal rule. Note that this putative first proof of the diagonal
rule is in addition an obvious candidate to beirfgrerunner of the proofs
ascribed to Pappus and Eucli#tigs. 2.1.2 and 2.2.2)!

2.4. Chains of Triangles, Trapezoids, or Rectangles

There is no direct evidence that OB mathematicians found and proved
(to their own satisfaction) the diagonal rule in the way suggested above.
There is, however, plenty of indirect evidence. Take, for instance the fol-
lowing entry in the OB mathematical “table of constants” Bruins and
Rutten,TMS 3 (= BR):

57 36igi.gub sa $ar 57 36, the constant of tRér BR 30

As first shown by VaimariyDI 15 (1961), the entry may refer to the area

of a geometric figure in the form of a ring of right triangles, vaguely re-
sembling the cuneiform number sigfr = 60 - 60 (Fig. 2.4.1, right). In

what probably was a standard example, such a figure could be composed
of four right triangles with the sides 1 00, 48, 36 = 12 - (5, 4, 3). It is shown

in Fig. 2.4.1, left, how the area of th&r-figure in this standard example

can be computed either as the sum of the areas of the four right triangles,
or as the difference of the areas of an outer square of side 1 00 and an inner
square of side 12. In either case, the area is found to be 57 36.

4.1/2-36-48
=414 24
=57 36 (sq. ninda)
or
7 12 sgq. 100 —sqg. 12
% P =10000-2 24
> =57 36

36

114

Fig. 2.4.1. Left: Th&ar-figure. Right: Thesar-sign.

Parenthetically it may be remarked here that the OB mathematicians,
who often used the powerful methodaogystematic variation of a basic
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idea had found an interesting variation also of the idea of a ring of four
right triangles as in Fig. 2.4.1, right, or of four rectangles, as in Fig. 2.3.2,
right. The OB round clay tabl&S 2192(Friberg,RC(2007), Sec. 8.2 a),
contains a diagram of a triangular band bounded by two equilateral trian-
gles, and divided into a ring of three trapezoids. Apparently, this is an as-
signment, with the student’s task being to compute the area of the
triangular band. A first step towards the solution of the problem has been
taken with the notation ‘35’ near the edge of the clay tablet. It can be in-
terpreted as an indication that the area of the triangular band is 35 times as
large as the area of the inner triangle. Indeed, since the side of the outer
triangle is 6 times larger than the side of the inner triangle, it follows that
the area of the triangular band is 35 = sq. 6 — 1 times larger than the area
of the inner triangle.

QXV
=100, q=10

p

> ° gq+3a=p
c

a=(p—0q)/3=16;40

Fig. 2.4.2. MS 2192. An equilateral triangular band divided into three trapezoids.

There are no explicit solution procedures for the problems dealing with
concentric squares stated in 88 7-IbfS5. However, it is likely that an
OB mathematician would have solved the probleriMS 5 8§ 8 b(Sec.
1.11 above), for instance, in the same way that some Late Babylonian
mathematician solved a corresponding problen#ir23291 § 1 f(Sec.
1.13 a). Compare Fig. 2.4.3 below, left, with Fig. 1.13.5 above.

The problem stated without solutioniiviS5 8§ 7 f(Sec. 1.11) is solved
explicitly in BM 13901 § 2 a(Sec. 1.12 above), apparently by use of a
method illustrated by the diagram in Fig. 2.4.3, right. The first step of that
method is based on the observation that the inner square plus four half rect-
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angles is equal to the square on the diagonal of one of the rectangles, and
that the square on the diagonal plus four more half rectangles is equal to
the outer square. The second step of the solution procedure in BM 13901
§ 2 a makes use of the diagonal rule.

p p
u s u s
D/4
777777 q u u
s s
sq.p—sq.g=D (sg.p+s9.0)/2 = sq.d=sq.u+sq.s
(p-0)/2=s (p+Q)2=u
TMS588b & W23291 81f TMS587f & BM 1390182 a

Fig. 2.4.3. Quadratic-linear systems of equations and square bands as rings of rectangles.

Thus, the square band divided into a ring of four rectangles, which was
assumed above to be a geometric model behind the discovery and first
proof of the diagonal rule, appears to have played a role also in other con-
nections in OB metric algebra.
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Chapter 3

Lemma El. X.28/29 1a, Plimpton 322,
and Babylonian igi-igi.bi Problems

3.1. Greek Generating Rules for Diagonal Triples of Numbers

Euclid’s Generating Rule in LemmakEl. X.28/29 1a

LemmaEl. X.28/29 laposes the following construction problem:

To find two square numbers such that their sum is also a square.

Although what is asked for here is two “numbers” (positive integers),
the ensuing construction is accompanied gg@metricdiagram:

A D C B

Here AB and BC represent two numbers, assumed tmtheoddor
both evenlin addition, it is assumed that AB and BC are eitherssiare
numbersor, more generallgimilar plane numbersThe latter assumption
means, essentially, that here is some “plane nunibeti - k and some
numberam andn such that

AB=mh-mk BC=nh-nk
Consequently,

AB=t-sqm, BC=t-sqgn.

(Itis not clear to me why Euclid prefers to talk about similar plane numbers
instead of numbers proportional to a pair of square numbers.)

Euclid lets AC be bisected at D. In view of the mentioned assumptions,
CD is then anumber and the product of AB, BC issgjuare numberThe
latter fact is proved ikl. 1X.1. Moreover, in view oEl. 1.6,

The product of AB, BC together with the square on CD is equal to the square on BD.

83
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Thus, the product of AB and BC, and the square on CD, are, as requested,
two square numbers such that their sum is also a square.

In a rather implicit way, lemmEl. X.28/29 1a is a general generating
rule for an infinite number of “diagonal triples” of numbers (positive inte-
gers), corresponding to the three sides of equally many right(-angled) tri-
angles, or to the two sides and the diagonal of equally many rectangles.

The Generating Rules Attributed to Pythagoras and Plato

In HGM 11 (1981 (1921)), 79-82, Heath gives a brief account of two
related generating rules, one attributed to Pythagoras, the other to Plato,
both described in Proclus’ commentary to Euclillementd (Friedlein/
Proclus,In Primum Euclidis Elementorum Comment#ii873)).

According to Heaththe generating rule ascribed to Pythagoras
“amounts to the statement that”

n? + (1/2 P — 1)F = (1/2 ¢P+ 1)), where mis any odd number.

Heath suggests that Pythagoras found this construction rule by observing
that 2a + 1 is the jnomonof dots” put around? to make & + 1. There-
fore, if also 2a + 1 is a square number, sag 2 1 =n?, it follows that

a=1/2 (P—1), anda+1=1/2 (P +1),
which gives the generating rule in this case.

Similarly, according to Heatlthe generating rule ascribed to Plato
amounts to the statement that

(2m)? + (m?— 1 = (m?+ 12, where mis an arbitrary number.
Heath suggests that Plato found this alternative construction by observing

that 4a is thegnomonof dots put arounda(— 1¥ to make & + 1. There-
fore, if also 4ais a square number, sap4 (2 m)2, it follows that

a=n?, sothata+1=nP+1, anda-1=nP-1,
which gives the generating rule in this second case.
Heath further observes that both these generating rules are special cases

of the generating rule given by Euclid in lemiiaha X.28/29 1a,which,
essentially, amounts to the statement that

tm 2+ (t M-t )22 = (¢ mé +t nd)/2)2,

whent n?, t n? are both odd or both even.
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Metric Algebra Derivations of the Greek Generating Rules

It is instructive to investigate how the generating rules mentioned
above can be derived by usegefometric diagramiike the ones irl. 1
rather than by use of squares gmdmonwf dots or pebbles.

SinceEl. 1.6 was used by Euclid for his construction in lemB&ia
X.28/29 1a, the obvious choice of such a diagram is the one in Fig. 1.4.1,
right, or its metric algebra counterpart in Fig. 1.4.2, right.

—2a— 1
N BN
IR e W
i ,,,,, Lo -
1 e
. sa
e ) sq.m sq.n
sg.@+1)—-sga=(2a+1)-1, c+a=sq.m, c-—a=sqg.n,
(2a+1)-1=sgm sg.b=sg.m- sq.n
% C
¢, ba= ¢, ba=
(sq.m+1)/2, m, (sq.m—1)/2 (sg.m+ sg.n)/2, m-n, (sq.m—sq.n)/2

Fig. 3.1.1. Geometric derivations of the generating rules of Pythagoras and Euclid

The diagram in Fig. 3.1.1, left, is related to the diagram used for the
proof of El. 11.6. It shows that the square difference sg+(1) — sgais
equal to a square cornergaomon of area (Za + 1) - 1. Just as in Heath's
proposed explanation of the generating rule ascribed to Pythagoras, if the
area of the square corner is equal to the area of a square, sayhsmn
2a+1=sgqm, sothata=(sq.m-1)/2 anda+ 1= (sqm+ 1)/2.

Note that this is aanalyticargument: The diagram can be drawn only if
it is assumed that the numberanda + 1 are already known.

The alternative diagram in Fig. 3.1.1, right, is related to the diagram
used for the constructionsHi. .14 (Fig. 1.7.1, right) anél. I1.14* (Fig.
1.7.2, right). The diagram shows that the sijésa of a right triangle can
be explicitly constructed as follows, by use of a completghtheticargu-
ment: Choosen andn as arbitrary number$oth odd or both evemnd
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draw a semicircle with the diameter sq+ sq.n. From the point where
the diameter is divided in two parts of lengthsre@nd sqn, erect a per-
pendicular. The radius of the semicircle ending at the point where the per-
pendicular cuts the circle is then the diagonal (ygotenusgof a right
triangle with the sides
¢, b,a=(sq.m+ sq.n)/2,m-n, (5g.m—sq.n)/2.
Indeedc is half the diameten = ¢ — sqg.n, and €f. the proof ofEl. 11.14)
sq.b=sg.m-sqn=sg.m-n, sothatb=m-n.

In the special case when= 1, the construction in Fig. 3.1.1, right, is an
alternative to the construction in Fig. 3.1.1, left.

Euclid’s slightly more general generating rule in lenehaX.28/29 1a,
corresponds to the case when in Fig. 3.1.1, rightnsand sgn are mul-
tiplied by a numbet. With t = 2, this generalization takes care of the case
when one ofn andn is odd, the other even.

It is interesting that Euclid never makes use of the generating rule in
lemmakEl. X.28/29 1a. Actually, the reason for the insertion of the lemma
afterEl. X.28 seems to be the brief remark at the end of the proof of that
lemma, to the effect that if AB and BC (corresponding to the segments
¢ + aandc —a of the diameter of the semicircle in Fig. 3.1.1, right)rere
similar plane numbers, then the difference of the squares on BD and DC
(corresponding toc(+ a) - (C—a) = sq.c— sg.ain Fig. 3.1.1, right) isi0t
a square number. It is thiggativeversion of the lemma that is used in
El. X.29-30.

3.2. Old Babylonian igi-igi.bi Problems

MS 3971 is an interesting OB mathematical recombination text from
the ancient city Uruk (FriberdRC (2007), Sec. 10.1). MS 3971 § 2 was
discussed in Sec. 2.4 abowS 3971 § 3is a series of fiveigi-igi.bi
problems”, clearly related tan OB generating rule for diagonal triples
An interesting difference between the Greek and the OB generating rules
is that Greek mathematicians were interested only in producing triples of
“numbers” (integers), while OB mathematicians customarily worked with
sexagesimal numbers in relative (floating) place value notation.

Here is the text of one of the problems in MS 3971 § 3:
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MS 3971 § 3 eliteral translation explanation

The 5th. The 5th example.

112 theigi, 50 theigi.bi. igi =1 12,igi.bi = 50.

112 and 5heap 2 02. igi +igi.bi =2 02.

1/2 of 2 02 break, 1 01. idi +igi.bi)/2 =1 01.

1 01 (make) butt (itself), 1 02 01. sti(+igi.bi)/2 =102 01.

1 from 1 02 01 tear off, 2 01 it gives. sigi(+igi.bi)/2—-1=201

2 01 makes 11 equalsided. =sq. 11.

11, the 5th front. The 5th front (of a right triangle) = 11.

Theigi-igi.bi problems in the OB text MS 3971 § 3 are clearly related
to theigi-igi.bi problems in the Seleucid text AO 6484 § 7 (Sec. 1.13
above, Fig. 1.13.9). However, in MS 3971 § 3 the valuégiaindigi.bi
are given and the half-differendgi{—igi.bi)/2 is computed, while in AO
6484 § 7 the surigi + igi.bi is given, and the values ofi andigi.bi
are computed. In spite of the different goals for the computations in the
two cases, the two possible geometric models remain the same (Fig. 3.2.1).

igi
a c _

e 5
Lol ‘7\\__-5—;,\
Lo 7T o
P © ©
I N c —
P M
o a 2
| ! 1 1

! 1 1
R R 4 c a c-a
igi igi.bi

¢, b, a= (igi + igi.bi)/2, 1, (igi — igi.bi)/2
c+a=igi, c—a=igi.bi, sqc—sg.a=igi-igi.bi=1

Fig. 3.2.1. Two possible geometric models for the solution procedure in MS 3971 § 3.

The five examples in MS 3971 § 3 demonstrate how every given pair
igi, igi.bi of reciprocal sexagesimal numbers can be used for the con-
struction of a right triangle, corresponding to the generating rule

c b, a=(igi +igi.bi)/2, 1, (gi —igi.bi)/2.

Note that in these examples, the valua @&fnot computed directly by use
of this generating rule, but via an application of the diagonal rule. How-
ever, in this way the need for a verification of the result is avoided.

The diagonal triples constructed by use of the OB generating rule dis-
played above are “normalized” in the sense that the middle term is 1.
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3.3. Plimpton 322: A Table of Parameters for igi-igi.bi Problems

Plimpton 322is the name of a famous OB mathematical table text from
the ancient Mesopotamian city Larsa. It is a large fragment, probably the
right half or two-thirds of a clay tablet of a very unusual format, much
more broad than it is tall. There are four columns of numbers on the pre-
served part of the clay tablet, each with its own heading.

x-Ri=l- ti si- li- ip- tim  jhsig  sag ib.sigsi-li-ip-tim mu.bi.im
in\na-as-sa-hu-vi-ma sag i-il-lu-1i .

59 T 175 159 24°9

'[J5656/58 145615 56 7 372 1

1J5° 411°53°34°5 11641 |15 49

351 27937257216 33149 |5 9 1
4854 14 15 137 Ak 5
147 6 4°14° 519 8 1
14731°15°62°82°6 4° 3811 |59 1

1413350 34°5 1319 249
13°83°3333% I 1/24°9

13°51° 22 24°1 °

Fig. 3.3.1. Plimpton 322. A large fragment of an Old Babylonian mathematical table text.

The meaning of the headings is far from obvious. Nevertheless they
can, at least tentatively, be translated as follows:

The square of the haér for the diagonal (from) which 1 is subtracted,

then <the square of the holder for > the front comes up.

The square side of <the square of the holder for > the front.

The square side of <the square of the holder for > the diagonal.

Its line number.

A detailed analysis and explanation of the text can be found in Friberg,
RC(2007), Appendix 7. There it is shown that the whole table text is a sys-
tematically arranged list of humerical parameters for fiftegnigi.bi
problems of the same kind as either the figeigi.bi problems in MS
3971 § 3 or the four related problems in AO 6484 § 7 (Sec. 1.13 above).

As will be explained below, the mysterious term “holder” can be inter-
preted as a name for an intermediate result in the solution of a rectangular-
linear system of equations. Thus, what the heading above the first pre-
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served column tries to say, in a rather awkward way, is that the numbers in
that column are the values of stgi(+ igi.bi)/2 = sq.c, wherec is the
diagonal, and that if 1 is subtracted from $gji ¢igi.bi)/2, then the result

is sq. {gi —igi.bi)/2 = sq.a. (Cf. the geometric model in Fig. 3.2.1.)

The preserved columns on Plimpton 322 are reproduced below in trans-
literation, with the errors in the text corrected.

[a.8a taki)lti siliptim ib.sig ib.sig mu.

Sa 1 inassahuma sag illii sag siliptim bi.im
15900 15 159 249 ki.1
156 56 58 14 50 06 15 56 07 313 ki.2
15507 41153345 11641 | 15049 ki.3
1531029325216 33149 | 50901 ki.4
1485401 40 105 137 ki.5
14706 41 40 519 801 ki.6
1431156 28 26 40 3811 59 01 ki.7
1413345140345 1319 20 49 ki.8
138333636 801 12 49 ki.9
1351002 28 27 24 26 40 12241 | 21601 ki.10
13345 45 115 ki.11
12921540215 27 59 48 49 ki.12
127000345 241 449 ki.13
1254851350640 2931 5359 ki.14
123134640 56 53 ki.15

Here follows, in addition, a tentative reconstruction of the columns
from the missing left half or third of the clay tablet.

igi igi.bi takilti takilti
siliptim sag

224 25 12430 59 30
22213 20| 251845 1234602 30 58 27 17 30
22037 30| 25 36 1230645 57 30 45
2185320| 255512 1222416 56 29 04
215 26 40 12050 54 10
21320 27 12010 5310
209 36 27 46 40 1184120 50 54 40
208 28 07 30 1180345 49 56 15
205 28 48 11654 48 06
20130 29 37 46 40| 1 15 33 53 20 45 56 06 40
2 30 115 45
15512 3115 1131330 41 58 30
15230 32 11215 40 15
1510640| 3224 1114520 392130
148 3320 11040 3720
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Presumably, each line of the table text contains all the numerical
parameters for aigi-igi.bi problem. In the example of line 1, for exam-
ple, the listed parameters can be used to set up the following exercise:

Chosen parameters:igi = 2 24, igi.bi =25

Equations: igi +igi.bi =249, igi -igi.bi =1

Solution procedure: ¢ = (igi +igi.bi)/2 =1 24;30

sq.c=sg. 1 24;30 = 1 59 00;15

sg.a=sg.c—1=>5900;15

a=sgs. 59 00;15 =59;30

Check: igi=c+a=124;30+59;30=224

igi.bi =c—a=124;30-59;30 = 25
Note that the value 1 24;30 for the diagonal (igi +igi.bi)/2 appears
repeatedly in this solution procedure. First it is squared, then it is commit-
ted to memory to be used again in the final pair of operations. It is probably
this being committed to memory that gave it its namat siliptim ‘the
holderfor the diagonal’, since a Babylonian phrase for ‘commit it to mem-
ory’ was, literally, ‘let ithold your head'.

The values 2 24, 25, 1 24;30, and 59;30 appearing in the solution pro-
cedure above correspond to the numbers 2 24, 25, 1 24 30, and 59 30 in
line 1 of the four lost columns on Plimpton 322. The value 1 50 00;15
corresponds to the number 1 50 00 15 in line 1 of the first preserved
column, and the value 50 00;15 is obtained by subtraction of 1, as
instructed in the heading over that column.

Thus, it remains to explain only what the purpose was of the numbers
in line 1 of columns 2 and 3 of the preserved part of the clay tablet. An
interesting answer to this question is that they probably played an impor-
tant role in the computation of the square sides of 50 00;15 and 1 50 00;15.
Indeed, it is known (see the explicit examples in Frib&@g,(2007),
Appendix 8, Sec. A8 a) that OB mathematicians had invented a tdever
torization methods a convenient shortcut in computations of square sides.
To find the square side of 50 00;15, they could operate as follows:

Since 590015=15-4-590015=15 35401,

it follows that sqgs. 59 00 15 = sgs. 15 - sgs. 3 54 01.

Here, sgs. 15 (00) = 30, and sgs. 3 54 01 could be computed as follows (see
Sec. 16.7 below):

sgs. 35401 =appr.2(00)—4/2-2=2(00)-1=159, and sqg.159=35401.
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Putting the two results together, one finds that
sgs. 59 00 15 = sgs. 15 - sgs. 3 54 01 =1389= 59 30.

Similarly,

Since 1590015=15-4-1590015=15-7 5401,

it follows that sqgs. 1 59 00 15 = sgs. 15 - sgs. 7 54 01,

where sqs. 75401 =appr.3(00)—106/2-3=3(00)—11=249, sq.249=75401.

Therefore, sgs. 15900 15=3049=1 24 30.

The trick was apparently to first remove obvious square factors from the
given number and then compute the square side of the remaining “factor-
reduced” number. That square side can be called the “factor-reduced core”
of the square side of the given number. Thus, in line 1 of Plimpton 322, the
numbers 1 59 and 2 49 in columns 2 and 3 of the preserved part of the clay
tablet can be interpreted as the factor-reduced cores of the square sides of
59 00 15 and 1 59 00 15, respectively.

It is clear that knowing in advance such factor-reduced cores would
greatly simplify the computations necessary in each case for the solution
of theigi-igi.bi problems with the data given in, for instance, (the lost)
column 3 on Plimpton 322. This is certainly true in the case ofgthe
igi.bi problem associated with line 10 of Plimpton 322, where the need
arises to compute the square sides of the “many-place” sexagesimal num-
bers 3510 02 28 27 24 26 40 and 1 35 10 02 28 27 24 26 40.

Another interesting question is how the 15 examples of parameters for
igi-igi.bi problems listed on Plimpton 322 were chosen. More precisely,
which is the origin of the 15 pairs of reciprocal sexagesimal numbers in
(the lost but reconstructed) columns 1-2 on the clay tablet? There is an
astonishingly simple answer to this questio@f. (Friberg, HMath 8
(1981),RC (2007), Appendix 7.) Take, for instance, 2 24, the figst
value in Plimpton 322 (the first number in the reconstructed column 1).
Since

224 -5=10 (00) + 2 (00) = 12 (00).

2 24 can be written (in relative sexagesimal place value notation) as
224=12igi5(=12/5).

Similarly, in the case of 2 22 13 20, the secgidvalue in column 1,
2221320-3=70640, 70640 -3=2120, 2120-3=104.
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Therefore,
2221320 =1 04igi 27 (= 1 04/ 27).
And so on. Summing up the results, one finds that
224= 124dgi 5  2221320=104igi27  2203730=115gi 32

21853 20 = 2 05igi 54 215= Qigi 4 21320= 20igi 9
20936= 54igi?25 208= 32igi 15 205= 25igi 12
20130 =121igi 40 2= 2igi 1 15512= 48igi 25
15230= 15igi 8 1510640= 50igi 27 148= 9igi 5

Therefore, all thegi values appearing in (the reconstructed) column 1 of
Plimpton 322 can be written in the foligi = m -igi n (= m/n), wheren
varies between 1 and 54, whitevaries between 2 and 2 05. The obvious
conclusion is that the author of Plimpton 322 decided to use only those
valuesigi n from the OB table of reciprocals for whiclirh < 1 00 (= 60).

(As is well known, ifigi n appears in the OB table of reciprocals, then
must be aegular sexagesimal number, that is a sexagesimal integer with
no other factors than powers of 2, 3, and 5.)

A continued analysis showsf(Friberg,HMath 8 (1981);RC (2007),
Appendix 8) that the list afgi values in (the reconstructed) column 1 of
Plimpton 322 consists @fl numbers of the forrgi =m-igi n (=m/n),
where

n andm are regular sexagesimal numbers, with

1Fn<100,and 148 m-igi nFsgs.2 + 1 =appr. 2 24.

The condition thamn -igi nF 2 24 ensures that in Fig. 3.2.1, right, the side

a, thefront of the right triangle, will always bg&horterthan the sidb =1,
thelengthof the right triangle. This is in agreement with a well known con-
vention in all mathematical cuneiform texts. The fact that E 8 igi n

is simply a consequence of the circumstance that the table on Plimpton 322
ends at the lower edge of the clay tablet, just when the descending series
of igi values in column 1 has happened to reach the value 1 48.

The brief discussion above has demonstrated that the table of parame-
ters for 15igi-igi.bi problems on Plimpton 322 was based on a cleverly
and systematically arranged series of applicatiorteeofOld Babylonian
generating rule

¢, b,a=(igi +igi.bi)/2, 1, fgi —igi.bi)/2.
This generating rule, by the way, fails to be completely general only be-
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cause, in agreement with Babylonian conventions, the &nsupposed
to be shorter than the lendihand the values afanda are supposed to be
regular sexagesimal numbers.

In a similar way, of course, Euclid’s generating rule

¢, b,a=t-{(sq.m+ sq.n)/2,m-n, (sg.m- sqg.n)/2}, where t=1 or 2.

fails to be general only because, in agreement with Greek conventions, the
values ofc, b, anda are supposed to be (positivedegers

There is a simple connection between the OB and the Greek generating
rules. Indeed, since in the Babylonian generating rule igi is supposed to be
of the formm - igi n, it follows that (in modern notations)

(igi +igi.bi)/2, 1, fgi —igi.bi)/2 =

(m/n+n/m)/2, 1, f/n—n/m)/2 =

t-{(sq.m+ sqg.n)/2,m - n, (sg.m— sq.n)/2},

where t=1/(m-n).

In this connection, it is important to point out that OB mathematicians
were well aware of the fact thatdfb, a are the diagonal and the sides of
a rectangle or a right triangle, a diagonal triple, then also all (positive)
multiplest - (c, b, a) are diagonal triples. This fact is demonstrated by the
OB exerciseMS 3971 § 4(Friberg,RC (2007), Sec. 10.1 d), which is a
scaling problem for diagonal triples.

MS 3971 § 4literal translation explanation

7, the diagonals{/iptum). The diagonat = 7 (00)

The length and the front are what? The lerg#nd the frona = ?

5, 4, 3, the square siddd (sig). Let, for instanceg*, b*, a* =5, 4, 3
5 release, 12 it gives. igi 5=12

12 to 4 lift, 48 it gives. igi 5 (5,4, 3)

12 to 3lift, 36 it gives. =1 (00), 48, 36

48 to 7 lift, 5 36, the length. 7 -1 (00), 48, 36

36 to 7 lift, 4 12, the front. =7(00),536,412

In this exercise, the briefly stated problem is, apparently, to find a
rectangle with the diagonal ‘7’. The solution is given in three steps. In the
first step, an arbitrary diagonal tript& b*, a* is chosen, namely the well
known triple 5, 4, 3. It is interesting to note that the three numbers 5, 4, 3
are referred to atb.sig ‘square sides’. It is tempting to try to explain this
surprising designation as a reference to a construction like the one in Fig.
2.1.1, where the diagonal and the sides of a right triangle are all adorned



94 Amazing Traces of a Babylonian Origin in Greek Mathematics

with squares!
In the second step of the solution procedure, the diagonal triple 5, 4, 3
is scaled up by the factagi 5 = 12. The result is the triple 1 00, 48, 36.
Finally, in the last step of the solution procedure, this diagonal triple, in
its turn, is scaled up by the factor 7. The result is, of course, the diagonal
triple 7 00, 5 36, 4 12 (since 7 - 48 =336 =536 and 7 - 36 =252 =4 12).



Chapter 4

The LemmaeEl. X.32/33 and
an OB Geometric Progression

4.1. Division of a right triangle into a pair of right sub-triangles

The lemmakEl. X.32/33begins with the following statement:

Let ABC be a right-angled triangle having the angle A right,

and let the perpendicular AD be drawn. Then
the rectangle CB, BD is equal to the square on BA,
the rectangle BC, CD is equal to the square on CA,
the rectangle BD, DC is equal to the square on AD,

the rectangle BC, AD is equal to the rectangle BA, AC.

A

1) CB - BD =sq. BA
2) BC - CD=sq.CA
3)BD - DC =sq. AD
4)BC-AD=BA-AC

B D C

Fig. 4.1.1. The diagram illustrating the lemBEiaX. 32/33.

The proof proceeds, essentially, as follows:

1) The triangle ABD is similar to the triangle ABC
CB:BA=BA:BD
CB - BD =sq. BA

2) The triangle ADC is similar to the triangle ABC
BC:CA=CA:CD
BC -CD=sqg.CA

3) AD is the mean proportional between BD and DC
BD:DA=AD:DC
BD - DC =sg. AD

95

El. V1.8

El. V1.4

El. VI.17

El. V1.8

El. V1.4

El. VI.17

El. VL.8, Por.

El. VI.17
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4) The triangle ABD is similar to the triangle ABC El. V1.8
BC:CA=BA:AD El. V1.4
BC - AD=BA:-AC El. VI.16

4.2. A Metric Algebra Proof of the Lemmagl. X.32/33

As indicated above, Euclid’'s proof of the lemalaX.32/33 is based
on Proposition&l. V1.4, 8, 16, and 17, which in their turn are based on the
theory of proportions iklementd/. In particular, the first step of the proof
is the observation that “the triangles ABD, ADC are similar both to the
whole ABC and to each otherE( VI.8).

An Old Babylonian mathematician can easily have found results
closely related to the four equations in Fig. 4.1.1 above by a simple use of
metric algebra arguments, for instance as follows. He would naturally
interpret a given right triangle with the side$, a as one half of a rectan-
gle with the sided, a and the diagonal, as in Fig. 4.2.1 below.

b
ﬁ/"s Xg\\‘?’ 1) sqh=sg. (1 +9/2-s9.¢—-9/2=u"-s
Yo O 2) sqb=sq.u+sg.h=squ+u-s=u-c
a|© \\)/5\7’ 3) sqa=sg.h+sg.s=u-s+sqg.s=s-c
4) b-a=c-h (= half the area)
5

Fig. 4.2.1. A metric algebra proof of the lemBElaX.32/33 .

Suppose that he wanted to compute the hdigigainst the diagonal,
as well as the segmeniss into which the diagonal is cut by the height
Sinceh is then the upright in a right triangle with the base §/2 and the
diagonal (1 + 9)/2, he could proceed in the following way, using nothing
but the Old Babylonian diagonal rule:

1) sqh=sq.0+9/2—-sq.¢—9/2=u-s (asin Fig. 1.1.2 oEl. 11.14)

2) sgb=squ+sgh=squ+u-s=u-¢ henceu=sqg.b/c

3) sqa=sgq.h+sg.s=u-stsq.s=s-¢ hences=sqg.al/c
These results corresponds to the first three of the four equations in the
lemmakEl. X.32/33. The fourth equation can be proved quite simply by
observing that ifA is the area of the triangle, then

4) b-a=2A=h-c
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Instead of using the prior knowledge tttzd height against the diago-
nal divides the given right triangles into two right triangles similar to each
other and to the wholéEl. V1.8), in order to prove the four equations in
the lemmeEl. X.32/33, as Euclid did, an Old Babylonian mathematician
can have proceeded in the opposite direction, using equations 2)-4) above
to prove the mentioned similarity relations. Indeed,

2) € blc-b=sg.b/c=u

3) € ac-a=sqalc=s

4) ¢ ac-b=@-B/c=th-9/c=h and bc-a=b-gd/c=h-9/c=h
Therefore,
a,h,s=alc-(c,ba and b,uh=blc-(b,a)

This means tha given right triangle is divided by the height against
the diagonal into two right sub-triangles similar to itself but scaled down
with the scale factors b/c and a/c, respectively.

This “height-against-the-diagonal rule” was known in Old Babylonian
mathematics, as shown by the discussion of IM 55357 in Sec. 4.3 below.
The rule can have been found by use of metric algebra in the way sug-
gested above, but that is, for the moment, only a reasonable conjecture.

4.3. An Old Babylonian Chain of Right Sub-Triangles

IM 55357 (Bagir, Sumer6 (1950), HgyrupLWS (2002), 231) is a
mathematical single problem text from the site Tell Harmal, near Baghdad.
It is one of the oldest known OB mathematical cuneiform texts.

IM 55357, literal translation explanation
= [{e] 1
Q 024
395
) 9 \5 5353
A |
0 o
45| Q 3 <
® 2N
A peg-head. A (right) triangle with the side®, a.
1 the length, 1 15 the long length, b=1(00)c=115

45 the upper front, 22 30 the complete field, a=45,A=a-b/2 =22 30
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From 22 30 the complete field,

8 06 the upper field,

5 11 02 24 the next field,

319 03 56 09 36 the 3rd field,

553 53 39 50 24 the lower field.
The upper length, the middle length,

the lower length, and the descendant are what?

You, to know the doing,

the opposite of 1, the length, resolve,
to 45 raise it, 45 you see.

45 to 2 raise, 1 30 you see.

Amazing Traces of a Babylonian Origin in Greek Mathematics

Divideinto
B =8 06 (see Fig. 4.3.1 below)
C=511:0224
D =3 19;03 56 09 36
E=553;53 39 50 24
What are then
the sides of the sub-triangles?
Do it like this:
b £/1/1(00)
a/b = 45/1 (00) = ;45
ab=1;30

To 8 06, the upper field, raise it, 12 09 you seea/b2 B=1;30 - 8 06 = 12 09

12 09, what is it equalsided?

27 is the equalsid@7 is the front.

27 break, 13 30 you see.

The opposite of 13 30 resolve,

to 8 06, the upper field, raise 36 you see,
the length next to the length 45, the front.
Turn around.

The length 27 of the upper peg-head
from 1 15 tear out, 48 it leaves.

The opposite of 48 resolve, 1 15 you see.
1 15 to 36 raise, 45 you see.

To 2 raise, 1 30 you see.

130to5 11 02 24 raise,

7 46 33 36 you see.

7 46 33 36, what is it equalsided?

21 36 it is equalsided.

21 36 is the front of the 2nd peg-head.
The halfpart of 21 36 break, 10 48 you see.
the opposite of 10 48 resolve, to --- --- --

sgs. 1209 =?
sgs. 12 09 27 =s;
/2 =27/12 =13;30
B/ (s,/2)
=806/13;30
=36 =h;
The next part of the computation:
C—s; =
115-27=48
hy/(c—s)=hy/u;
=36/48 = ;45
h2/u;=1;30
ha / up - C=
1;30 - 511,02 24 = 7 46,33 36
SQs. 746;3336 =7?
sgs. 7 46;33 36
=2136=s,
$/2=2136/2=1048
C/(s)/2) = (28;48)

As so often in OB mathematical problem texts, the question in this
exercise is very vaguely stated. Luckily, the situation is clearly described
by a diagram accompanying the text. The diagram is explained in Fig.
4.3.1 below. Given are the diagonal and sides of a right trianydiea =
115, 1 00, 45, and the areas of four right sub-trianBleS, D, E = 8 06,
511,02 24, 319;03 56 09 36, 5 53;53 39 50 24. Apparently, the goal of the
text was the computation of the heighis hy, hs, and of the segments

S1, Sp, Sz anduy, U.
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b = the ‘length’

¢ = the ‘long length’

a = the ‘upper front’

B + C + D + E = the ‘complete field’

B = the ‘upper field’, the ‘upper peghead’
C =the ‘next field’, the ‘2nd peghead’

D = the ‘3rd field’

< E = the ‘lower field’

/ h, = the ‘upper length’
h, = the ‘middle length’
h; = the ‘lower length’
u, = the ‘descendant’

Fig. 4.3.1. Explanation of the solution procedure in IM 55357.

It is many times a good ideatiy to find out how the author of an OB
mathematical text conceivably constructed the data appearing in the
question of the textn the case of IM 55357, the diagonal tripJd, a =
115,100,45=15"- (5, 4, 3) is the OB standard example of such a triple,
but where do the complicated valueBofC, D, E come from? The obvi-
ous answer to that question is that OB mathematicians knew that in Fig.
4.2.1 above, according to the mentioheihht-against-the-diagonal rule

a,h,s=alc-(c,b,a) and b,u h=blc- (Db, a).
Indeed, consider again Fig. 4.3.1, andAdte the area of the whole
right triangle. According to the height-against-the-diagonal rule
a hy,sp=alc: b, a),.
Therefore, the arel of the first right sub-triangle is
B=sqg.a/c-A=sq.(45/115)-4500/2 =sq. ;36 - 22 30 =;36 - 13 30 = 8 06.
The area of the remaining part of the whole triangle is
A-B=sq.b/c-A=sq.;48 - 22 30 =;48 - 18 00 = 14 24.
A new application of the height-against-the diagonal rule shows that
C=sg.alc- (A—B)=sq.;36 - 14 24 =,;36 - 8 33;24 =5 11,02 24.
Consequently,
A-B-C=sq.blc- A-B)=sq.;48 - 14 24 = ;48 - 11 31;12 = 9 12,57 36.
In the third step of the computation,
D =sq.alc- A-B-C)=sq.;36 - 912,57 36 = 3 19;03 56 09 36.
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Then, finally,

A-B-C-D=sg.blc- A—B—-C)=sq. ;48 - 912,57 36 = 5 53;53 39 50 24.

These numbers were computed correctly. The algorithm could have
been continued indefinitely, but the procedure was halted when there was
no more space in the diagram to write additional sexagesimal numbers.

Note thatB, C, D are the three first terms of a geometric progression of
sexagesimal numbers with the common ratiorb&g: sqg.a/c. Actually,
the three right sub-triangles with the arBa€, D can be interpreted as the
three first terms of a geometric progressiothe literal sense

Now to the actually recorded solution procedure for the stated problem
in IM 55357. It begins with the computationsyfandh,, evidently as the
solutions to the following simple rectangular-linear system of equations:

hy-s,/2=B (an area equation)
s;=alb-h;  (asimilarity equation).

The solution follows immediately:
sg.s; =2a/b-B, sothat
S;=50s. (/b -B) =27, andh;=B/(s;/2)=36.
The next step of the algorithm proceeds similarly. Therefore,
sg.5,=2h;/uy - B, so that
S, =80s. (g /uq -C)=21;36, andh,=C/(s,/2) = 28;48.
There was no more space on the clay tablet for further computations.

Geometrically, the first step of the solution procedure can be explained
as in Fig.4.3.2 below.

hy S

S 2B 5| ab-2B

hy -5/2=B, s;=ab-hy sg.s; =ab - 2B

Fig. 4.3.2. IM 55357. Geometric interpretation of the solution procedure.



Chapter 5

Elements X and Babylonian Metric Algebra

5.1. The Pivotal Propositions and Lemmas iklements X

Book X of Euclid’sElementss notoriously difficult, partly because the
presentation of the results is purely synthetic, with no preceding analysis.
Thatis why in Taisbak’€oloured Quadrangle@l 982), for instance, a rel-
atively reader-friendly version dl. X is achieved only through a com-
plete reorganization of the order of appearance of the various definitions
and propositions. Another very valuable introductio&loX, with a sim-
ilar reorganization of the material, is Knorr’s brief paB&MS9 (1983).

Below, only those aspects of El. X will be dwelt upon which are in some
way related to metric algebra of the Babylonian type. As it turns out, all
the pivotal propositions and lemmas in El. X are of that Kliweb of the
lemmas, by the way, have already been discussed above, EmMa8/

29 la in Chapter 3, and lemrah X.32/33 in Chapter 4.

In order to facilitate for the readers the understanding of the discussion
below, a concise introductory outline of the contentglo¥ is first pre-
sented here. In this outline the embarrassing repetitivendds X%in its
original form is deliberately suppressed by grouping together propositions
for “binomials” (sums of pairs of expressible straight lines, commensura-
ble in square only) with parallel propositions for “apotomes” (differences
of such pairs of straight lines). In addition, in several places in this outline,
separate but parallel propositions for each one of six distinct classes of
inexpressible sums or differences of straight lines are grouped together.

The following convenient abbreviations will be used here:

a comb andainc b meana is commensurable (or incommensurable) With

a-bmeans, as usual, (the area of) the rectangle with thessaeth, and
sq.a means (the area of) the square@mdsgs.A means the square side/of

101
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A Concise Outline of the Contents oElements X

Def. X.1.1
Def. X.I.2

Commensurable magnitudes.

Straight lines commensurable in square (only).

Defs. X.1.3-4 Expressible rectangles and straight lines relative to an assigned straight line.

X1
X.2-13
X.13/14
X.15-16
X.16/17
X.17-18

X.19-20
X.21

X.21/22
X.22-28
X.28/29 1a
X.28/29 1b

X.28/29 2

X.29

X.30

X.31

X.32

X.32/33

The exhaustion principle.

About commensurable or incommensurable magnitudes.
Geometric construction of the square differencau scgq.v.

About sums of commensurable or incommensurable magnitudes.
If a+b=c, a-b=A, then c-b-sqg. b=A.

Ifa+b=u,a-b=sq.v/2 a>b, thenacomb
if and only ifu comw, wherew = sgs. (squ— sq.v).

Rectangles with sides that are expressible and commensurable.

Rectangles with sides that are expressible and commensurable in square
only (medial rectangles), and their square sides (medial straight lines).

a:b=sg.a:a-b. (Cf. EL I3, Fig. 1.2.1, right.)
About medial rectangles and medial straight lines.
Construction of diagonal triples of “number€f. Fig. 3.1.1, right.)

Construction of pairs of numbers such that the difference of their squares is
(or is not) a square number. (Used in X.29.)

Construction of pairs of numbers such that the sum of their squares
is not a square number. (Used in X.30.)

Construction of expressible straight lise® commensurable in square,
a>b, such that = sgs. (sga— sq.b) coma. (Used in X.31-32.)

Construction of expressible straight lire® commensurable in square,
a>b, such that = sgs. (sga— sq.b) inca. (Used in X.33.)
Construction of medial straight linesd commensurable in squace> d,
c - d expressible, such that= sgs. (sgc — sq.d) comc. (Used in X.34.)
Construction of medial straight linesd commensurable in square,

¢ >d, ¢ -d medial, such that = sgs. (sgc — sq.d) comc. (Used in X.35.)

If the heighh against the diagonal of a right triangle with the sides
¢, b, a, with b > a, cutsc into the segments ands, with u > s,then
c-s=s0g.a,c-u=sqg.b,u-s=sqg.h,andc-h=a-b. (Used in X.33.)



X.33-35

X.36-41
X.73-78

X.41/42

X.42-47
X. 79-84
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Construction of pairs of straight lines (used in X.39-41).

Sums of class 1-6 (not defined until here) are inexpressible.
Differences of class 1-6 (not defined until here) are inexpressible.

lfu+s=u 4 u>su > u>u ,thensmy+sq.s>squ +sgs .

Sums of class 1-6 are uniquely split into their terms.
Differences of class 1-6 are uniquely split into their terms.

Defs. X.11.1-6 1st to 6th binomials.
Defs. X.11l.1-6 1st to 6th apotomes.

X.48-53
X. 85-90

X.53/54

X.54-59
X.91-96

X.60-65
X.97-102

X.66-70
X.103-107

X.71
X.108

X.72
X.109
X. 110

X.72b
X.111a,b

X.112-113

X.114
X.115

Construction of examples of 1st to 6th binomials.
Construction of examples of 1st to 6th apotomes.

squ +sg.s+2u-s=sqg. (+9), and

u - sis the mean proportional to agand sqgs. (Used in X.33.)

Sgs. {(1st to 6th binomial) - expressible line} = sum of class 1-6.
Sgs. {(1st to 6th apotome) - expressible line} = difference of class 1-6.

{Sq. (sum of class 1-6)} / expressible line = 1st to 6th binomial.
{Sq. (difference of class 1-6)} / expressible line = 1st to 6th apotome.

Sum commensurable with sum of class 1-6 is of the same class.
Difference commens. with difference of class 1-6 is of the same class.

Sgs. (expressible area + medial area) = sum of class 1-2 or 4-5.
Sgs. (expressible area — medial area) = difference of class 1 or 4.

Sgs. (sum of two incommensurable medial areas) = sum of class 3 or 6.
Sgs. (medial area — expressible area) = difference of class 2 or 5.
Sgs. (medial area — medial area) = difference of class 3 or 6.

Binomials and apotomes are distinct kinds of inexpressible straight lines.
Similarly, medial straight lines, sums of class 1-6, and differences of
class 1-6 are 13 distinct kinds of inexpressible straight lines.

An expressible area / a 1st to 6th binomial = a cognate 1st to 6th apotome.
An expressible area / a 1st to 6th apotome = a cognate 1st to 6th binomial.

A binomial - a cognate apotome = an expressible rectangle.

Generalizations: Medials of medials and so on.

5.2. Binomials and Apotomes, Majors and Minors

Of the thirteen kinds of inexpressible straight lines considered in
ElementsX, only four kinds actually appear as straight lines in known
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geometric figures, namely binomials and apotomes, “majors” and
“minors”. In this section, a condensed versioilgmentsx, rephrased in
terms of metric algebra, will be concerned only with propositions and lem-
mas having to do withinomials and majorsThe closely parallel propo-
sitions related tapotomes and minossill not be mentioned.

The most convenient starting point for a discussidel@ientsX is El.
X.17-18. The following definitions and propositions (slightly rephrased
here) are assumed to be known in that proposition and its proof:

El. X.Def. | 1. Two straight lines or two areas are catethmensurablé they both

are (integral) multiples of some straight line or area.

El. X.Def. | 2. Two straight lines are calledmmensurable in square orifyhey

are incommensurable but their squares are commensurable.

El. X.Defs. | 3-4. Let an arbitrarily chosen straight latebe calledexpressibleThen
an area is called axpressible ared it is commensurable with s@*, and a line
segment is called axpressible straight lini its square is an expressible area.
El. X.5-8. Two magnitudes are commensurable if and only if they have to each other
the ratio that a number (a positive integer) has to a number.

El. X.17-18(rephrased in terms of metric algebra)

If a+b=u,a-b=(sq.v)/4, with a>b,u>v, thenacomb if and only ifucomw,
wherew = sgs. (squ— sq.v).

________________

|
1
:
B = E D C —u2— w2 b
a

Fig. 5.2.1. Left: The figure il. X.17. Right: An explanation, in terms of metric algebra.

In a metric algebra interpretation of the prooEbfX.17, let the given
straight lines A and BC in Fig. 5.2.1, left, be caNeahdu, respectively.
Also, let the sides BD and DC of the rectangle with the area equal to “the
fourth part of the square on the less” (88) be callech andb. Then

a+b=u, a-b=sq.v/2.

The proof proceeds in analogy with the proo&bfll.5 (see Fig. 1.4.2,
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left). The result of the procedure, in terms of metric algebra, is that
a=u2+w/?2, b=u/2-w/2, where sgw/2 =sq.u/2-sq.v/2
and, consequently, sg.=4 sq.u/2 —4 sqv/2 = sg.U— Sq.v.
See Fig. 5.2.1, right. It is clear thvatan be identified with FD in Euclid’s
diagram. In view of this result, it follows that

acomb if and only if w2 +w/2 comu/2 —w/2, that is, if and only if u comw.

After El. X.17-18 follows a series of simple propositions:
El. X.19. If p, g is a pair of expressible straight lines, witbomgq, then the rectangle
p-q is expressible.
The proof is based on the observation thetq=sq.p:p - Q.
El. X. 20. Conversely, if an expressible area is “applied to” an expressible straight line,
then the resulting width is expressible and commensurable with the first straight line.
In terms of metric algebra: If the arpaqg and the lengtip ofa rectangle
are expressible, then also the widtis expressible, angcoma.
The proof is, again, based on the observationpghat=sq.p:p - q.

The next few propositions consider the case whendq are incommen-
surable.

El. X.21. If p, q is a pair of expressible straight lines, witinc g, then the rectangle

p-q isinexpressible. Therefore, also the sidéa square equal (in area) to the rect-

angle p-qis inexpressible. Lep - q and s be called amedial areaand amedial

straight ling respectively.

The proof is similar to the proof &. X. 19.

El. X. 22. Conversely, if a medial area is applied to an expressible straight line, then the

resulting width is expressible and incommensurable with the first straight line.

The construction iEl. X. 30 is an auxiliary result preparing for the ex-
plicit construction, irEl. X. 33 below, of the terms ofraajor straight line:

El. X.30 (rephrased in terms of metric algebra)

How to find two expressible straight linesandv, with u > v, such thatu incv and

squ — sq.v = sg.w, wherew incu.

In the proof, it is assumed that sgand sqn are two square numbers
(integers) such that their sum is not a square number. Such square numbers
are constructed in the lemrih X.28/29 2. However, see the critical re-
mark in Knorr,BAMS9 (1983), 58. Evidently it is enough to observe that,
for instance, 4 + 16 = 20, where 4 and 16, but not 20, are square humbers.
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Now, letu andv be two straight lines with
uexpressible u>v, and squ:sqg.v=(sgq.m+ sq.n) : sq.m.

Thenu andv are both expressible, but commensurable in square only,
since the squares of commensurable straight lines are to each other as two
square numberg(. X.9).

A third straight linew such that sqv = sg.u — sq.v is then constructed
as the third side of a right triangle inscribed in a semicircle with diameter
(lemmakEl. X.13/14). It is observed that then

Sg.U: sg.w = (sq.m+ sg.n) : sq.n.
Thereforeu andw are incommensurable.

The next step, irEl. X.33, of the explicit construction of a major
straight line is preceded by the lemiila X.32/33 (already discussed in
Chapter 4 above).

El. X.33 (rephrased in terms of metric algebra)

How to find two straight linep, g incommensurable in square and such that
the sum sgp + sq.p. is expressible but the rectangbe q medial.

atb=u
a-b=sq.v2
v/2 sq.p=u-a
sq.q=u-b
a b p-g=u-v2
u

Fig. 5.2.2. The diagram il. X.33, explained in terms of metric algebra.

The proof starts with two expressible straight linesdv, withu > v,
such thatu incv and squ — sq.v = sq.w, wherew inc u (El. X.30).

Next, a related pair of straight linasb is constructed as the solutions
to the rectangular-linear system of equations

a+b=u, a-b=sqvi2 @>bh).

See Fig. 5.2.2 above, and compare \EitHI.14* (Fig. 1.7.2, right.) Note
that here, according l. X.17-18,a inc b, since by assumptiom inc u.

Then follows the crucial step of implying the lemiaX.32/33 (see
Fig. 4.1.1 above), according to which

u-a=sqg.p, u-b=sg.q, and u-vi2=p-qg, withpandqas in Fig. 5.2.2.
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The pair of straight lineg, q constructed in this way enjoys the following
series of properties:

sq.p:sg.q=u-a:u-b=a:b, sothat smincsq.q, since aincbh,

sg.p + s0.q = sq.u is expressible, sinaeis assumed to be expressible,

p-g=u-v/i2 isamedial rectangle, sinagv are expressiblejincv.
Therefore, the desired construction is accomplished.

Now, at last, the main actors in this play are formally introduced:

El. X.36. The sum of two expressible straight lipegcommensurable in square only is
inexpressible. Let it be calledbamomial
El. X.39. The sum of two straight lin@sg incommensurable in square, and withsg.
+ sq.q expressible by - g medial, is inexpressible. Let it be callethajor.
(Correspondingly,
El. X.73.The difference of two expressible straight lipeg commensurable in square
only is inexpressible.. Let it be called apotome
El. X.76. The difference of two straight linpsq incommensurable in square, and with
sq.p + sqg.q expressible byb - g medial, is inexpressible. Let it be callechanor.)
The following lemma is interesting.
LemmaEl. X.41/42(rephrased in terms of metric algebra)
Let a straight line be divided into two parts in two different ways, so that it is equal to
eitherp+q or p'+d, and suppose that>p'. Then also s@+sq.q > sq.p +sq.q.
The diagram accompanying the proof of this lemma is unhelpful. The
proof can be explained more easily by reference to the more informative
diagram in Fig. 5.2.3 below.

p q p' q

A2

A2

(p-9)2 M —q)/2

o]

p+tg=p'+q, pp C (P-92>P-q)2 C A<A C sq.d>sq.d
Fig. 5.2.3. Explanation of the proof Bf. X.41/41 .
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Expressed in terms of metric algebra, the proof proceeds as follows:
If p+g=p +dq,andp>p,thenqg<q.
Consequently,{—0q)/2 > (' —q)/2, and sq.d—q)/2 > sq. ' —q)/2.
Then als)A=p-q<A =p' -, and it follows that
sq.p+sg.q=sg.d=sqg.p—-9—-2A>sg. 0'—qd)—-2A'=sqg.d =sqg.p' +sq.q.

This lemma is used in the proof of
El. X.42. The termsp, q of a binomial straight line are uniquely determined.

Namely, if the binomial can be expressed in two different ways;+ap=
p' +d, then also sqp(+ q) = sqg. ' + ('), and it follows that

(sg.p+sq.0) — (sq.p' +sq.q) =2p' -q —2p-q.
In this equation, the left side is an expressible area, while the right side is
the difference between two medial areas. This is impos&bIX.26), un-
less both sides of the equation are equal to zero. However, that cannot hap-
pen in view of the lemma.

A corresponding uniqueness theorem for major straight lines, with a
similar proof, is

El. X.45. The termsp, g of a major straight line are uniquely determined.

Now it is revealed that there are, actually, six mutually exclusive types
of binomials. Of those, only two are of interest here:

El. X.Def. Il 1. Given an expressible straight ligea binomialu +v, u> v, is called a
first binomial (with respect t@) if u come, and if squ — sg.v = sq.w, wherew come.

El. X.Def. Il 4. Given an expressible straight ligea binomialu + v, u> v, is called a
fourth binomial(with respect t@) if u come, and if squ — sq.v = sq.w, where w inc.
Constructions of explicit examples of first and fourth binomials are
demonstrated ii&l. X.48 andEl. X.51.
After these lengthy preparations, the main resultBlementsX are
finally presented in a double series of propositiong|liX.54-59 ancel.
X. 60-65. Of interest here are orily. X.54, 57 ancEl. X.60, 63.

El. X.54 (rephrased in terms of metric algebra)

A rectangle formed as the product of a given expressible straight tmel afirst
binomial (with respect t@) is equal (in area) to the square dfi@omial

If u+ vis a first binomial, the proposition says that there exists a
binomialp + g which is the “square side” ofi¢+v) - ein the sense that

(u+v)-e=sq. p+0).
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The proof starts by recalling that wher v, u > v, is afirst binomial
(with respect t@), then

u comyv in square only, u come, and sg.u — sqg.v = sq.w, wherew comul.
The proof continues by letting, b be solutions to the following
rectangular-linear system of equations of type Bla
a-b=sq.¢/2), a+b=u.
Then it can be shown, as in Sec. L#dlso Fig. 5.2.1 above), that
(a—b)/2 = sgs. (squ/2 — sqVv/2) = sgs. (squ — sq.v) /2 =w/2.
Since by assumptiow comu, it follows that alsod —b) comu =a +b.
Therefore, obviously, as ml. X.17,
acomb.
Now, as inEl. 11.14, it is possible to find straight lings g such that
a-e=sg.p, and b-e=sq.q.
On the other hand, sinee- b = sq. ¢/2) it is clear that/2 is a mean pro-
portional betweem andb (a : v/i2 =v/2 : b). Then also/2 -eis a mean
proportional between -eandb -e(a-e:v/i2 -e=Vv/2 -e: b -e). Since
a-e=sqg.p, andb - e = sq.q, this means that2 -eis a mean proportional
between sgp and sqg. Consequently (as shown in lemialaX.53/54)
vi2-e=p-q.

c
<
T
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Rp——

a b v/2 vi2

vi2-e p

sq.p sq.q p-q., p-q|é€

Fig. 5.2.4. The diagrams . X.54, in the style of metric algebna.v, e are given.

Therefore, as in Fig. 5.2.4 above, the square with thepsidgcan be
divided into two unequal squares and two equal rectangles with the areas
a-e b -e andv/2 -e respectively. Consequently, as desired,

sq.p+g=@+b+2-v2)-e=(Uu+v) - e
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It remains to be shown that the constructed squarepside) is a
binomial namely that
p and g are expressible straight lines, commensurable in square only.

This is done in the following way:
l.acomb and u=a+bcome C aandbcomucome C aandb expr.
2.acomb, both expr.C a-ecomb -e, both exprC sqg.p com sqq, both expr.
3.ucome, sq.ucomsqv C vexpr., but
acomuanduincv C aincvi2C a-eincvi2-e € sq.pincp-q € pincq.
El. X.57 (rephrased in terms of metric algebra)
A rectangle formed as the product of a given expressible straigte &nd a fourth
binomial (with respect te) is equal (in area) to the square of a major.
This time, Euclid starts by recalling that whenr v, u > v, is a fourth
binomial (with respect te), then

u comyv in square only, u come, and sg.u — sg.v = sq.w, wherew inc u.

He continues as iBl. X.54, finding a solutiormp, g to the equation
sg.p+tg=@+b+2-v2).e=(uU+v)-e

Also, since by assumptiom inc u, it follows that & —b) comu =a +b.

Therefore, as iEl. X.18,aincb.

It remains to be shown that the constructed squarg@sidgs a major,
namely thatp andqg are expressible straight lines, incommensurable in
square, with sgp + sq.q expressible byp - g medial. This is done in the
following way:

l.aincb € a-eincb-e € sg.pinc sqq C p, qincommensurable in square.

2.u=a+bcome C (a+b) - eexpressibleC sq.p+ sg.g expressible.

3.vincu Cvince € v/i2ince C Vv/2 -emedial C p -q medial.

Note that now, in the light oEl. X.57, the seemingly unmotivated
construction irgl. X.33 can be understood as the construction of a major
as the square side of the product of an expressible straigld ¢ind a
fourth binomial (with respect te) u + v in the special case wher u.

El. X.60, El. X.63 are the converses . X.54, El. X.57:

El. X.60 (rephrased in terms of metric algebra)

The square onlainomial p+q

applied to an arbitrarily given expressible straight éne
is equal to dirst binomial u+ v (with respect t@).
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If p+qis a binomial, withp > g as usual, thep, g are expressible
straight lines commensurable in square only. Now, for an arbitrarily cho-
sen expressible straight liegit is possible to construct a rectangle véth
as one side and with the ar@ae = sq.p. In the language dl. .44, a
rectangle with given area sgcan be applied to the given straight lee
Similarly, sq.q andp - q (twice) can be applied to straight lines parallel
with e, so that a diagram such as the one in Fig. 5.2.5 below is formed.

u | \% |

a b v/2 vi2
e sq.p 'sq.q| p-q ! p-q

p . q

Fig. 5.2.5. The figure i&l. X.60, presented in the style of metric algepra, e are given.

From here on, the proof is straightforward. First, smaogare express-
ible, sq.p and sqq are expressible and commensurable, so that the sum
sq.p + sq.q is expressible. Since algds expressible, it follows that the
sideu =a + b is expressible and commensurable v&flEl. X.20). Next,
sincep, g are commensurable in square only, the rectapglesand 2p -

g are medial El. X.21). Thereforey is expressible and incommensurable
with e (El. X.22). Consequently, v are expressible and commensurable
in square only. It follows that + v is a binomial.

It remains to be shown that+ v is afirst binomial. Now, it has already
been shown that come. In addition,

sg.p:p-d=p-q:sq.q (LemmaEl. X.53/54) C a-e:v/i2-e=v/2-e:b-e

C a:vi2=vl2:b C a-b=sq.Vvi2.

Also,

sg.pcomsqq C a-ecomb-e C acomb,
and

sq.p+s0.q>2p-q C u>v.

All that now is needed in order to complete the prod#loK.60 is an ap-
plication ofEl. X.17, which shows thaf w = sgs. (squ — sq.v), then
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w comu, whereu come, so that alsev come.

El. X.63 (rephrased in terms of metric algebra)

The square onm@ajor p+q

applied to an arbitrarily given expressible straight éne

is equal to dourth binomial u+v.
There is no need to give here the details of the progf.o€.63, which is
closely parallel to the proof @l. X.60.

The logical end of the investigation come&InX.72b/El. X.111, with
the observation that an apotome cannot be equal to a binomial, that a bino-
mial cannot be equal to a majetc Therefore, the various classes of in-
expressible sums and differences discusse&l@amentsX are non-
overlapping. The proofs are simple and straightforward.

Two further propositions deserve to be mentioned here:

El. X.112(rephrased in terms of metric algebra)

If a rectangle with expressible area is applied binamial

then the other side is a cognafgmtomewith

acom ¢bcomd, anda:b=c:d.

El. X.114 (rephrased in terms of metric algebra)

A rectangle formed as the product of a binoraiglb and cognate apotonee-d

with a com ¢b comd, anda : b =c: d has an expressible area.

In Knorr, BAMS9 (1983), 55, the proofs of these two propositions are
deservedly called “monstrously complicated”. (Actually, only the proof of
El. X.112 is quite complicated, while the proofiif X.114 is based on the
result inEl. X.112.) Knorr shows that it is easy to find much simpler
proofs. In the case d&l. X.114, for instance, it is clear that the condition
thata:b=c:dimplies thata -d =b - c. Therefore,

(a+b)-c-dy=a-c+b-c-a-d-b-d=a-c-b-d.

Sincea, b, ¢, d are expressible aredcomc, b comd, the producta - ¢ and
b - d are expressible areas. Therefore, also the producb) - € —d) is
expressible, and the proof Bf. X.114 is complete.

Knorr (op. cit) further makes the remark that. X.112-114 are not
formulated generally for all classes of inexpressible sums and differences
of straight lines discussed lflementsX. This is because there is no clear
cut generalization of this kind. Thus, for instance, the area of a rectangle
formed as the product of a major and a minor is medial, not expressible.
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5.3. Euclid’s Application of Areas and Babylonian Metric Division

Three elementary geometric operations that play important roles in
ElementsX are 1) the “binomial rule” which says that a square can be split
into two unequal squares and two equal rectangles @k ih4 andEl.
Lemmakl. X.53/54 2) the construction of a square “equal” (in area) to a
given rectilineal figure, and 3) the “application” of a figure (of given area)
to a given straight line.

Thus, for instance, i&l. El. X.54 it is said “let the square SN be con-
structed equal to the parallelogram AH, and the square NQ equal to GK”.
In the language of metric algebra this corresponds to constructing two
squares sp and sqg equal in area to the rectangtese andb - e, as illus-
trated in Fig. 5.2.4. That an operation of this kind is possible is guaranteed
by El. 11.14. See Sec. 1.7 above.

An example of the third kind of elementary geometric operation is
El. X.60, which begins with the statement that “The square on a binomial
straight line applied to an expressible straight line produces as width a first
binomial’. See Fig. 5.2.5 above. Another exampldelisX.20, which
begins with the statement: “If an expressible area is applied to a given
expressible straight line, it produces as width an expressible straight line
commensurable with the given straight line”. That an operation of this sec-
ond kind is possible is guaranteed by the following pair of propositions:

El. .43

In any parallelogram the complements of the parallelograms about the diagonal are

equal to one another.

El. .44

To a given straight line to apply, in a given rectilineal angle, a parallelogram equal to a

given triangle.
The two proposition are formulated in meaningless generality, mentioning
parallelograms, instead of simply rectangles. At the same time 1.44 is un-
necessarily restricted, mentioning (the area of) a triangle, instead of an
arbitrary area. Essentially, what is meant is

1.43. In any rectangle the complements of two rectangles about the diagonal are equal.

1.44. To apply a rectangle of given area to a straight line of given length.

.43 is illustrated by a diagram which, in metric algebra notations, cor-
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responds to the rectangle with a diagonal in Fig. 5.3.1, left. The ‘rectangles
about the diagonal’ ard + B' andA" + B", and the ‘complements’ of those
rectangles aré andB. The proof of the proposition is simple: Sinke=
B, A"=B",andA+ A + A"=B +B' + B", it follows that alsoA = B.

The requested construction in 1.44 is accomplished, essentially, in the
following way: In Fig. 5.3.1, rightA = a - b is the given rectangle, ard
the given straight line. The first step of the construction is to complete the
small rectangle with the sidasinda’. Then the diagonal of this small rect-
angle is extended until it intersects an extension of the right side of the
given rectanglé\. It is then easy to complete the rectangle with the sides
b andb', and after that the rectanddewith the sides' andb'. In view of
1.43, B has the same areaMsTherefore, the construction is finished.

u'

N T

| s A o a A
" ] B N |
u : a | AN b :
A N |
I ~ I
B s . B !'b o !
1 ! SN !
" S I
B : : Ny |
I : \\\ !
[ Vo ______ SN

Fig. 5.3.1. The diagrams Hi. 1.43 and .44, presented in the style of metric algebra.

The Babylonian counterpart tl. 1.43 is the frequently used “OB
similarity rule”, which says that (in Fig. 5.3.1, left)

s'=f.u", where f=s/u' (fis called the ‘feed’ of the trianghk?).

The Babylonian counterpart to the constructioBliril.14 of “a square
equal to a given figure” is theomputation of the square sidéa square
of given area, also appearing frequently in OB mathematical texts.
Finally, the Babylonian counterpart to the “application of area” in 1.44
is Babyloniarmetric division the computation of the length of the second
side of a rectangle when the area and the length of one side are given.

It is interesting in this connection that among the oldest known Meso-
potamian texts with mathematical exercises is a group of small clay tablets
from the Sargonic or Old Akkadian period in Mesopotamia (2340-2200
BCE). See the discussions in Fribef@DLJ 2005:2 andRC (2007),
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Appendix 6. The topics of this group of exercises are 1) metric division
(Friberg, CDLJ2005:2 88 2-3, Figs. 1-4), 2) computations, by use of the
binomial rule, of the areas of squares with given sides ¢it. 8 4.3-4,

Figs. 7-12), and 3) computation of the side of a square with givenogrea (

cit. 8 4.7, Fig. 13). In several cases, the computations are complicated, due
to an intentionally nasty choice of numerical data.

Evidently, the purpose of the exercises was to train the computational
skills of the students and to increase their ability to deal with the compli-
cated Mesopotamian systems of measures for lengths and areas. Two
examples of such Old Akkadian mathematical exercises are shown below.

(< rpr 7 e

¢ &
”\" ‘_(', V(:#L‘L

% ( -
DF’F\H&%\‘EwY (( (3 « ;(

NETIlET r Lmﬂ««m, “ar
/rk
e

TMH 5, 65 DPA37

Fig. 5.3.2. Two Old Akkadian mathematical exercises.

In TMH 5, 65, Fig. 5.3.2, left, a rectangle has the given length 1 - 60 +
7 1/2ninda, and the given area 1 - 60 + 40 (= 100) squatda. The
width of the rectangle has been computed (metric division). The result,
which is quite complicated, is recorded in the last two lines of the text. In
DPA 37, Fig. 5.3.2, right, a square has the given side length 1 - 60 - 60 + 5
- 60 — 1l/6ninda. The area of the square has been computed. The result,
again quite complicated, is recorded in three lines of the text.

The examples highlight an important and all pervasive difference
between Sumerian/Old Akkadian/Babylonian mathematics and the kind of
mathematics that one meets in EuclillementsMesopotamian mathe-
matics abounds with examples of meticulous computations with compli-
cated numbers, while no numbers other than small integers are allowed in
the deliberately non-numerical argumentation in the Elements.
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5.4. Quadratic-Rectangular Systems of Equations of Type B5

The key result irElementsX is the proof inEl. X.54 andEl. X.57 of
the two related statements thag¢ i a given expressible straight line, and
if u+vis afirst or fourth binomial (with respectéh then there exists a
binomial or majoip + g, respectively, which is the “square side” of+)

- ein the sense that

(u+v)-e=sq. p+0).

The central part of the proof is the solution of the following “quadratic-
rectangular” system of equations:

sq.p+sg.q=u-e 2p-g=v-e whereu,v, andeare given straight lines.

The solution method is based on the observation that if one sets
sq.p=a-e and sgq=b-e

as in Fig. 5.2.4, right, then the pajib must be the solution to the follow-

ing rectangular-linear system of equations of type Bla:

a-b=sq.¢/2), a+b=u, whereuandv are given straight lines.

Therefore, the solution to the original system of equations is

p=sqgs.&-e),qg=sqgs.b-€), where a b=u/2+sgs. (squ—sq.v) /2.

In El. X.33, an example of a majpr+ q is constructed. The essential
part of the construction is the solution of theadratic-rectangular system

sq.p+sqg.g=sg.u, 2p-q=v-u, whereu, andv are given straight lines.

This is a special case of the quadratic-rectangular syst&in 54 and
El. X.57. The solution method, however, is quite different. See Fig. 5.2.2.

Quadratic-rectangular systems of equations of the same kind as in
El. X.54,etc, appear also in four OB mathematical exercises. They will be
discussed individually below.

BM 13901(NeugebaueMKT 3(1935), 1ff) is an important mathe-
matical recombination text with 24 problems for one, two, or several
squares. The problem BM 13901 # 12(Hayrup,LWS(2002),71) is a
quadratic-rectangular system of equations for two unknowns, solved in a
surprising way by use of metric algebra.

BM 13901 # 12 literal translation explanation
The fields of my two equalsides Two squares with the gideslq
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| heaped, 21 40. s@.+sq.0=S=2140
My equalsides | made eat each other, 10.p-q=P =10 (00)

The halfpart of 21 40 you break. S§2=2140/2=1050
10 50 and 10 50 you make eat each other, S8g= sq. 10 50

1 57 46 40. (error!) =157 280

10 and 10 you make eat each other, 1 40. Psgsq. 10 (00) = 1 40 (00 00)
Inside 1 57 46 40 you tear (it) out. S - sqP=172140
17 46 40 makes 4 10 equalsided. sQs. 170E 410

4 10 to one 10 50 you add. 1050 + 4 10 =15 (00)
15 makes 30 equalsided. sgs. 15 (00)

30 is the first equalside. = 30p=

4 10 inside the second 10 50 you tear out. 1050-410=640
6 40 makes 20 equalsided. sgs. 6 40

20 is the second equalside. =29=

The quadratic-rectangular system of equations here is of the type
B5: sgp+sg.q=S p-q=P.
It can be understood as an additional k¥3ic metric algebra problem
beyond the ones discussed in Sec. 1.1 above.
Apparently, the first step of the solution procedure is to (silently) set
sg.p=a, sqq=hb.
Then the original quadratic-rectangular system of equationsdndq is
replaced by the followinfasic rectangular-lineasystem fora andb:
a-b=sq.P, a+b=S
This is a system of equations of type Bla. Therefore, in the usual way,
sq. @—h)/2=sq.4+b)/2-a-b=sq.92-sqP, and
a, b=(a+b)/2 +(@-hb)2 =92 + sqgs. (sq¥2 — sq.P).
Since sgp = a and sqq = b, the result of the solution procedure in BM
13901 # 12 can be expressed in quasi-modern notations as follows:
p, q = sgs.a, sgs.b =sgs. §2 £ sgs. (sqS2 - sq.P)}.
With S= 21 40 and® = 10 00, the corresponding numerical answer is
p, d=sgs. {10 50 £ sgs. (sq. 10 50 — sq. 10 00)} = sgs. (10 50 + 4 10) = 30, 20.
Thatp = 30,9 = 20 is, actually, the knowstandard answefor most OB
metric algebra problems for two squares. Apparently that is why the author

of this exercise managed to find the correct answer, in spite of having
calculated sg. 10 50 incorrectly as 1 57 46 40 instead of 1 57 21 40!
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The same problem appears\S 5112 § 2 an exercise in a large OB
mathematical recombination text with metric algebra problems for squares
and rectangles (FriberBC(2007), Sec. 11.2 e). Interestingly, the solution
method is not the same as in BM 13901 # 12:

MS 5112 § 2 cliteral translation explanation

The fields of 2 samesides (I) heaped, 21 40. psgsq.q=S= 2140
Sameside with sameside (I made) eat, 10.p -q=P =10 (00)

The samesides are what? p.q="?

You with your doing: Do it like this:

10 that sameside with sameside P=10

(were made) eat to 2 repeat, 20. P 2 20 (00)

From 2140 the fields of the samesides S-2P=

tear off, 1 40 is the remainder. 140

The equalside of 1 40 resolve, 10. s@-@P)=sgs.140=10p—q
Its 1/2 crush, 5. {—q)/2=5

Steps of 5 (make) eat, 25. sp~q)/2 =25

To 10, that sameside with sameside P=10

were made eat, add, 10 25. P+sqg.0-0)/2=1025
What is it equalsided? sqP { sq. p—0q)/2} =
25 each way it is equalsided. 25p=q)/2

25 to 2 inscribe. Write it down twice
To the 1st 25, 5 that (was made) eat add, 30.+ ()/2 + (p —q)/2 = 30
30ninda each way, the 1st. p=30ninda

From the 2nd 25, 5 tear off, 20. pta)y2-p-9)/2=20
20ninda each way, the 2nd. g = 20ninda

This is again a quadratic-rectangular system of equations of the type
B5: sg.p+sg.q=S u-s=P.

A possible geometric interpretation of the solution procedure is illustrated
in the last but one diagram in Fig. 5.4.1 below. In a square with the side
p +q, two squares with the sidpsndq are inscribed, in opposite corners.
The combined area of two rectangles, both with the pidgeis subtracted.
What remains is then a square with the gideg and the area

sq. f-q) =sq.p+sq.qg—-2p-q=S-2P.
This square is then quartered, and a square corner with tHe apeaq is
added to the quartered square. The result is another quartered square, with

the side |p + g)/2. Since now both the half-sum and the half-difference of
p andg are knownp andq can be computed in the usual way.
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The result of the solution procedure in MS 5112 § 2 can be expressed
as follows, in quasi-modern notations:

p, q=sqgs. {§+ 2P)/4} + sgs. {S— 2P)/4}.

With S= 21 40 andP = 10 00, the corresponding numerical answer is
p, g=sgs. 10 25 + sgs. 25 =25 £ 5 = 30, 20.

In El. X.54,El. X.57, BM 13901 # 12 (see Fig. 5.4.1 B and C below),
and MS 5112 § 2 ¢ (Fig. 5.4.2 D), a quadratic-rectangular system of equa-
tions of type B5 is connected with varigu®blems for two square$he
same kind of quadratic-rectangular system of equations is connected with
various problems fothe diagonal and the area of a rectangle or a right
triangle. Thus, inEl. X.33 (Fig. 5.4.1 A), the diagonaland ared = v/2 -
w2 of a right triangle are known, withi2 denoting the height of the right
triangle against the diagonal. The situation is described by the equations

S0.p+59.9=sq.u,

p-q=2A=v/2-u.

Two OB clay tablets with closely related quadratic-rectangular systems
of equations of type B5 for rectangles or right triangles are known, namely
IM 67118, also known as D146, andMS 3971 § AFriberg,RC(2007),

Sec. 10.1 b). The text of MS 3971 § 2 is reproduced below. (See also the

illustrating diagram in Fig. 5.4.1 E.)

MS 3971 § 2literal translation

1 15 the cross-over,

45 the field.

The length and the front are what?

1 15 (make) butt (itself) 1 33 45 it gives.
45, the field, to 2 you repeat, 1 30.

1 30 to a 33 4%oin, 303 45.

3 03 45 makes 14equalsided.

1/2 of 1 45 brealb2 30 it gives.

52 30 (make) butt (itself), 458L5 it gives.

45, the field, from 4%6 15tear off,

56 15 it gives.

56 15 <makes> 7 30 equalsided.

7 30 to 52 30 join, 1, the length, it gives.

from 52 30 tear off, 45, the front, it gives.

explanation

d, the diagonal (of a rectangle), =1 15
A, the area, = 45 (00)
The leng#imd the frons = ?
8g=sg.115=13345
A2=1 30 (00)
sqd+2A =303 45
sgs. (s@l+2A)=145=p
2 =52;30
sqp/2 = 45 56;15
sqp/2 —A = 45 56;15 — 45 (00)
=56;15 = sq/2
sgs. 56;15 =782 =
p/2 +g/2 =52;30 + 7; 30 =1 (00) =
p/2-q2=52;30-7;30=45¢
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A. EI. X.33:

A quadratic-rectangular system of equations:
sg.p+sg.g=sq.u, p-q=Vv/2 -u

Solution:

sg.p=a-u, sq.q=b-u ¢

a+b=u, a-b=sqvi2 C

p, g=sgs. (u/2 £ sqgs. (squ/2 — sq.v/2)} - u)| a u b
=sqs. (u/2 = w/2} - u)
B. EIl. X.54, X.57:
A quadratic-rectangular system of equations:
sg.p+sg.g=u-e, p-q=Vv/2-e
Solution:
sg.p=a-e, sg.q=b-e C
at+b=u, a-b=sq.vi2 C
p, g=sgs. (u/2 = sgs. (squ/2 — sq.v/2)} - e)| P . q
vi2 -e i b-el q
u v (I
a b w2 w2 i
i i a-e iv/2-e p
sg.p 'sq.q) p-q! p-q|€ !

C. BM 13901 # 12:
A quadratic-rectangular system of equations:
sq.p+sq.q=S, p-q=P

Solution: Geometric interpretation:

sq.p=a, sq.q=b C As inB, but withe=1 ?
a+b=S a-b=sq.P C

P, q=sgs. §/2 = sqs. (sqS/2 — sq.P)} |

Fig. 5.4.1. Three ways of solving a quadratic-rectangular system of equations of type B5.
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D. MS 51128 2c:

A quadratic-rectangular system of equations:

sq.p+sq.q=S, p-q=P

Solution:

sq. p-q)=S-2P, sq.{(p+0q)/2} =P +sq. p-0q)/2 C
| P, q = sgs. {6/2 +P)/2} = sgs. {(S/2 —P)/2} |

! o 1 P
I T | R L
! T 1
i Q\.Q Pl p ‘LQ o i i Lo
: @ (9/ é_ I | ™
| - N
1 :___:____ 9
N X
P EN q o :h“l_" (o
p q q pP-q q (p+0)2
E. IM67118& MS 3971 § 2
A quadratic-rectangular system of equations:
sg.u+sg.s=sq.d, u-s=A
Solution:
sg. U—-s) =sq.d - 2A, sq. {(u+s)/2} =sq. U—-s)/2+A C
| u, s = sqs. {(sqd/2 + A)/2} = sqs. {(sq.d/2 —A)/2}|
A2
P BEPET | Tt T T T
\ . .
T \ Lo o
S \ ) L .
e\ \ S ' ! 1
@ \\\ %0\‘ \\\ i : ,«?3
\ u-—s \ ! X &
s [ -7 :L__[___ BN
S u S u (u+9)2

Fig. 5.4.2. Two more ways of solving a quadratic-rectangular system of equations.

(The diagram in Fig. 5.4.2 E illustrates the text IM 67118, which differs
from MS 3971 § 2 only in that the first step in IM 67118 is to compute
sg.d — 2A, rather than sgl + 2A, as in MS 3971 § 2.)
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The form of the solution in MS 3971 § 2 is of the same form as the so-
lution in MS 5112 § 2 c (see above):

u, s={sgs. (sqd + 2A)}/2 + {sgs. (sqd — 2A)}/2.
With d =1 15 andA = 45 00, the corresponding numerical answer is

U, s=sqs. (303 45) /2 £sgs. (345) 2=52;30+7;30 =1 00, 45.

It is clear that the solution procedures for the quadratic-rectangular
systems of equations of type B5 in the four exampleX.33, El. X.54,
El. X.57, and BM 13901 # 12, exhibited in Fig. 5.4.1 A-C, are closely
related to each other. Similarly, the solution procedures for the quadratic-
rectangular systems of equations of type B5 in the three examples MS
5112 § 2 ¢, IM 67118, and MS 3971 § 2, exhibited in Fig. 5.4.2 D-E are
closely related to each other. Yet the solution procedures in the former cas-
es are completely different from those in the latter cases. On the other
hand, when the data are the same, the solutions ought to be the same, too,
in all the considered cases. Now, the system of equations

sq.p+sq.q=S p-q=P
has the solution

p, g =sgs. §2 + sgs. (sg9¥2 — sq.P)}
in the text BM 13901 # 12, but the solution

p, q=sgs. {§2 +P)/2} + sgs. {§2 —-P)/2}
in the text MS 5112 § 2 c. Therefore, the obvious conclusion is that

sgs. §/2 £ sgs. (sqS2 — sq.P)} = sgs. {§/2 +P)/2} + sgs. {§/2 —P)/2}.



Chapter 6

Elements IV and Old Babylonian
Figures Within Figures

6.1.Elements IV, a Well Organized Geometric Theme Text

Book IV of Euclid’sElementds quite brief, with only 16 propositions,
all concerned wittigures within figures

An Outline of the Contents ofElements IV

To inscribe a giventraight ling not greater than the diameter, in a given circle.

To inscribe driangle of given form in a given circle.

To circumscribe a triangle of given form around a given circle.
To inscribe a circle in a given triangle.

To circumscribe a circle around a given triangle.

To inscribe &quarein a given circle.

To circumscribe a square around a given circle.
To inscribe a circle in a given square.

To circumscribe a circle around a given square.

©Coo~NOO b wWN

[En
o

To construct a triangle with each of the angles at the base double the remaining angle.
To inscribe a regulgrentagonin a given circle.

To circumscribe a regular pentagon around a given circle.

To inscribe a circle in a given regular pentagon.

To circumscribe a circle around a given regular pentagon.

e el
A WN P

[Eny
(6]

To inscribe a reguldrexagonin a given circle.

Iy
(e}

To inscribe a reguldrb-gonin a given circle.

Most of these propositions are simple constructions. Only IV.10-11 are
more interesting, in particular 1V.10, which is a quite ingenious construc-
tion of a special triangle needed for the subsequent construction in 1V.11.

123
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In terms of metric algebra, the constructiorkinlV.10 begins with a
straight lined cut in two parts in the way describedth I1.11 (Sec. 1.7
above), so that the rectangle contained by the whole and the smaller seg-
ment is equal to the square on the greater segment. If the two segments are
calleds andd' (for reasons that will become clear later), vath d', then
sandd' satisfy the equation

(s+d)-d'=sqg.s.

A circle is drawn with the divided straight lideas a radius, and so that
the larger segmesiemanates from the center of the circle (Fig. 6.1.1, left).
Next, an isosceles triangle is constructed, with the divided straight line as
one of its legs, and with a chord of the circle, of leryts its base. From
the endpoint of the chord, a straight line is drawn to the point where the
original straight line is cut in two parts. A circle is circumscribed around a
second triangle formed by this straight line, the segimertd the second
straight line of lengtid [IV.5]. It is observed that, in view of 111.37, the
bases of the first triangle is a tangent to the circumscribed circle. And so
on, with reference to, among other things, 1.32 and 111.32. The result of the
complicated construction is the desired triangle with the two angles at its
base each twice as large as the remaining angle

\\/ ' “ I
0 /

\ > ! /

W\ / 7

N / /

\ /
N S P 4 e
S - -7

ST ~—_ —
ELIV.I0 - EL IV.11
d=s+d, s>d, d-d'=sq.s To inscribe a regular pentagon
C w=2v in a given circle

Fig. 6.1.1. Euclid’s method for the inscription of a regular pentagon in a circle.

In El. V.11, a regular pentagon inscribed in a given circle is construct-
ed in the following way. First, a triangle of the same form as the triangle
constructed in 1V. 10 is inscribed in the circle [IV.2]. Then. two chords in
the circle are drawn, bisecting the two equal angles at the base of the trian-
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gle (Fig. 6.1.1, right). The three vertices of the triangle and the endpoints
of the two chords then determine the positions of the five vertices of the
regular pentagon. End of the construction

As mentioned, figures within figures play a dominant rolElements
IV. In IV.2-5, for instance, it is required that a triangle of given form shall
beinscribed in or circumscribed around a given circédternatively that
a circle shall be inscribed in or circumscribed aroumdiven triangle. In
IV.6-9, the same four types of constructions are repeated, with the triangle
replaced by a square. In 1V.10-14, the square is replaced by a regular
pentagon. In IV.15-16, finally a regular hexagon and a regular 15-gon are
inscribed in circles. From the point of view of Babylonian mathematics,
ElementdV is a typical “theme text”. There are several known OB theme
texts of various kinds, some of them discussed in Secs. 1.10-1.12 above.
There are reasons to believe that well organized theme texts were the
“original” OB mathematical texts, while other types of OB mathematical
texts contain more or less extensive excerpts from such theme texts.

Note that an important difference betweglementslV and an OB
theme text is that all the propositionsikiementdV are non-numerical
construction problemsvhile all exercises in OB geometric texts eoen-
putational with emphasis on metric relationships

Figures within figures play a dominant role als&lamentsXlll. (See
Chapter 7 below.) HoweveElementsXlll is a less clear cut case than
ElementdV. The propositions iElements<lll have a double purpose. On
one handElementsXlll.13-17 is a continuation dtlementdV, with elab-
orateconstructions of the five regular polyhedrons inscribed in a given
sphere On the other hand, just as important is ElamentsXlll contains
a number of results showing howdgpresshe length ofthe side of an
inscribed regular polygoita pentagon or equilateral triangle)toe edge
of an inscribed regular polyhedran terms of the radius or diameter of the
given circle or sphere.

6.2. Figures Within Figures in Mesopotamian Mathematics

Geometric objects (other than triangles, squares, rectangles, and trape-
zoids) occur relatively infrequently in Babylonian mathematics. More-
over, in many cases, clay tablets with drawings of geometric figures appear
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to have been hastily written on roughly shaped “hand tablets” either by
young and inexperienced students, or by students listening inattentively to
their teachers’ explanations and making careless notes of what they saw
and heard. For these reasons, it is difficult to get a clear picture of how
much Babylonian mathematicians really knew about geometry.

Nevertheless, it is clear that figures within figures was one of the favor-
ite geometric themes in Babylonian mathematics. This will be shown
below by means of a number of examples.

~~~~~~

Fig. 6.2.1. A diagram on a Mesopotamian clay tablet from the Early Dynastic llla period.

The oldest known example of a geometric diagram on a Mesopotamian
clay tablet isTSS 77 (Jestin 1937). It is a fragment of a round hand tablet,
from the ancient site Shuruppak, dateable to the Early Dynastic llla period
(c. 2600-2500 BCE). It shows four circles inscribed in a square.

The same figure reappears in the exer&ibk 15285 # 36(Neuge-
bauer MKT 1(1935), 137-142; RobsoNMTC (1999), Appendix 2), two
large fragments of a famous OB geometric theme text with originally 41
briefly formulated problems, all illustrated by diagrams of squares divided
into smaller pieces. The purpose of the problems is, in each case, to com-
pute the areas of all the pieces.

In the outlines of obverse and reverse of BM 15285 in Figs. 6.2.2-3
below, the text belonging to each exercise is shown only as a gray rectan-
gle, because the copy of the clay tablet is scaled down so much that the text
would be unreadable, anyway.

Instead, the texts belonging to the exercises are given below in literal
translation, in the cases when they are sufficiently well preserved.
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Fig. 6.2.2. The obverse of BM 15285, an Old Babylonian geometric theme text.
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Col. viii Col. vii Col. vi
## 30-33 ## 26-29 ## 21-25

Col. ix
## 34-37

Col. x
## 38-41

Fig. 6.2.3. The reverse of BM 15285. (The order of the columns is reversed here.)
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BM 15285 literal translation explanation

2. 1us the equalside. Given a square with the side h@d@).
A bit(?) | pushed inwards, then A certain distance(?) inwards (from the sides
a second equalside | drew. of the square) a second square is drawn.
Inside the equalside, an arc | drew. A circle is drawn inside the (second) square.
Their areas are what? Compute the areas of the pieces.

3. 1 [u§ the equalside.] Given a square with the side00 (ninda).
A bit | pushed inwards, then A certain distance inwards (from the sides
an arc | drew. of the square) a circle is drawn.
Their areas are what? Compute the areas of the pieces.

4. 1us the equalside. Given a square with the side hQ{da).
Inside the equalside Inside it
an arc | drew. a circle is drawn.
The arc that | drew touches The circle is inscribed in
an equalside. a (second) square.
Their areas are what? Compute the areas of the pieces.

5. [1us§ the equalside.] Given a square with the side 1 Gir{da).

[Inside it] a second [equalside.] A secasyuare is drawn inside it.
[Inside the second equalside] Inside the second square

4 peg-heads, 1 arc | drew. are drawn 4 triangles and 1 circle.
Their areas are what? Compute the areas of the pieces.
6. [1us the equalside.] Given a square with the side 1 Gr{da).

[Inside it a second equalside.] A second square (is drawn) inside it).
[Inside it the second equalside] Inside the second square
[4 equalsides (and) 1 arc | drew.] are drawn 4 triangles and 1 circle.

Their areas are what? Compute the areas of the pieces.
7. 1us the equalside. Given a square with the side lhaQd@).
Inside it a second equalside | drew. A second square is drawn inside it.
The equalside that | drew The second square
touches the outer equalside. is inscribed (obliquely) in the given square.
Their areas are what? Compute the areas of the pieces.
8. 1us the equalside. Given a square with the side Q).
Inside it 4 peg-heads, 1 equalside. Inside it 4 triangles and 1 square (are drawn).
The equalside that | drew The (second) square
touches the second equalside. is inscribed (obliquely) in the given square.
Their areas are what? Compute the areas of the pieces.
9. 1us the equalside. Given a square with the side lhaQd@).
Inside it an equalside | drew. Inside it a square (is drawn).

[The equalside] that | drew The (second) square
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touches the equalside.
Inside the second equalside
a third equalside | drew.
(The equalside) that | drew
touches the equalside.
Their areas are what?

10. 1us the equalside.
Inside it 8 peg-heads | drew.
Their areas are what?

11. 1us§ the equalside.
Inside it an equalside | drew.
The equalside that | drew
touches the equalside.
Inside the equalside
4 peg-heads | drew.

12. 1us the equalside.
Inside it 16 [peg-heads | drew].
Their areas are what?

13. 1us§ the equalside. Inside it

4 ox-heads, 2 peg-heads | drew.

Their areas are what?

14. 1us the equalside.
Half | pushed inwards,
then an equalside | drew.
Inside the second equalside
a third equalside | drew.
Their areas are what?

17. 1us the equalside.

12 peg-heads 4 equalsides | drew.

Their areas are what?

18. 1us§ the equalside.
Inside 4 peg-heads | drew.
Their areas are what?

23. 1us the equalside.
Inside it 4 equalsides,
4 diagonals, 4 peg-heads.
Their areas are what?

Amazing Traces of a Babylonian Origin in Greek Mathematics

is inscribed (obliquely) in the given square.
Inside the second square

is drawn a third square.

The (third) square

is inscribed (obliquely) in the (second) square.
Compute the areas of the pieces.

Given a square with the side h@d@).
Inside it 8 triangles (are drawn).
Compute the areas of the pieces.

Given a square with the side lha0d@).
Inside it a second square is drawn.
The (second) square
is inscribed (obliquely) in the (given) square.
Inside the (second) square
are drawn 4 triangles.

Given a square with the side Q).
Inside it ttngles are drawn
Compute the areas of the pieces.

Given a square with the side #i@id4).
Inside it 4 trapezoids, 2 triangles are drawn.
Compute the areas of the pieces.

Given a square with the side hQfda).
Halfway in (?) (from the sides of the given
square) another square is drawn.
Inside the second square

a third square is drawn (obliquely).
Compute the areas of the pieces.

Given a square with the side Q).
(Inside it) 12 triangles, 4 squares are drawn.
Compute the areas of the pieces.

Given a square with the side lha0d@).
Inside it 4 triangles are drawn.
Compute the areas of the pieces.

Given a square with the side ha0d@).
Inside it 4 squares,
4 rectangles and 4 triangles are drawn.
Compute the areas of the pieces.
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24. [1us§] the equalside. Given a square with the did® finda).
Inside it 16 equalsides | drew. Inside it 16 squares are drawn.
Their areas are what? Compute the areas of the pieces.

25. A crescent. A semicircle.

28. 1 [us the equalside.] Given a square with the side00 fiinda).
A bit | pushed inwards, then A certain distance inwards
an equalside | drew. (from the given square) a square is drawn.
Inside the equalside that | drew Inside that square
1 lyre-window. there is 1 concave square.
Their areas are what? Compute the areas of the pieces.

30. 1us the equalside. Given a square with the side h@d@).
A bit | pushed inwards, then A certain distance inwards (from the given
a lyre field(?) | drew. square) a concave rectangle(?) is drawn.
Their areas are what? Compute the areas of the pieces.

31. 1 [u§] the equalside. Given a square with the si@® fninda).
[Inside it] 2 crescents, 1 peg-headnside itthere are 2 semicircles, 1 triangle,
1 peg-crescent(?), 1 diagonal, 1 circle segment(?), 1 rectangle,
4 equalsides. and 4 squares.
Their areas are what? Compute the areas of the pieces.

32. [1] us the equalside. Given a square with the 4id® finda).
Inside it 2 diagonals, 1 --- field, Inside it there are 2 rectangles, 1 ----figure,
4 equalsides. and 4 squares.
Their areas are what? Compute the areas of the pieces.

34. 1us the equalside. Given a square with the side Q).
Inside it 3 bow fields, Inside it there are 3 bow figures.
1 diagonal. andl rectangle.
Their areas are what? Compute the areas of the pieces.

35. 1us the equalside. Given a square with the side haQd@).
Inside it 2 bow fields, Inside it there are 2 bow figures,
1 .-.-field, 4ox-heads --- . 1 ----figure, 4 trapezoids (sic!) --- .
Their areas are what? Compute the areas of the pieces.

38. 1us the equalside. Given a square with the side lha0d@).
Inside it 1 arc, 6 crescents. Inside it there are 1 circle and 6 semicircles.

Their areas are what? Compute the areas of the pieces.
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39. 1us the equalside. Given a square with the side haQd@).
2 circles, 2 crescents, 4 [equalsides]. (Inside it) 2 circles, 2 semicircles, 4 squares.
Their areas [are what]? Compute the areas of the pieces.
40. [1us the equalside.] Given a square with the side 1 Gfi{da).
Inside it 4 peg-heads, Inside it there are 4 (concave) triangles,
[16] boat fields, [5] lyre-windows. 16 boat-figures, an8 concave squares.
Their areas are what? Compute the areas of the pieces.

As a geometric theme text, BM 15285 is not particularly well orga-
nized, and the exercises are in general exceedingly simple. Yet the text is
interesting for several reasons, not least because it quite explicitly gives
the names (mostly Sumerian) of a number of geometric figures. A few of
those figures will be discussed below (Fig. 6.2.6 and Chapter 12).

Some of the diagrams illustrating the exercises occur more than once.
Thus the diagrams for problems ## 2 and 4 are identical, and so are the dia-
grams for ## 7-8, and for ## 10-11. The reason is probably that the author
of the text wanted to teach his students that the same diagram can be inter-
preted in more than one way. Note by the way, how much the situation in
## 7-8, 10-11, and 18, resembles the famous geometric passage in Plato’s
Meno, 82 B - 85 B(see HeathiHGM 1(1981), 297), where Socrates tries
to get a slave boy to figure out on his own how a square can be constructed
that is twice as large as a given square.

Particularly interesting afdM 15285 ## 36 and 40T he text under the
diagram for # 36 is lost, but presumably it was of the following form:

Given a square with the side 1 @Qr(da). Inside it there are 8 (concave) triangles,

4 circles, and 1 concave square. Compute the areas of the pieces.

As a help for the drawing of the diagram, and also for the computation of
the areas of the pieces, there are weakly drawn guide lines in the diagrams
for ## 36 and 40, dividing the given squares into 16 smaller squares.

An OB school boy could find the solution to problem # 36 in the
following way, for instance: The guide lines show that each one of the four
circles is contained in a square with the side 30. Therefore, the diameter of
each circle is also 30, and the arc (the circumference) is, approximately, 3
- 30 =1 30. Hence, the area of each circle is, approximately, 1/12 - sq. 1 30
=;05 -2 15(00) = 11 15. On the other hand, the area of one of the circum-
scribed squares is sqg. 30 = 15 (00), which is 3 45 more than the area of the
circle inside it. This means that the area of each one of the four “concave
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triangles” in the corners of one of the small squares, outside the circle, is
345/ 4 =56;15. Thus, the area 1 (00 00) of the given square with the side
1 (00) is the sum of the following sub-areas:

the total area of four small circles = appr. 4 - 11 15 = 45 (00),

the area of the central “concave square” (lyre-window) = appr. 4 - 56;15 = 3 45,

the total area of four “double concave triangles” = appr. 4 - 2 - 56;15 = 7 30,

the total area of four “single concave triangles” = appr. 4 - 56;15 = 3 45.

A similar computation in the case of problem # 40 would yield the re-
sult that the area of the given square is the sum of the following sub-areas:

the total area of five concave squares = appr. 5 - 3 45 = 18 45,

the total area of four double concave triangles = appr. 4 - 2 - 56;15 = 7 30,

the total area of four single concave triangles = appr. 4 - 56;15 = 3 45,

the total area of 16 boat-figures = appr. 16 - 1 52;30 = 30.
Note that the area of any one of the boat-figures can be computed as 1/4 of
the difference between the area of a circle and the area of a concave square
inscribed in the circle, that is, as appr. (11 15 -3 45)/4 =7 30/4 = 1 52;30.
Note also that, for some reason, the four single concave squares are not
mentioned in the text of problem 40.

Indirectly related to the geometric theme text BM 15285 is a quite well
known sequence of entries in the OB mathematical “table of constants”
BR = Bruins and RuttemMS 3 (1961):

5igi.gub sa gir 5, constant of therc BR 2
20dal sa gur 20, transversal of therc BR 3
10 pi-ir-ku sa guar 10, crossline of therc BR 4
15igi.gub $a us-kas-ri 15, constant of the crescent BR 7
40 dal Sa us-kay-ri 40, transversal of the crescent BR 8
20 pi-ir-ku $a tis-kag-ri 20, crossline of the crescent BR 9
6 33 45igi.gub Sa pa-na-ak-ki 6 33 45, constant of the bow BR 10
52 30dal $a pa-na-ak-ki 52 30, transversal of the bow BR 11
15 pi-ir-ku $a pa-na-ak-ki 15, crossline of the bow BR 12
13 07 30igi.gub sa gan gis.ma 13 07 30, constant of the boat field  BR 13
52 30dal §a gan gi§.ma 52 30, transversal of the boat field BR 14
30 pi-ir-ku $a gan gis.ma 30, crossline of the boat field BR 15
13 20igi.gub $a a.5a Se 13 20, constant of the barleycorn field BR 16
56 40dal sa a.8a Se 56 40, transversal of the barleycorn fielBR 17
23 20pi-ir-ku Sa a.sa Se 23 20, crossline of the barleycorn field BR 18

16 52 30igi.gub sa igi.guy 16 52 30, constant of the ox-eye BR 19
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52 30dal §a igi.guy 52 30, transversal of the ox-eye BR 20
30pi-ir-ku $a igi.guy 30, crossline of the ox-eye BR 21
26 40igi.gub Sa a-pu-sa-am-mi-ki 26 40, constant of the lyre-window BR 22
1 20dal $a a-pu-sa-mi-ki 1 20, transversal of the lyre-window BR 23
33 20pi-ir-ku $a a-pu-sa-mi-ki 33 20, crossline of the lyre-window  BR 24
15 a-pu-sa-mi-ik-ki $a 3 15, the lyre-window of 3 BR 25

In this systematically organized sequence of entries, three numerical
parameters are given for each one of seven geometric figures, namely, in
this order, the ‘arc’ (circle), the ‘crescent’ (semicircle), the ‘bow’, the ‘bow
field’, the ‘barleycorn field’, the ‘ox-eye’, and the ‘lyre-window’ (concave
square).

The first three entries, those for the circle, can be explained as follows:
For acircle with given arca, the remaining three parameters, namely the
areaA, the diameted, and the radiug can be computed as follows:

A= (1/A - sga=)appr. 1/12 - s = ;05 - sqa BR 2
d=(1L -a=)appr.1/3a=;20 -a BR 3
r=(1/A -a=)appr. 1/6 a=;10 -a BR 4

For asemicirclewith the arc, the ared, the diameted, and the radiug
the four parameters are connected through the following equations:

A=1/4.a-d=;15-a-d BR 7
d=(2L -a=) appr. 2/13a=;40 -a BR 8
r=(1L -a=)appr.1/3a=;20 -a BR 9

And so on. See RobsoMMTC (1999), Chapter 3, for details. Note that
the ‘bow’ in BR 10-12 is not identical with the ‘bow field’ mentioned in
BM 15285 ## 34-35!

An OB mathematical problem mentioning the ‘lyre-window’ (BR 22-
24) will be discussed below (Fig. 6.2.6). The ‘barleycorn field’ and the
‘ox-eye’ (BR 16-18, 19-21) will play prominent roles in Chapter 12 below.

Now, consider again the OB geometric theme text BM 15285. Its con-
nection with the theme dElementdV is particularly obvious in the two
exercises # 2 and # 4, illustrated by identical diagrams. The text in # 2 says
‘Inside the equalside, an arc | drew’, while the text in # 4 says ‘The arc that
| drew touches an equalside’. In other words, the difference between # 2
and # 4 is that in the former exercise a circlassribed ina square, while
in the latter exercise a squareicumscribed arouna circle!
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MS 3050andMS 3051are two OB hand tablets published in Friberg,
RC(2007), Figs. 8.2.2 and 8.1.1. Both are inscribed with geometric dia-
grams and scribbled numbers (see Figs. 6.2.4-5 below).

obv.

obv.

r Yrr <<<

< gr T<<<

Fig. 6.2.5. MS 3051. An equilateral triangle inscribed in a circle (Old Babylonian).

The diagram in MS 3050 shows a square with diagonals, inscribed in a
circle, while the diagram in MS 3051 shows an equilateral triangle in-
scribed in a circle. In agreement with an OB convention, the ‘fronts’ of the
inscribed square and the inscribed equilateral triangle both face to the left.
(In aLateBabylonian diagram showing an equilateral triangle, the triangle
would have been shown standing on its base.)

It is not easy to make sense of the all scribbled numbers on MS 3050,
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even if some of them seem to suggest that the diameter of the circle (= the
diagonal of the square) was assumed to have the length 1 (00).

The diagram on MS 3051 is amazingly exact. The sides of the triangle
are nearly equal. The circle passes through two of the three vertices of the
triangle and passes close by the third vertex. It is clear that a compass must
have been used in the construction of the figure, although there are no
remaining traces of the point of the compass. It is also clear that the accu-
rate construction of a figure of this kind would be difficult without a good
understanding of basic geometric principlefs El. 1V.2 and IV.5).

The equilateral triangle divides the circumference of the circle in three
equal parts. In the diagram on MS 3051, they are all marked with the num-
ber ‘20’. That means that the whole circumference of the circle is 1 (00).

Presumably, the students who drew the diagrams on MS 3050 and
MS 3051 were supposed to compute the areas of the inscribed square and
the equilateral triangle, as well as the areas of the four circle segments out-
side the square, and of the three circle segments outside the triangle.
Unfortunately, no Babylonian mathematical text are known that contain
the details of such computations.

On the other hand, in the Egyptian demotic #xCairo (the 3rd c.
BCE), which is strongly influenced by Babylonian mathematics (see Frib-
erg,UL (2005), Sec. 3.1), there are two exercises with precisely that kind
of computations. Thus, iR.Cair &8 12(op. cit, Sec. 3.1 k), a square is in-
scribed in a circle with given diametér 30 cubits and given aréa= 675
square cubits (= 3/4 - sq. 30). In the exercise, very good approximations of
the areas of the inscribed square and of the four circle segments are com-
puted, and it is shown that the sum of these sub-areas is almost precisely
equal to the area of the circle. In the first step of the computation, for in-
stance, the area of the inscribed square is computed as half the square on
the diagonal of the square, equal to the diameter of the circle.

In P.Cair &8 11(op. cit, Sec. 3.1), an equilateral triangle of side12
(divine) cubits is inscribed in a circle. In a number of steps, the following
numerical parameters are computed: 1) the height of the equilateral trian-
gle, 2) the area of the equilateral triangle, 3) the height of a circle segment,
4) the area of a circle segment, 5) the sum of the sub-areas, 6) the diameter
of the circle, 7) the circumference of the circle, 8) the area of the circle, 9)
the (small) difference between the results in 5) and 8).
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It is likely that an Old (or Late) Babylonian school boy would have
performed the computations in the same way, provided that he had reached
a sufficiently advanced stage of his education in mathematics.

Another category of OB mathematical problems for figures within
figures are related to diagrams like ## 1-6 and 28-29 in the geometric
theme text BM 15285 (see Figs. 6.2.2-3 above) In this category of
problems, a figure is inscribad the middle of another figure given
distance away from the sides of that figure.

The best example of a problem of this kindTS 21 (Bruins and
Rutten (1961); FriberdRC(2007), Sec. 8.2), a difficult problem text only
recently explained by Muroi iSciamvsl (2000). INnTMS21 a, a concave
square is inscribed in the middle of a square, at a distanaei ptiafrom
all the four sides of the square. Téga dal.ba.na, the ‘field between’,
bounded on one side by the square and on the other side by the concave
square, is given as 35 (00 sgnda).What is then the side of the square?

5n. d 1 5n. d=1:20a
sn. A =26 40 sqa,

B B =35 00 sg. ninda
a Equation:
sq.@d+2-5ninda) A+B
Solution:

a = 30 ninda,
| d =40 ninda,
5n. s =50 ninda.

Fig. 6.2.6. TMS21a. A concave square in the middle of a square (Old Babylonian).

The problem is solved in the following way: According to ## 22-23 in
the table of constants BR (see above), the diagonal and the area of a con-
cave square are ‘1 20’ and ‘26 40’ times a certain length, actually the
lengtha of one of the circular arcs bounding the concave square. There-
fore, the diagonal and the areadrel1;20 -aandA = ;26 40 - scp. At the
same time, the side of the square#sd + 2 - 5 (ninda)Consequently,

sq. (1;20 a+2 - 5n.) =;26 40 - sg.+ 35 (00) sqg. n.
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This is a quadratic equation for the unknaaymvhich is shown in the text
to have the solutioa = 30 nindaHence, the diagondl= 40 ninda, and
the side of the squaress= 40 ninda + 2 - 5 ninda =50 ninda.

In the problem texTMS 21, there is no diagram illustrating the exer-
cise. At the other end of the scale, there are examples of exercises of the
same kind (figures inscribed in the middle of figures) in the form of hand
tablets with diagrams but no text other than some numbers. One such text
is YBC 7359 (Friberg,RC(2007), Fig. 2.8.9).

obv. rev.

Fig. 6.2.7. YBC 7359. A square in the middle of a square (Old Babylonian).

The diagram on the obverse of this clay tablet is clearly a teacher’s neat
model, while the diagram on the reverse is a student’s awkward copy.

Apparently, the diagrams were meant to illustrate a metric alge-
bra problem of the following form:

The are& between two (concentric and parallel) squares is 1 31.
The distancel between the squares is 3;30. Find the gidesdq of the squares.

It is easy to find the solutiop,= 10,q = 3.

Another text of the same kind4S 2985(Friberg,op. cit, Fig. 8.1.1)
shown in Fig. 6.2.8 below, both in a cuneiform hand copy and in a “con-
form” transliteration. In that text, a circle is inscribed in the middle of a
square. Some scribbled numbers appear to indicate that the circle is in-
scribed a distande= 15 ninda from all the sides of the square. The value
B of the area between the circle and the square is not indicated. Anyway,
if the diagram on MS 2985 illustrates a problem of the same kind as the
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problem inTMS21, then that problem can be reduced to a quadratic equa-
tion of the form

sq. (;j20 a+ 2 -b)—;05 - sqa=B, where ais the circumference of the circle.

Fig. 6.2.8. MS 2985. A circle in the middle of a square (Old Babylonian).

Yet another example of a problem of the same kind may be given by
MS 1938/2(Friberg,op. cit, Fig. 8.2.14), a fragment of a clay tablet with
a diagram showing what appears to be a circle inscribed in the middle of a
regular hexagon.

on the obverse:
a 6-striped trapezoid

Fig. 6.2.9. MS 1938/2. A circle in the middle of a regular hexagon (Old Babylonian).

The examples mentioned above suggest that there once may have exist-
ed two OBgeometric theme textsne withproblems for figures inscribed
in figures and another witproblems for figures in the middle of figures
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If such theme texts really existed, they were Old Babylonian precursors to
the theme texElementdV.



Chapter 7

El. V1.30, XIII.1-12, and
Regular Polygons in Babylonian Mathematics

7.1.El. VI.30: Cutting a Straight Line in Extreme and Mean Ratio

The special division of a given straight line which appeared fitfst.in
I1.11 (Fig. 1.7.1), and then againkhl|V.10 (Fig. 6.1.1), is belatedly given
its rather peculiar name at the beginnind:tEmentsvI:

El. VI Def. 3A given straight line isut in extreme and mean ratichen the whole
straight line is to the greater part as the greater part is to the smaller.

In all of ElementsVI, a straight line cut in this way appears only in
El. VI.30 To cut a given straight line in extreme and mean ratio.

The construction irEl. V1.30 is quite indirect. It can be explained as
follows, in terms of metric algebra:

d
&'1/
™
d d-s da| .
| RS
: 1 60‘ S
s d | |
s sq.s di2 di2 S
sq.s+d-s=sqd C
sg.s+d-s=sqd C sg. 6+d/2) = sq.d + sg.d/2
sq.s= sqd-d-s=d-d' =5 sa@l/2
C d:s=s:d (another proof is given in XIlI1.1)

Fig. 7.1.1. Explanation of the argumentatiofEinV1.30, in terms of metric algebra.

141
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Given is a straight linel, and it is required to cut it in two parts in
extreme and mean ratio. If the two parts are calkadd’, then according
to the procedure i&l. VI.30, s can be found “through the application to a
straight line of lengthl of a rectangle equal to sg.and exceeding by a
square”. This is a way of describingjaadratic equationywhich was in-
troduced in the preceding propositidi, VI.29. What it means is that

sg.s+d -s=sq.d.

It is shown geometrically (see Fig. 7.1.1 above, left) thaté#tisfies this
equation, then also sg=d - d', so thad : s=s: d', as required.

The solution to the mentioned quadratic equation is not explicitly given
in El. VI.30, so the construction of a straight line divided in extreme and
mean ratio remains incomplete. However, a procedure for the geometric
solution of a quadratic equation of type B4a:s6.d - s =P is demon-
strated inEl. VI.29. (See Sec. 10.3.) Whéh= sq.d, as inEl. V1.30, the
geometric solution as iBl. VI1.29 (Fig. 7.1.2, right) can be interpreted as
follows:

sq.s+d-s=sq.d C sqg.6+d2)=sqd+sq.d2 C sq.6+d?2)=5"-sqd?2.
(Cf.EIL XIlIl.1.) More concisely, with a modern standard notation,
s=" -d, where,” =(P5-1)/2.

7.2. Regular Pentagons and Equilateral Triangles iklements Xl

Book XIII of Euclid’'s Elementscontains 18 propositions, concerned
with straight lines cut in extreme and mean rgfll.1-6), with regular
polygons inscribed in circle§Xlll.7-12), and withregular polyhedrons
inscribed in spheregXlil.13-18).

An Outline of the Contents ofEl. XIIl.1-12

1 Ifd=s+d"iscutin extreme and mean rat®> d', then sq.{+ d/2) = 5 sqd/2.

2 Conversely, if sqs(+d/2) =5 sqd/2, and ifd is cut in extreme and mean ratio,

thensis the greater of the parts into whitls cut.

If d=s+d'is cutin extreme and mean rato; d', then.sq.q' + §2) =5 sqs/2.

If d=s+d'is cutin extreme and mean rato; d', then sqd + sq.d' = 3 sg.s.

5 If d=s+d'is cutin extreme and mean rate; d', thend + sis also cut in extreme
and mean ratio, witd being the greater of the two partsdof s.

6 If d=s+d'is cutin extreme and mean ratio, and i§ expressiblethen the two
partss andd' into whichd is cut areapotomes

W
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7 Ifthree angles of an equilate@ntagorare equal, then all the five angles are equal.

8 Consecutive diagonals in a (regular) pentagon cut each other in extreme and mean
ratio. The greater of the two parts of each is equal to the side of the pentagon.

9 The sum of the sides of a hexagon and a decagon inscribed in the same circle is a
straight line cut in extreme and mean ratio. The greater part is the side of the hexagon.

10 If a pentagon, a hexagon, and a decagon are inscribed in the same circle, the square

on the side of the pentagon is equal to the sum of the squares on the sides of the

hexagon and the decagon.
11 The side of @entagorinscribed in a circle witlexpressible diametés aminor.

12 If anequilateral triangleis inscribed in a circle, the square on the side of the triangle
is three times the square on the radius of the circle.

The geometric proofs dEl. Xll.1-5 are given in terms of rectangles
and squares. More convenients, XIIl.1, for instance, can be proved by
use of the diagonal rule applied asEnl1l.11 (see Fig. 1.7.1 abovejl.
XIll.1 is also an immediate consequencébfV1.30 (see Fig. 7.1.1).

In El. XIII.6 it is stated that il =s + d' is an expressible straight line
cut in extreme and mean ratio, then the two paatsdd' are apotomes in
the sense dElementsX. For the proof, it is noted that sg.% d/2) = 5 sq.
d/2 [El. XIII.1]. Therefore,d/2 ands + d/2 are expressible straight lines,
commensurable in square only. Simsce (s + d/2) —d/2, it follows thats
is anapotomeMoreover, sgs=d -d', whered is expressible arglan apo-
tome. Therefored' is afirst apotomegwith respect tal) [El. X.97].

The important connection between the regular pentagon and straight

lines cut in extreme and mean raisodemonstrated i&l. XII1.8 . See the
diagram in Fig. 7.2.1 top, left. There two diagonals, obviously both of the
same lengthl, cut each other. Let the two parts of each diagonal be called
a andb, witha > b. It is claimed in the proposition thais cut in extreme
and mean ratio, and that=s. In the proof, it is observed that the angle
is twice the angle [El. 1.32]. At the same time, the angleis twice the
anglev [EL 111.28, El. V1.33]. Hencew =w', and the triangle, s, b is isos-

celes, so tha =s. Furthermore, the triangle with the sideb, sis similar

to the triangle with the sides+ b, s, s. Therefore, & +b) : s=s:b. This

means thatl = a + b is cut in extreme and mean ratio, so that the proof is
complete. Since it was shown tlgat s, b may now be called'. Then the
result can be stated in the form

d=s+d, $d ,and d:s=s:d"
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Note the reappearance in the prooEtfXIIl.8 of the special triangle
which played a crucial role igl. IV.10-11 (Fig. 6.1.1). The same special
triangle appears again in the prooftdf XI11.9 (Fig. 7.2.1), which says
that the summ + s,, wherer is the radius of a circle g the side of the in-
scribed regular decagon, is divided in extreme and mean ratic, agtihe
greater of the two parts. The result is used in the proaf. &fll1.16.

El. X111.11
sq. r=s- @2 +h) p:r=¢2:d € p':r/l2=s:d
S0.5,0=S- E2-b)=s"-a C sq. @'+r/4)=5sq.rl4

G sQ. r+sq. s,=5q. S C h'=5r/4— (' +1/4) is afourth apotomér
sq. s=h'-2r C sisaminor(rel. to

Fig. 7.2.1. Metric algebra versions of Euclid’s diagrami&lirXI11.8-11.

In El. XI11.10 (see again Fig. 7.2.1), it is proved that the sum of the
square on the radiusof a circle and the square on the sglg of the
inscribed decagon is equal to the square of the side of the inscribed penta-
gon. The complicated proof again makes extensive use of angles in various
triangles. The result dEl. XIII.10 is used repeatedly i&l. XIII.16, the
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construction of an icosahedron inscribed in a given sphere.

The last of the propositions concerned with regular pentagons is
El. X111.11 . The proof ofl. XllI.11 starts with the observation thathiis
the height of the pentagon, then the triangle with the sides/2 is sim-
ilar to the triangle with he sidesd/2, p' (see the last diagram in Fig. 7.2.1).
Thereforep':r =92 :d, sothap': r/2 =s: d. Hence, in view oEl. XIII.8
andELl XIII.1, p'+r/2 is cut in extreme and mean ratio, and

sq. p' +r/4) =5 sqr/4.

Now, let the diameter 2 of the circle be an assigned expressible
straight line in the sense BfementsX. Then alsa +r/4 = 5r/4 is an ex-
pressible straight line. On the other hand,

sq. (5r/4) = 25 sqr/4 =5 sq. ' +r/4).

Therefore, 5/4 andp' + r/4 areboth expressiblebutcommensurable in

square only Now, consider the height against the base of the isosceles

triangle with the sided, s, s (Fig. 7.2.1 bottom, right). It is clear that
h'=r—p=5r/4—- @' +r/4).

Consequenthyy' is anapotomen the sense dilementsX, with respect to

the radiug. More preciselyh' is afourth apotomen the sense of the fol-

lowing definition

El. X.Def. Il 4. Given an expressible straight ligean apotome —v, u > v, is called

afourth apotoméwith respect t@) if ucome, and if squ— sq.v = sgq.w, where w ince.

Indeed, withe = 2r,u=5r/4,v=p' +r/4, it is clear thati come, and that
SQ.u—sq.v=-sq. (5r/4) —sq. p' +r/4) = (25 -5) - sq/4 = 20 - sqt/4.

Clearly, sq. (5/4) : sq. p'+r/4) =25 :20=5: 4 is not the ratio of a square
number to a square number. Therefare, sgs. (squ — sq.v) and 5r/4 are
incommensurable, as requirdsgl.[X.9].

The last step of the proof &f. Xlll.11 makes use of the observation
that the height against the diagonal in the right triangle with the diagonal
2r and the short sidecuts off a right triangle with the sidesd2, andh'.
Therefore, it follows from the lemnal. X.32/33 (see Chapter 4 above)
that

sq.s=h'-2r, where 2 is expressible anid is a fourth apotome.

Hence, in view oEl. X.94, the sides of a regular pentagon inscribed in a
given circle is aninor, with respect t@, the radius of the circle.
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In El. XI11.12 it is shown that the square of the side okgailateral
triangleinscribed in a circle is 3 times the square on the radius of the circle.
Thereforejf the diameter of the circle is expressible, then also the side of
the inscribed equilateral triangle is expressibldis consequence of the
result inEl. XI11.12 is, apparently, so obvious that it is not explicitly stated
in the text. The simple proof of XlI1.12 is demonstrated in Fig. 7.2.2, left.

—
N

\
El XI1.12
SQ. S=5sq. 2r —sq.r =3 sq.r sq. h=sqg.s—sq.92 = 3/4 sgs
h=sgs. 3 g2, r=2/3-h=sgs.3 3

A=(sgs. 3)/4 - s

Fig. 7.2.2. The equilateral trianglekth Xl11.12 (left) and in a Babylonian exercise (right).

The way in which equilateral triangles were treated in Babylonian
mathematics (Fig. 7.2.2, right) will be discussed in Sec. 7.7 below.

7.3. An Extension of the Result irEl. XII1.11

A quite big apparatus appears to be needed for what may be called the
“metric analysis” (in disguise) of the regular pentagorkinXIil.8-11
(Fig. 7.2.1). The appearance is deceptive, for the truth i€Lh4tll.8-10
are needed only for the construction and metric analy$s Xlll.16 of
an icosahedron inscribed in a given sphere. For the study of the pentagon
alone is needed onByl. XIII.11, with its relatively uncomplicated proof.

Also El. XIII.11 seems to be included El. XIII principally because it
will be needed irkl. XI111.16. It is probably for this reason that the metric
analysis of the pentagon Hi. XIII.11 is only half-finished. Indeed, the
detailed computation of an expression for $ide of a regular pentagon
inscribed in a circle of given radius is not followed by a similar computa-
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tion of thediagonal which would have been easy to provide, using a rather
obvious variation of the method . Xl111.11. (Cf. Knorr,BAMS9 (1983),
48.)

The diagram in Fig. 7.3.1 below is a further development of the last
diagramin Fig. 7.2.1 above, the metric algebra counterpart to Euclid’s own
diagram irEl. XIl1.11. The new notations that are introduced in Fig. 7.3.1,
in addition to the notations used in Fig. 7.2.1,tafer the height of the
pentagon, and for h—r. The observation i&l. XIII.11 that the two trian-
gles with the sides, d/2, p' andd, h, §/2 are similar is echoed here by the
new observation that the triangles with the sidef, p ands, h', d/2 are
similar.
p:r=¢2:d C p:rl2=s:d
p:r=d2:s C (p-r/2):rl2=d-9):s=s:d

C p-ri2=p
p=r/2 +p'is cutinextreme and mean ratio
C sq. P'+ri4d)=sq. p—rl4)=5sq.r/4

h'=r—p'=5r/4 — @' +r/4) is afourth apotome
h=r +p=5r/4 + (p-r/4) is afourth binomial

sq. s=h'-2r, s= sgs. (5—sgs. 5)/2 is aminor
sq. d=h-2r, d= sgs. (5 +sgs. 5)/2r-is amajor

Fig. 7.3.1. Metric analysis of the pentagon, in terms ofdatris

From the similarity of the two pairs of triangles it follows that
p:r=9g2:d, and p:r=d/2:s, respectively.
In view of XIII.8,d =s+d'is cut in extreme and mean ratio waths the
greater part. Thereford,- d' = sq.s, whered' =d —s. Hence,
p:rl2=s:d=" and p-r/2):r/l2=d-95):s=s:d=".
Consequently, in view of XIII.1,
sg. @' +r/4) =5sqr/4, and sqp(—r/4) =sq. {p—r/2) +r/4} =5 sq.r/4.
On the other hand,
h'=r—p'=5r/4—-@'+r/4), and h=r+p=5r/4+ (p-r/4).
Therefore, as shown in XIIl.1h, is afourth apotomdwith respect ta).
The same kind of arguments show thié afourth binomial(with respect
tor). This qualitative result can be replaced bydkglicit result that
h'=(5-sgs. 5)r/4, and h= (5 + sgs. 5) /4.
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Now, in the diagram in Fig. 7.3.4,s the short side in a right triangle
with the diagonal 2 and the height/2 against the diagonal, adds the
long side in a right triangle with the diagonal 2nd the heighd/2 against
the diagonal. Therefore, in view of lemah X.32/33 (Chapter 4 above),

sq.s=h'-2r=(5r/4 - @' +r/4)) - 2r, where sqp+r/4)=5sqr/4,
and

sq.d=h-2r=(5r/4 + (p—r/4)) - 2r, where sqp(—r/4)=5sqr/4.
Consequentlys is aminor (with respect ta), as stated i&l. Xl11.11, and
dis amajor (with respect ta). This qualitative result, too, can be replaced
by a correspondingxplicitresult. Indeed, if for the sake of increased clar-
ity the side and diagonal of the pentagon are cajjemdds, then

S5 = sgs. {(5—sgs. 5)/2r} and dg=sgs. {(5 + sgs. 5)/2r}.

Incidentally, the diagram in Fig. 7.3.1 and the sub-diagrams in Fig.
7.3.2 below show that &, andd,g are the side and the “third” diagonal
of the reguladecagoninscribed in the same circle as the pentagon, then

s0.510= (=p) - 2r, and sqdye= (r +p) - 2r.

3 /]
h r-p h' p r
2r 2r
$0.d + 50.8;5= sq. (2r) sq.s +s0.d;5 = sq. (2r)
d-sy=s-r S-gg=d-r
sg.d=(r+p)-2r, sg.s=(r—p)-2r
$Q.5=(—pP - 2r sq.dg=(+p)-2r

Fig. 7.3.2. Two characteristic right triangles in the preceding diagram.

Here,r —p is afirst apotomein the sense of the following definition
El. X.Def. Il 1. Given an expressible straight lieean apotome —v, u > v, is called
afirst apotomewith respect t@) if u come, and if squ — sq.v = sq.w, where w cone.

Indeed,

r—p=3r/4—-p-r/4), where
sq. p—r/4)=5sqr/i4, sq.3>5, and sqr@—sq.p-r/4) =sq.r/2.

In view of El. X.91 (a parallel tEl. X.54; see Fig. 5.2.4%,¢ is then an
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apotomesays; o= u—Vv, with

sg. U -V =sq.59={3r/4 - —-r/4)} - 2r,
and consequently

sq.u=a-r and sq.v=b-r,
where

a+b=3r/2 and a-b=sqg. p-r/4) =5 sqr/4.

These equations f@randb are easy to solve, and the result is that
a=5-/4,b=r/4, sothat squ=5/4sqr,v=1/4sqr.
Consequently, the explicit form of tiapotome gis

S10=(sgs. 5—-1)/2r.
Similarly, the explicit form of théinomial dgis
dip=(sqgs. 5+ 1)/2r.

7.4. An Alternative Proof of the Crucial PropositionEl. XII1.8

It is an interesting question whether any of the properties of a regular
pentagon mentioned iElementsXlll can have been known by (Old)
Babylonian mathematicians. In this connection, it is important to observe
that the proof of the crucial propositi&h XII1.8, which says thatwo in-
tersecting diagonals in a pentagon cut each other in extreme and mean ra-
tio, with the greater part equal to the side of the pentagakes essential
use ofEl. VI.33, a proposition stating that “In equal circles angles have the
same ratio as the circumferences on which thy stand”. This proposition
cannot have been known to Babylonian mathematicians, who apparently
were totally ignorant of the concept of angles based on circular arcs. Ac-
tually, by the wayEl. VI.33 is strangely isolated from the restdéments
VI. It is much closer associated wiitementdll, which in its entirety is
outside the scope of Babylonian mathematics.

On the other hand, an OB mould shows the image méntagranof
entangled wild men (see Fig. 7.9.7 below), and an entry in an OB table of
constants mentions an approximation to the area of a normedigelhr
pentagon(Sec. 7.8). These two facts together make it clear that OB
mathematicians knew at least aboutekistencef pentagrams and regu-
lar pentagons. In view of this circumstance, anyone familiar with the gen-
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eral character of OB mathematics, in particular its extreme readiness to
considerll imaginable aspects of a given mathematical situation, is forced
to draw the conclusion that OB mathematicians must have tried to compute
the lengths of the diagonals in a regular pentagon, and the lengths of their
segmentsysing methods available to them. Although nothing is known
about how they did that, the discussion below aims to show which methods
they conceivablynayhave used.

w=u+v, Vv=u t=d" and t+s'=s C
C u=v=w?2 s=d'+s', &s+d and dis=dd

Fig. 7.4.1. A hypothetical Babylonian alternative to the procedug Xilll.8.

Consider a regular pentagon with its diagonals, as in Fig. 7.4.1, left.
The diagonals form a pentagram witbesatral bodyin the form of a small-
er regular pentagon, and with fisemsin the form of symmetric (isosce-
les) triangles. Let be the angle between two diagonals meeting at a vertex
of the pentagon, and letbe the angle between a diagonal and a side. (Al-
though the Babylonians were not familiar with the general concept of an-
gles, they were in a certain way familiar with angles in right triangles and
with angles in symmetric triangles, probably understood as double right
triangles.) Also, letv be the smaller of the two angles between intersecting
diagonals. Then it is clear that=u + v, because the right triangle indicat-
ed in the right half of the pentagon with one angle equalisosimilar to
the right triangle indicated in the left half of the pentagon with one angle
equal tou + v. In addition,u = v, because the anglbetween a side and a
diagonal in the inner pentagon is clearly equal to the anigggween two
diagonals meeting at a vertex of the outer polygon. Indesju are an-
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gles at the bases of two similar symmetric triangles. Since at the same time
u=vandw =u +v, it follows thatu = v = w/2.

Now, let the sides and diagonals of the larger pentagon be salfet
d, and the sides and diagonals of the smaller pentsigod’, as in Fig.
7.4.1, right. Also, let denote the side of an arm of the pentagram which is
formed by the diagonals. Then it is clear that

t=d', becauseu=v, andthatt+s'=s, becauseu+v=w.

Therefore also

s=d'+s" and d=2d +s'=s+d"

In addition, the three symmetric triangles with the sided,(s), (s, s, d),
and @', d', s') are similar because = u +v. Therefore,

d:s=s:d'=d":s"

This means that botth=s + d' ands =d' + s'are cut in what Euclid calls
“extreme and mean ratio”.

The observation that the diagombbf a pentagon can be cut in three
pieces agl = d' + s' + d', with two extremepieces of lengthl' and one
middlepiece of lengtls', at the same time as=d' + s'is cut in “extreme
and mean ratio”, provides a previously lacking explanation of this curious
expression. Indeed, the observation shows that a more appropriate transla-
tion of the obscure Greek phrasi#xpoo kal péooc Adyoc) may be
“extreme and middle ratio”!

It must be understood that one never meets terms like “angles” or “ra-
tios” in Babylonian mathematical texts. Instead, the Babylonians preferred
to think in terms of the “feed” of a right or symmetric triangle, meaning the
“front” divided by the “length” (alternatively, the height). Thus, for in-
stance, the fact that the diagonal of a regular pentagon is cut in extreme and
mean ratio with the side as the greater part would have been expressed by
a Babylonian mathematician, essentially, in the following way:

d=s+d', d'=f-s where the feed = 5d.
(In modern terminology, this particular ratio is usually called

7.5. Metric Analysis of the Regular Pentagon in Terms of its Side

In the OB mathematical table of constants BR mentioned in Sec. 7.8 be-
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low, an approximation for the area of the pentagon is given, in the case
when the side of the pentagon is equal to 1 (00). This is in agreement with
the Babylonian convention thabnstants for geometric figures should be
given for the special case when a prominent side of the figure is normal-
ized to the value * 1With this convention in mind, it is natural to assume
that a Babylonian mathematician wanting to compute the lengths of vari-
ous segments in a regular pentagon would do that in the special case when
theside s=‘1'. In the terminology oElementsX, for a Babylonian math-
ematician it would be natural to choabe side of the pentagonot the
radius of the circumscribed circle, as &ssigned expressible straight line

For this reason, it may be worthwhile to investigate what the result will
be of a metric analysis of the regular pentagith respect to the side s

s=f-d, d=f-s, f=(sgs.5-1)/2
sq.h=sg.d—sq.92
sq.k=sq.s—sq.d/2
sq.h' = sq.s—sq.d/i2

4 h=sgs. (5 + 2 sqgs. 552
h k=sgs. {(5 + sqgs. 5)/2}s/2
h'=sqgs. {(5 — sgs. 5)/2}52

K A=h-g/2+2h'-d/2
r=sqd/2h

A ={sgs. (5+2sgs.5) +
L sgs. (10 + 2 sgs. 5)} - sq. s/2
r = sgs. {(5 + sgs. 5)/10}s

Fig. 7.5.1. Metric analysis of the pentagon, in terms oSitieof the pentagon.

As shown in Fig. 7.5.1, it follows from three straightforward applica-
tions of the diagonal rule that, with the notations in that figure,

sq.h=sg.d-sq.92,

sq.k=sg.s—sq.d'2,

sq.h' = sq.s—sq.d/2.
The way to proceed from here in the styldebfXlll.11 (Sec. 7.2 above)
will be discussed below. However, in terms of quasi-modern notations,

sq.h={sqg. (sgs.5+1) -1} - sgl2=(5+2s0s. 5) - sg2,

sq.k={4 —sq. (sgs. 5-1)/2} - sg2 = (5 + sgs. 5)/2 - sg2,

sq.h'={4 —sq. (sgs. 5+ 1)/2} - sg2 = (5 —s@s. 5)/2 - sg2.
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Here, itis easy to check that both (5 + 2 sgs. 5) and (5 + sgs. 5iRidhe
binomials and that (5 — sgs. 5)/3 is afourth apotomeTherefore,

h =sgs. {(5 + 2 sgs. 5)5/2} is amaj or (with respect tos),
k =sgs. {(5 + sgs. 5)/2¢2} is amaj or (with respect tos),
h' = sgs. {(5 — sgs. 5)/25/2} is aminor (with respect tos).
It is interesting that it follows directly from the geometric situation that
h=k+h.
Therefore,
sgs. (5 + 2 sgs. 582 = sgs. (5 + sgs. 5)/%-+ sgs. (5 — sgs. 5)/&/2.
This is a surprising geometric demonstration of the way in which the major
h=sgs. (5 + 2 sgs. 5¥%2 can be splitinto a sum of two inexpressible parts,
one a major, the other a minor. Note, that thetebyk + h' is cut in ex-
treme and mean ratio, just like the diagathaNote also thathe major k
and the minor h' (with respect to s) are the greater and smaller parts,
respectively, of hThis may be a previously unobserved explanation of the
curious terms “major” and “minor”! (Compare with Knorr's explanation
in BAMS9 (1983), 49, that the origin of the term is thats s cut in ex-
treme and mean ratio with the magband the minos (with respect ta)
as the greater and smaller parts, respectively.)
It is now easy to compute also thea of the regular pentagon:
A=h-g2+2h -d2=h-g2+2k-§2
={sgs. (5 + 2 sgs. 5) + sgs. (5 + sgs. 5)/2} -s42.
Finally, theradius r can be computed, by use of the equation
r=sq.d/2h={(3 +sgs. 5)/2 - sq. s}/{sqgs. (5 + 2 sgs. 53} -
The situation described by this equation is not coverellbX.112, a
proposition dealing only with the case ofexpressiblearea applied to a
binomialstraight line. Yet, it is clear that, in modern notations,
sq.s/P(5+2P5)-s={P(5-2P5)/P(25—-20)} s=P(5-2P5)/P5s.
Therefore,
r={(3+P5)/2-P(5-2P5)/P5}-s=P{(7+3P5)/2-(5-25)/5}-s.
It follows that
r = sgs. {(5 + sgs. 5)/1G}.
(Cf. the previous result in Fig. 7.3.1 that=sgs{(5 — sgs.5)/2} - r.)
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An alternative, and simpler way to compuia terms ofsis to start by
showing, by use of the diagram in Fig. 7.5.2, left, that

sQ. 2r —sg.5p=5q. d, withsg=f-r, f=gd.
The details of the computation are left to the reader.

The computations above dfh, k, h', andr in terms ofs make use only
of metric algebra operations familiar to OB mathematicians (a quadratic
equation to computie= (sgs.5 — 1)/2, the diagonal rule to comptitek, h',
and a metric division to comput® Therefore, all the mentioned straight
lines in the regular pentagon, as well as the area of the pentagon, could be
(and maybe were) computed by Babylonian mathematicians, although
probably only with suitable approximations for the square sides.

All the results obtained above can be found equally well by use of
methods more close to the methods used in the pr&dfXxfil.11 The key
observation is thavhen s is the assigned expressible straight timen the
straight line

dp=d-s2=d+92

plays the same role as the one played by the straight line
Pm=p-rld=p +r/4

in the case when is the assigned expressible straight line (Fig. 7.3.1).

Indeed, sincel =s+d'is cut in extreme and mean ratio, it follows that (as
in EL XII1.1)

sg.dn,=sq. —52) =sq. @' +5/2) =5 sqs/2.
Therefore,

sg.d=sg. @, +5/2) =6 sq. s/12 H,-s= (692 + 2d,;) - 92, and

sg.d'=sq. ¢, —92) =6sq9.5/2 d,-S= (692 - 2d,) - 92.
Consequentlydf. Fig. 7.5.1),

sg.h=sq.d-sq.s2 = (552 + 2d,,) - 92,

sg.k =sq.s—sq.d/2 = (592 +d,)/2 -5/2,

sg.h'=sq.s—sq.d/2 = (552 —d,,))/2 - 5/2.
Here it is easy to check thas2 + 2d,,, and 5/2 +d,, arefourth binomials
while 552 —dy,, is afourth apotomeTherefore, it follows, again, that
andk aremajors while h' is aminor, with respect te.

Furthermore, since=r/2 +p'is cut in extreme and mean ratio (see Fig.
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7.5.1), and sinck =p + p' (see again Fig. 7.5.1), it follows that
k=2p-r/2=2p-r/4) =2p,,
Moreover,
SQ.Pym = Sq. p—r/4) =5sqr/i2 (Fig. 7.3.1).
Therefore,
sq.k =4 sq.py =5 sq.r/2.
Now, since botth =k + h'andp =r/2 +p' are cut in extreme and mean
ratio, the tripled, k, h" andp, r/2, p' are proportional. Therefore,

sg.p=1/5sgh= (592 + 2d,)/5 - 92,
sg.r/2 = 1/5sqgk = (552 +d,,)/10 92,
sg.p' = 1/5sqh'= (552 —d,,;)/10 -5/2.

Consequentlyp andr aremajors andp' aminor, with respect t@.
Easy alternative proofs d&l. XII1.9-10 follow from the results ob-
tained above. Indeed, as shown by the triangle in Fig. 7.3.2, left,
S19:2r=9g2:d, sothats;g:r=s:d.
Therefore, as i&l. XIII.9, the sunr +s;is cut in extreme and mean ratio,
obviously withr as the greater part. Moreover,
SQ.S1g+ s0.d = sq. 2r.
Therefore, as ikl. XI1.10,
SQ.r +s0.5,0=5sqr —sq.d = (1052 + 2d,,) - 92 — (692 + 2d,,)) - /2 = sq.s.

7.6. Metric Analysis of the Regular Octagon

It is demonstrated by the existence of a clay tablet with a drawing of an
octagram with its diagonal@~ig. 7.8.2 below) that the Babylonians were
familiar with octagrams, and therefore probably also with octagons.
Hence, it may be of interest to makenetric analysis of the regular octa-
gon, in imitation of the metric analysis above of the regular penté@on

In the diagram in Fig. 7.6.1 below|s the side of the octagoa,the

16. Note that also Vitrac, with a completely different approadtiémentsX in hisEA 3
(1998), suggestop. cit, 73-86) that a study of straight lines in the regular octagon may
have played an important role in the prehistory of the Greek classification of inexpressible
straight lines.
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“first diagonal”, d the “second diagonalg the side of the arm of the in-
scribed octagram formed by all second diagonalsahd radius of the
circumscribed circle. There is also an “inner octagon” circumscribed by all
the second diagonals in the given octagon, which together form an in-
scribed regular octagram. The straight lines in the inner octagon corre-
sponding tcs, €, d, a, r are calleds', e', d', a', r' .

It is easy to see in Fig. 7.6.1 that the sidd a arm of the octagram is
also the side of a (half) square with the diagen@herefore,

sq.s=2sga, sqg.(2a) =2sqs.
The second diagondican be expressed in terms of the sglasda:

d=2a+s sothat d=(sgs.2+1)s.
It is easy to see in Fig. 7.6.1 also thata + a', and tha =s'+ a'. There-
fore, the pais', a' depends linearly on the paira:

s=2a-s, a=s-a sothat s'=(sgs.2-1)s, a'=(2-sqs. 2)/2s.
Henced is abinomial ands anda' apotomeswith respect ta.

Conversely, the pas, a depends linearly on the paira’

s=2a+ s, a=s +a sothat s=(sgs.2+1)s', & (2+sqs. 2)/2s"

(7]

N Straight lines in the given octagon.
< T @ Te, X s = the side of the octagon
. e = the first diagonal

a ‘17\ SANST 277 d=the second diagonal
al> S\ (-7 a = the side of the arm of the octagram

e r = the radius

Straight lines in the inner octagon.
s = the side of the octagon

e = the first diagonal
a = the side of the arm of the octagram
r = the radius

Fig. 7.6.1. Straight lines in the regular octagon.

Evidently, all straight lines in the octagon parallel to one o$ithesof
the octagon (in particular, all segments ofgsheond diagona)xan be ex-
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pressed as linear combinationssodinda. This means that they can be
computed as sums or differences of (integral) multiplessaoida.

In contrast to this, segments of tti@metersor first diagonalsof the
regular octagon depend in a more complicated wayanda. Consider,
for instance, the radiusof the given octagon, and the radiuef the inner
octagon. The characteristic right triangle in Fig. 7.6.2. left has these
segments as orthogonal sides and the segmerdasads/2 as the diagonal
and the altitude against the diagonal, respectively. (Cf. Fig. 7.3.2.)

/\
/\ d r7 o e2s
r a’ d2r / /,/ ! \
/// : 5) // !
— a— <+ g2 g r 2 a2 L el2

2a 2r
sq.r+sq.r =sq.(2a), r-r =a-s sqd+sg.s=sq.(2r), d-s=e-r
sgr=(@+g92)-2a=(s+a-s sqd=(r+e2)-2r
sq.r' =(@a—9%2) - 2a=(s-a)-s sq.s=(r—¢€2)-2r

Fig. 7.6.2. A quadratic-rectangular system of equationsdadr’ in terms ofs anda.

From this observation it follows at once that

sq.r + sq.r' =sq. (2a) =2 sq.s (by the diagonal rule),

r-r=as (both rectangles equal to twice the area of the triangle).
Therefore,r andr' are solutions to a “quadratic—rectangular” system of
equations of type B5, with data dependings@mda. Cf. Sec. 5.4 above,
and in particular, the first diagram in Fig. 5.4.1, which is the metric algebra
equivalent of the diagram Ei. X.33. The solutions can be obtained direct-
ly from the diagram, in view of the lemni X.32/33:

sg.r=(@+92)-2a=(s+a)-s, wheres+a is afourth binomialw. respect te,
sg.I' =(@a-92) - 2a=(s—a) -s, where s—a is afourth apotomev. respect te.

In other words,

r=sgs. {6+a) -s} =sgs. (2 + sgs. 2)/2s,
r =sgs. {6—a) - s} = sgs. (2 — sqgs. 2)/2s,

Obviously, thenr is amajor, andr' aminor, with respect t@.

Now, consider instead thest diagonals eande' in Fig. 7.6.1. Clearly,
sq.e=2-sqr, and sge'=2-sqr'.
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Therefore,
e=sgs. {(2s+ 2a) - s} =sgs. (2 + sgs. 2)s,
e'=sgs. {(2s— 2a) - s} = sQs. (2 — sgs. 2)/2s.

On the other haneék=r +r' ande'=r —r'. Therefore,
sgs. {(2s+2a) -sf=e=r+r =sqs.{6+a) -s} +sgs. {(s—a) - s},
sgs. {(2s—2a) -sf=e'=r—-r' =sqgs.{6+a) - s} —sqs. {—a) - s}.

Explicitly,

sgs. (2 + sgs. 2)s:=sgs. (2 + sgs. 2)/X+ sgs. (2 — sgs. 2)/Z;
sgs. (2 —sgs. 2)s=sgs. (2 + sgs. 2)/5—sqgs. (2 —sqs. 2)/:

This means that the majer= sgs. (2 + sgs. 2)s-with respect t® can be
split into a sum of two inexpressible parts r', one a major, the other a
minor, in the same way as the heighih the pentagon is a major with re-
spect tas which can be split into a sum of inexpressible patid’, one a
major, the other a minor (see Sec. 7.4 above).

Consider now the case when the radiusather than the sidg is the
“assigned” straight line in the octagon. Evidently, all straight lines in the
octagon parallel to one of thitametersor one of thdirst diagonalscan
be expressed as linear combinationge ahdr. This means that they can
be computed as sums or differences of (integral) multiplesaotir.

In contrast to this, straight lines in the octagon parallel tGithesof
the octagon depend in a more complicated wag andr. Consider, in
particular, the second diagordhbnd the side of the octagon. The char-
acteristic triangle fod ands (Fig. 7.6.2, right) has these segments as
orthogonal sides and the segmentsade/2 as the diagonal and the alti-
tude against the diagonal, respectively. From this observation it follows at
once that

sq.d +sq.s=sq. (2r), d-s=e-r
The situation in Fig. 7.6.2, right, is clearly a perfect parallel to the

situation in Fig. 7.6.2, left. Therefore, the same arguments as above, with
obvious modifications, can be used to show that, for instance,

d=sqgs.{(2r +€) -r}, s=sgs.{(2r—€)-s}, and so on.
Evidently,the metric analysis above of the octagon is to a large part
parallel to the corresponding metric analysis of the pentagon, only consid-
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erably simplerlt is also clear that a metric analysis of this kind, possibly
for the pentagon, but more obviously for the octagon, would have been
well within the competence of OB mathematidians

7.7. Equilateral Triangles in Babylonian Mathematics

In El. XI1.12, the side of an equilateral triangle is expresse@rms
of the radiusof the circumscribed circle as follows (see Fig. 7.2.2, left):
SQ.s=sq. 2r —sq.r = 3 sq..
In Babylonian mathematics, on the other hand, the sidas the main
parameter of an equilateral triangle. Other parameters were expiessed
terms of the sideThus, Babylonian mathematicians computed the height
h and the areA of an equilateral triangle as follows (see Fig. 7.2.2, right):
sg.h=sg.s—sq.92 =3sqs2, h=sgs. 352,
A=h-g2=s0s. 3 s®2 =(sgs. 3)/4 - sG.
No Babylonian mathematical text is known where the radifsthe cir-
cumscribed circle is computed in terms of the side, but clearly
r=2/3-h=(sgs. 3)/3s.
A curious name for an equilateral triangle appears in the OB table of
constantss = IM 52916 (Goetze Sumer7 (1951)):

sag.kak-kum A peghead (triangle),
Sa sa-am-na-[tu nal-ds-ha the one with an eigh tom out,
26 15 [i-gi-gu-bu-su] 26 15its constant. Grev.7’

The curious name refers to the fact that the hdigbt an equilateral
triangle with the sids can be given in the form

h=sqgs. 382 = (appr.) 7/452=1;45 §2=;5230 s=(1-;07 30) s=s—-1/8 s.
Correspondingly, the aréaof an equilateral triangle with the sides
A=h-g2=(appr.) ;52 3092 =;26 15 (7/16) - sG.

It is interesting that the same way of computing the height of an equi-
lateral triangle is employed also in the Kassite (post-Old-Babylonian)
mathematical text MS 3876 (Sec. 8.3 below). Even more interesting is that
the method was still known in the Late Babylonian period, somewhat after
the middle of the 1st millennium BCE. This is shown by a passage in the
Late Babylonian mathematical teit 23291 (Friberg,BaM 28 (1997)):



160 Amazing Traces of a Babylonian Origin in Greek Mathematics

W 23291 84b
lgan.sag.kak ur.a 1 peghead-field, equilateral,
Sa 8-$u na-as-hu the one with an 8th torn out.
mi-hi-il-ti ard ki.2 o Stroke steps of ditto, and
ara 2[6 1]5 du steps of 8 15 go.

s

(o8
1 A 3

8

o

o

o

v

1sag 1(us) front

1 u§ a.an ur.a 1 length each way, equilateral,
hé en aSas.ki.ha What shall the field be?
laJfral1] 1 stes of 1 (is) 1
[1] a.[r4] [2]6 15 du-ma26 15 1 stepof 26 15 go, then 26 15
2sse 3iku aSas 2", aSas 25 Sar 2¢8e 3 1/2iku 2538ar.

This text begins with general methodbr the computation of the area
of an equilateral triangle. (Such explicit statements of a general method are
exceedingly rare in mathematical texts from the OB period.) Then follows
anexplicit examplepreceded by afiustrating diagram Essentially, the
method is identical with the one given in the OB table of constamte/G,
7" . Note, however, the introduction of the new term ‘stroke’, possibly
meaning ‘straight line’! Thus, ‘stroke steps of ditto’ means ‘the straight
line times itself’, which here apparently stands for&dln the preceding
exercise § 4 a, ‘where the area of a symmetric triangle is computed, the
similar phrase ‘stroke steps of stroke’ stands for the height times the front’,
thatis forh - s.) There is also here a new term for the height, which is called
usbur, literally ‘the length of the depth’.

In the explicit example, the side of the equilateral triangle is ‘1 length’
=1 00ninda. The area is then computed as

1 (00) - 1 (00) -;26 15 = 26 15 (sGnda) = 2¢&3e 3 1/2iku 253ar.

Note that here the numerical result, 26 15nigda, is converted to the
otherwise abandonedid Babylonian area measurejth 1 ¢se = 6iku,
liku = 1008ar, and 18ar = 1 squarainda. This is one of several indi-
cations that_ate Babylonian mathematicians attempted to continue the
traditions of Old Babylonian mathematics
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7.8. Regular Polygons in Babylonian Mathematics

The following three entries in the OB table of constamS 3 = BR,
Bruins and Rutten (1961), demonstrate that OB mathematicians were
familiar with regular polygons and possessed methods for the (approxi-
mate) computation of the area of such polygons:

140 igi.gub 33 sag.h 140 the constant ofa 5-front BR 26
23730 igi.gub $a sag.6 237 30 the constant ofa 6-front BR 27
341 igi.gub 33 sag.7 341 the constant ofa 7-front BR 28

The area of, for instance ragular hexagor(a “6-front”), normalized
so that the length of each side is equal to ‘1’ (= 60), is here computed as
the sum of the areas of six equilateral triangles with the side ‘1'. Explicitly,

Ag=appr.6-;26 15 -sq. 100 =6 - 26 15 =2 37 30,
where the following relatively goaapproximationis used:

sgs. 3 /4 =appr. {2 - 1/(2 - 2)} - 1/4 = 7/4 - 1/4 = 1;45 -1/4 = ;26 15.

The value in this OB table of constants for the area mdranalized
regular pentagorwas, apparently, obtained as follows. If the side of the
pentagon is ‘1, then the circumference of the circumscribed circle is
approximatelyequal to 5 - 1 00 = 5 00. Consequently, the diameter of the
circle isapproximatelyequal to ;20 - 5 00 = 1 40. The area of the regular
pentagon can therefore be computed as the sum of the areas of five
symmetric triangles with the base 100 and the aigoximatelyequal to
140 - 1/2 =50 (the radius of the circumscribed circle). The height in each
triangle is easily computed by use of the diagonal rule and is equal to 40.
Hence, the area of a normalized regular pentagon is:

As=appr.5-30-40=5-2000 =140 00.

This result is recorded in the entry BR 26 as ‘1 40'.

Similarly, in the case of mormalized regular heptagothe circumfer-
ence of the circumscribed circleapproximatelyequal to 7 00. The diam-
eter is then approximately equal to ;20 - 7 00 = 2 20, so that the radius will
be approximately equal to 1 10. The height can then be computed as

h; = sgs. (sq. 1 10 — sq. 30) = sgs. 1 06 40 = appr. 1 00 + 6 40/2 00 = 1 03;20.
Hence, the area of a normalized heptagon is:

A;=appr. 7 - 30 -103;20 = 7 - 31;40 = 3 41,40 = appr. 3 41.
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TMS 2 (Bruins and Rutten (1961); Fig. 7.4.1 below) is a square clay
tablet with diagrams showing a 6-front on the obverse and a 7-front on the
reverse. Circumscribed circles appear to have been drawn by use of a com-
pass as an aid for the construction, then erased when they were no longer
needed. Only vague traces of the circles are now remaining.

Apparently, when the area oharmalizedgeometric figure was given
as an entry in an OB table of constants, it was silently understodti¢hat
areas of similar geometric figures are proportional to the squares of their
basic lengthsln particular, in the case of arfront withn = 3 (an equilat-
eral triangle), 4 (a square) 5, 6, or 7, the basic length clearly was the left-
most, or “upper”, side of the-front. Now, on the obverse aMS2, it is
indicated that the upper side of the figure is 30. The sidenofraalized
6-frontis 1 00, twice as much. Therefore, the area of the 6-front in the dia-
gram is only one fourth of the area of a normalized 6-front. Also, the area
of the “upper” equilateral triangle in the 6-front is one fourth of the area of
a normalized equilateral triangle, so that

A(triangle) = appr. 1/4 - 26 15 = 6 33;45.

This value is recorded inside the upper equilateral triaAgieird record-

ed number in the same diagram is 30 for the length of a radius. It is possible
that the area of the equilateral triangle was recorded on the broken off
piece of the clay tablet.

Fig. 7.8.1. A'6-front' and a '7-front’, with methods for the computation of their areas.

The length of the upper front of the 7-front on the rever3éis2 was
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also set equal to 30, although the number, probably inscribed close to the
leftmost side, is now lost. As a consequence, the length of the circumfer-

ence of the circumscribed circle was equagproximately7 - 30 = 3 30,

so that the diameter wapproximatelyl 10, and the radius 35. The area

of the 7-front could then be computed as the sum of the areas of 7 symmet-
ric triangles with the front 30 and the “length” 35. The notali®ns ‘35,

the length’ is still readable close to one side of the upper triangle.

The next step was to compute the approximate height of the upper
triangle ash; = appr. ;30 - 1 02;30 = 31;40. (Why is explained below.) A
notation under the height of the upper triangle in the diagram,

[31 40d]al ‘31;40, the transversal’,

is almost completely lost. Only the last half of the sigih ispreserved.

One would now expect to find the total area of the upper triangle or of
the whole 7-front recorded in the diagram. That is not the case. Instead one
finds a somewhat cryptic inscription, interpreted as follows by Robson in
MMTC (1999), 49:

[nigin sagsd] The square of the frotfthe side) of
sag.7a.na 4 te-si-ip-ma the 7-front by 4 you repeat, then
Si-in-$é-ra-ti the twelfth

ta-na-as-sa-ah-ma you tear out, then

a.§a the field (the area).

What this means is that the area of a 7-front (heptagon) can be computed as
A;=appr. 4-s—1/120f4 - sgs=4 - sqs—;20 - sgs= 3;40 -sgs.
In other word, you get the area of the 7-front if you first multiply the square
of the front by 4, then reduce the result by a twelfth of its value. This com-
putation rule is a handy variant of the more formal computation rule
A7 =sq.s- 3;40.
(Compare with the entry ‘3 41 the constant of a 7-front’ in BR 28).

Another indication that OB mathematicians were interested in regular
polygons is a drawing on the roughly shaped hand tBdI&1979 (Fig.
7.8.2 below; published here by courtesy of F. Al-Rawi).

The drawing shows arctagram formed by all the “second diagonals”
of a regular octagoref. Fig. 7.6.1 above). Included in the drawing are also
all the diameters of the octagram, which are also diameters of the regular
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octagon. Note that the whole octagram can be drawn with a continuous
movement of the stylus, just like a pentagram (Fig. 7.4.1 aBéve).

Fig. 7.8.2. IM 51979. An Old Babylonian drawing of an octagram with its diagonals.

7.9. Geometric Constructions in Mesopotamian Decorative Art

Interest in complicated geometric configurations arose early. It is, for
instance, well known that there are many examples of appealing geometric
patterns in decorative art from various periods in the history of Meso-
potamia. A few particularly intriguing examples will be shown below.

The seven drawings in Figs.7.3.1-2 below, all reproduced from
Legrain,UE 3(1936), are copies of seal imprints on various objects of clay
from the ancient city Ur, excavated from laybedowthe famous royal
cemetery at Ur, and dated by Legrain to the proto-Sumerian Jemdet Nasr
period in Mesopotamia, around the beginning of the 3rd millennium BCE.

The first of the drawingdJE 3, 78 is a picture otonjugate pairs of
hyperbolas, complete with asymptotes and diametaysattempt will be
made here to explain the presence of this design in an archaic seal imprint.

Less surprising are the examples of drawinggesftagramsn UE 3,

105, 227, 398Theeight-petalled rosetter eight-pointed staras inUE 3,
286 andJE 3, 393, can be found as one of the details in many of the seal
imprints copied irJE 3.

17. An unpublished OB hand tablet from Haddad is inscribed with an octagram formed by
all the ‘first diagonals” of a regular octagon, and its four diameters (Farouk Al-Rawi,
personal communication). The octagram is depicted in Appendix 2 below, Fig. 1 g,6.



7.9. Geometric Constructions in Mesopotamian Decorative Art 165

UE 3 78 UE 3, 105

UE 3 274

Fig. 7.9.1. Copies of seal imprints from layers below the royal cemetery at Ur.
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UE 3, 286

i s PAY
ﬁﬁ“‘ ' a ‘ x
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UE 3, 393

UE 3, 398

Fig. 7.9.2. Additional copies of seal imprints from layers below the royal cemetery at Ur.
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Snakes in various configurations was another common motive. In
UE 3, 284 the geometric design behind the snake motive may have been
arectangle with its diagonals

Similarly, the geometric design behind the figure of two entangled
acrobats inJE 3, 274 andUE 3, 286 may have been eoncave square
such as the one depicted in Fig. 6.2.6 above. See the attempted explanation
in Fig. 7.9.3 below.

Fig. 7.9.3.UE 3 274, 286. Attempted explanation of the figure of two entangled acrobats.

The central motive iJE 3, 393 is four entangled acrobats. The geo-
metric design behind this motive may have begngaof four right trian-
gles like the one depicted in Fig. 2.4.1, left, above. See Fig. 7.9.4 below.

Fig. 7.9.4. UE 3393. Attempted explanation of the figure of four entangled acrobats.

UE 3, 398(Fig. 7.9.2, bottom) is a seal imprint with a very complex
design, maybe an imprint of a royal seal. The design is a mix of several
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proto-cuneiform signs (among them a pentagram), probably spelling the
names of several important cities, and three “wind-mills” of the same type
as the four entangled acrobatdJB 3, 393 (Fig. 7.9.4 above). One of the
wind-mills is composed of two human heads and two ox heads. The second
wind-mill seems to be composed of four human legs, and the last wind-
mill (which also appears in several other seal imprints publishgé i)
seems to be composed of two tools of some kind and two animal legs.
The seal imprinUE 3 518 (Fig. 7.9.5 below), contains a brief cunei-
form inscription, mentioning the name of Mesannepada, a king of the First
Dynasty of Ur. (This seal imprint is from a layer immediatpvethe
royal cemetery at Ur (c. 2600 BCE).)

Fig. 7.9.5. UE 3 518. An imprint of the royal seal of Mesannepada.

Below the cuneiform inscription odE 3, 518, there is a wind-mill
design in the form of 4 entangled men armed with knives. The underlying
geometric design may laeconcave square with its diagonals and its cir-
cumscribed squares shown in Fig. 7.9.6 below.

Another example, in Fig. 7.9.7 below, is not a seal imprint but a a small
marble plaque (apparently a mold) from Old Babylonian Babylon adorned
with five intricately entangled bearded ma&m\(5953, Andrae,BPK 58
(1937)). The underlying mathematical design is clearlpeatagram
enclosing a central regular pentagon

The twelve-pointed star shown in Fig. 7.9.8, finally, is a copy of a draw-
ing in the Seleucid astrological tegt 176 (Thureau-Dangin,TCL 6
(1922), text 13; see the commentary in Rochberg-HaRAry,7 (1987)).
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Fig. 7.9.6. Attempted explanation of the figure of four entangled armed men.

Fig. 7.9.7. VA 5953. An Old Babylonian mold showing a pentagram of bearded men.
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(Abbreviated) month names:

BAR (I) SuU  av) DUg (VD) AB  (X)
GU, () NE (V) APIN  (VIII) ziz (X1
SIG (Il KIN (VD) GAN (IX) SE (XI)

(Abbreviated) planet/god names:

DIL.BAT (Venus/Ishtar) US (Saturn/Ninurta) ~ GENNA(?) (also Saturn?)
GU, (Mercury/Nabi) SAL (Mars/Nergal)

Fig. 7.9.8. O 176. A twelve-pointed star with inscribed and circumscribed circles, month
names and planet (or god) names. The astrological meaning of this diagram is unknown.



Chapter 8

El. Xl111.13-18 and Regular
Polyhedrons in Babylonian Mathematics

8.1. Regular Polyhedrons irElements XIl|
Four of the five regular polyhedrons are define&linXIl.Defs. 25-28

25 Acubeis a solid figure bounded tsjx equal squares
26 Anoctahedroris a solid figure bounded ight equal and equilateral triangles
27 Anicosahedroris a solid figure bounded liwenty equal and equilateral triangles

28 Adodecahedroiis a solid figure bounded hwelve equal, equilateral, and equi-
angular pentagons

To these definitions should be added the omitted definition
Atetrahedronis a solid figure bounded bgur equal and equilateral triangles

There is no further mention of polyhedrons (other than the culi)Xi.
Book XIlII of Euclid’s Elements however, contains 6 propositions con-
cerned withregular polyhedrons inscribed in sphei@gll.13-18).

An Outline of the Contents ofEl. XI11.13-18

13 To construct getrahedron(a ‘pyramid’) inscribed in a given sphere, and to prove that
the square on the diameter of the spheoaésand a half timethe square on the edge
of the tetrahedron.

14 To construct anctahedrorinscribed in a given sphere, and to prove that the square
on the diameter of the spheraws timeshe square on the edge of the octahedron.

15 To construct aubeinscribed in a given sphere, and to prove that the square on the
diameter of the spheretisree timeshe square on the edge of the cube.

16 To construct aitosahedronnscribed in a given sphere, and to prove that the edge
of the icosahedron israinor.

171
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17 To construct dodecahedroimscribed in a given sphere, and to prove that the edge
of the dodecahedron is apotome.

18 To set out the edgestbik five regular polyhedronsnd to compare them with each
other.

There is also postscript to EI.XIII.18 saying that
No other figure, besides the mentioned five figures, can be constructed which is
bounded by equilateral and equiangular figures equal to one another.

DN A
B

Fig. 8.1.1. The five regular polyhedrons.

Note: InELXII.13-15, the diameters of the spheres circumscribed around

a regular tetrahedron, octahedron, or cube (hexahedron) are shown to be
expressiblén terms of the edgesf the figures. IrELXIII.16 -17, on the

other hand, the edges of a regular icosahedron and dodecahedron are
shown to be inexpressibie terms of the diameteis the circumscribed
spheres. A possible explanation for this lack of consistency may be that in
a now lost precursor to EuclidElementsthe diameters of the circum-
scribed spheres fail the five regular polyhedrons had been expressed in
terms of the edges of the figurésljowing the Babylonian traditidn

In El. XI11.12 it is shown (see Fig. 7.2.2 above) that the square of the
side of arequilateral triangleinscribed in a circle is 3 times the square on
the radius of the circle. Therefore, if the diameter of the circle is express-
ible, then also the side of the inscribed equilateral triangle is expressible.
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This result is used i&l. XIlI.13 to show a result which (silently) implies
that if the diameter of a given sphere is expressible, then also the edge of
an inscribed ‘pyramid’, meaning a regulatrahedron,s expressible.

The proof ofELXIII.13 is purely syntheti¢ as are also the proofs of
ELXII1.14-17. The proof begins with the ‘setting out’ of the diameter AB
of the given sphere (Fig. 8.1.2, left), cut at the point C soA@Gat 2 BC
In the circle with AB as diameter, the perpendicular CD is erected, and the
straight line DA is drawn.

K E AB =D
AC=2CB
C sq. AD=3sq.DC
EH, etc.=r =DC
HK=h=AC
A c 5 H KE, etc.= AD
= G C EFetc.=KE=s
KL=AB =D

Fig. 8.1.2. El. XIII.13. Construction of a regular tetrahedron inscribed in a given sphere.

Next a circle with the radius CD is drawn, and an equilateral triangle
EFG is inscribed in the circle (Fig. 8.1.2, right). From the centre H of the
circle, a perpendicular HK equal to AC is erected, and the straight lines
KE, KF, KG are drawnglearly all equal to DA

Now, since AC = 2 BC, it follows that AB = 3 BC, and therefore

sq.AD:sq.DC=AB-AC:AC-BC=AB:BC=3:1, sothat sq.AD =3 -sq.DC.

This follows easily from, for instance, Lemntd.X.32/33 (Sec. 4.1
above). Since also sq. FE = 3 - sqg. EH, according to Xlll.12 (Fig. 7.2.2),
and EH = DC, it follows that EF = AD, and then also FG = AD, and GE =
AD. Hence, a regular tetrahedron has been constructed with the side AD.
The next step of the proof is to continue KH with a straight line HL
equal to CB. It is then easy to show that a semicircle with the diameter KL
passes through E. When this semicircle is rotated around its diameter, it
generates a sphere passing through all the vertices of the tetrahedron.
The diameter KL of the sphere is equal to AB, and BA : AC =3 : 2.
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Therefore,
sq. BA:sq. AD=BA:AC=3:2.
Since BA is the diameter of the sphere and AD is the edge of the inscribed

tetrahedron, it follows thahe diameter of the given sphere is one and a
half times the edge of the inscribed regular tetrahedron

The straightforwardinalysiswhich must have preceded the synthetic
construction of a regular tetrahedrorinXIIl.13 is presented in Fig. 8.1.3
below, in metric algebra notations.

sq.r =1/3 sqs

sq.h=sg.s —1/3sqs=2/3sqs
D:h=h-D:sqg.h=sqg.s:sq.h=3/2

h=2/3-D, k=1/3:-D, sg.D=sq.(3/2h)=3/2-5sq

Fig. 8.1.3. The missing analysiskh XIII.13.

The synthetic proof ol. XIIl.14 begins with the ‘setting out’ of the
diameter AB of the given sphere (Fig. 8.1.4, left), cut at the point C so that
AC = BC In the circle with AB as diameter, the perpendicular CD is erect-
ed, and the straight line DB is drawn.

Next, a square EFGH is drawn with the ssde DB. The center K of
the square is constructed as the point common to the diagonals of the
square, and two perpendiculars KM, KL, both equal to EK are drawn.
Joining M and L to the four vertices of the square EFGH completes the
construction of the octahedron.

Clearly, LM = AB =D. Hence, LM is equal to the diameter of the given
sphere, the constructed octahedron is inscribed in the given sphere, and
sg.D = 2 sq.s. Therefore, if the diameter of a sphere is expressible, then
also the edge of an inscribed reguwatahedronis expressible.
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The analysis that must have preceded this synthetic construction is
simple and obvious, and will not be repeated here.

L
D E H AB =D
AC=CB
C sq. AB=2sqg. BD
EF,etc.=s=BD
KM, KL = EK
A C B C LE,etc.=EF =s
G LM=AB=D

Fig. 8.1.4. El. XIll.14. Construction of a regular octahedron inscribed in a given sphere.

The synthetic proof ol. XIII.15 begins with the ‘setting out’ of the
diameter AB of the given sphere (Fig. 8.1.5, left), cut at the point C so that
AC =2 BC. In the circle with AB as diameter, the perpendicular CD is
erected, and the straight line DB is drawn.

AB=D

E H AC=2CB
D K N C sq. AB=3sq.BD
EF, FG,etc.=s=BD
EK, HN, etc.= EF =s
C sq.EG=2ses
C sgq. KG=3sgs=3sqg.BD
C KG=AB=D

Fig. 8.1.5. El. XIl1.15. Construction of a cube inscribed in a given sphere.

A cube FN is constructed with the sisle DB (Fig. 8.1.5, right), and
the diagonals EG, KG are drawn. It is shown that a sphere with the diam-
eter KG will pass through all the vertices of the cube. On the other hand,

sq. EG =sqg. GF + sq. FE = 2 sq. EF = 2ssqand

sg. KG =sq. GE + sq. EK =3 sg. EF = 3%9.3 sg. DB = sq. AB = s®.
Therefore, KG =D, so that the cube is inscribed in the given sphere, and
sq.D = 3 sqg.s. Therefore, if the diameter of a sphere is expressible, then
also the edge of an inscribedbeis expressible.

The analysis that must have preceded this synthetic construction is
again simple and obvious, and will not be repeated here.
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In El. XIII.16 , the synthetic construction of a regulewsahedrorin-
scribed in a given sphere begins with the ‘setting out’ of the diameter AB
of the given sphere (Fig. 8.1.6, right), cut at the point C sd\tbat 4 CB
It is shown that the square on the diameter of the sphere is five times the
square on the radius of the circle circumscribed around the pentagonal base
of the top pyramid. Therefore it follows from XIllIl.11 that the edge of an
icosahedron inscribed in a sphere imiaor, if the diameter of the sphere
is anexpressiblestraight line.

AB=D,BD=r,AC=4CB
C sqg. AB=5sq.BD
C sq.D=5sqr

Fig. 8.1.6. El. XIll.16. Construction of an icosahedron inscribed in a given sphere.

The complicated details of the synthetic constructidal.iklll.16 will
not be discussed here. Instead, the form ochtiadysisthat must have pre-
ceded the synthesis will be demonstrated. This analysis makes use of nota-
tions in the style of metric algebra, with reference to a simpler diagram
(Fig. 8.1.7), based on the diagram in He&HRBE 3(1956), 487.

The analysis starts with the “top” of the icosahedron, a pyramid with a
regular pentagon as base, and with five equilateral triangles as inclined
faces. Les be the edge of a face of the icosahedron, which is also the side
of one of the equilateral triangular faces and the side of the pentagon, let
rs be the radius of a circle circumscribed around the pentagon, drfoklet
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the height of the pentagonal pyramid. Then

sg.h = sg.s—sq.rs = sq.s;g, S0 that h=s;, [X111.10]

sg.h=sqg.55—s0.r5
) C [XI.10]

h=s),

sq.k=sq.5;—-50.5,
C [XI.10]
k=rg

K+h=r5+s,

C [XII9]

k +hcut in extreme and mean ratio
< R ! C [XI.3]
. sq.D/2 = q. W2 +h) =5sqki2 =5 sqrg/2
\\ /// g
. sg.D =5 sqrs,

D=k+2h=rg+2s)

Fig. 8.1.7. The missing analysiskh XII1.16.

According to the diagram in Fig. 8.1.7, the “bottom” of the icosahedron
is an inverted pentagonal pyramid, with its pentagonal base a certain dis-
tancek directly under the pentagonal base of the top pyramid, but rotated
a tenth of a full circle. Therefore, the vertical projections of the vertices of
the upper pentagonal base onto the plane of the lower pentagonal base can
be identified with the five vertices of a decagon, situated halfway between
the vertices of the lower pentagon. It follows that

Sg.k = sQ.5—5Q.51g, = sq.r5, sothatk=rg [EL X111.10]
Consequently, the sphere circumscribed around the icosahedron has the
diameter

D=k+2h=rg+ 25

It is clear from a look at the characteristic triangle for a pentagon in Fig.
7.3.2, left, thak,o/(21) = (s5/2)/d5 = /2. Therefore [XIII.9], the surk + h
=rg + Sygis cut in extreme and mean ratio, Wtk rs as the greater part.
Consequently,

sg.D/2 =sq. K2 +h) =5sqk/2 =5sqrg/2, sothat sd =5sqrs [El XIII.3]

The precise relationship between the edgd the icosahedron and the
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diameterD of the circumscribed sphere is described by the equations
s=sqs. (5-sqgs. 5)/D/ sgs. 5= sgs. (5 — sgs. 5)/1D (cf. Fig. 7.3.1)
(showing thas is aminor with respect t®), and
D =sgs. (5 + sgs. 5)/1&- sgs. 5 = sgs. (5+ sgs. 5)R - (cf. Fig. 7.5.1)

In El. XII1.17 , finally, is constructed a reguldodecahedroinscribed
in a given sphere. The basic idea of the construction is the observation that
suitably selected diagonals of the 12 pentagonal faces of an dodecahedron
can be identified with the 12 edges of an inscribed ¢Blge 8.1.8). It is
shown thatthe cube and the icosahedron can be inscribed in the same
sphere Therefore, since the edge of the cube is expressible with respect to
the diameter of the circumscribed sphdgk XI11.15], it follows that also
the diagonal of the pentagonal face is expressible. Now, the diagonal of a
pentagon is cut in extreme and mean ratio, with the greater of the two parts
equal to the side of the pentagdh. [X111.9]. Moreover, the greater part of
a straight line cut in extreme and mean ratio is an apotome with respect to
the whole straight lineg]. XII1.6]. It follows from a combination of these
results that the edge of a dodecahedron inscribed in a given sphere is an
apotomewith respect to the diameter of the sphere.

The complicated details of the synthetic constructidl.ixXII.17 will
be discussed later. First, the form of #malysisthat must have preceded
the synthesis will be demonstrated here. This analysis makes use of nota-
tions in the style of metric algebra, with reference to a simpler diagram
(Fig. 8.1.8), based on the diagram in He&HRBE 3(1956), 499.

In the diagram in Fig. 8.1.8, one of the diagonals of a pentagonal face
of a dodecahedron is shown to coincide with one of the edges of an in-
scribed cube. Three orthogonal planes divide the cube into eight smaller
cubes, all with the edg#2, whered is the length of a diagonal in the pen-
tagon. Now, it is easy to see that all those vertices of a pentagonal face of
the dodecahedron, which are not simultaneously vertices of the inscribed
cube, have the same distance to the nearest face of the cube. Let that com-
mon distance be calleal The size ofa can be computed as follows,
throughan application of the diagonal rule in three dimensions

sg.s=sg.a+sq.d/2 + sq.di2 C[EIL XIIl.4] sg.s=sg.a+3sq92

C sq.a=sq.92 C a=¢972.
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sq.s=sg.a+ sq.d/2 + sq.d/i2
C X4

sq.s=sg.a+ 3sqs/2
sg.a=sq.52

a=g/2

sq.R=sq.92 + sq. § +d)/2
C [Xl1.4]

sq.R=3sq.d/2 =D/2

sq. 2R=3sqd=sq.D

Fig. 8.1.8. The missing analysiskh XIII.17.

Next, the distanck from the centre of the inscribed cube to one of the
vertices of the icosahedron which are not also a vertex of the cube can be
computed as follows:

sq.R=sq.sR +sq. 6§+d)/2 C [El Xlll.4] sq.R=3sq.d/2.

(Indeed, ifsandd are the side and the diagonal of a regular pentagon, then
the sums + d is cut in extreme and mean ratio, witlhs the greater part.)

On the other han@nother application of the diagonal rule in three dimen-
sionsshows that iD/2 is half the interior diagonal of the cube, then

sq.D/2 = sq.d/2 + sq.d/2 + sq.d/2 = 3 sqd/2 (cf. EL.XIII. 15)

ThereforeR = D/ 2. Consequently, D/2 is the distance from the centre of
the inscribed cube to all vertices of the dodecahedron, whether they coin-
cide with a vertex of the cube or not. This means that the cube and the
dodecahedron are inscribed in the same sphere, andBhigttiie diame-

ter of the sphere arttithe diagonal of a pentagonal face of the dodecahe-
dron, then sgD = 3 sq.d. Consequently, iD is expressible thethis also
expressible. On the other hand, if the diagehi expressible, then the
sides of the pentagon is an apotont#. [X111.6]. Since the side of a penta-
gonal face of the dodecahedron is also an edge of the dodecahedron, it
follows that each edge of a dodecahedron eEmtomewith respect to the
diameter of the circumscribed sphere.



180 Amazing Traces of a Babylonian Origin in Greek Mathematics

Explicitly,

s=(sgs. 5-1)/2D / sgs. 3= (sgs. 15 — sgs. 3)/@D
and

D =(sgs. 5+ 1)/2s- sgs. 3 =(sgs. 15 + sgs. )L -

XHW is a straight line segment because
XP:PH=g2:d/2=d/2:92 =HT: TW.

B SO L I
Y 7‘*]5””" /
3 2 cr ! sq. BV = sqs/2 + sq. §+d)/2 + sq.d/2

C [Xl.4]
sq. BV=4sqdi2=sqd, BV=d.

sq. UW =sq9/2 + sq.d/2 + sq. § +d)/2

C [XIl.4]
sq. UW =4 sqd/2 =sqd, UW=d.

Fig. 8.1.9.El XIII.17. Construction of a dodecahedron inscribed in a given sphere.

In the synthetic proof dEl. XI11.17, it is notable that Euclid makes a
somewhat uncongenial use of the two propositiehsVI.32 and El.
XIII.7. The first of these propositions is used to prove that after the explicit
construction of an equilateral pentagon as in Fig. 8.1.9 bét@penta-
gon is in one planddowever El. VI.32 is more general than what is need-
ed for the purpose. Since the triangles XPH and HTW are right triangles
all that is needed to show that XHW are in a right line (and that therefore
the pentagon is in one plane) is the observationstBatd/2 =d'/2 : §/2.

This relation, follows from the fact that the sdm s+d' is cut in extreme
and mean ratio, witkas the greater part.

El. XIIl.7 says that “If three angles of an equilateral pentagon are equal,
then the pentagon is equiangular”. Euclid starts by showing, by use of an
application of the diagonal rule in three dimensions, that BV = BC (see
again Fig. 8.1.9), and that therefore the angle BUV is equal to the angle
BWC. Then also the angle CVU must be equal to the angle CWB. Next,
he makes use &l. XIII.7 to show that all five angles in the pentagon are
equal. However, he could equally well have shown, by another use of the
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diagonal rule in three dimensions, that UW = BC, from which it follows
that the angle UBW is equal to the angle CWB. And so on.

Conclusion

In the detailed investigation above BfementsXIll.13-17, Euclid’'s
synthetic constructions are complemented by analytic procedures
expressed in the style of metric algebra. The unexpected result of the in-
vestigation is that all the procedures needed for the computation of various
crucial parameters of the five regular polyhedrons probably was within the
competence of Old (and Late?) Babylonian mathematicians, with the
possible exception of the drawing of accurate diagrams, such as the ones
in Figs. 8.1.6-9. (Known OB drawings of three-dimensional objects are of
notoriously poor quality. However, nothing is known about the quality of
corresponding drawings presumably made by Late Babylonian mathema-
ticians.) Only the completely superfluous us&b#/1.32 andEl. XIII.7 in
the proof ofEl. XIl1.17 is beyond the horizon of Babylonian mathematics!

Note that it is now known that the kind of applicatiortted diagonal
rule in three dimensionshich plays such a prominent role in the construc-
tion of a dodecahedron il. XI11.17 is documented in a mathematical
cuneiform text. That text is the object of discussion in Sec. 8.2 below.

8.2. MS 3049 § 5. The Inner Diagonal of a Gate

MS 3049(Friberg,RC(2007), Sec. 11.1) is a small fragment of a large
cuneiform mathematical recombination text. It is either late OB or post-
Old-Babylonian (Kassite). According to a post-script, which luckily is
preserved on what remains of the reverse of the clay tablet, the text origi-
nally contained 6 problems for circles (of which one is preserved on the
obverse of the fragment), 5 problems for squares, 1 for a triangle(?), 3 for
‘brick molds’, and 1 for an ‘inner diagonal of a gate’ ( preserved on the re-
verse of the fragment). Here is a translation of the text of the preserved last
problem:

MS 3049 8 5literal translation explanation

If the inner cross-over (diagonal) Compute the inner diagonal of a gate
of a gate he shall do, Its height is
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5 cubits, 25and 10 fingers, 1 40,

the height of the gate.

x x x x x thetable,

to thisone 20 and x x x enter,

then this 26 40, 8 53 2Be width and

6 40, the thickness of the wall, you see.
26 40, the height of the wall, let eat itself,
then 11 51 06 40 you see.

8 53 20, the width of the gate, let eat itse
then 1 19.. 44 26 40 you see.

6 40, the thickness of the wall, let eat itself,

then 44 26 40 you see.

Heap them, 13 54 34 14 26 40 you see.
Its likeside let come up,

then 28 53 20 you see

(for) the gate of height 26 40.

So you do it.

n Origin in Greek Mathematics

5 cubits = ;2mda and
10 fingers = ;01Mfida
According to the x x x table
and x x x x x it follows that
when ;26 40 n. is the height, then
;08 53 20 n. is the width, and
;06 40 n. the thickness of the wall
sqg. ;26 40 =;11 51 06 40
sg. ;08 53 20
=;011900 44 26 40
sqg. ;06 40
=,;00 44 26 40
The sum of the squares is
;1354 34 14 26 40
The square side is ;28 53 20
(the diagonal) for a gate of height 26 40
Compute like this

If,

Note that the problem texti®mtaccompanied by any illustrating diagram.
Anyway, the statement of the problem is clear:
What is the ‘inner diagonal’ of a ‘gate’ with the height ;2ndfda ?

(a=;021320n.=1/27 n))

t = 3a =;0640n.

w= 4a = ;085320n.

d= 5a (the bottom diagonal)
h=12a =;26 40 n.

D =13a =;285320n.

/Q <
/I
/ sqg.t + sq.w =sq.d
,/ sq.d + sq.h=sqg.D
A N G
7T s / sq.t + sq.w + sg.h =sq.D
/// O \\\ \

Fig. 8.2.1. MS 3049 8§ 5. Computation of the inner diagonal of a gate.

The solution procedure begins with the consultation of some mysteri-
ous mathematical table, according to which a gate with the Heigh26
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40 n. (= 5 cubits 10 fingers) has the widthkr ;08 53 20 n. (= 1 cubit 23 1/

3 finger), and the ‘thickness’ (which is also the thickness of the wall in
which the gate is situatet¥ ;06 40 n. (= 1 cubit 10 fingers). Unfortunate-

ly, the text is broken just where it presumably describes what kind of math-
ematical table is meant here and how it is used.

It is clear, anyway, that the inner diagobabf the gate is computed
through an application @he diagonal rule in three dimensions

sq.D =sq.h + sq.w+sqg.t =;11 51 06 40 + ;01 19 00 44 26 40 + ;00 44 26 40

=,;13 54 34 14 26 40 (sq. n.) = sq. (;28 53 20 n.).

The counting with cubits and fingers and “many-place” sexagesimal
numbers as in this text is typical for many Babylonian mathematical texts,
and reveals thahe primary purpose of Babylonian education in mathe-
matics was to teach the students to master the complexities of counting
with sexagesimal numbers and with various traditional measures.

Actually, in the present case, the appearance of many-place sexagesi-
mal numbers is an example of a deliberately introduced difficulty hiding
the underlying simplicity of the data. Indeed, it is easy to check that

t =:;0640n. = 3.;021320n. where ;02 13 20 =1/27
w =;085320n. = 4.:021320n.
h =;2640n. =12-;021320n.
D =;285320n. =13-;021320n.

The number quartet 3, 4, 12, 13 has the interesting property that
sg. 3+sQ.4 +sq.12 =sqg. 13.
This “diagonal quartet” is constructed through composition of the two sim-
ple “diagonal triples” 3, 4, 5 and 5, 12, 13, in the following way:
sq.3+sg.4=sq9.5, and sqg.5+sq.12 =sqC13sq. 3 +sq.4 +sq. 12 =sq. 13.
In geometric terms, the computation in MS 3049 § 5 can be explained
as follows (see Fig. 8.2.1): First the square of the “bottom diagdrefl”
the gate is computed by use of the diagonal rule in two dimensions, as
sq.d = sq.t + sq.w.

Then the square of the inner diagonal of the gate is computed through a
second application of the diagonal rule in two dimensions, as sq.
D =sq.d + sq.h.

It still remains to explain how the square side of the many-place sexages-
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imal number sgD = ;13 54 34 14 26 40 was computed. An answer to this
interesting question will be suggested in Sec. 16.7 below.

8.3. The Weight of an Old Babylonian Colossal Copper Icosahedron

MS 3876 (Friberg,RC (2007), Sec. 11.3) is a mathematical problem
text written with very small cuneiform signs on a clay tablet of a most un-
usual format. Also some of the mathematical terminology in this text is un-
usual and quite difficult to interpret. It is likely that the text is Kassite,
meaning post-Old-Babylonian, from the last half of the second millennium
BC. This makes the text unique of its kind. Also the mathematical content
of the text is highly unusual, as will be shown below.

Here is a tentative translation of the most important part of the text,
written on the lower half of the obverse of the clay tablet (Fig. 8.3.1):

MS 3876 # 3literal translation explanation

X X X xthe city wallx, a horn-figure, ? Anicosahedron

copper behind. made of copper(?)

X the copper x (is) what? Compute the weight of the copper

At the rim (periphery?) an arc (a ball?) A ball(?)

of gaming-piece-fields you see, then of equilateral triangles.

what xx you take, then Take one of them (?)

your ground (area)ou se. and compute its area

Heap them, then that ground Add the areas

for 1 horn-figure, the copper behind (it), x, and compute the weight of the copper
So you do (it). Do it like this:

The reciprocal of 6, the constant, Compute the reciprocal of the
resolve, then 10. constant 6, itis 10

Steps of 1 30, the front of the city wall, 15. 1/6 of 1 30, the circumference (?) = 15
3 cubits each (the sides of) s=;15ninda = 3 cubits is each side of
one gaming-piece are equal. each equilateral triangle

If 3 cubits each (the sides of) a gaming-piece If 3 cubits is the side of each

are equal, the volume (is) what? equilateral triangle, what is the volume?
Half (of) 15, the front, break, then 7 30. §2 =;15/2 =;07 30

7 30 steps of 15, the second front, s-§2=;0730n.-;15n.

1 52 30, the halved. =;015230sq.n. =&

14 03 45, its eighth tear off, then 1/8 - (@ = ;00 14 03 45

1 38 26 15 (is) the ground (of) (1-1/8) (sd2 =;01 3826 15 =

one gaming-piece-field that you see. A (the area of one equilateral triangle)
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The gaming-piece-fields how many? How many equilateral triangles?
From 6, the constant, 1 tear off, The constant 6, minus 1

then 5 (is) the remainder. =5

To 4 repeat (it), then 20. 6-1)-4=5-4=20

20 gaming-piece-fields. There are 20 equilateral triangles
1 38 26 15 to 20 repeat, then 32 48 45, A2920 - ;01 38 26 15 sq. n.
1/28ar 2 2/3gin 26 1/4 barleycorns. =,324845sq.n. = -

For 1 metal-covered horn-figure, How much copper in 1

what is its copper? icosahedral shell?

32 48 45 times 2 (is) 1 05 37 30, V =20A - (1 finger)

1gin 16 1/2 1/4 barleycorns =,;32 48 45 sq. n. - ;02 cubit

and half 1/4 barleycorns (is) its volume. =;01053730sg.n.-¢c.=---

1 05 37 30, its volume, V- 11200 talents/sqg.n. - c,
steps of 1 12, the constant of the copper, (is) the density of copper

1 18 45, the copper. =1 18,45 talents of copper
Instead of its volume, Instead of counting with volume

1 cubit each the square sxl& measure: The [weight of a sheet of]
for 1 metal-covered horn-figure, 1 sq. cubit [- 1 finger] of copper

1 talent, the copper it x x x x x x x, is 1 talent

in this coppel x x x x x x x x.

The exercise begins withe statement of the problemvhich is quite
obscure due to damage to the text and the use of the previously unknown
terms ‘city wall’(?) and *horn figure’(?). Then follovesbrief description
of the solution proceduréo be used, namely to consider a ‘ball(?) of
‘gaming-piece fields’(?), to compute the area of each such field, to sum the
individual areas, and finally to compute the weight of the copper needed.

The solution procedure itself begins with the multiplication of the
length(?) 1 30 of the ‘city wall’'(?) with the reciprocal 1/6 = ;10 of the con-
stant. The result is ‘15’, which is immediately explained asjhda =
3 cubits. (Remember thatlnda = 12 cubits = appr. 6 meters.)

In the next step of the solution procedure, the Arefea ‘gaming-piece
figure’ with each side equal to 3 cubits is computed as

A=(1-1/8) s-5/2=(;01 52 30 —;00 14 03 45) sqg. n. = ;01 38 26 15 sq. n.

Evidently, thereforegan.za.na ‘gaming-piece field’ is a Sumerian name
for ‘equilateral triangle’ ¢f. Sec. 7.7 above), possibly because the profile
of some kind of gaming-piece may look like an equilateral triangle.
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Fig. 8.3.1. MS 3876. Computation of the weight of a huge copper icosahedron.
The numbeN of such gaming-piece fields is computed as

N=(6-1) -4, where 6 isthe ‘constant’ mentioned before.

The total area dfl gaming-piece fields is then
N-A=20-,01382615sqg.n.=;324845sq. n.

In Old Babylonian area measure notatiotisis total area is equal to
1/28ar 2 2/3gin 26 1/4 barleycorn, where $ir =1 sqg. n., 1 gi n = 1/66, etc
The last part of the computation begins by repeating the question
‘How much copper is needed to cover 1 ‘horn figure'?

The computation begins by computing a voluhe
V='324845 -'2'='105 37 30’ = &in 16 1/2 1/4 1/2 - 1/4 barleycorns.

Now, in Old Babylonian volume measure notatipns
1sar = 1sq.n. - 1 cubit, din = 1/608ar, 1 barleycorn = 1/18@in.
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Therefore, the computed volume must be equal to
V=1gin 16 1/2 1/4 1/8 barley corns = ;01 05 37 30 sqg. n. - 1 cubit.
SinceA = ;32 48 45 sq. n., it follows that
‘2" = ;02 cubit = 1/30 cubit = 1 finger (= appr. 1 2/3 cm).
In other wordsY is computed athe total area 20 - A times 1 finger
In the last step of the computation, a new constant is mentioned:

‘1 12’ the constant of copper.

Apparently, this constant is explained as follows in the badly damaged last
few lines of the text:

1 talent (= 60 minas = appr. 30 kilograms) is the weight of

a square sheet of copper measuring 1 sq. cubit - 1 finger.
Therefore,

The weight of 1 volum&ar = 1 sq. n. - 1 cubit of copper is

12 - 12 - 30 talents = 1 12 00 talents.

Consequently, the weighit of all the copper covering the ‘horn-figure’ is
W=V -.112 00 talents / volume&r = ;01 05 37 30 - 1 12 00 talents = 1 18;45 talents.

All the steps of the complicated “metro-mathematical” computation in
MS 3876 # 3 have now been explained. It still remains to be explained
what is meant by the Sumerian tegém.si ‘horn-figure’. The horn-figure
in the text appears to be covered by a ‘ball’(?) of (6 — 1) - 4 equilateral
triangles made of copper, each with the side 3 cubits (1 1/2 meters), and
1 finger (1 2/3 cm) thick, together weighing 1 18;45 talents (2,350 kg.).

A reasonable conjecture is that the ‘*horn-figure’ iscsahedrona
regular polyhedron with 20 equilateral faces. The strange computation of
20 as (6 — 1) - 4 can then be explained as follows (Fig. 8.3.2, left):

The OB construction of an icosahedron in MS 3876 # 3 beginsawith
regular hexagorbounded by a ‘city wall’ of length 1;3{inda (9 meters).

The hexagon is divided into 6 equilateral triangles, each with the side ;15
ninda = 3 cubits. One of the triangles is removed, so that 6 — 1 = 5 equi-
lateral triangles remain. Then 3 equilateral triangles is added to each one
of the 5 equilateral triangles, so that 6 — b shainsare formedgeach

chain composed of 4 equal equilateral triangl&se 5 chains together
contain (6 — 1) - 4 = 20 equilateral triangles, and when the chains are folded
in the appropriate way, an icosahedron is formed (Fig. 8.3.2, right).



188 Amazing Traces of a Babylonian Origin in Greek Mathematics

3d| 3c
3b

4d

Fig. 8.3.2. Construction of an icosahedron by folding 5 chains of 4 equilateral triangles.

The discussion above of MS 3876 # 3 suggests that Babylonian
mathematicians knew how to comptite area of (the outer shell of) an
icosahedronin view of the OB mathematicians’ well known habit of com-
puting the volumes of all kinds of solid figured. Chapter 9 below), it is
therefore also extremely likely that they tried to compliéavolume of an
icosahedronThat they may have been successful if they ever tried to do
that was mentioned above, in the Conclusion to Sec. 8.1.



Chapter 9

Elements XIl and Pyramids and
Cones in Babylonian Mathematics

9.1. Circles, Pyramids, Cones, and Spheres iements XI|

Areas and volumes are never explicitly mentionedlamentsxll, or
anywhere else in tHelementsYet, the main feature &lementsXll is the
use of themethod of exhaustiobased oifel. X.1, in order to prove that

Circlesare to one another as the squares on the diameters El. XII.2
Pyramidswhich are of the same height and have triangular bases

are to one another as the bases El. XI1.5
Any (circular)coneis a third part of the (circular) cylinder which has the same
base with it and equal height El. XI1.10

Spheresre to one another in the triplicate ratio of their respective diametekd|.18

Of particular interest in the present connection (comparison with Babylo-
nian mathematics) are the propositioes XII.3-7, all dealing with
triangular pyramids Their contents will be outlined briefly below, in
intentionally modernized form:

El. XI1.3. A dissection of a triangular pyramid by planes through
the midpoints of its edges

Everytriangular pyramidcan be cut (by three planes through the midpoints of the six
edges) intawo pyramid=f equal volumes, similar to the whole pyramid, amd
wedgegtriangular prisms) of equal volumes (but not similar to each other).

The combined volume of the two wedges is greater than half the volume of the whole
pyramid.

The way in which a given triangular pyramid is dissected, according to
El. XI11.3, is shown in Fig. 9.1.1 below. Let the lengths of the edges of the
given pyramid be, b, ¢, d, e, f. Then the lengths of the edges of the two
sub-pyramids cut off by two of the planes through five mid-points of the

189
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edges of the given pyramid are, in each cak®,b/2, ¢/2, d/2, /2, f/2.
Clearly, the two sub-pyramids have all edges equal and pardlletre-
fore, theyare similar and “equal”. (Actually, they arecongruentand so,
with any reasonable definition of volume, have the same volume.)

Fig. 9.1.1. A triangular pyramid dissected a&inXIl.3.

The two wedges (triangular prisms) remaining after the removal of the
two sub-pyramids from the given pyramid &h equal to one half of a
parallelepipedal solidwith edges of lengtha/2, /2, /2, parallel to the
edges with those lengths of the sub-pyramids. One of the wedges is formed
by cutting the parallelepipedal solid with a plane through the two edges of
lengtha/2 (see again Fig. 9.1.1), while the other wedge is formed by cut-
ting a similar and equal parallelepipedal solid with a plane through the two
edges of lengtff2. Therefore, the two wedges have the same volume but
are not similar. (Euclid proves that the two wedges are “equal” by refer-
ence to the strangely formulatad hocpropositionEl. XI1.39.)

Finally, since each one of the two wedges is greater (in volume) than
each one of the two pyramids, it follows that the two wedges together are
greater (in volume) than half the original pyramid.

El.. Xll.4. Corresponding dissections of two triangular pyramids of
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the same height.

Let two triangular pyramids of the same height both be cut into two pyramids and

two wedges as il. XII.3. Thenthe combined volumes of the two wedgesach

pyramid separatelgire proportional to the areas of the bases of the pyramids.

El.. XII.5. The volumes of triangular pyramids of the same height
are proportional to the areas of their bases.

This proposition is proved by means of teehaustion methoof
Eudoxus. Suppose that the two sub-pyramids produced by the dissection
described irkl. XI1.3 are in their turn dissected in the same way. The result
is two new, smaller wedges and two new, smaller sub-pyramids. The pro-
cess can be repeated until the combined volumes of all the sub-pyramids
becomes arbitrarily small. If there are two pyramids of the same height,
and if the successive regular dissections are carriad taridemthen, as
in El. XII.4, after each step of the algorithm the combined volumes of all
the produced wedges in each pyramid separately are proportional to the
areas of the bases. Therefore, it can be shown, by an ingenious argument,
that the ratio between the volumes of the pyramids can be neither greater
nor smaller than the ratio between the areas of their bases.

El.. X11.6. The volumes of polyg onal pyramids of the same height
are proportional to the areas of their bases.

El.. XI.7. Every triangular prism can be cut (by two planes
through four of the six vertices) into three triangular pyramids (not
similar to each other). The three sub-pyramids have, two by two,
equal heights, and bases of equal areas. Therefore, the volume of each
one of them is one third of the volume of the triangular prism.

A triangular prismis a solid figure bounded by two parallel and con-
gruent triangles and three parallelograis X1.Def.13). In Fig. 9.1.2 be-
low, the two bounding triangles both have sides of lengthsc and the
three parallelograms have sides of lengtha, ff) 2) b, d, 3) c, d. Let the
prism be cut by a plane through one of the sides of lemgtid through
the opposite vertex of the prism. The plane cuts two of the bounding par-
allelograms along their diagonals, and it divides the prism into two pyra-
mids, one with the same triangular base as the prism, the other with the
parallelogram with sides of lengthsd as a base. Let the second pyramid,
in its turn, be cut by a plane through the diagonal of its base and through
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the opposite vertex of the pyramid. As a result, this second pyramid is di-
vided into two triangular pyramids. These two pyramids (the one to the left
and the one in the middle in Fig. 9.1.2) have bases of the same area (half
the area of the parallelogram with sides of lengthd), and the same
height. Therefore, they have the equal voluntgsXll.6]. On the other

hand, in Fig. 9.1.2, the triangular pyramids in the middle and the one to the
right also have bases of the same area (half the area of the parallelogram
with sides of lengths, d) and the same height. therefore, they too have
equal volumes. This observation concludes the proof of the proposition.

Fig. 9.1.2. A triangular prism dissected a&InXII.7.

9.2. Pre-literate Plain Number Tokens from the Middle East in the
Form of Circular Lenses, Pyramids, Cylinders, Cones, and Spheres

The basic object dElementsXll is (from a modern point of view) the
computation of the area of a circle and the volumes of (triangular)
pyramids, of (circular) cylinders or cones, and of spheres. It is interesting
to note that it is well documented tleétcles, pyramids, cylinders, cones,
and spherewere well known long before the time of the Greeks, although
in a completely different setting. The arguments below supporting this
proposition are borrowed from extensive accounts of related matters in
Friberg,0OLZ 89 (1994) andRC(2007), Appendix 4, Sec. A4 .

In Bef or e W iting, Vol(1992), Schmandt-Besserat gave a detailed
account of her revolutionary theory about the crucial role played by small
clay-figures, so called “tokens”, in the prehistory of writing. According to
this theory, there were seven essential steps in the early development of
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writing as a tool for accounting and communication: 1) the appearance in
various parts of the Middle East around 8000 BCE, that is at the time of
the agricultural revolution, of six types of “plain tokens”, small geometric
objects in baked claycifcular disks, tetrahedrons, cylinders, cones,
spheres, and ovoijisprobably used as counters; 2) in the late fifth and
early fourth millennia, the gradual introduction of additional types and
subtypes of tokens, so called “complex tokens”; also the occasional use of
perforations, allowing groups of tokens to be strung together; 3) around the
middle of the fourth millennium, at the time of the first cities and begin-
ning state formation, an explosive proliferation of the repertory of complex
tokens at a limited number of sites (mainly Susa in Iran, Uruk in Irag, and
Habuba Kabira in Syria), probably in order to represent many new kinds
of products from the city workshops; 4) the invention of “spherical enve-
lopes”, containing (mostly) plain tokens and often impressed with cylinder
seals, sometimes for good measure also marked on the outside with more
or less schematic representations of the tokens inside; 5) for a short while,
around 3300 BCE, the use of “impressed tablets”, instead of, or together
with, spherical envelopes and yielding the same kind of information, the
number signs on these first clay tablets being imitations of the previously
used tokens; 6) the invention of writing on clay tablets, with a large inven-
tory of sometimes pictographic but most often abstract signs, of which, ap-
parently, the latter in some cases were two-dimensional representations of
the complex tokens they replaced; 7) the complete disappearance of tokens
from (almost) all excavated sites after the invention of writing.

For the history of number notations, the spherical envelopes are partic-
ularly important. Their importance derives from two hypothetical situa-
tions: Either the content of an envelope constitutes an account of a single
disbursement or deliverin which case the enclosed tokens record a num-
ber in a single system of number tokens. Or else, the content of an envelope
constitutes a record of a singi&nsaction in which case the enclosed
tokens record two numbers in two separate systems of number tokens, and
there exists some simple mathematical relation between the two numbers.

There is no reason to doubt that the (mostly) plain tokens enclosed in
spherical envelopes belonged to a small numbpresfiteratesystems of
number tokens, very much similar to the now well kngwoto-literate
systems of number notations impressed on clay tablets. The following
(extremely) tentative and partial interpretation of the numerical meaning
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of plain tokens in spherical envelopes was suggested in Friyargit.:

punched(?) small
large cone cone lens rod
SystemS @ ™
Sexagesimal
counting numbers Cd c d ¢
10 6 10
o <2 o e
10 - 60 60 10 1
very high disk large ballsmall ball  disk Sdf};ak"
Capacity numberg
C D d C
(barley,etc)
3 10 6 2
D) @ < 0 «— >« —
3D 60 c 6c¢C 5M

very large tetrahedron punched small
tetrahedron tetrahedron

SystemW (Susa)
Decimal
counting numbers c2 d C
- 10 10 10
(man-days) « D < o < [
100 10 1

Fig. 9.2.1. Factor diagrams for parallel(?) pre- and proto-literate systems of numbers.

In the first of the three registers above, for instanceattter diagram
for the proto-literate system of sexagesimal counting numfosed on
clay tablets in Iran and Iraq near the end of the third millennium BCE)
shows that units were written with small oblong punch signs (c), while tens
were written with small circular punch signs (d), sixties with large oblong
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punch signs (C), and ten-times-sixties with large oblong punch signs with
a small circular punch sign inside it (Cd). The corresponding pre-literate
number signs seems to have been a “rod” (cylinder), a “lens” (circle), a
small cone, and a large cone with a punch mark, respectively.

Here is an example of the kind of arguments that can be used in an
effort to explain the numerical values of the plain tokens. The spherical
envelopeMS 4632 (Friberg, RC (2007), Sec. A4 i) has turned out to
contain 5 cones, 1 large and 8 small balls, and 3 non-plain tokens:

Persons:

. .. 5C=5"60

O . T~ Wages in barley:
.... 1D8d=18d=18 -6c=18 30 M
% — Pay rate (per day):

‘ ‘ (1-1/10) - 2 M/ person

% Three tokens of unknown significance:

Fig. 9.2.2. The contents of the spherical envelope MS 4632 (courtesy P. Damerow).

With the interpretations of the numerical meaning of the plain tokens
suggested above, the contents of MS 4632 seems to be a record of 18 d =
108 c of barley being paid out to 5 - 60 = 300 workers. The corresponding
daily wage rate, close to 2/5 c of barley per person, agrees well with what
is known about pay rates mentioned in proto-literate cuneiform texts.

Note that the use of plain tokens in the form of cones, pyramids (tetra-
hedrons), balls (sphere®tc, does not mean that people in the Middle
East long before the invention of writing were interested in solid geometry.
The simple explanation is instead that cones, tetrahedrons,dbale
very easy to fabricate out of lumps of clay by rolling and squeezing.

9.3. Pyramids and Cones in OB Mathematical Cuneiform Texts

An extensive discussion of occurrences of pyramids and cones in an-
cient Babylonian, Egyptian, Greek, Chinese, and Indian mathematical
texts can be found in FriberBCHM 6 (1998), andJL (2005), Sec.4.8 g.
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Selected passages from that discussion are reproduced below.

The volume and grain measure of a ridge pyramid

TMS 14 (Friberg,UL (2005), Sec. 1.5 f) is an OB mathematical cunei-
form text from Susa (western Iran), which remained a mystery for more
than 60 years after it was excavated (1933). The reason why it was not un-
derstood is that it starts by mentioning the object it is concerned with, a
‘granary’. It was assumed that the shape of a granary would be a cylinder
with a domed top, as in a well known depiction of a granary on a seal im-
print from an archaic layer in Susa. The data given in the teM&14
clearly did not fit this description of a granary. A renewed analysis of the
text revealed that the form of the granary is instead a “ridge pyramid” of
the type shown in Fig. 9.3.1 below, formed like a roof sloping uniformly
from a ridge towards the ground at the sides and at the ends.

f=1c/c.C s=2h and V=r-sqh+2.(1-1/3)h-sgh

Fig. 9.3.1. TMS14. An Old Babylonian problem for a ridge pyramid.

TMS 14, literal translation explanation

A granary, as much as 14 24 is the volume. A granary1l4 24 volumesar

3, reeds, is the height. h=3ninda [f=1 cubit/1 cubit]
As much as 14 24 being the volume,

length, front and ridge what do | set? l,s, r=?

You: The opposite of 12 of the depth, nihda = 12 cubits

release, 5 you see, C 1 cubit =;05ninda

5to 14 24, the volume, 14 24 volurber (sg.ninda - cubit)
raise, then 1 12 you see. =1 12 cubicda = V*

3, reeds, the upper length, square, 9 you seeh sqg. 3ninda = 9 sg.ninda
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The 9 to 3 of the height return, 27 you seeh -sq.h = 27 cubicninda
From 1, the normal step,

20 of volume, a third of 1-1/3

what <to the normal volume,

you added, tear off, 40 you see. =1-;20=;40

The 40, since 2 fronts of the granary, There are 2 ends of the ridge pyramid
to 2 repeat, then' 20 you see. 2-(1-1/3)=2-;20=;40

The 1 20 to 27 raise, then 36 you see. 2 - (1 - 13%qg.h = 36 cubiminda

The 36 from 1 12 tear off, 36 you see. V* — 36 cubicninda = 36 cubicninda
Return.

3, the height, square, 9 you see. Fsg.sg. 3ninda = 9 sg.ninda

The opposite of 9 break off, 6 40 you see. 1/9 = ;06 40

6 40 to 36 raise, 4 you see. 36 cuhiieda / 9 sq.ninda = 4ninda
4 is the ridge. r = 4ninda

3, the height, since h = 3ninda, and

in a cubit a cubit, f=1 cubit/ 1 cubit

3 double, 6 you see. 6 is the front. C s=2h=6ninda

The 6 to 4, the ridge, heap, 10 you see. r +s=6ninda + 4ninda = 10ninda
10is the length | =10ninda

| T ] [(1 +r/2)/3 = 6ninda]

12 to 3, the height, raise, then 36 you seeh = 3ninda = 36 cubits.

36 to 24 raise, then | €r/2)/3 -h =36 cubits - 24inda
14 24 you see, the volume. =14 24 volufne-= V

14 24, the volume, to

8, the storing number of the granary, V - 800 0Gila / volumesar

raise, then 1 55 12 you see. =15512 00 0Gila

23 gur(?) 2 24 gur of barley ... ... =23 02 ur ofbarley ...

Briefly, what this text means is the following: Considedge pyramid
like the one in Fig. 9.3.1. Suppose it is known that its volunse14 24
volumesar (sg.ninda - 1 cubit), and that its height imdnda.Suppose
also that the uniform slope of the roof is 1:1. What are then the long and
short sides of the base 4nds), and what is the length of the ridggX

The first step of the solution procedure is to divide the volume 14 24
sq.ninda - 1 cubit by 12 (cubits palinda), expressing it in the new form
1 12 sqg.ninda - ninda (cubicnindas).Next, the cube of height is
computed; it is sqh - h = 27 cubicnindas.The awkwardly worded
passage of the text which then follows can be interpreted as describing the
computation of the volume 2 - (1-1/3) - $.h = 36 sq.cubicnindas.
What this means is that the volumes of the rectangular pyramids at the two
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ends of the ridge pyramid (see again Fig. 9.3.1) are computied #srds

of the volumes of the two wedges (triangular prisms) containing them
deed, since the uniform slope of the roof of the ridge pyramid is 1:1, each
end pyramid has the heidgthaind the sidels and 2. Therefore, the volume

of each containing wedge is equal to $¢.h, and the combined volume

of the two end pyramids is indeed equal to 2 - (1-1/3) hs.

In the next step of the procedure, the volume of the central wedge is
computed as the given volume of the whole ridge pyramid, diminished by
the volumes of the two end pyramids, that is as (1 12 — 36hsqla-
ninda = 36 sq.ninda-ninda. On the other hand, the volume of this cen-
tral wedge is equal t® - r - h/2 =r - sq. h, sinces = 2h. Therefore, the
ridger is equal to the volume of the central wedge divided byrsdn
other wordst = (36 sq.ninda-ninda.)/(9 sq.ninda) =4 ninda. lraddi-
tion,s=2h=6ninda andl=r +s=10 ninda.

In the second part of the text, the obtained resutitiiied in that the
given value oh and the computed valueslof, s are used to compute the
volumeV, which, of course, again is equal to 14 24 voldme-This value
for the volume is then multiplied by the “storing number”

c =800 0Gila/volumesar, with 1sila = somewhat less than 1 liter.

The final result is the “grain measure” of the granary:
C=c-V=1551200 08ila.

BM 96954+BM 102366+SE 93Friberg, PCHM 6 (1996), Robson,
MMTC (1999), Appendix 3; FriberdJL (2005), Sec. 4.8 g) is a text com-
posed of three fragments of a large clay tablet. As shown by the outline be-
low of the clay tablet and its table of contents, it is a recombination text
which has “whole or truncated pyramids and cones” as its dominating top-
ic.

8§ 1 of the recombination text may have consisted originally of 13
mathematical exercises, all dealing with a centaige pyramidsimilar to
the one treated iMMS 14 (Fig. 9.3.1 above). § 3 consists of 3 exercises
dealing with various kinds of prisms. The content of each solid appearing
in 88 1 and 3 is expressed, not in terms ofdasime V but in terms of its
“grain measureC = ¢ -V, where c is the new storing number

¢ =1 30gur/$ar =7 30 0Gsila/volume-sar.
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The equation used in § 1 for the volume of a ridge pyramid is
V=(+r/2)-s-h/3, with I,s,r,h asinFig.9.3.1.

BM 102366 obv. BM 96954+102366+SE 93.
Contents:
8§81 a-e:
Basic equations for the parameters
of a ridge pyramid(?).
8§1f:
§ The content of a ridge pyramid
& | truncated at mid-height.
r'§1d /81h §1k | =
| @[ §§1g-i:
| Equations for the parameters
of a ridge pyramid.
§2:
The content of a square pyramid(?).
rev. § 1 j'm:
Equations for the parameters of a
3 ridge pyramid.
[}
(e}
© §§ 3 a-c:
% The contents of various prisms.
88 4 a-d:
Equations for the parameters of a cone.
84e:
Py The volume of a cone truncated
‘w at mid-height.
"
8§84f h:
Problems for a cone truncated
BM 102366 near the top.

Fig. 9.3.2. BM 96954+. An OB recombination text dealing with pyramids and cones.

It is likely that the lost exercises in the first column of BM 96954+ were
all concerned with the same ridge pyramid as the onein 88 1 g - 1 m. If this



200 Amazing Traces of a Babylonian Origin in Greek Mathematics

conjecture is correct, the following series of simple questions may have
been asked there:

8§la: l,sr,h given c="
81b: sr,h,C given |=2
8lc: I,r,h,C given s=?
8§1d: I,sh,C given r=2
8le: l,sr1,C given h="?

The remaining exercises in § 1, except 8 1 f, deal with linear or
rectangular-lineasystems of equatiorfer the parameters of the ridge
pyramid. Being a recombination text, BM 96954 is somewhat chaotically
organized, so that § 1 f deals instead wittuacatedridge pyramid:

The grain measure of a ridge pyramid truncated at mid-height

//‘
1
A

|

s

4 !
/

. —7 1h
S
O T
///// |

- |
| =10 ninda,s =6 ninda,r = 4 ninda |'=7 ninda,s = 3 ninda,
h = 48 cubits,h — H = 24 cubits h' = 24 cubits
V=19 12%ar, ¢ =1 30 guiar V' = 15 368ar
C =284800 gur C' =23 2400 gur

Fig. 9.3.3. BM 96954 § 1 f. A ridge pyramid truncated at mid-height.

In BM 96954+ § 1 f, the ridge pyramid common to all the other exer-
cises in § 1 isruncated at mid-heigh(Fig. 9.3.3). Here is the text of § 1 f,
of which only the first part is preserved:

BM 96954+ § 1 fliteral translation explanation

A granary. A granary

10 the length, 6 the front, 4 the ridge, | =10ninda, s= 6ninda, r = 4ninda
28 48 ur of barley>, Grain measufe= 28 48 0Qzur

48 the height, 24 | went down. h = 48 cubitsh —h' = 24 cubits

The transversal(s) and the barley are what?s,C' =7
You The opposite of 48 the height release, 1/48
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1 15 you see. =,0115

1 15 to6, whatthe length is more than | —r = 6ninda

the ridge, raise, 7 30 you see. f=(-r)h=;07 30 (1/8ninda/cubit
7 30 to24 raise, 3 you see. f- (h—h") = 3 cubits

3 from 10 the lengtkear off, 7 you see, -f - (h—h") =7 cubits

7 the transversal. E

3 from 6 the front tear of8 you see, the-- s—f- (h—h') = 3 cubits [=S]

- raise, 1yousee. --- --- -9 =[100sgninda. ---

Although only the first part of the text of 8 1 f is preserved, it is clear
that the equation for the volume of the truncated ridge pyramid must have
been expressed in terms of its linear parameters, the leagthfronts at
the base, the “upper length”and “the upper front8 at mid-height, and
the lower height'. (Unless, of course, the volume of the truncated ridge
pyramid was computed as the volume of the whole ridge pyramid minus
the volume of the small upper ridge pyramid.) The voldhtd the trun-
cated ridge pyramid is easily seen to be equal to the voliioiea central
rectangular prism, plus the volumes\3 and 2 Vg of four wedges along
the sides, and the volumes¥,-of four square pyramids in the cornéfs:

V=Ve+2:V +2-Vs+4.V,

=I'-s -h+l - (s=s ) h2+s-(=1) -2+ (-1") -g-5)-h3
={(l-s+I'-s)+(-s+I'-5)/2} - h/3.

Fig. 9.3.4. Dissection of a truncated ridge pyramid.

However, before this equation can be used to compute the volume of

17. In the case whdh=r ands = 0, that is in the case of a whole ridge pyramid, this
equation is reduced ¥= {(I +r/2) -s - h/3. In the case whdn=sandl'=s =t, that is in
the case of an ordinary truncated square pyramid, the equation is reduced to the well known
equationV = (sq.s+ s -t + sq.t) - h/3. Cf. the discussion of the Egyptian hieratic mathe-
matical exercis€®.Moscow# 14 in FribergUL (2005), Sec. 2.2 d.
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the truncated ridge pyramid, the valuesiofand™ must be known. As a
matter of fact, the preserved first part of BM 96954 § 1 f is devoted to the
computation of these values. The first step of the computation is to find the
combined feefbr the two ends of the ridge pyramid:

2-f=(1-r)h=(10 — 4);ninda - 1/(48 cubits) = 6 - ;01 15 n./c. =;07 30 n./c.
The double feed is multiplied by the height of the truncated ridge pyramid:

2.-f-h" =;,0730n./c.-24c.=3n.
So much smaller are the upper length and the upper front than the lower
length and the lower front, respectively. Therefore,

" 4-3n.=10n.-3n.=nfinda, S =-3n.=6n.—3n.=Binda.
Inserting these computed values into the equation for the volume of the
truncated ridge pyramid, one obtains the following result (unfortunately
not present in the preserved part of the text):

V={(10-6+7-3)+ (103 +7-6)/2} sginda - 24 cubits /3

=157 sqninda - 8 cubits = 15 3@ar,

C=c-V=130gur/sar - 15 3&ar = 23 24 0Qur
Note that the first step in this computation of the volumeould be to
compute the product défands as 10 - 6 = 1 (00). This proposed first step
of the computation agrees well with the only preserved part of the calcula-
tion of V, which is ‘[---] times [---] = 1" in the last preserved line of § 1 f.

Problems for cones and truncated cones

Various problems for cones and truncated cones are the obkt of
96954 +, § 4 A quite surprising method is used to solve some of those
problems. For details, the reader is referred to the discussion in Ftilherg,
(2005), Sec. 4.8 g. No other examples are known of Babylonian mathemat-
ical texts dealing with cones.

9.4. Pyramids and Cones in Ancient Chinese Mathematical Texts

The fifth chapter in J iu Zhang Suan Shu

The famougd iu Zhang Suan Shu Nine Chapters on the Mathematical
Art’ (Vogel, NBAT(1968); Shen, Crossley, and LINCMA(1999)) is one
of the oldest, and probably the most important, Chinese mathematical
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classic to have survived to the present day. It was assembled into one book
not later than in the middle of the Eastern Han Dynasty (25-220 A.D.).
The fifth chapter ofiu Zhang Suan Sthas the misleading title ‘Construc-

tion Consultations’. It is ostensibly devoted to the discussion of the amount
of manpower needed, under various enumerated circumstances, for the
excavation or building of various constructions in the form of more or less
familiar types of (mostly) rectilinear solids. In this respect it calls to mind
similarly dressed problems in a number of OB mathematical exercises.
Nevertheless, it is obvious that the main emphasis is laideooomputa-

tion of the volumes of various kinds of pyramids and cones, or related
types of solidsThe text of the chapter is organized in a strikingly system-
atic way. The brief survey below of the contents of the chapter will make
this fact clear.

In the first six problems, V.2-7, the object considered is a trapezoidal
prism, which trivially has a known volume, since it is composed of one
rectangular block and two wedges. In the next six exercises, V.8-13, are
computed the volumes of cubes and cylinders, of truncated pyramids and
cones, and of full pyramids and con€ken, in V.14-16, the volumes are
computed of the solids that result when a rectangular block is cut into two
wedges, and each wedge into two pyramids.

V. 2-4. A wall, a dike.
V. 5-7. A trench, a moat, a canal h ‘
S S

V=(s+1)/2 -h-I

V. 8. A square fort ! -
V=sqg.s-h h i ) h !
V. 9. A round fort - S

V=sqg.a-h/12 (LR3)

V. 10. A square pavilion Lt b
V=(sq.s+s-t+sq.t)-h/3 h h@
V. 11. A round pavilion s a

V=(sq.a+a-b+sq.b) h/36

V. 12. A square needle
V. 13. A round needle s a

V=sqg.a-h/36
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=7 <7
V. 14. A moat-wallgian du e O ' h
V=I-s-h/2 //),/J ////\
V. 15. A male horsggang ma |

V=I-s-h/3
V. 16. A turtle’s bonebie nao = A\A h

V=I|-s-h/6 [ S
gian du yang ma bie nao

Fig. 9.4.1. Volumes of solid figures computedin Zhang Suan Sh¥.2-16.

More complicated types of solids are considered in V.17-20, a trapezoi-
dal wedge in V.17, a ridge pyramid in V.18, and a truncated ridge pyramid
in V.19. In V.20, the lining of a tapering well is considered as an astonish-
ing example of a&urvedtruncated pyramid, which can be treated in the
same way as the non-curved variant.

In V.23-25, finally, the expressions for the volumes of a cone, a half-
cone, and a quarter-cone, all in terms of the circumference of the base, are
contrasted with each other.

V. 17. A drain | c
V=(a+b+c):l-h6
ey

V. 18. A cut grass ridge

V=(2I+r)-s-h/6

r s I
V. 19. A cut grass overhang h‘ . h‘ ; \>
V={@l+I)-s+ @I +1)-s} - hi6 /’/r" 3 /(LI *****
V. 20. A bent moat a g
V={a+a) -t+ (2 +a) -t} 6 =
a, a’ = lower, upper middle arcs
t, t” = lower, upper widths a

V. 23. Cereal piled on the floor

V=sqg.a-h/36 h ‘!
V. 24. Cereal piled against a wall
V=sqg.a-h/18 a h
V. 25. Cereal piled in a corner .y ha

V=sqg.a-h/9 N

Fig. 9.4.2. Volumes of solid figures computedin Zhang Suan Sh¥.17-25.
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All the rules inJiu Zhang Suan Shu.2-25 for the computation of the
volume of pyramids, cones, and related objects are correct.

The reason whyiu Zhang Suan ShC€hapter V is mentioned here is its
obvious close relationship with OB mathematics. There are OB counter-
parts to the exercisdau Zhang Suan SH.2-15 and V.17-19 in the math-
ematical recombination texts BM 96954+BM 102366+SE 93 (Fig. 9.3.2
above), BM 85194, BM 85196, and BM 96957+VAT 6598, all from the
ancient Mesopotamian city Sippar (see Frib®@HM 6 (1996) § 1.5}8
In addition, the juxtaposition of trggan dy theyang maand thebie nao
in Jiu Zhang Suan Sh.14-16 (Fig. 9.4.1) is reminiscent of the computa-
tion of the volume of the end pyramidsTimMS14 (Fig. 9.3.1 above), and
the computation of the ‘bent moat’diu Zhang Suan SH.20 (fig. 9.4.2)
has an (imperfect) parallel in the computation of the volume of a ring-wall
in BM 85194 # 3. It is also worth noting that the computations of the vol-
umes of a circular cylinder, a truncated circular cone, and a full circular
cone inJiu Zhang Suan Shy.9, 11, 13 are all based on the OB form of
the rule for the computation of the area of a ciréle,sg.a /12, wherea
is the circumference of the circle.

Thus, if there ever existed an OB well organittezine texwith com-
putations of volumes of pyramids, cones, and related objects, as it main
topic (and there almost certainly did), it is reasonable to suspect that it was
organized very much like the fifth chapterdid Zhang Suan Shu

Even older thadiu Zhang Suan Shig the recently published work
Suan Shu Shu (written on 190 bamboo strips dated to the second century
BCE; see Culler§S32004)). It is interesting that the section ‘Shapes and
Volumes’ (group 12) ofSuan Shu Shu contains the following exercises:
parallels taJiu Zhang Suan Shd. 17-19 inSuan Shu Shu ## 55-57, and
parallels taJiu Zhang Suan SWA.13, 11, 9 inSuan Shu Shu ## 58-60.

For the reasons mentioned above, it seems to be justified to draw the
conclusion that the rules for the computation of volumes of pyramids,
cones, and related objects, which had been discovered by OB mathemati-
cians, became part of a common mathematical tradition in large parts of
the ancient world, a tradition which ultimately spread all the way to China

18. Some of the mentioned recombination texts are somewhat chaotically organized, and
some of the computations of volumes of solid objects are only rough approximations.
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and was still alive in the second century BEE? 21

Liu Hui’'s commentary to J iu Zhang Suan ShuChapter V.

The expressions given u Zhang Suan ShGhapter V, for the vol-
umes of various kinds of pyramids and cones or related solids are all cor-
rect. However, as far as is known, justifications for these expressions, in
the form of careful derivations from supposedly known facts were first
given in the commentary ttiu Zhang Suan Sharitten by Liu Hui (the
third century A.D.). In Wagner’s articldM 6 (1979), which is a continu-
ation of his unpublished master’s thesis (1975), are discussed in full detail
Liu Hui's correct derivations of the expressions for the volumes datite
ting (a truncated pyramid) and of the pyramydsg maandbie nao

In this connection, Wagner mentions that the solution to Hilbert’'s Third
Problem (Dehn (1900), Jessen (1939)) confirms thahitipossiblegen-
erally, and particularly not in the case of a regular tetrahedron, to compute
the area of a pyramid by means of a finite number of dissections and
rearrangements, that is without the use of infinitesimal calculus.

Liu Hui's derivation of the correct expressions for the volumes of the
square pyramiggang maand of the triangular pyramlale naois closely
related to the method usedifements<il.3-9 (in the case of aarbitrary
triangular pyramid). Thus, Liu Hui starts his derivation by considering two
pyramids, ongzang maand onebie naq which can be fitted together to
form onegian du(a triangular wedge; see Fig. 9.4.1 above). He wants to
show thatthe volume of the yang ma is twice the volume of the bie nao
because if that is so, then the volumes of/drey maand thebie haomust
be 2/3 and 1/3, respectively, of the known volume of the wedge they form

19. Cf. the discussion of rules for the computation of volumes of pyramids and cones in
Heron's workMetr ical (Heath,HGM 2(1981), 331f.), and in the Greek-Egyptian math-
ematical papyruB.VindobonensisG. 1 9 9 @st century? (FriberdJL (2005), Sec. 4.8).

20. Cf. also the discussion in FribeRCHM6 (1996) 8 1.4, of similar rules in the Indian
mathematical worlBrahmasphutasiddhanta by Brahmagupta (628).

21. It is particularly interesting that Brahmasphutasiddhanta \/111.50-51 there are
rules for the computation of the volumesaaiical piles of grainrestingon the floor,
against the side of a wall, in a corner, or on the outside of a cpafién terms of the height
and the circumferenceof the baseV =h - sq. &6),V=h - sq. &6) - 2,V =h - sq. &/6)

-4,V =h- sq. &6) - 4/3. These rules are paralleld&sSV.23-25 (Fig. 9.4.2).
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together. He imagines that, in a first step, the two pyramids are cut by
planes through the midpoints of their edges, one into five smaller pieces,
the other into four, as shown in Fig. 9.4.3 below.

Liu Hui suggests that the once dissected pyramids should be thought of
as composed of half-size wooden building blocks, two swedigesand
two smallbie na, all colored red, in the case of thie nag and one small
cube two smallwedgesand two smalyang masall colored black, in the
case of thggang ma Since the combined volume of the small black cube
and the small black wedges is known and is twice the combined volume of
the small red wedges, it remains to be shown that the volume of the two
half-sizeyang mass twice the volume of the two half-sib&e nac. In a
second step of the algorithm, these half-size pyramids, in their turn, are
dissected, and new red and black cubes and wedges of known volumes are
removed, and so on. At each step of the algorithm, the volume of the
remaining pyramids is less than the volume of the pieces just removed.
Ultimately, the volume of the remaining pyramids will be negligible, and
the stated goal will be reached.

/B

Fig. 9.4.3. Liu Hui's dissection ofymng maand abie nao

9.5. A Possible Babylonian Derivation of the Volume of a Pyramid

As shown above, in Sec. 91Bg first ones to seriously consider non-
trivial solid figures like pyramids, cones, and related objects were the Old
Babylonian mathematicianr possibly their Sumerian predecessors).
Moreover, correct expressions for volumes of such solid figures were
known to the Babyloniangventhe fundamental and non-trivial idea of
cutting a triangular prism by a plane into a triangular and a square pyra-
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mid seems to have been their invent{@ee Fig. 9.3.1.)

It remains to find out how it was possible for Babylonian mathemati-
cians tofind the correct expressions for the volumes of whole and trun-
cated pyramids and firove to their own satisfaction, that the expressions
are correct. Simple answers to these questions will be suggested below:

1) The idea to consider pyramids and cones must have come naturally
to a people that constantly dug ditches, canals, and water reservoirs, built
temple platforms and step pyramids, and heaped up grain in their grana-
ries. Besides, easily fabricated smpiiramids, cylinders, cones, and
spheresof clay were in constant use as tokens for counting in Mesopota-
mia and surrounding regions for several millennia before the invention of
writing (Sec. 9.2 above), which shows that pyramids and cones were
familiar objects even long before the time of the Babylonians.

2) Itis clear from the form of many geometrical entries in Old Babylo-
nian “tables of constants” and from the solution procedures in many math-
ematical cuneiform problem texts that Babylonian mathematicians
intuitively knew and routinely exploited the “scaling rule for plane fig-
ures” thatthe areas of similar plane figures are proportional to the
squares of their side#t is also clear that Babylonian mathematicians in a
similar way intuitively knew and routinely exploited the “scaling rule for
solid figures” thathe volumes of similar solid figures are proportional to
the cubes of their edge§his three-dimensional scaling rule must have
been obvious to a people that used bricks as its most important building
material.

Now consider the dissection of a triangular prism used by Liu Hui (Sec.
9.4 above) for his derivation of the volumes of ylamg maand thebie
nao, by a method which is very close to the method usellements
XII.3-5 and 7 (Sec. 9.1 above). Thus, consider, as in Fig. 9.4.3, a prism
which has a cross-section in the form of a right triangle. (This is one half
of a rectangular wedge such as the one at both ends of the ridge pyramid
in Fig. 9.3.1). LeW be the volume of the wedge. Imagine that the wedge
is dissected by means of three mutually orthogonal planes through the mid-
points of its edges, two vertical and one horizontal (Fig. 9.5.1 below).
Then, according to the scaling rule for solid figures, the wedge is divided
into 4 wedges similar to itself, each with the voluWM@, and two rectan-
gular blocks, each with the voluriig4.
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Dissect the wedge further by a slanting plane through the upper left ver-
tex and the lower right edge. The result is that the original triangular prism
is divided into two pyramids, one rectangulef: theyang ma, the other
triangular €f. thebie nag. Let their unknown volumes be callBdandT,
respectively. The rectangular pyramid, in its turn, is divided by the men-
tioned orthogonal planes into two small rectangular pyramids similar to
itself, two wedges, and one rectangular block. According to the scaling
rule for solid figures, each one of the small rectangular pyramids has the
volumeR/8, each one of the two wedges has the voli& and the rect-
angular block has the volum&/4. Similarly, the triangular pyramid is
divided by the orthogonal planes into two triangular pyramids similar to it,
each with the volum@&/8, and two wedges, each with the voluws.
Therefore, the unknown volum&sandT satisfy the equations

R=2R/8 + 2W/8 + 1W/4 =R/4 +W/2,
T=2T/8 + 2WI8 =T/4 +W/4.

To find this out would be well within the competence of a Babylonian
mathematician, who would also be able to solve the linear equatidRs for
andT, finding immediately that

R=4/3 W2=2/3 W, and T=4/3 -W4=1/3 W.

W= R= T=
4 -W/8 + 2 -W/4 2-R8+2 WB+1 W4 2-T/8+ 2 W8
C R=2/3-W C T=1/3-W

Fig. 9.5.1. Possibly the way in which the Babylonians found the volume of a pyramid.

The conjecture that Babylonian mathematicians found the volume of a
pyramid in the way suggested above (Fig. 9.5.1) is supported by two
circumstances: 1) the fact thatTMS 14 (Fig. 9.3.1) the volumes of the
end pyramids of a ridge pyramid are computed as 1 — 1/3 of the volume of
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a wedge, and 2) the fact that in BM 96954+ § 1 f the volume is computed
of a ridge pyramid truncated at mid-height, while in BM 96954+ § 4 e the
volume is computed of a circular cone truncated at mid-height. (It was
probably intuitively clear that the ratio between the volume of a circular
cone and the volume of a circumscribed square pyramid is equal to the
ratio between the area of a circle and the area of a circumscribed square.)

Consequently, it is likely that Old Babylonian mathematicians did in-
deed both find and provagccording to their own standards, and without
any kind of infinitesimal calculusorrect expressions for the volumes of a
large variety of pyramids, cones, and related solids! Thus, of the various
solid figures appearing iklementsXIl, only the sphere seems to have
been totally outside the scope of Babylonian mathematics.



Chapter 10

El. 1.43-44,EIl. VI1.24-29, Data 57-59, 84-86,
and Metric Algebra

The most recent edition of EuclidB3ata (in the sense oBiveny is
Taisbak (2003), complete with the Greek text, an English translation, and
extensive commentaries, based on geometric interpretations.

In his Preface, Taisbak explains why he felt he had to write the book:
“After reading it (a modern translation of tBata) one is left in the same bewilderment

as that already expressed by the ancient commenRepmisandMarinus What is all

this really about?”

“The most recent commentary is by Clemens Thaer (Data 1962), a very brief and
succinct interpretation in modern algebraic jargon --- . Needless to say (at least after you
have read even part ofytale) | disagree with him at almost all points, so much so that
one would think we were reading completely different texts.”

In the Introduction, the nature of tBatais explained as follows:

“In the Data, Euclid proves deductively that if some items are given, some other items
are also giveninto the bargairso to speak.”

“... an essential feature of thata: the Givens hang together in chains, the purpose of
any proposition being to produce more links to them.”

Taisbak also cites Wilbur Knorr’'s description of thata (ATGP 1986):

“The Datais a complement to th€lementsrecast in a form more serviceable for the

analysis of problems. --- the subject matter overlaps thatBieimeents - Indeed, only

in rare instances does tBata present a result without a parallel in tements’

The 15 definitions and 94 propositions in eta are divided by Tais-
bak into 14 chapters, of which the following ones are particularly interest-
ing from the point of view of Babylonian mathematics (metric algebra):

Chapter 8. Application of areas | Data57-61
Chapter 12. Application of areas Il Data 84-85
Chapter 13. Intersecting hyperbolas. Zeuthen'’s conjecture Data 86

211



212 Amazing Traces of a Babylonian Origin in Greek Mathematics

10.1.El. 1.43-44 & Data 57: Parabolic Applications of Parallelograms

Three of the propositions iBlementsl have close associations with
Babylonian metric algebra. One of them, 1.47 (the diagonal rule) was dis-
cussed in Chapter 2 above. The other twdehré 43-44

El. 1.43

In any parallelogram the complements of the parallelograms about the diagonal are
equal to one another.

El. .44

To a given straight line to apply, in a given rectilineal angle, a parallelogram equal to a
given triangle.

A H D Uy U,
e/ Nk /e . g
A )

B G C

Fig. 10.1.1.El. 1.43. Complements about the diagonal are equal (in area).

The proof ofEl. 1.43 is simple. Let a parallelogram ABCD be divided
by a diagonal and two lines parallel to the sides of the parallelogram and
intersecting in a point K on the diagonal, as in Fig. 10.1.1, left. Then

ABC = ACD, AEK=AHK, and KFC =KGC.

Subtracting AEK and KFC from ABC or AHK and KGC from ACD, one
finds, as wanted, that what remains is the same in both cases:
BGKE = DHKF.

Parallelograms were never considered in Babylonian mathematics, so
the (hypothetical) Babylonian counterpart to the diagrahi.in 43 would
be the dividedectanglein Fig. 10.1.1, rightdivided by the diagonal into
two right triangles Now, one of the basic tools of Babylonian geometry
was the intuitively obvious “right sub-triangle rule”, according to which
every line parallel to one of the sides of a right triangle cuts off a right sub-
trianglewith the same ratio between the sidsghat in the whole triangle.
(This is, of course, the Babylonian counterpa€ltd/I.24.) In the case of
the divided rectangle in Fig. 10.1.1, right, this means that, for instance, by
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the rule of three,

S=Up s/ Uy
Therefore, clearly,

Up " =U "5,
which means that the ared@s B of the opposite sub-rectangles in
Fig. 10.1.1, right, must be equal. (This kind of manipulation with equa-
tions was done routinely by Babylonian mathematicians.)

The idea behind the proof &l. 1.44 is to first construct a parallelo-
gram, say DHKF in Fig. 10.1.1, left, in the given angle, equal (in area) to
the given triangle, and such that one of its sides, say FK, is in a straight line
with KE, the given straight lin€ Next, the point A is constructed as the
intersection of a continuation of DH with a line through E parallel to FD,
the point C as the intersection of a continuation of AK with a continuation
of DF, the point B as the intersection of a continuation of AE with a line
through C parallel to DH, and the point G as the intersection of a continu-
ation of HK with BC. Then it follows fronkl. 1.43 that BGKE is equal (in
area) to DHKFgtc.

From the point of view of metric algebra, the prook&tfl.44 can be
explained as follows: L&k be the given area, lebe the given length, and
sets=A/u. Then

u-s=u-Alu=B8.

In this way, the complicated geometric pl%f’ccbf El. 1.44 is replaced by a
trivial metric algebra proof (still essentially geometric).

Actually, the problento find the length of the second side of a rectangle
when the area of the rectangle and the length of one side are kmasvn
considered by Mesopotamian mathematicians long before the time of the
Greeks. See the discussion of “metric division exercises” from the Old
Akkadian (or Sargonic) period in Mesopotamia (ca. 2340-2200 BCE) in
Friberg,CDLJ (2005-2) 88 2-3RC (2007), Appendix 6, Sec. A6 c. One
such exercise iIDPA 39 (Fig. 10.1.2 below). The brief text of that exer-
cise, or rather assignment, since no answer is given, states that the length

22. For some obscure reason, the diagram in 1.44 is not identical with the diagram in 1.43.
23. Taisbakdp. cit, 152), cites Heath's opinioETBE1, 342) that “This proposition will
always remain one of the most impressive in all geometry ---".
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(of a rectangle) is 4(60) 3 ninda (a common length unit), and the area is 1
iku (a common area unit) = 100 square ninda. What is then the front (the
short side of the rectangle)?

obv.
oy [T

7= — =

4(60) 3 the length.
(What is) the front

(if) the area is 1 (iku)?
Its frontis ----

to be found.

NI=F= n
¥

Fig. 10.1.2.DPA 39. An Old Akkadian metric division exercise.

In the Old Akkadian period in Mesopotamia, the area of a rectangle was
computed as the length times the front. Therefore the problem stated in
DPA 39 can be expressed as the rectangular-linear system of equations

u-s=A=1(60) 40 square ninda (= 100 square ninda¥, 4(60) 3 ninda (= 243 ninda).

An Old Babylonian school bo$00 years later would have known the
numerical answer to this problem right away, namely that

s=Au =140 -gi 4 03,

where igi 4 03 is a sexagesimal number such that 4413-03 = some power of 60.
Here 4 03 = 4(60) 3 = 243 is a so called “regular sexagesimal number”, by
which it is meant that it i® sexagesimal number with no other prime
factors than 2, 3, and. Because 2, 3, and 5 are also the only prime factors
in the sexagesimal base 60, a given sexagesimal number is a factor in some
power of 60 if and only if it is a regular sexagesimal number. Consequent-
ly, if nis a given sexagesimal number, thibare exists as a finite sexa-
gesimal number igi n (the reciprocal of n) such that n - igi n = some power
of 60 if and only if n is a regular sexagesimal number

Now, look at the particular case wher 4 03 = 243. Since 243 5,3
the number 4 03 is a regular sexagesimal number, and (in floating sexage-
simal numbers)

igi 4 03 = igi 3 = (igi 3)° = 20° = 14 48 53 20.
Therefore, the OB school boy would have found the answer

s=AU=140 - 14 48 53 20 = 24 41 28 53 20.

If he was able to make a correct estimate of how big the answer reasonably
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ought to be, he could then interpret this floating sexagesimal number as
s= approximately ;24 40 ninda = 4 2/3 cubits 8 fingers.

(Indeed, 1 cubit = 1/12inda = ;05ninda, and 1 finger = 1/30 cubit.)

An Old Akkadian school boyn the other hand, would have had to
solve the problem iDPA 39 in some other way, since sexagesimal hum-
bers in place value notation and, in particular, sexagesimal fractions had
not yet been invented in the Old Akkadian period. He could, conceivably,
proceed as follows: Knowing that 1 ninda = 12 cubits, 1 cubit = 30 fingers,
and 1 finger = 6 barleycorns, he would have

A =1 iku = 1 ninda - 100 ninda

= 3 ninda - 33 ninda 4 cubits

=9 ninda - 11 ninda 1 cubit 10 fingers

= 27 ninda - 3 ninda 8 cubits 13 fingers 2 barleycorns

= 1(60) 21 ninda - 1 ninda 2 cubits 24 fingers 2 2/3 barleycorns

= 4(60) 3 ninda - 4 2/3 cubits 8 fingers 2/3 and 1/3 of 2/3 barleycorns.
Therefore, the answer is that if a rectangle has the area 1 iku and length of
the long side is 4(60) 3 ninda, then the length of the short side is 4 2/3
cubits 8 fingers 2/3 and 1/3 of 2/3 barleycorns.

The example shows that metric division is in principle much simpler
but in actual practice sometimes much more complicated than the purely
geometric procedure &l. 1.44!

Interestingly, Euclid offers an alternative Eb. 1.44 in hisData 57,
illustrated by the diagram in Fig. 10.1.3, left, below. Fig. 10.1.3, right,
illustrates an interpretation &fata 57 in terms of metric algebra.

E Z

. sa.u squ:A=squ:u-h=u:h

A B u s:u=(s:h)-(:u)
s= (s:h)-(A:sq.u)-u

C D H Q

Fig. 10.1.3.Data 57. Application of a given parallelogram to a given straight line.
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Data 57 explanation
If a given (parallelogram) is applied

to a given (straight line) in a given angle,

the width of the applied (parallelogram) is given.

For let the given (parallelogram) AH The area AIA fgiven).

have been applied to a given (straight line) BA The length BAgiven).

in the given angle CAB. The angle CAB is given.

| say that CA is given. Then the length CA s given.

For let the square EB have been described on AB. Construct the square EB on AB.
Then EB is given. Then the area of EB =g given.

And let EA, ZB, CH have been produced to D, Q. Draw ED, ZQ, CQ.
And since each of EB and AH is given,

therefore the ratio EB : AH is given. EB:AH=s0.A=r;.

And HA is equal to AQ. The area HA = the area AQ.
Hence the ratio EB : AQ is given, EB:AQ=EB:AHFE

so that the ratio EA : AD is given. EA:AD =EB: AQ&E

And EA = AB. Hence the ratio EA = AB.

BA : AD is given. u:h=AB:AD=EA:AD=r,.

And since angle CDA is given, Angle CDA is given, and

of which angle DAB is given, angle DAB is right. Therefore,

the remaining angle CAD is given. angle CAD = CDA — DAB is given.
And angle CDA is also given, for it is right. Angle CDA is right. Therefore,
Hence triangle ACD is given in form. the form of triangle ACD is given.
Therefore the ratio CA : AD is given. CA : ADs= h=r,is given.

And the ratio DA : AB is given. DA:ABH:u=1f;=r3

Hence the ratio CA : AB is also given. CA:AB=U=T,-1k =Ty

And BA is given. Therefore

AC is also given, and it is the width S=(S:uU)-uU=rg-u.

of the applied (figure).

From the point of view of metric algebra, the idea behind the proof in
Data 57 is the following (see again Fig. 10.1.4, right): The Arefa par-
allelogram is known, as well as the lengtbf one side, and the angle of
one vertex of the parallelogram. That one of the angles of the parallelo-
gram is known means, essentially that the ratids known, wheres is
(length of) the unknown side of the parallelogram latite (length of) the
unknown height. Therefore, the following values can be computed:

1)sq.u, 2)uh=sq.u/A, 3)su=(gh)/(Wwh), 4)s=(gl)-u.

A Babylonian mathematician would, of course, have computdicectly
asA/l, but for a Greek mathematician it was more correct to begin by ex-
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pressing sau : A as the ratio betwedwo magnitudes of the same kind

In the explanation above, the successive “givens” are interpreted as a
sequence of computed values or ratios between values, where the latter are
arbitrarily calledrq, r,, --- . A parallel phenomenon is a well known trick
in modern mathematics, where one conveniently calls all “constants” that
appear in the course of a computation algorityn@, --- , sometimes
even just C, instead of bothering to keep track of their actual values.

10.2.El. VI. 28 & Data 58. Elliptic Applications of Parallelograms

El. VI.28

To a given straight line to apply a parallelogram equal to a given rectilineal figure and
deficient by a parallelogrammic figure similar to a given one; thus the given rectilineal
figure must not be greater than the parallelogram described on the half of the straight
line and similar to the defect.

H G P F
L M
U
T O\ OsR ;D\
A E S B K N

Fig. 10.2.1.EI. VI.28. Elliptic application of a parallelogram of given area.

In the diagram associated wih. VI1.28, AB is the given straight line,

C the given rectilineal figure, and D the given parallelogrammic figure. It
is required to construct a parallelogram ST (or SQTA) along a part AS of
AB, such that the area of ST is equal to the given area of C, and such that
the ‘defect’ BRQS is similar to the given parallelogram D. The given area
of C is not allowed to be greater than the area of the parallelogram EF,
which is similar to D and constructed on EB, the half of AB.

The procedure begins with the construction of EF along EB and the
similar parallelogram AG along AE, the other half of AB. Then, if AG
equals C (in area), AG is the wanted parallelogram. If not, then BG = AG
is greater than C (in area). In that case, let the parallelogram KM (KLMN)
be constructed so that it is similar to D and equal (in area) to the excess by
which BG is greater than C. This is possible accordirig.td1.25 (below,

Sec. 10.4), which teaches how to construct a figure similar to one given
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rectilineal figure and equal (in area) to another given rectilineal figure.

Next, GQ (GOQP), a copy of KM, is placed in the upper left corner of
the similar parallelogram BG, and the “figurestbemais described, by
which is meant that the lines PS, OR, and GB are drawn. Obviously then,
the “gnomon” which is the difference between BG and GQ is equal (in
area) to D. On the other hand, the gnomon is equal in area to the parallel-
ogram TS, because PR is equal to OS (in vielsl df44) and OS + QB is
equal to TE. Therefore, TS is the wanted parallelogram.

Data 58
If a given (parallelogram) is applied to a given (straight line) deficient by a form given
in form, the widths of the defect are given.

H Q Z

A E B D

Fig. 10.2.2.Data 58. The widths of the defect are given.

The proof ofData 58 begins with the assumption that a parallelogram
AC of given area has already been applied to a straight line AB of given
length in such a way that it is deficient by a parallelogram DC of given
form. This can have been done by us&lo#/I.28.

The construction that was used for the proofEhfVI.28 is then
repeated, up to the point where the ‘figure’ is described. It is noted that the
parallelogram EZ is given both ‘in form’, since it is similar to DC, and ‘in
magnitude’, since, in addition, the side ED is half of the given straight line
AD. On the other hand, accordingEb V1.28, EZ = AC + KQ, and AC is
given. Therefore, KQ is also given, at least in magnitude, but it is also
given in form since it is similar to DC, accordingBb V1.24, Euclid’'s
counterpart to the Babylonian “right sub-triangle rule”.

Since the parallelogram KQ is now given in both form and in magni-
tude, its sides are also givddata 55, below, Sec. 10.4). Therefore, KC is
given, and so is EB = KC. Since ED is given, BD is also given, and since
DC is given in form, BC is given. Consequently, the sides of the defect are
given, as claimed in the proposition.
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From the point of view of metric algebra, the construction problem
posed irEl. VI.28 isa Babylonian basic quadratic equation of type B4c:
p-s—sqgs=R.
(See Sec. 1.1 above.) Indeed, in Fig. 10.2.1, let

(the lengths of) AB =a p, SB =a s BR =b s and (the area of) ASQT A
and leth be the height of the parallelogram ABRT.

Then
ap-bs—as-bs=A/r, wherer=h/abs

This equation can immediately be reduced to
p-s—sqgs=R, where R=A/abr.

(Cf. TaisbakSC 16 (2003).) From this point of view, the appearance of a
parallelogrammic defect i&l. VI1.28 instead of simply a square defect is a
meaningless complication of the situation.

In El. VI.28, it is shown that there is a geometric solution to every
elliptic application problentorresponding to a quadratic equation of type
B4 ¢ (under the obvious assumption that the given area of the applied par-
allelogram is not too big). The method usedyisthetic and constructive
In the closely related propositidata 58, on the other hand, it is shown
by use of amnalyticmethod, that once a solution to the elliptic application
problem has been found, the sides of the defect can be conffuted.

Essentially, what is shown Data 58 is that the solution to the basic
quadratic equation of type B4c is of the form

s=p/l2 —sgs. (sp/2 —R), with the silent assumption th&F sq.p/2.

10.3.El. VI. 29 & Data 59. Hyperbolic Applications of Parallelograms

El. VI.29

To a given straight line to apply a parallelogram equal to a given rectilineal figure and
exceeding by a parallelogrammic figure similar to a given one.

24.Cf. the following remark in TaisbakD (2003), 155: “--- some of us would think that

the ‘unknowns’ to be proved given [@ata58) were the sides of the applied parallelogram,
and not those of that phantothe deficient parallelogramHowever, the givenness of the
sides (of the applied parallelogram) is postponed till Dt 85 ---". It is clear that the persons
referred to as “some of us” have not fully appreciated Bda 58-59 andata 84-85 are

two separate pairs of propositions. See the continued discussion of the matter in Sec. 10.4.
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Data 59

If a given (parallelogram) is applied to a given (straight line) exceeding by a figure giv-
en in form, the widths of the excess are given

It is obvious tha€El. VI.29 andData 59 are direct counterparts b.

VI1.28 andData 58, only with excesses instead of defects in the applica-
tions of parallelograms. From the point of view of metric algdbirsl].29
andData59 can be explained as being concerned with geometric solutions
to quadratic equations of the basic type B4a

sg.s+q-s=P.

(See again Sec. 1.1 above.) The proofsloYI1.29 andData 59 are, with

the necessary modifications, repetitions of the proof&lo#/I1.28 and

Data 58. See Fig. 10.3.1 below, where the first diagram shows the metric
algebra interpretation of the proof Bfata 59, while the third diagram
shows the metric algebra interpretation of the prodath 58.

The diagram in the middle in Fig. 10.3.2 shows how a quadratic equa-
tion of type B4b can be reduced to an equation of type B4a through what
is essentially a simple change of variable. Therefore, this case, too, can be
taken care of by the procedureData 59.

[ [ q [

I : u I

i I i I i I

: P S :QI R : 1 S

1 0 1 0 1 |

s S

a a u p
El. VI.29 & Data59 (El. V1.29 & Data 59) El. VI.28 & Data 58
B4a:sqs+q-s=P B4b:squ—-q-u=Q B4c:p-s—-sqs=R

sq. 6+0/2)=sqg2+P sq. U—0/2) =sq.02+Q sq. p/2-s) =sq.p/2-R

Fig. 10.3.1. Metric algebra interpretations of the proots|o¥1.28-29 andData 58-59.

10.4.El. VI.25 and Data 55

A crucial part of the arguments El. VI.28-29 andData 58-59 is the
application ofEl. VI.25, or Data 55, for the construction of a parallelo-
gram of given form and magnitufer instance KM or OP in Fig. 10.2.1).
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El. VI.25

To construct one and the same figure similar to a given rectilineal figure and equal to
another rectilineal figure.

In the proof it is assumed that the given form is, for instance, a triangle
ABC. (See Fig. 10.4.1 below.) A parallelogram BE equal to ABC is then
applied to BC, and a parallelogram CM of the given magnitude is applied
to CE [l 1.44-45]. Next, GH is constructed as a mean proportional to BC
[El VI.13 or I1.14] and CF, and KGH is constructed on GH similar and
similarly situated to ABCHI. VI.18].

Then it follows that as BC is to CF, that is, as the parallelogram BE to
the parallelogram EF, so is the triangle ABC to the triangle KEH [
VI.19, Por., see below]. Therefore, since BE = ABC and EF =D, it follows
that KGH = D, so that KGH has the desired properties.

W\
/] /) y

L E

Fig. 10.4.1.El. VI.25. Construction of a figure of given form and magnitude.
El. VI.19, Por. which plays a crucial role in the constructioilinvI
25 is a corollary tdl. VI.19:

El. VI.19
Similar triangles are to one another in the duplicate ratio of the corresponding sides.

A
D

A\

B G C E F

Fig. 10.4.2.EIl. VI.19. Similar triangles are in the duplicate ratio of corresponding sides.

The proof ofEl. VI.19 begins (see Fig. 10.4.2) by constructing BG as
the third proportional to BC and EF, so that as BC is to EF, so is EF to BG.



222 Amazing Traces of a Babylonian Origin in Greek Mathematics

Then, if ABC and DEF are similar, as AB is to DE, so is BC to EF, and EF
to BG. Therefore, in the triangles ABG and DEF, the sides about the equal
angles are reciprocally proportional, and it follows that ABG = DEF
[El. VI.15].

Consequently, ABC is to DEF as ABC is to ABG, that is, as BC is to
BG. Since BG is the third proportional to BC and CF, BC is to BG in the
duplicate ratio of what BC is to EF. Which was to be proved.

The mentioned corollary t&l. VI1.19 says that

If three straight lines are proportional, then, as the first is to the third, so is the figure

described on the first to that which is similar and similarly described on the second.

In Euclid’s Data, the two proposition®ata 54-55are closely related
to El. VI.19 andEl. V1.25. As pointed out by TaisbakD (2003), 116-118.
143, Data 55 “will play a dominant role in the theory of ‘application of ar-
eas’ (Dt 58 and 59) by way &lementsv1.25, which according to Dt 55
has a ‘given’ solution.”

Data 54

If two forms given in form have a given ratio to one another, | say that their sides will
also have a given ratio to one another.

Data 55

If a figure is given in form and in magnitude, its sides will also be given in magnitude.

The metric algebra counterpart to the statemenElinVIl.19 that
“similar triangles are to one another in the duplicate ratio of the corre-
sponding sides”, and to the related statemeBaita 54, is thathe areas
of similar triangles are proportional to the squares of (the lengths of) cor-
responding sided.his is a special case of the following more general “OB
quadratic similarity rule”:

The areas of similar figures bounded by straight lines and/or circular arcs are propor-

tional to the squares of (the lengths of) corresponding sides or arcs in the figures.

This intuitively understood rule is frequently applied in OB mathemat-
ical texts, and is the explanation for some of the items in the well known
OB mathematical “tables of constants”. Take, for instance, the following
items from the OB table of constaits|S3 (= BR), mentioned in Sec. 6.2
above:

5igi.gub sa gar 5, constant of therc BR 2
26 40igi.gub Sa a-pu-sa-am-mi-ki 26 40, constant of the lyre-window BR 22
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The first of these items means that the area of a circle is equal to ;05 (1/12)
times the square of the whole goarcumference) of the circle. The second
item means that the area of a concave square is equal to ;26 40 (4/9) times
the square of the length of any one of the circular arcs bounding the figure.
(See, for instance, Fig. 6.2.6 above.)

Note that the complicated proofBF. VI.19 can be replaced by the fol-
lowing more straightforward argument in the style of metric algebra:

The quadratic similarity rule is trivially true for a right triangle with the Hastne

heighth and the area, sinceA =b/2 -h = (b/h)/2 - sq.h. Consequently, it is also true

for an arbitrary triangle, since any triangle can be understood as either the sum or the

difference of two right triangles, glued together along a common height.

The metric algebra counterpart to the statemebiaita 55: “If a (rec-
tilineal) figure is given in form and in magnitude, its sides will also be giv-
en in magnitude” is the understanding tiidhe area and the “constant”
of a figure are known, then the sides of the figure can be com;bru{eat-
ticular, if A= c sq.s, whereA and c are known, thestan be computed as
the square side of 1/@:

An explicit solution to a “form and magnitude problem” by use of met-
ric algebra is given i.Moscow # 17 (Friberg,UL (2003), Sec. 2.2 ¢), a
metric algebra exercise in an Egyptian hieratic mathematical text:

P.Moscow # 17

Method of calculating a triangle. If it is said to you:

A triangle of 2Qin field, and as for what you set as length you have asigidth.

You double the 29 it makes 40. You count with 3" 16 find 1. It makes 2 2' times.

You count 40 times 2 2', it makes 100. You count the corner (square side), it makes 10.
Look, this 10 is the length.

You count 3" 1%®f 10, it makes 4. Look, this 4 is the width.

You have found correctly.

What this means is thatlifis the lengthw the width andA the area of a
triangle, and =w/l the ratio between the sides of the triangle, then
A=1-w2 =12 sql.
In the given example, wheh = 20setat(with 1setat= 1 sg.khet and 1
khet= 100 cubits), anfl= 3' 15(= 2/5), it follows from this equation that
sq.l=1F-2A=1/3"15 40=2 2" - 40 = 10G¢ta), so that
| = 10 khed, andw = 3' 15- 10 = 4 khe).

The steps of the computation are repeated in a diagrBavioscow# 17.
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An OB explicit solution to a form and magnitude problem is
IM 121613 # 1(Friberg,op. cit), an exercise in a large theme text.

IM 121613 # 1

2/3 of the length (is) the front. &e (is) a field | built.

Length and front (are) what? You:

1, the length, (and) 40, its 2/3, let eat each other, then 40, the false field, you see.

The opposite of 40, the false field, resolve, to 10, the true field, raise, then 15 you see.
The equalside of 15 let come up, 30 you see.

30 to 1 and 40, your numbers, always raise, then 30, the length, 20, the front, you see.
Such is your doing.

In this exercise, the given ratio between the front and the length of a
rectangle if = 2/3, and the given areaAs= 1¢ése (= 10 00 sgninda).

The solution procedure is an example of the application of the OB “rule of
false value” (see FriberIA 7(1990), Sec. 5.7 d).

First, it is assumed that a tentative ‘false’ length'is 1 00. The cor-
responding ‘false’ frontis'=f -u' = 40, and the corresponding ‘false’ area

A'=f-squ'=2/3-100 00 =40 00.

The ratio between the ‘true’ and the ‘false’ area is the “quadratic correction
factor”

sq.u/sqg.u'=A/A" =10 00 (sgninda) / 40 00 = 1/4 (scpinda) = ;15 (sgninda).

This is the square of the “linear correction factor”
u/u'=sgs.A/A") =1/2 pinda) = ;30 finda).
Therefore, the true length and the true front are

u=100 -;3Qqninda) = 30(ninda), ands=40 -;30(ninda) = 20(ninda).

It is interesting to compare this solution to the form and magnitude
problem in IM 121613 # 1 by use of the OB rule of false value with
Euclid’s proof of thdorm and magnituderopositionData 55

Data 55, proof

Let the (rectilineal) figure A be given in form and magnitude;

| say that its sides are given in magnitude.

Let the straight line BC have been set out given in position and in magnitude,

and on BC let D have been described similar and similarly situated to A.

Then D is given in form.

And since on the straight line BC given in magnitude

the given form D has been described, therefore D is given in magnitude.
And A is given; therefore the ratio A : D is given. And A is similar to D;
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therefore the ratio EZ : BC is giveB4ta 54 orEl. VI1.19].

And BC is given; therefore EZ is given.

And the ratio ZE : EH is given; therefore EH is given.

For the same reason each of the other sides is also given in magnitude.

H

B Cc

Fig. 10.4.3.Data 55. A form and magnitude proposition.

It is easy to see th&uclid’s proof of the form and magnitude proposi-
tion Data 55 step by step corresponds to the solution of the form and mag-
nitude problem IM 121613 #1 by an application of the rule of false value!

10.5.Data 84-85. Rectangular-Linear Systems of Equations

In Sec. 1.2 above, it was suggested that the purpose of the two proposi-
tionsEl. 11.2-3, never adequately explained before, may have been to show
that basicquadratic equationf the Babylonian types B4a-c can be
replaced by equivalent bagiectangular-linear systems of equatioof
the Babylonian types Bla-b (described in Sec. 1.1), which then in their
turn can be solved by use BF. 11.5-6.

This hypothesis is strongly supported by the evidence of a lemma in
ElementsX preceding the crucial propositiogs X.17-18 and of a pair of
propositions in Euclid’®ata. All three are accompanied by diagrams
resembling the diagram illustrati. 1. 3 (Fig. 1.2.3 above).

LemmaEl. X. 16/17

If to any straight line there be applied a parallelogram deficient by a square figure, the
applied parallelogram is equal to the rectangle contained by the segments of the straight
line resulting from the application.

Data 84

If two straight lines contain a given figure in a given angle, and one of them is greater
than the other by a given (straight line), each of them will be given, too.
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Data 85

If two straight lines contain a given figure in a given angle, and their sum is given, each
of them will be given.

The lemma says, essentially, quite explicitly, that a basic quadratic
equation of type B4c can be replaced by an equivalent basic rectangular-
linear system of equations of type Bla. The proof is straightforward.

The pair of propositionBata 84 andData 85 assert, essentially, that
there exist unique solutions to every given basic rectangular-linear system
of equations of type B1b or Bla, respectively.

The proof ofData 85, for instance, goes as follows:
Data 85, proof
E A

Fig. 10.5.1.Data 85. Existence of a solution to a rectangular-linear system of equations.

For let two straight lines AB, BC contain the given area AC in the given angle ABC,
and let the sum ABC be given. | say that each of AB, BC is given.

For, let CB have been produced to D, and let BD have been laid out equal to AB,
and through D let DE be drawn parallel to BA, and let AD have been completed.
And, since DB is equal to BA, and the angle ABD is given,

because its adjacent angle is given, too, EB is given in form.

And since the sum ABC is given, and AB is equal to B, DC is given, then,

since the given AC has been applied to the given DC deficient by the given form EB,
the widths of the defect are given [Data 58].

Therefore AB and BD are given; but the sum ABC is also given;

therefore the remainder BC is also given; therefore each of AB, BC is given.

In terms of metric algebrfata 85 states that if there exists a solution
u, sto a basic rectangular-linear system of type Bla:

u-s=A, u+s=p,
then the solution is uniquely determined.

The proof of the proposition begins by explicitly showing that if there
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exists a solutiom, sto a given system of equations of type Bla, thén
also a solution to a corresponding basic quadratic equation of type B4c:
p-u—sq.u=A.
In view of El. VI. 28 andData 58 (see Sec. 10.2 above), there exists a
unique solutioru to every such equation, provided tlaf sq.p/2. Then
alsos =p —uis uniquely determined.
With only small modifications, the arguments in the proobafa 85
can be used to prove also tiyastenceof a solution to every rectangular-
linear system of equations of type Bla (wAéhsq.nv2). Itis likely, how-
ever, that the purpose of the propositiata 85 andData 58 together
was not theoretical but practical, namtdyindicate the essential steps in
an actual computation of a solution to a system of type Bla

10.6.Data 86. A Quadratic-Rectangular System of Equations

A patrticularly intriguing proposition in Euclid’Bata is Data 86, ex-
tensively discussed in Taisbdk (2003), Chapter 13:
Data 86
A

B D C p
u

Fig. 10.6.1.Data 86. A quadratic-rectangular system of equations.

If two straight (lines) contain a given field in a given angle and if in power one is by

a given greater than the other, in ratio, also each of them will be given.

Neither the diagram accompanying the proposition (Fig. 10.6.1, left),
nor the wording of the statement itself, is very helpful. Nevertheless, it is
clear from the proof what the statement means. In the terminology of
metric algebra, the proposition states that if the side®ds of a parallel-
ogram satisfy a system of equations of the following type

s:h=ry, u-h=A (squ-B):sq.s=ry,
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whereA andB are given areas, amg, r, given ratios, them ands will be
uniquely determined. Here the equat®nh =r, is a way of expressing
the condition that the parallelogram with the sides and the heighh
againsu is contained in a given angle (see Fig. 10.6.2 below), although the
diagram in the text shows only a rectangle.

The mentioned system of equations can be rewritten in the form

s=ry-h, u-h=A, squ-r,-sqs=B.
Consequently, the given system of equationsifgrcan be replaced by a
quadratic-rectangular system of equations of the following type, for

sg.u—-rz-sqh=B, u-h=A,
wherery is a new given ratio. Now, recall that in Sec. 5.4 above, a system
of equations of the following type

sq.p+sqq=S p-q=P
was called dasic quadratic-rectangular system of equations of type B5
Systems of type B5 appearkifementsX and in OB mathematical cunei-
form texts. Systems of equations of a similar type, only with a minus sign
instead of a plus sign, can be called “basic quadratic-linear systems of
equations of type B6”, although no such systems of equations were previ-
ously known to appear in either Greek or Babylonian mathematics.
Nevertheless, it is still motivated to call the system of equationsafad
h mentioned above, with its arbitrary given ratipaquadratic-rectangu-
lar system of equations of type.B6

Five different ways of solving basic quadratic-rectangular systems of
equations of type B5, documenteddlementsx or in OB mathematical
texts, are exhibited in the form of diagrams in Figs. 5.4.1-2 above. Of the
five methods for systems of type B5, only two will work also for a system
of type B6, namely the ones usedEin X.54, 57 and BM 13901 # 12.

Here is how method dl. X.54 would work in the case of a “modified”
system of equations of type B6 like the on®ata 86 (withs = h):

Sg.u—r -sg.s=B, u-s=A.
First choose a straight lireeand set

sg.u=a-e sqs=b-e A=v/2.e B=w-e
Thenu, sis a solution to the original systemaifb is a solution to

a-r-b=w, a-b=sq.v/2.
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This system of equations far b can, in its turn, be replaced by a basic
system of equations of type B1lb for the modified pair- b:

a-r-b=w, a-(-b)=r-sqv/?2.
The solution to this system of equations is, of course,

a=sgs. {sqw/2 +r - sq.v/i2} + w2, b=[sgs. {sqQqw/2 +r - sq.v/i2} —w/2] /r.
Consequently,

u=a-e=[sgs. {sqw/2 +r -sq.v/2} + w/2] -e=[sgs. {1 +r - sq. (2A/B)} + 1] - B/2,
and

s=b-e=[sgs. {1 +r-sqg. (2A/B)}-1]/r -B/2.

In the proof ofData 86, however, Euclid demonstrates an entirely
different way of solving a (modified) system of equations of type B6. Eu-

clid’s alternative method is illustrated by the diagram in Fig. 10.6.2 below,
essentially identical with Fig. 86.4 in Taisb&D (2003):

u Assume thas: h isgiven u-h =A isgiven

(sq.u— B):sqg.sisgiven

s/ |h A LetB=u-p

Then h: p is also given
(sq.u—u-p):sqg.p isalso given
sg. (2u— p) :sg.p is also given

P B I (2u-p):p isalso given
i C | C | o .
! ! u:p is also given
| ! SinceB = u-pis given
u-— | !
P ¢ I 1 sg.p is also given
u-p i C i i p is also given

.1 u, h, s arealsogiven

Fig. 10.6.2.Data 86. The procedure in terms of metric algebra.
In terms of metric algebra, Euclid’s procedure works in the following
way: Consider, in the simple case whens, the system of equations
sq.u—-B=r-sqg.s u-s=A
InterpretB as the (area of) a rectangle with the sidasdp. Then
sq.Uu—u-p=r-sqg.s, and s/p=u-s/u-p=AB.
Consequently, the given quadratic-rectangular system of equatiansfor
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can be replaced by the following quadratic equatiomfor
sq.u—u-p=C, with C=r"-sqp, and r' =r - sq.A/B.
By use ofEl. 11.8, for instance, this equation can be transformed into
sq. Qu—p)=4C+sq.p=(4r'+1)-sqgp.
Therefore,
2u—p=sgs. (4'+1)p, sothatu=r"-p, with r" ={sgs. (4r' +1) + 1}/2.
This means that the original equationsd@ndp have been reduced to a
rectangular-linear system of equations of the following simple kind:
u-p=B, u=r"-p.
The solution to this system of equations is, of course, that
r'-sq.p=B, sothatp=sgs.B/r") and u=r"-p=r"-sqgs.B/r").
Whenp andu have been determined in this way, it is easy to find also the

value ofs=A/B - p.
The more general case wh&h =r, can be treated similarly.

The proposed explanation above of Euclid’'s procedure in the proof of
Data 86 operates somewhat carelessly with ratios. Euclid was, of course,
much more careful, which is evident from the full text below. See Fig.
10.6.1, left, for the meaning of the notations in the left column.

Data 86, proof explanation

For. let the two straight lines AB, BC contain  Let AB,=BC =u
the given field AC in the given angle ABC, s:h=r, (given)
and let the square on CB be by a given u-h=A(given)

greater than in ratio to the square on BA. (s9B (given)) : sqs=r, (given)
| say that each of AB, BC is also given. Thesndu are also given

For --- let the given rectangle CBD SBt=rect. CB,BD =u -p

have been subtracted.

Then the ratio of the remaining rect. DCB Then (squ - p) : sg.h

to the square on AB is given. =8g:rp="r3

And since rect. ABC is given, and u-h:u-p

rect. CB, BD is also given, therefore A=B

the ratio rect. AB, BC : rect. CBD is given. rr

But rect. ABC : rect. CB, BD :: AB : BD. u-h:u-p=h:p

Therefore the ratio AB : BD is also given: Therefdrep =r,4, and
Hence the ratio sg. AB : sg. BD is also given. sgsq.p=sq.ry=rsg

The ratio sq. AB : rect. BCD is given. du: (sq.u—u-p) =1h3=rg
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Therefore rect. BCD: sq. DB is also given. (Beru-p):sq.p=rglrg=ry
Hence the ratio 4 rect. BCD : sq. BD is given, 4 (squ-p):sq.p=4r;=rg
and the ratio {4 (squ—u-p)+sqg.p}: sq.p
(4 rect. BCD + sq. BD) : sq. BD is given, rg&+sq.p:sq.p=rg

But 4 rect. BCD + sq. BD 4 (sq—u-p) +sqg.p

=sq. (BC + CD). Hence the ratio =squzp)

sg. (BC + CD) : sq. BD is given. sq. (2p) : sq.p=rq

And so the ratio (BC + D) : BD is given. (2-p) :p=sqgsrg=rqg
Therefore synthentj

the ratio 2 CB : BD is given, so that u2p=rp+tp:p=ry

the ratio of CB alone to BD is given. Uu:p=ryf2=ryp

But CB : BD :: rect. CBD : sqg. BD. u:p=u-p:sqg.p

Therefore the ratio rect. CBD : sq. BD is givan:p: sq.p=rq,

Rect. CB, BD is given. u-p=B

Therefore, sqg. BD is also given, $0FBlr,=¢;

and so BD is given, p=s0sc;=¢,

so that BC, too, is given, U=ryp-Cr=C3

because the ratio CB : BD is given. singep=rq,

[And the ratio AB : BD is given.] H:p=ry4

[Therefore AB is given.] H=rg-co=c4]

And the parallelogram AC is given, u-h=A/(given)

and the angle B is given. s:h=rq (given)

Therefore AB is also given. S=r1-C4=Cg

Therefore each of AB and BC is given. S=Cs U=Cg

The translation above of the text@&ata 86 follows closely the trans-
lation given by Taisbak iBD (2003), with the important exception that the
text has been broken up into sentences or parts of sentencesesckhat
step of the procedure is written on a separate line of the translathis.
way of representing a difficult ancient mathematical text makes it easy to
follow the course of the arguments and to juxtapose the explanations as in
the right column above.

Breaking up the text mass in this way also makes the repetitive nature
of the text stand out, with the phrase “is given” finishing each step of the
procedure. It is a striking observation tBatbylonian mathematical texts
are often of precisely the same repetitive nature, with each step of a com-
plicated computation finishing with a fixed phraSee, for instance, IM
121613 (FribergUL (2005), 73; Sec. 10.4 above), an OB mathematical
text where the fixed phrase is ‘you sd@a-fhan. VAT 7532 pp. cit, 118)
is another OB mathematical text with the fixed phrase ‘it giviess{),
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and BM 34800dp. cit, 34), is a Late Babylonian mathematical text with
another fixed phrase meaning ‘it givesnfu).

Comparing the repeated use of the intentionally vague phrase ‘is given’
in Data 86 with the difficulty of keeping track of the changing values of
the successive ratios, r,, --- in the explanation, one begins to understand
how ingenious the style of Euclid3atareally is.The persistent use of the
phrase ‘ is (also) given’ makes it possible to go through all the steps of an
algorithmic computation without being bothered by obscuring details.

10.7. Zeuthen'’s Conjecture: Intersecting Hyperbolas

Interpretations oData 86 as an example of the application of “geo-
metric algebra” was suggested already by Tannery in his paper “De la
solution gé ometrique des proble mes du second degré e avant Euclide”
(1882) (see SaitdS28 (1985), fn. 27), and by Zeuthen in “Sur la reforme
gu’a subie la mathé matique de Platon & Euclide, et gra ce a laquelle elle est
devenue science raisonné e” (1917) (see TatbgR003), fn. 153).

In his paper, Zeuthen also makes the interesting conjecture that

“The proposition Data 86) may be said to deal with the givenness of the intersection

of two hyperbolas having the same two given straight lines for conjugate diameters and

asymptotes, respectively” (Taisbalp. cit, 212, 223-224).

Apparently without knowing about Zeuthen’s conjecture, Saifo ¢it,
50-53;CHGM (2004), 160-161) made a similar interpretatioiDafa 86.

In Saito’s diagram, reproduced in Fig. 10.7.1 below, | and Il are the two
hyperbolas, and P their point of intersection.

Il I: (sq. AP —sq. BE) : sq. PG is given
Il: AP - PGis given
(l: sq. BE=BG - BD = AP - BD)

P
c
1 AP and PG are also given

Fig. 10.7.1.Data 86 interpreted as a proposition concerning intersecting hyperbolas.
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The diagram shows thBata 86 can be interpreted as saying that if two
given hyperbolas intersect each other in a point P, then also the abscissa
AP and the ordinate PG of P are given, so that P is given in position. In
addition, as observed by Saito, the crucial trick of seirgu - p can be
explained as simply an application of AppoloniG&nics 137 (a), giving
the equation for the position of the point D, the point where the diameter
is intersected by the tangent to hyperbola | at the point P!

10.8. A Kassite Series Text with Modified Systems of Types B5 and B6

YBC 4709 (NeugebauerMKT 1 (1935), 412-420) is one of several
known medium size clay tablets with mathematical “series texts”. A series
text isan extremely compressed theme, tigxtically with about 50 closely
related exercises, ending with a colophon (a subscript). According to Neu-
gebauer QSB 3(1934-36), 113), the writing style shows that the series
texts are post-Old-Babylonian, possibly Kassite.

In the case of YBC 4709, the subscript is the following:

55 hand tablets (assignments). 5th clay tablet (in a certain series).

The 55 exercises can be divided into 15 paragraphs. Here are two of them:

YBC 4709 § 1 a-cliteral translation explanation
a The field (is) lese. A=1¢8e =10 00 sgninda
The length times 3 repeat, equalsided. sa (3
The field of the front add, then 2 21 40. +35g.2 21 40
b Times 2 repeat, add, then 2 28 20. + Zsg2 28 20
¢ The field of the front tear off, then 2 08 20. -s59.2 08 20
YBC 4709 § 15 a-cliteral translation explanation
a The field (is) Zse. A=1¢8e =10 00 sgninda

The front times 3 repeat,
as much as the length over the front is beyond

add, then equalsided. sq.$3 (U—9)}
The field of the length add, then 1 36 40. +8g.1 36 40
b Times 2 repeat, add, then 1 51 40. + 21sgl 51 40

¢ The field of the length (and) the front add then 1 43 20. +u(8cq.s) =143 20

The question in YBC 4709 8 1 a can be interpreted geadratic-
rectangular system of equations of type B5
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§la sqg. (%) +sq.s=22140,u-s=A=1000 (sg. n.)
The question in § 1 b isdightly modified system of type:B5

8§1b sg. () +2s0s=22820,u-s=A=1000 (sqg.n.)
The question in YBC 4709 8§ 1 c, on the other hand tuadratic-
rectangular system of equations of type B6

§lc sq. () —sq.s=20820, u-s=A=1000 (sqg. n.)

The questions in YBC 4709 § 15 can all be reducedddified
guadratic-rectangulasystems of equations of type B5:

8§15a sq.{+U-9}+sq.u=13640,u-s=A=1000 (sg.n.)

(@ 2squ+4sgs=13640,u-s=A=1000(sq.n.)

§15b sq.{3+U-9}+2squ=15140,u-s=A=1000 (sg.n.)

(@ 3squ+4sqs=15140,u-s=A=1000 (sqg.n.)

8§15¢ sq.{3+U-9}+(sq.u+sgq.s=14320,u-s=A=1000 (sqg.n.)
(@ 2squ+5s0s=14320,u-s=A=1000(sq.n.)

It is likely that the author of YBC 4709 intended all the problems in
88 1 and 15 to be solved by use of a method closely related to the solution
method for a similar problem in the OB text BM 13901 # 12 (Fig. 5.4.1,
bottom)2° 26|n the case of § 15 c, for instance, the trick is to set

2sgu=a, 5sqgs=h.

In this way, the mentioned system of type B5 for the paiis reduced to
a simpler system of type Bla for the paib:

a+b=10320,a-b=10"sq. 10 00 = 16 40 00 00.

The solution to this system of equations can be found in the usual way. It
turns out to be, b = 30 00, 33 20. Thereforg, s = 30, 20. This, by the
way, is also the solution to all the other 55 problems in YBC 4709.

25. Compare with the suggested solution procedure for the triangle division pidd&m

18 in Sec. 11.2 e below.

26. Note that of the five methods to solve a quadratic-rectangular system of type B5 shown
in Figs. 5.4.1-2, only the method used in BM 13901 # 12 and the related methodEised in

X. 54, 57 work also in the casermbdifiedsystems of type B5, like the ones in YBC 4709

§ 1 b and § 15 a-c. As observed above, it is also only those two methods of the five shown
in Figs. 5,4,1-2 that work in the case of a quadratic-rectangular system of eqoftyqes

B6, like the one iData 86, modified or not. Reversely, the method useddadta 86 works

also in the case ofraodifiedquadratic-rectangular system of equations of type B5.



Chapter 11

Euclid’s Lost Book On Divisions and
Babylonian Striped Figures

The Greek text of Euclid’s book On Divisions is lost. The only Greek
references to it can be found in Proclus’ commentary to Euclid’s Elements.
In 1851, Woepcke published a French translation of an abstract of On
Divisions composed by the 10th-century Persian geometer al-Sijzi. Al-
Sijz1 reproduced the statements of all the 36 propositions in On Divisions,
but the solution procedures for only four of them (## 19, 20, 28, 29).

In 1915, Archibald published a reconstruction (in English) of On Divi-
sions, complete with procedures for all the problems, based on Woepcke’s
translation and on possible traces of the work in Leonardo Pisano’s
Practica Geometriae (ed. Boncompagni 1862). Finally, in 1993,
Hogendijk made available the Arabic text translated by Woepcke, now
with an English translation, and a couple of briefer related Arabic manu-
scripts. In the discussion below the numbering and the translations of the
propositions in On Divisions follow Archibald. Also some of the recon-
structed solution procedures are borrowed from Archibald.

The figures divided in various ways in On Divisions are triangles, trap-
ezoids, parallelograms, a circle, and a circle segment attached to the base
of a triangle. The figures are divided in two or several parts, the parts being
either equal or in given ratios. The dividing lines are parallel to a side of
the figure or to each other, or drawn from a vertex, or from a point inside
the figure, outside the figure, or on a side of the figure.

Old Babylonian parallels exist mainly to division problems in On Divi-
sions concerned with triangles or trapezoids divided by lines parallel to
the base. On the other hand, there are quite a few known OB examples of
division problems without counterparts in Euclid’s book. All problems in
On Divisions with OB parallels will be discussed below, plus a few others
of particular interest.

235
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11.1. Selected Division Problems in On Divisions

0D 1-2,30-31. To divide a triangle by lines parallel to the base

OD1

To divide a given triangle into two equal parts by a line parallel to its base.

OD2

To divide a given triangle into three equal parts by two lines parallel to its base.

OD 30

To divide a given triangle into two parts by a line parallel to its base, such that the ratio
of one of the two parts to the other is equal to a given ratio.

OD 31

To divide a given triangle by lines parallel to its base into parts which have given ratios
to one another.

e
d
ad=1/3 ba ae =2/3 ba
a ba:az=az:ad ba:ai=ai: ae
= [EL. VI.19] = [EL. VI.19]
abg : azt abg : aik
=sq.ba:sq.az =sq.ba : sq.ai
Z ! =sq.ba: (ba - ad) =sq.ba: (ba- ae)
i k =ba:ad=3:1 =ba:ae=3:2
/ \ = azt=1/3 abg = aik=2/3 abg
b 8

Fig. 11.1.1. On Divisions 2. To divide a triangle by two parallels in three equal parts.

Procedure for OD 2 (in Practica Geometriae): In the triangle abg, the
side bg is extended to d and e, with ba = 3 ad and ad = de. The points z and
i are constructed so that az is the mean proportional between ba and ad,
and ia the mean proportional between ba and ae (Fig. 11.1.1), and the par-
allels z# and ik are drawn. Then it follows from El. VI.19: “Similar trian-
gles are to one another in the duplicate ratio of the corresponding sides”
that abg : azt = ba : ad =3 : 1 and abg : aik = ba : ae =3 : 2. Hence the
triangle abg has been divided in three equal parts, as required.
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OD 3. To bisect a triangle by a line through a point on a side

OD3

To divide a given triangle into two equal parts by a line drawn from a given point

situated on one of the sides of the triangle.

If the given point d is the midpoint on the side bg (see Fig. 11.2.1), then
the line through d and the opposite vertex a solves the problem. If not, and
if d is between b and the midpoint e, first the line da is drawn, then ez par-
allel to da, and zd is joined. The triangle adz is then equal to the triangle
ade, and if abd is added to both, it becomes evident that the quadrilateral
abdz is equal to the triangle abe which is half of abg.

a

d e
Fig. 11.1.2. On Divisions 3. To bisect a triangle by a line through a given point on a side.

OD 4-5.To divide a trapezoid by lines parallel to the base

OD 4

To divide a given trapezoid into two equal parts by a line parallel to its base.

OD5

To divide a given trapezoid into three equal parts by lines parallel to its base.
e

8q. ze = (sq. eb + sq. ea)/2

d a -

2 ezi = ebg + ead,

i ezi = zbgi + ead,

azid = zbgi

g b

Fig. 11.1.3. On Divisions 4. To bisect a trapezoid by a line parallel to its base.



238 Amagzing Traces of a Babylonian Origin in Greek Mathematics

If abgd is the given trapezoid (Fig. 11.1.3), the sides gd and bd are ex-
tended until they meet in the point e. The point z is constructed so that

sq. ze = (sq. eb + sq. ea)/2.
Then 2 sq. ze = sq. ¢b + sq. ea, and it follows (by El. VI.19 as in the pro-
cedure of OD 2) that 2 times ezi is equal to the sum of ebg and eda. If first
ezi and then eda are subtracted from both sides of this equation, it follows
that azid = zbgi, as required.

In OD 5 it is shown that a similar procedure can be used for the con-
struction of two lines parallel to the base of a trapezoid, cutting the trape-
zoid into three equal parts.

OD 8, 12. To bisect a trapezoid by a line through a point on a side

OD 8

To divide a given trapezoid into two equal parts by a straight line drawn from a given
point situated on the longer of the sides of the trapezoid.

OD 12

To divide a given trapezoid into two equal parts by a straight line drawn from a point
which is not situated on the longer side of the trapezoid.

Fig. 11.1.4. On Divisions 8. To bisect a trapezoid with a line through a point on a side.

The solution procedure in Leonardo’s Practica Geometriae is divided
into a number of cases. The first step in the procedure (abbreviated here)
is to draw the diagram in Fig. 11.1.4, left, where f and k are the midpoints
of the parallel sides ad and bg of a trapezoid, and m the midpoint of tk. The
simplest case is, of course, when the given point is ¢ or k and the rk the
dividing line. Three other cases are when the given point is 1) on ad or nl,
2) on bn or lg, or 3) on ab or dg.

An example of the first case is shown in Fig. 11.1.5, left, where the
dividing line passes through the given point p and the midpoint m on tk.
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This is a simple generalization of the case when the given point is the mid-
point 7 on ad. It is clear that pmgq is the required dividing line since the tri-
angles ptm and gkm are equal so that the quadrilateral pdgq is equal to the
quadrilateral tdgk, which is one half of the given trapezoid.

An example of the third case is shown in Fig. 11.1.5, right, where zi is
a parallel to the base bisecting the given trapezoid (OD 4). If the given
point k lies on the side ab, then first the line ki is drawn, then the line zA
parallel to ki, and finally the line kA, which is the required dividing line.
This is a simple generalization of the situation in OD 4, since it is clear that
the triangles zhk and zhi are equal, and that consequently the quadrilateral
khgb is equal the sub-trapezoid zigh, half the given trapezoid, plus and
minus two equal triangles.

The third case, when the given point is on bn or lg in Fig. 11.1.4, left,
is a simple generalization of the situation in OD 3 (see above).

a P 1 d a d

kg
Fig. 11.1.5. On Divisions 8. The solution in two different cases.

In OD 9, the slightly more general case is considered when the dividing
line cuts off a certain fraction of the given trapezoid.

0D 19-20. To divide a triangle by a line through an interior point

oD 19
To divide a given triangle into two equal parts by a line which passes through a point
situated in the interior of the triangle.

OD 20

To cut off a certain part from a given triangle by a line drawn from a given point situated

in the interior of the triangle.

These are two of the four problems provided with explicit solution pro-
cedures in al-Sijz1’s Arabic manuscript (Hogendijk, VM (1993)). In the ex-
planation below, the notations used are the same as in Fig. 11.1.6, right.
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OD 19, solution explanation

We draw from point D a line parallel to BG, DE =t is drawn parallel to b

namely DE.

We apply to DE an area equal to half AB- BG. BT =m

letitbe 7B - ED. m-t=r-a-b (r=1/2)

We apply to line 7B a parallelogram BH=p, BE=s

equal to BT - BE, deficient from its Find p a s the solution to the equation
completion by a square area; m-p—sq.p=m-s

let the applied area be BH - HT. or p-(m—-p)=m-s

We join line DH and we extend it towards Z.  Draw the line HDZ

I say that the line DHZ has been drawn such

as to divide triangle ABG into two equal parts, It is the required dividing line
namely HBZ, HZGA.

Proof of this: Proof:

TB - BE is equal to TH - HB, so the ratio of m-s=(m-p)-p (by assumption)
BT to TH is equal to the ratio of HB to BE. = m:(m—-p)=p:s

Separando, the ratio of TB to BH is also = m:p=p:(p-19)

equal to the ratio of BH to HE.

But the ratio of BH to HE is equal to p:(—s)=gq:t (similar triangles)
the ratio of BZ to ED.

Thus the ratio of 7B to BH is equal to = m:p=q:t

the ratio of BZ to ED.

So TB - ED is equal to BH - BZ. = m-t=p-q

But 7B - ED is equal to half of AB - BG,
and the ratio of BH - BZto AB- BGisequalto Hence, m-t=r-a-b (r=1/2)

the ratio triangle HBZ to triangle ABG, = p-q:a-b=r

because the angles of point B are common. = [by Data 66]

So triangle HBZ is half of triangle ABG. cut off triangle : given triangle
so triangle ABG has been divided into =p-qg:ab=r

two equal parts, namely BHZ, AHZG.

There follows a discussion of the extreme case when the points H and A coincide.
The preceding problem OD 18 contains an oblique reference to EIl. VI.28 and a vague
discussion of the condition for the existence of a solution to a quadratic equation of
type B4 c. The solution procedures in OD 19 and OD 20 are essentially the same, but
the one in OD 19 (the case when the ratio r between the cut off triangle and the whole
triangle is equal to 1/2) is more detailed.
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The wholly synthetic solution arguments in OD 19-20 must have been
preceded by an analysis, which is not provided. It is easy to restore the
missing analysis, for instance as follows:

InFig. 11.1.6 below, right, a, b are two sides of the given triangle, while
s, t are the ordinate and abscissa of the given point, parallel to a and b. Sup-
pose that a triangle has already been constructed, r times smaller than the
given triangle, with sides of lengths p and ¢ along a and b, respectively,
and with its third side passing through the given point D.

Then it follows from a similarity argument that

plp-s)=qlt,
and since the areas of the two triangle are to each other in the ratio r,

p-qla-b=r.

(See, for instance, the simple proof of Data 66, which says that

If a triangle has a given angle, the rectangle contained by the lines that contain the given
angle has a given ratio to the triangle.)

Consequently, the pair p, g must satisfy the equations

prq=ra-b, t-p=q-(p-s).
If both sides of the second equation are multiplied by p / ¢, the result is the
following quadratic equation for p:

sq.p=m-(p—s), where m=ra-blt.

This equation for p is where the synthetic solution procedure begins.

T

t

Fig. 11.1.6. On Divisions 19. To cut off part of a triangle by a line through a given point.
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OD 32.To divide a trapezoid by a parallel in a given ratio

OD 32
To divide a given trapezoid by a line parallel to its base into two parts such that the ratio
of one of these parts to the other is equal to a given ratio.

t . p
Z AN L
N
1 \
a d L a
P q
h k &
[ m | fee——————-2
@
0 i
i
b g b

Fig. 11.1.7. On Divisions 32. To divide a trapezoid by a parallel in a given ratio.

The solution procedure for this problem in Practica Geometriae begins
by extending the non-parallel sides of the given trapezoid until they meet
in the point ¢ (Fig. 11.1.7, left). The parallel sides are called ad and bg, the
dividing line parallel to ad and bg is called hk, and an auxiliary parallel line
is called /m. The given ratio is called ez : zi. Then, without any preceding
analysis, the solution to the problem is claimed to be given by the follow-
ing equations determining the position of the point h:

sq.tl:sq.at=zi:ez, and sq.ht:(sq.bt+sq.tl)=ez:ei.

The proof is rather long-winded and quite difficult to follow.

A variant of the same proof in metric algebra notations is easier to com-
prehend. Asin Fig. 11.1.7,right,leta, d, c, b be the four parallel lines, from
the top down, and let p : g be the given ratio. Then

ta:th:tl:tb=a:d:c:b.

Therefore, the equations for the solution in OD 32 can be reformulated as

sq.c:sq.a=q:p, and sq.d:(sq.b+sq.c)=p:(P+q).
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Since a, b, p, and g are given, the first of these equations causes ¢ to be

known, and when c is known, the second equation causes d to be known.
Now, it follows from the first equation (in view of El. V.18) that also
sq.a:(sq.c+sq.a)=p:(p+q).

Combining this result with the second equation, one gets that
sq.d:(sq.b+sq.c)=p:(p+¢q)=sq.a:(sq.c+sq.a).

Consequently also (in view of El. V.19)
(sq.d—sq.a):(sq.b—sq.a)=p:(p +q).

Note that now the auxiliary straight line ¢ = /m has been eliminated from

the equation! Finally, also (in view of El. V.17)
(sq.d—sq.a):(sq.b—sq.d)=p:q.

This is the required result, since (with the notations in Fig. 11.1.7)
P:0=(sq.d—sq.a):(sq.b—sq.d)
The mentioned solution procedure in OD 32 is completely synthetic;

the necessary preceding analysis is missing. However, reading the synthet-

ic procedure backwards, one can easily restore the missing analysis. The
obvious point of departure for the analysis is the equation

P:0=(sq.d-sq.a):(sq.b-sq.d)=p:q *)
In this equation, the unknown (length of the) dividing line d appears in two
places. The equivalent equation (in view of El. V.18)

(sq.d—sq.a):(sq.b—sq.a)=p: (p+q)
is simpler in this respect, as the unknown d appears only once. In the next
step, the term sq. d — sq. a is to be replaced by sq. d alone. For this purpose,
the auxiliary length c is introduced, satisfying the equation

sq.c:sq.a=gq:p (**)
Then (in view of El. V.18)

(sq.d—sq.a):(sq.b—sq.a)=p:(p+q)=sq.a:(sq.c+sq.a).

Hence, finally (in view of El. V.19),

sq.d:(sq.b+sq.c)=p:(p+q) (FHk)

In this way, the relatively complicated equation (*) for the unknown length

d can be replaced the simpler equation (**) for ¢ and the equally simple
equation (***) for d.
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Summary. In the preceding section, the following problems from Euclid’s
On Divisions were discussed:

OD 1-2 To divide a triangle by parallels to the base in 2 or 3 equal parts.

OD3 To divide a triangle by a line through a point on a side in 2 equal parts.

OD 4-5 To divide a trapezoid by 2 or 3 parallels to the base in equal parts.

OD 8,12  To divide a trapezoid by a line through a point on a side in 2 equal parts.

OD 19-20 To divide f a triangle by a line through an interior point in 2 (equal) parts.

oD 32 To divide a trapezoid by a parallel to the base in a given ratio.

Of these problems, all the ones where the dividing lines are parallel to a
side have Babylonian parallels (see below). The ones where the dividing
line passes through a given point on a side are simple generalizations of
problems with Babylonian parallels. Only the problems where the dividing
line passes through a given point in the interior of the figure are not closely
related to any Babylonian problems.

Note, by the way, that the notion of an arbitrarily given point seems to
have been completely unknown in Babylonian mathematics.

The problems in On Divisions not discussed in Sec.1 1.1 above are:

OD 6-7 To divide a parallelogram by a line through a point on a side.

OD9 To divide a trapezoid in a given ratio by a line through a point on a side.

OD 10-13  To divide a parallelogram by a line through an exterior point.

OD 14-17 To divide a quadrilateral in equal parts by a line through a given point.

OD 26-27 To divide a triangle in a given ratio by a line through an exterior point.

OD 28 To divide a figure composed of a triangle and a circle segment.

OD 29 To cut off a third, fourth, fifth, of a circle by two parallel chords.

OD 30-31 To divide a triangle in given ratios by parallels to the base in parts.

OD 33 To divide a trapezoid in given ratios by parallels to the base.

OD 34-36  To divide a quadrilateral in equal ratios by lines through a given point.
Most of these problems are not related to any known Babylonian mathe-
matical problems. In particular, the notion of an arbitrary parallelogram
seems to have been completely unknown in Babylonian mathematics.

11.2. Old Babylonian Problems for Striped Triangles

11.2 a. Str. 364 § 2. A model problem for a 3-striped triangle

Metric algebra problems for triangles or trapezoids divided into two or
several “stripes” by transversals parallel to the front was a quite popular
topic in OB mathematics. An interesting first example of a text with prob-
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lems of this type is the well organized theme text Str. 364, probably from

Uruk in southern Mesopotamia (Neugebauer, MKT 1 (1935), 248; photo
MKT 2 (1935), pl. 11).
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Fig. 11.2.1. Str. 364 obv. Metric algebra problems for 3- and 2-striped triangles.

As shown by the hand copy of the obverse of Str. 364 in Fig. 11.2.1
above, the first problem on the clay tablet is lost. The second problem, Str.
364 § 2, is only partly preserved. Nevertheless, a likely reconstruction of
the text of § 2, as well as of the associated diagram, is presented below.
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Str.364 § 2

.32 3

I ==

1 | 1

| : ! -
P T R0 o BA-SU

| - 473 a.5a-5

A peg-head. Field, 47 30. From the upper front [ went, a transversal I laid across.

The upper front and the transversal as much as I laid across I do not know,

but as much as I went, 3 ninda 4 cubits. I returned, and an opening I laid across.

3 ninda 4 cubits I went and a dike I installed. From the dike that I installed,

an opening 1 laid across, but the length as much as I went I do not know.

5 16 40 the next field. Fields, how much did I take and how much did I leave?
The pretense in this unusually explicit problem text is that a triangular field
is divided, for irrigation purposes(?), into three canals(?) separated from
each other by dikes. (There is no other known mathematical cuneiform text
using similar terminology.) The two partial lengths u; = 3;20, u, = [3;20],
and the areas A=A + A, + A3 =[47] 30 and A3 = 5 16;40 are known. (See
the notations used in the metric algebra diagram above, to the right.) No
solution procedure is given in the text, but the remaining parameters for the
divided field can be computed easily, one at a time, as below.

First, according to the OB quadratic similarity rule for triangles,

sq.s=A/A3-sq.dy=9sq.d, sothat s=3d,.
Next, according to the OB area rule for trapezoids,

s+dy=2 (A1 +Ay) [ (g +up) =2 (47 30 = 5;16 40) / 6;40 = 12:40.
Therefore,

4dy=12;40 sothat d,=3;10 and s=9;30.
Then, according to the OB area rule for triangles,

uy =243/ dy =2+ 5:16 40 / 3;10 = 3;20.
This means that

uy =uy =uz =3;20.
Therefore, obviously,

dy=2dy=640 and A;=5A;=262320, A,=3A;=15;50.
Note also that the ‘feed’ f for the triangle can be computed as follows by
use of the OB linear similarity rule for triangles:

f=slu=s/(u;+uy+u3)=930/10=;57.
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Apparently, § 2 (and the lost § 1) were chosen as easy introductory
problems, illustrating both the area rules and the linear and quadratic
similarity rules. § 2 is also a clear demonstration of what appears to have
been an “OB given parameters rule”:

In a triangle divided into n stripes by transversals parallel to the front, there are n partial

lengths, n partial areas, and n fronts (if the transversals are counted as fronts). These 3 n

parameters are related to each other by n area equations and n — 1 similarity equations.

Therefore, the values for only n + 1 of the 3 n parameter can be given arbitrarily.

In particular, 3 parameters can be given for a triangle divided into 2 stripes (a “2-striped

triangle™), 4 for a triangle divided into 3 stripes (a “3-striped triangle”), and so on.
InStr.364§2,n=3andn+1=4.

11.2 b. Str. 364 § 3. A quadratic equation for a 2-striped triangle

An interesting series of intimately connected metric algebra problems
for 2-striped triangles on the obverse of Str. 364 begins with Str. 364 § 3.
All the problems are illustrated by diagrams (see Fig. 11.2.1 above).

Str.364 § 3

A peg-head. The length and the upper front I do not know. 1 bur 2 ¢Se is the field.

From the upper front 33 20 I went down, then 40 the transversal.

Length and front are what?

In this example there are n = 2 stripes and n + 1 = 3 given values:

u, =33;20 (ninda), d=40 (ninda), A=1 bur 2 ¢Se =50 00 sq. ninda.

(The bur and the ¢Se were OB area measures equal to 30 00 and 10 00
square ninda, respectively.).

No explicit solution procedures are given for the exercises in Str. 364.
It is, however, definitely worthwhile to try to reconstruct the intended
Babylonian solution procedures. Only in this way can one truly appreciate
the mathematical sophistication of the OB mathematician who composed
the systematically arranged series of problems in Str. 364 §§ 3-9, and the
deep insight he must have had into the geometric and algebraic aspects of
the problems he devised.

In Str. 364 § 3, an equation for the unknown front s in terms of the given
quantities u,, d, and A can be obtained through a combined application of
the linear and quadratic similarity rules for a striped triangle. Thus, accord-
ing to the quadratic similarity rule,

sq.s=f-2A, where f=s/u isthe (unknown) ‘feed’ for the triangle.
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According to the linear similarity rule,
s—d=f"u,.
From these two equations together it follows that

sq.s/2A=(s—d)u, (=f)
or

sq.s=2r-(s—d), where r=A/u,=5000/33;20=1 30.
This is a quadratic equation for s, which can be solved in the usual way by
a completion of the square
2r-s—sq.s=2r-d = sq.(r-s)=sq.r-2r-d.
After a second completion of the square one then finds that®’
sq. (r—s) +sq.d =sq. (r-d).
Therefore,
sq. (1 30 — ) + sq. 40=sq. 50.
Consequenﬂy,28
130-5s=30 sothat s=100, and u=2A/s=140.

Note that the computation above surprisingly showed that r —d, d,r — s is
a diagonal triple. Indeed,
r—d,d,r—s=50,40,30=10- (5,4, 3).

u, (32:20) u, =33;20

d =40
~ u, (106:40)
8 A =5000
Z =
o2 Alu,=130=r

sq.(r—s)+sq.d=sq.(r-4d) r—d,d,r—s=10-(5,4,3)

Fig. 11.2.2. Str. 364 § 3. The trick of making two completions of squares.

27 Here, the idea of making a second completion of the square in a situation of this kind is
borrowed from the explicit solution procedure in MS 3052 § 1 c, an interesting OB problem
text dealing with a clay wall with a triangular cross section (see Friberg, RC (2007), Sec.
10.2).

28. The alternative s — 1 30 = 30 (see Neugebauer, MKT 1 (1935), 255) must be rejected,
because it leads to the solution s =2 00, u = 1 40 00 / 2 00 = 50, with u less than s. In
Babylonian mathematical texts, the length u is always greater than the front s.
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The remaining parameters are easily calculated, for instance as follows:

u,=130-33;20=106;40, f=s/u=100/140=3/5=;36,
uy iy =33;20:10640=1:2, A,:A¢=(sq.3-5q.2):8q.2=5:4.

11.2 ¢. Str. 364 §§ 4-7. Quadratic equations for 2-striped triangles

Str. 364 §§ 4-7 is a cleverly organized series of problems for 2-striped
triangles, all leading to quadratic equations. It is easy to reconstruct the
missing solution procedures.

Str.364 § 4 a

A peg-head. Inside it two canals. 30 the upper front, 4 30 the lower field.
The lower field is 10 beyond the upper field.

The diagram illustrating this problem shows a 2-striped triangle with the
given values
5=30, A=430, w—u,=10.
The unknown values are those for the transversal d, the partial lengths u,
and uy, and the upper area A,. According to the linear similarity rule,
d=f-u and s—d=f"u,.
Subtracting here the terms of the second equation from those of the first
equation one gets the new equation
2d—-s=f (u—u,).
In addition, according to the quadratic similarity rule,
sq.d=f+2Ay.
A combination of the two equations above shows that
sq.d/2A=Q2d-s)/ (u—u,) (=f.
This quadratic equation for the transversal d can be reformulated as
2r-d-sq.d=r-s, where r=2A/(u—u,)=900/10=54.
Hence, after two completions of squares, as in Str. 364 § 3,
sq. (r—d) +sq. s/2=sq. (r—s/2) sothat sq.(r—d)=sq.39-sq. 15 =sq. 36.
Therefore, in this case, the triple r — s/2,r — d, s/2 is a diagonal triple, with
r—si2,r—d,s/2=39,36,15=3-(13,12,5).
Consequently, the solution to the problem in Str. 364 § 4 a is that
d=r-36=54-36=18, f=sq.d/2 A =:36 (=3/5), u, =d/f=30,
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Uy =30-10=20, uy:uy =2:3, Ay: Ay =16:9, A,=800.
The next problem is a simple variant of § 4 a:

Str.364§4b

A peg-head. Inside it two canals. 30 the upper front, 8 (00) the upper field.
The lower field is 10 beyond the upper field. The lengths are what?

This time, the quadratic equation for the transversal d has the form
(sq.5-5q.d)/2A,=2d-5) ] (e —uy) (=1.
The equation can be reformulated as
sq.d+2r-d=sq.s+r-s, where r=2A,/(uy —u,)=1600/10 =1 36.
After a completion of the square, the equation is reduced to
sq.(d+r)=sq.s+r-s+sq.r=33636=sq.154.
Therefore,d=154—-136=18,etc.,asin § 4 a.

Str.364§5a

A peg-head. Inside it two canals. 30 the upper front, 2 (00) the lower field.
The upper length is 10 beyond the lower length. The lengths are what?

In this case, the upper length is greater than the lower length. The equation
for d is modified accordingly (compare with the equation in § 4 a):
sq.d/2Ac=(s=2d)/ (uy— ) (=).
Consequently, the quadratic equation for d becomes
sq.d+2r-d=r-s, where r=2A/(u;—u)=400/10=24.
After two completions of squares, the equation is reduced to the form
sq. (r+d) +sq.s/2=sq. (r+s/2) sothat sq.(r+d)=sq.39-sq.15=sq.36.
Therefore, in this case, r + s/2,r + d, s/2 is a diagonal triple, with
r+si2,r+d,s/2=39,36,15=3-(13,12,5).
It follows that
d=36-24=12, f=sq.d/2A.=:36(=3/5), u =d/f=20,
u,=20+10=30, wu,:u =3:2, A: A =21:4, A,=1030.
Str. 365 § 5 b has the same relationto § 4 bas § Sahasto § 4 c.
The text of Str.364 § 6 a is lost, but the illustrating diagram is perfectly
preserved. The diagram shows a 2-striped triangle in which
s=30, A,=8(00), u=30.
Then
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(s+d) uy=2A, (s—d)/uy=d/ u.

Consequently, d is the solution to the following quadratic equation:
(sq.5—sq.d)=2A,-d/u.

Equivalently,
sq.d+r-d=sq.s, where r=2A,/u, =1600/30=32.

After a completion of the square, this equation is reduced to
sq.(d+r/2)=sq.s+sq.r/2 =5sq.30 + sq. 16 = sq. 34.

Therefore, in § 6 the triple d + /2, s, r/2 is a diagonal triple, with
d+r/2,s,r/2=34,30,16=2-(17,15,8).

It follows that d = 18, etc., precisely as in § 4.

Also the text of Str.364 § 6 b is lost, while the illustrating diagram is
perfectly preserved. The diagram shows a 2-striped triangle in which
s=30, A =430, u,=20.
Then,
d-u=2A, dlu=(6-d)/u,
In this case, the quadratic equation for the transversal d is
sq.d=2Ay - (s—d)/ u,.
Equivalently,
sq.d+r-d=r-s, with r=2A/u, =900/20=27.
After two completions of squares, this equation becomes
sq.(d +r/2) +sq.s=sq.(s+r/2) sothat sq.(d+r/2)=sq.43;30-sq.30=sq.31;30.
Therefore, in § 7 the triple s + /2, d + r/2, s is a diagonal triple, with
s+r/2,d+7r/2,s =43;30,31;30,30 = 1;30 - (29, 21, 20).
It follows that d = 18, efc., again precisely as in § 4.
The last exercise on the obverse is Str. 364 § 7.
The diagram shows a 2-striped triangle in which
A,=2518, A=331[44], u,=413.
In spite of the complicated form of the given numbers, the solution proce-

dure is uncomplicated. (Cf. the solution procedure in the case of the related
exercise Str. 364 § 2, above.) Note that

A,=2518=6-413 and A =3344=8-413 (where 413=23-11).
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Therefore, according to the OB quadratic similarity rule
sq.8=(A,+AY /A sq.d=(6+8)/8-sq.d=T7/4"sq.d.
Consequently,
s=sqs.7/2-d, where sqs.7 = appr.8/3 =2;40.
Also, according to the OB area rule for trapezoids,
s+d=2A,uy=12.
Consequently,
s=4(7-2sqs.7)=appr.20/3 =6;40 and d =8 (sqs.7—2)=appr. 16/3 = 5;20.
And so on. Note that this exercise has intentionally been made more com-
plicated than necessary, by arbitrarily introducing the scale factor 4 13 =

23 - 11, and by choosing the data so that the numbers in the answer are non-
rational, being expressed in terms of the square side of 7.

11.2 d. Str. 364 § 8. Problems for 5-striped triangles

On the reverse of Str. 364 (Fig. 11.2.3 below) there are the well
preserved texts of three problems, § 8a-c, illustrated by diagrams showing
a triangle divided into 5 stripes. Hence there can be 6 arbitrarily given
values for each such divided triangle. In all three cases, two of the given
values are

A;=1820and A, =15 (00).

In § 8 a and § 8 c, two further given values are

s;— 85 =13;20, 55— 53 =13;20.

In § 8 ¢, which alone of the three problems on the reverse will be discussed
below, the last two given values are

Ag=1320 and (s5+ 5g)/2 = 26;40.

Str.364§ 8 c

A peg-head. Inside it 5 canals. The upper field 18 20, the 2nd field 15, the 3rd field I do

not know, the 4th field 13 20, at half 26;40, the 5th field I do not know. The upper front

over the transversal is 13;20 beyond, transversal over transversal is 13;20 beyond. The

fields and the lengths and the transversals are what?

There are 15 parameters for this 5-striped triangle, 5 partial areas, 5 par-
tial lengths, and 5 parallels. Of these 15 parameters, 3 are explicitly given:

A;=1820, A,=15(00), and A,=1320.
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There are also 3 equations that are explicitly given:

§1—8, =13;20, s5—153=13;20, and (54 + 55)/2 =26 40.

In addition to these 6 arbitrarily imposed conditions, there are the usual
5 area equations and 4 similarity equations for a 5-striped triangle. Alto-
gether, there are 12 equations that have to be satisfied simultaneously by
12 unknowns namely 3 partial areas, 4 partial lengths, and 5 parallels. This
looks like quite a formidable system of equations to be solved.

rev.

§8a fgro0—m v —— 1L 1

4% 5id. mesidanna1°82° a.Said 1\12 1
diridAlugudal 13 2° A
4° dalki4, 14" a3ak

‘ sag.kak in :
sagan.naugu dal1°32
id ki.3 u$ o 2.3 nu.Zu

W

S B

§8b

{d ki3 us nasanu.zu is

dal.mes o sag an.na en.

/W_‘
¢ ©

s ki.snu.zu

§8c¢

§8d

Fig. 11.2.3. Str. 364 rev. Four metric algebra problems for 5-striped triangles.

Happily, however, the problem was formulated in such a way that it can
be solved recursively in a number of simple steps. Moreover, as shown in
Fig. 11.2.4 below, it can be divided into two simpler sub-problems, one for
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a 2-striped trapezoid, and one for a 3-striped triangle.

1320

13 20 beyond
13 20 beyond

Fig. 11.2.4. Str.364 § 8 c. A system of simultaneous equations for 12 unknowns.

The first sub-problem is concerned with a 2-striped (parallel) trapezoid,
where the two partial areas and two differences are given:
A =1820, A,=15(00), and s;—s,=13:20, s5—s3=13:20.
(Note that since a 2-striped trapezoid can be interpreted as part of a 3-
striped triangle, there can be 3 + 1 = 4 arbitrarily imposed conditions on
the parameters of such a trapezoid.)
Str. 364 § 8 c, proposed reconstruction of the intended solution procedure, part 1
Step 1: An application of the linear similarity rule for triangles shows that
uyluy=(sy—s9)/(sp—s3) =13;20/13;20 =1, sothat u; =u,.
Step 2: Two applications of the area rule for trapezoids show that
A=Ay ={(s1+59) — (55 +53)}/2 - uy, because u;=u,.

Then also
A=Ay ={(s; —8p) + (5o —53)}/2 - uy, sothat 320=13;20" u,

Consequently,
uy=upy=320/13;20 = 15.

Step 3: A renewed application of the area rule for trapezoids shows that
(s +52)/2=A;/u; =1820/15=113;20, while
(51— 52)/2 = 6;40.

Consequently,
51=113;20+6;40 =120, s,=113;20-6;40 =1 06;40,

and
s3=106;40 — 13;20 = 53;20.

Step 4: A renewed application of the linear similarity rule shows that

f=(s1—50) /uy=13;20/15=8/9 =353 20.

The second sub-problem is concerned with a 3-striped triangle, for
which the following 4 values are given:

Ay =1320, (s4+55)/2=26;40,
53 =53;20 (by step 3), f=8/9=;5320 (by step 4).
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Str. 364 § 8 c, proposed reconstruction of the intended solution procedure, part 2
Step 5: An application of the area rule for trapezoids shows that
uy=Ayq/ (54+55)/2=1320/26;40 = 30.
Step 6: An application of the linear similarity rule for triangles shows that
(84— 552 =fuy/2=;5320-15=13;20.
Consequently,
54 =26;40 + 13;20 =40, s55=26;40 — 13;20 = 13;20.
Step 7: Two renewed applications of the linear similarity rule show that
uy=(s3-54)/f=(53;20-40)/;5320=15, us=s5/f=13;20/;5320=15.
Step 8: Two renewed application of the area rule show that
A3=(53;20+40)/2-15=1140, A5=13;20/2-15=140.
Combining all the results in Steps 1-8, one finds that
the 5 partial lengths are 15,15, 15,30, 15, intheratios 1 : 1 : 1:2: 1.
the 5 parallels are 1 20, 1 06;40, 53;20, 40, 13;20, in the ratios 6 : 5:4:3 : 1,
the 5 partial areas are 18 20, 15, 11 40, 13 20, 1 40, in the ratios 11 :9:7:8: 1
the whole length of the triangle is 1 30, and the whole area is 1 00 00.

11.2 e. TMS 18. A cleverly designed problem for a 2-striped triangle

In the case of the triangle in Str. 364 §§ 4 and 6, the partial lengths 20,
30 are in the ratio 2 : 3, the partial areas 8 00 and 4 30 are in the ratio 16 : 9,
and the front and the transversal 30 and 18 are in the ratio 5 : 3. This
particular 2-striped triangles occurs also in at least one other OB metric
algebra problem (discussed below). The reason for the apparent popularity
of this 2-striped triangle may have been that not only u, = 30, iy = 20, are
regular sexagesimal numbers, but so are also the difference u, — uy = 10
and the sum u, + u = 50. Furthermore, there is the fortuitous circumstance
that A: A, : Ay =25:16:9=5q.5:5q.4:5q.3.

TMS 18 (Bruins and Rutten, TMS (1961)) is a fragment of a small clay
tablet from the ancient city Susa (Western Iran) with a single OB mathe-
matical exercise. It is one of the further texts where the mentioned 2-
striped triangle appears. The statement of the problem in TMS 18 is
preceded by a small drawing of a divided triangle. In Fig. 11.2.5 below,
there is a larger drawing of the divided triangle. The values within brackets
were probably computed in the course of the solution procedure, of which,
however, the larger part is destroyed. Actually, the lower two-thirds, or so,
of the clay tablet are lost
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TMS 18, literal transliteration explanation

1%

The lower length to the upper length frame, 10, uy - u, =10 (00)

the upper field to the lower field frame, 36, A, - A =36 (00 00)
the upper front frame, the transversal frame, sq. s, +sq.d

sum 20 24. =2024

You: Procedure:

36 that field with field was framed to 4 go, 4-A, A

then 2 24 you see. =4-36=224

The opposite of 10 that descent with descent 1/ uy - u, =1/10

was framed resolve, 6 you see. =06

2 24 to 6 raise, then 14 24 you see. 4-A, Ay u,=224/10=1424
14 24 frame, 3 27 21 36 you see. sq. 1424 =32721 36
To 2 raise (it), 2-5q.1424 =

6 54 43 12 you see. 6544312

Return. 14 24 to 2 raise, 28 48 you see. 2-1424=2848

1 10 coeeee coneen vnenn s

........................ 30 you see 1y = 30

----- to -+ raise, then 20 you see. u, =20

Only the beginning and the last couple of lines of the solution proce-
dure for TMS 18 are preserved. Luckily, enough of the solution procedure
is preserved to confirm the correctness of the explanation below >’

Given in TMS 18 are the product . - u, = 10 (00) of the partial lengths,
the product A, - Ay = 36 (00 00) of the partial areas, and the sum of the
squares of the front and the transversal, sq. s, + sq. d = 20 24.

The partial areas of the divided triangle can be expressed as follows:

Ay=uy- (S, + )2, Ac=uy.-d?2.

Therefore, the division in the first step of the solution procedure in 7TMS 18
can be explained as the computation of

4- Ay Ay uy=(s,+d)-d=1424.

This equation, together with the third of the three given equations leads to

29. The badly flawed explanation proposed by Bruins and Rutten (TMS (1961)) in the orig-
inal publication of the text was based on an mistaken restoration of a broken part of the
statement and on a lacking understanding of the conventions of OB geometry.
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the following system of equations for the unknowns s, and d:
(s,+d)-d=R=1424, sq.s,+sq.d=S5=2024.
This system of equations seems to have been reduced in the following way
to a more familiar-looking system of equations:
sq. (s, +d)+25q.d=S+2R=4912, (s,+d) - d=R=1424.

u, (20)

u, - u, =10 (00)

A, A, =36(0000)
sq.s5,+sq.d=2024=S§
=

4A, A u - u, =1424=R

A, (800)

5, (30)
d (18)

‘sq.(sa+d)+25q.d=S+2R, (sa+d)~d=R‘

Fig. 11.2.5. TMS 18. A cleverly designed metric algebra problem for a divided triangle.

This is a modified quadratic-rectangular system of equations of type B5
for the pair of unknowns s, + d, d. (Cf. Figs. 54.1-2 above.) It is not a
“basic” system of this type, since the coefficient for sq. d in the first equa-
tion is 2, not 1. In this respect, the modified system above of type BS5 is
similar to the modified system of type B6 with which, apparently, Data 86
is concerned. See Sec. 10.6 above.

It is likely that the OB author of TMS 18 solved the indicated system of
type BS by use of a method closely related to the better preserved solution
method for a similar problem in the OB text BM 13901 # 12 (Sec. 54
above). Thus, he probably set

sq. (s, +d)=a, 2sq.d=b.
In this way he could reduce the mentioned system of type B5 for the pair
s, +d, d to a simpler system of type Bla for the pair a, b:
a-b=2sq.R=6544312, a+b=S+2R=4912.
(Note that both 2 sq. B and 2 B are computed in the preserved beginning of

the solution procedure in 7MS 18!)
The system of equations for a, b can then be solved in the usual way:

(@+b)2=4912/2=2436, sq.(a+b)/2=100509 36,
sq. (@—b)2=10050936-6544312=3102624, (a—b)/2=1348,
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a=2436+1348=3824, b=2436-1348=1048.
Consequently,
sq.(s,+d)=3824 and 2sq.d=1048, so that
s,+d=48, d=18, and s=30.
Now, when s, and d are known, u, and & can be computed as follows, by
use of what may be called the “form and magnitude rule”:
weluy=d/ (s,—d)=18/12=1;30, - u, = 1000, hence
sq. u = 1000 - 1;30 = 15 00, uy =30, wu,=30/1;30=20.
The final computation of A, = 8 00 and Ay = 4 30 is then easy.

11.2 f. MLC 1950. An elegant solution procedure

MLC 1950 (Neugebauer and Sachs, MCT (1945) text Ca) is a single
problem text, probably from Uruk. The partial lengths of a 2-striped
triangle are 20, 30 as in the case TMS 18 and Str. 364 §§ 4, 6, but the
triangle is narrower, with a feed f of only ;24 (2/5), instead of ;36 (3/5).

In this problem, the front and the transversal of the divided triangle are
called in Sumerian sag an ‘the upper front” and sag ki ‘the lower front’.
The solution procedure is short and elegant, making use of a surprising
equation for the half-difference (s, — s)/2. (Here s, and s, are suitable

notations for sag an and sag ki.)

MLC 1950, literal translation

A peg-head.

20 ninda the upper length, 5 20 its field,

30 ninda the [--].

The upper front and the lower front are what?
You in your doing (it).

The opposite of 20 resolve, 3 you see.

3 to 5 20 raise, then 16.

16 to the upper front and [--].

30 the length to 2 repeat, 1,

and (with) 20 the upper descent sum (it), 1 20.

The opposite of 1 20 is 45,

explanation

A triangle
u,=20n.,A,=520
u, =30n.

Sg. 8k ="1

Procedure:
1/u,=1/20=:;03
A, uy,=520-,03=16
77

2-u =2-30=100
ug+2-u =120
1/120=:;0045
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to 5 20 the field raise it, then 4. Ayl (ug+2-u)=520/120=4
4 to 16 add, from 16 tear off, 16+4(=20),16-4(=12)
20 the upper front, 12 the lower front. §,=20,5,=12

In metric algebra notations:

ug =20

(s, +s)2=A4/u,=16
(s, =s)2=A,1(u,+2uy) =4

sq (20)

Fig. 11.2.6. MLC 1950. An elegant solution procedure.

Given are the ‘upper area’ A, =5 20, and the two ‘descents’ or ‘lengths’
u, =20, u;, = 30. The first, easy step of the solution procedure is to compute

(S, +s)/2=A,/uy;=520/20=16.
(Here u, and A, are the known values of the upper length and the upper
area.) The second step is more unexpected, with the computation of

(5= 82 =A, 1 (g +2u)=520/120=4.
The latter equation can b explained as follows, for instance: Let f be the
‘feed’ of the divided triangle, the ratio of the front to the length. Then, by
the OB linear similarity rule,

Sa=f Uy +uy), sc=f-u and s,— s =f" u,.
Then also’”

Sy + S =f"(u,+2 uy) and consequently (s, — sy)/ (s, + 8) =uy / (uy +2 uy).
Therefore, as in the second part of the solution procedure in MLC 1950,

Sa— S2=(Sq+ 52 uy [ (uy+2u) =A,/ (uy +2 uy).
11.2 g. VAT 8512. Another cleverly designed problem

VAT 8512 (Hgyrup, LWS (2002), 234-238) is a problem text with a
single exercise closely related to the theme of Str. 364 § 4. In VAT 8512
is considered a striped triangle with a single transversal. With the usual

30. The argumentation here is, of course, related to the manipulation of proportions in
Euclid’s Elements V, for instance in El. V.19, which says, essentially, thatif a: b=c : d,
where ¢ and d are parts of a and b, then also (a—c¢) : (b—d)=a : b.
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notations, the given parameters are

s=301n., w—uy=20 A,—Ag=7(00).

u, (40) 5=30

a

u, (100) u, —u, =20
2 = A, - A, =7(00)
i 4 (600 & A, (900) =
“ =

(A, =AY l(u—uy)=21=r

sq.d+r)={sq.(s+r)+sq.r}/2| s+r,d+r,r=3-(17,13,7)

Fig. 11.2.7. VAT 8512. Another clever metric algebra problem for a 2-striped triangle.

In metric algebra notations, the first step of the explicit solution procedure
is the computation of the transversal, here called pirkum ‘crossline’, as

d=sqs. [{sq.(s+r)+sq.r}/2] —r, where r=(A,—Ap/ (u—u,)=700/20=21.

This solution formula may have been found as follows, by use of the
linear and quadratic similarity rules: If fis the ‘feed’ for the triangle, then

s—d=f-u, and d=f-u, = 2d-s=f (u—u,).
(Cf. the discussion of MLC 1950 in Sec. 11.2 £, in particular footnote 27.)
Similarly,
sq.s—sq.d=f-2A, and sq.d=f-2A = sq.s-2sq.d=f2(A,—Ap.
Combining these two results, one finds that
sq.s—2sq.d=2r-(2d-s), where r=(A,— A/ (u—u,).
Hence, the value of d can be found as the solution to the quadratic equation
sq.d+2r-d=(sq.s+2r-s)/2.
After two completions of squares, this equation can be written in the form
sq.(d+r)={sq.(s +r) +sq.r}/2, with r=(A4,-AY/ (uy—u,).
(More about this below, in Sec. 11.3 b.) With the given numerical values,
r=21 and sq.(d+21)=(sq.51 +sq.21)/2=(4321+721)/2=2521=sq.39.
Hence,
d+21=39 sothat d=18.

The remaining unknown values are computed as follows:
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f=A,-A/(1/2-5q.5-5q.d)=700/206=3;20 (= 10/3).
(See the equation above for sq. s — 2 sq. d.) Hence,

uy=f-(s—d)=3:20 (30 — 18) = 40,

Ay=(+d)2- u,=16,

g =uy + (y —uy) =40 +20 =100,

Ac=d2 u =9-100=900.
Note that the triangle in VAT 85 12 is again, as the triangles in Str. 364 §§
4,6, and in TMS 18, a 2-striped triangle in which the partial lengths are in
the ratio 2 : 3, and the partial areas in the ratio 16 : 9.

11.2 h. YBC 4696. A series of problems for a 2-striped triangle

YBC 4696 (Neugebauer, MKT 2 (1935) 60-64, MKT 3 (1937) pl. 4) is
a series text like YBC 4709 (Sec. 10.8 above) with 52 metric algebra
problems for the 2-striped triangle known from Str. 364 §§ 4 and 6.

obv.

Fig. 11.2.8. YBC 4696. A series text with problems for a 2-striped triangle.

YBC 4696, literal translation explanation

1.1 A peg-head, 50 n. the length, 30 n. the front. u=50n.,s=30n.

Inside it 2 canals. 2 stripes
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2.1a

2.1b
2.1c¢

22a
22b
22¢
22d

23a
23D
23c¢
23d

31a

3.1b
3.1c
3.1d
31e

32a

32b

32c¢
33a

Amagzing Traces of a Babylonian Origin in Greek Mathematics

20 n. the upper descent, 30 n. the lower descent.
The fields of the 2 canals are what?
8 the upper field, 4 30 the lower field.

A peg-head, 50 n. the length.

Inside it 2 canals.

20 n. the upper descent, 30 n. the lower descent.
Front over transversal 12 n.

Half the front and 3 n. is the transversal.

A 3rd of the front and 8 n. is the transversal.

A 3rd of front over transversal to the front add, 34.

Times 2 repeat, (to) the front add, 38.
(From) the front tear off, 26.
Times 2 repeat, (from) the front tear off, 22.

(To) the transversal add, 22.
Times 2 repeat, (to) the transversal add, 26.
(From) the transversal tear off, 14.

To 2 repeat, (from) the transversal tear off, 10.

A peg-head, 50 n. the length.

Inside it 2 canals.

20 n. the upper descent, 30 n. the lower descent.

The upper field is 8. The lower field is what?
The front to the upper field add, 8 30.
Times 2 repeat, add, 9.
Tear off, 7 30.

Times 2 repeat, tear off, 7.

The field of the front (to) the field of the upper
canal add, 23.

The field of the front times 2 repeat, (to) the
upper field add, 38.

The field of the front beyond the upper field, 7.

The front and the field of the front (to) the field

of the upper canal add, 23 30.

The front times 2 repeat and the field of the front

(to) the field of the upper canal add, 24

u, =20n.,u =30n.
Ajand A =7
A, =8(00),A, =430

u=50n.

2 stripes
uy;=20n.,u =30n.
s—d=12n.
s2+3n.=d
s3+8n.=d

s+ (s—d)3=34
s+2(s—d)3=38
s—(s—d)/3=26
s=2(-d)/3=22

d+(s—d)3=22
d+2(s—d)3=26
d—(s—d)/3 =14

d-2(s-d)/3=10

u=>50n.

2 stripes

uy, =20n., u=30n.
A,=8(00). A =7
A, +s5=830

A, +25=9(00)
A,—s=730
A,—2s5=17(00)

A, +5q. s =23 (00)

A, +2sq.s=38(00)

sq.s —A, =7(00)
A, +s+5q.5=2330

A, +25+5q. s =24 (00)
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34c
34d

4.1a

4.1b
4.1c

5.1

52a
52b

53a

53b
53¢
53d

54a
54b
54c

55a

55b
55¢
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The transversal to the field of the upper canal
add, 8 18.

The transversal times 2 repeat, add, 8 36.

Tear off, 7 42.

Times 2 repeat, tear off, 7 24.

The field of the transversal (to) the field of
the lower' canal add, 9 54.

Times 2 repeat, add, 15 18.

The field of the transversal over the lower
field, 54 beyond.

The field of the transversal to 2 repeat, over
the lower field, 6 18 beyond.

A peg-head, 50 n. the length, 30 n. the front.

Inside it 2 canals.

20 n. the upper descent, 30 n. the lower descent.

The field of the upper canal over the lower field,
3 30 beyond.

Half the upper field and 30 Sar, the lower field.

A 3rd of the upper field and 1 50, the lower field.

A 7th of the upper field over the field of the lower
canal beyond (to) the field of the upper canal
add, 8 30.

Times 2 repeat, add, 9.

Tear off, 7 30.

Times 2 repeat, tear off, 7.

(To) the field of the lower canal add, 5.
(From) the field of the lower canal tear off, 4.

Times 2 repeat, tear off, 3 30.

A peg-head, 30 n. the front. Inside it 2 canals.
Field over field 3 30 beyond.

Half the upper field and 30 Sar the lower field.

A third of the upper field and 1 50 the lower field.

263

A, +d=818

A, +2d=836
A—d=742
A,-2d=T724

A +5q.d=954

A +2s5q.d=954
sq.d—Ay =54

2sq.d— A =618

u=50n.,s=30n.

2 stripes

u, =20n.,u =30n.
A, — A =330

172 Ay +30 = A,
13 Ay +150 = Ay

A+ 1/7- (A, — A =830

Ag+2- 17 (Ag—AY =9
A= 117+ (Ay—AY=1730
A=2- 1T (A, —AY =7

A+ 1/7- (A, —AY=5
A= 117 (A, —AY=5
A =217 (A, —AY=5

s =30

A, - A =330

A, +308ar = Ay
1/3-A,+150=A;



264 Amagzing Traces of a Babylonian Origin in Greek Mathematics

The fields of the canals are what?
Col. 52 hand tablets. 52 assignments

In all the 52 problems on YBC 4696, the partial heights of the 2-striped
triangle are given, in each case as u, = 20 and u;, = 30. A third given value
is specified in each sub-paragraph.

No solution procedures are given in the text. However, the obvious way
of solving the stated problems is to first find the values of the pair s, d, and
then compute the partial areas A, and A; by use of the area rules for trape-
zoids and triangles.

In view of the linear similarity rule and the assumption that always
u, =20 and uy, = 30, it is clear that

(s —d)/20=d/30, sothat 3 (s—d)=2d, orsimply 3s=5d.

This is a linear equation for s and d common to all the 52 assignments. In
the problems in § 2, the third given condition is another linear equation
for s and d. Therefore, all the problems in § 2 can be interpreted as systems
of linear equations for the two unknowns s and d. In § 2.1 a, for instance,
the equations for s and d are

3s=5d, s—d=12, sothat 55s-5d=5-12=100, and consequently

25s=100, s=30, and d=18.

In § 3.1, the third condition is an equation for A, and 5. However, since
A,=(+d)/2-u,=(s+d)/2-20,all such equations are again linear equa-
tions for s and d. Therefore, also the problems in § 3.1 can be reduced to
systems of linear equations for the two unknowns s and d.

As a matter of fact, all the problems in YBC 4696 can be reduced to
systems of linear equations, except the problems in §§ 3.2-3 and § 4.1,
which can instead be reduced to quadratic-linear systems for s and d. The
solution is, in all the separate cases, that s, d = 30, 18.

11.2 i. MAH 16055. A table of diagrams for 3-striped triangles

It follows from the quadratic similarity rule that if s, d are the front and
the transversal of a 2-striped triangle, then

Ay Ap=(sq.5—5q.d):sq.d.
Therefore, in particular,

A=A, = sq.s-sq.d=sq.d = sq.s=2sq.d = s=sqs.2-d.
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If a triangle divided in this way had appeared in an OB mathematical text,
it is likely that the approximation sqs. 2 = appr. 1;24 (7/5), or the slightly
more accurate approximation sqs. 2 = appr. 1;25 (17/12), would have been
used. However, no such text is known.

On the other hand, two examples are known of OB mathematical texts
where a 3-striped triangle is divided so that the first and the third of the
partial areas are equal. The two texts are MAH 16055 in this section and
IM 43996 in the next section.

If the front and the two transversals of a 3-striped triangle are s, dy, d5,
and if the partial are A, A,, A3, then clearly

Aj=A3 = sq.5-sq.d|=5q.d,.

A particularly interesting case is, of course, when s, d;, d, are integers
satisfying the mentioned condition, because that means that they form a
diagonal triple. In the diagram in Fig. 11.2.9 below is shown the simplest
case of this type, the case when

s:dy:dy=5:4:3.

Then the partial lengths are in the ratios
uptuy:uz=(5-4):(4-3):3=1:1:3,
and the partial areas in the ratios

Al 1Ay A3=(25-16):(16-9):9=9:7:09.

If the total length u is “normalized”, in the sense that # = 1 00, then it fol-
lows that the partial lengths are 12, 12, and 36.

36

up+uy,+uy;=100
uptuytug=1:1:3
s:idy1dy=5:4:3
A 1A, A3=9:7:9

Fig. 11.2.9. MAH 16055. A 3-striped triangle with A| = A3.

The clay tablet MAH 16055 (Bruins, ND (1961) 11-14) is a “geometric
table text”, with drawings of 5 different 3-striped triangles on the obverse,
and 5 on the reverse. All 10 of the 3-striped triangles are of the type shown
in Fig. 11.2.9 above, with the 3 partial lengths equal to 12, 12, 36.
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Fig. 11.2.10. MAH 16055. A table of 10 diagrams for 3-striped triangles.

The idea behind the construction of the data for the 3-striped triangles
in MAH 16055 (Fig. 11.2.10 above) is simple, namely that

Ay=A3=n-500, for n=1,2,-,10, nbeing the number of the diagram.
Consequently, the second partial area is
Ay=7/9-A3=n-500=n-353;20, for n=1,2,-,10.
The second transversals are also easily computed:
dy=2A3/u3=n-500-2/36=n"-16:40, for n=1,2, ,10.
Consequently,

dy =413 s3=n- 2213 20,
s=5/3"s3=n-27:46 40, for n=1,2,-10.
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These are also the values indicated in the 10 diagrams.

11.2 j. IM 43996. A 3-striped triangle divided in given ratios

IM 43996 was published by Bruins in Sumer 9 (1953), with a photo in
Bruins, CCPV [ (1964), Part 3, pl. 2. It is an OB square hand tablet with a
geometric assignment on the obverse in the form of a diagram, showing a
3-striped triangle with its transversals and some associated numbers.

The given numbers are the three partial areas, the lengths of the two
transversals, and the first partial length:

Ay =922:30, Ay=2037:30, A3=1000, d;=17:30, dy=10, u;=730.

The two remaining segments of the length were apparently first given, too,
but were then erased by the tip of a finger (the teacher’s?), probably an
indication that the numbers should be found again by the student. (Cf. the
discussion in Friberg, UL (2005), Sec. 2.1 of a similar assignment in the
Egyptian hieratic mathematical text P.Rhind # 53 a.)

Fig. 11.2.11. IM 43996. A 3-striped triangle with the partial areas in the ratios 1 : 2 : 1.

It is easy to find a solution to the stated (overdetermined) problem. The
first step can be to compute the third partial length and the ‘feed’ of the tri-
angle as follows:

u3=2A3/d,=2000/10=200, and f=dp/u3=10/200=1/12=:05.
Then it follows that
Uy =(dy—dy) [ f=7:30/:05=130, and s= dy+u-f=17;30 +30 - ;05 = 20.
There is more to say about the actual construction of the problem. The
given first and second partial areas, 9 22;30 and 20 37;30, are relatively
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close to two round area numbers, 10 00 and 20 00. Suppose that some OB
mathematician ad the intention to construct a 3-striped triangle with the
three partial areas in the ratios 1 : 2 : 1. He would then understand that
for this to happen it was necessary to let

(sq.5—5sq.dy):(sq.dy—sq.dp) :sqdy=1:2:1.
Hence,

sq.d; —sq.dy=2sq.d, so that

sq.d; =3sq.dp, and sq.s—sq.d;=sq.d;
so that

sq. s =sq.d| +sq.dy =4sq.d,.
Therefore, it was also necessary to let

s:dy:dy=2:5sqs.3:1.

Now, it is known that the standard OB approximation to sqs. 3 was 1;45
(= 7/4). Therefore, the author of the problem would be led to choose his
given values for the 3-striped triangle so that

s:dy:dy=8:7:4 and,consequently, uj:uy:u3=1:3:4.
In agreement with these conditions, he chose to set

uy, uy, uz =30,130,200, sothat u=u; +uy+u3=400, and s=20.
(Note the numbers 4 and 20 written close to the upper and left margin of
the clay tablet.) He seems then to have computed the feed f of the triangle
as s/u=20- 1/u=20-;00 15 = ;05. (Note the number 15 written near the
number 4 close to the upper margin.) With this value for the feed, he could
rapidly compute also

dy=f-u3=;05-200=10, and

dy=f- (up + u3) =305 - 3;30 = 17;30.
The corresponding values for the partial areas would then be

Ay =30-(20+17;30)/2 =9 22;30,

Ay =130-(17;30 + 10)/2 = 20 37;30,

A3=10-200/2 =10 00.

Therefore, the construction of all the given values in IM 43996 can be
explained as a consequence of an effort to #ry to let the three partial areas
of a 3-striped triangle be proportional to 1,2, 1.
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11.3. Old Babylonian Problems for 2-Striped Trapezoids

11.3 a. IM 58045, an Old Akkadian problem for a bisected trapezoid

IM 58045 (Friberg, RIA 7 (1990), Sec. 54 k; Fig. 11.3.1 below) is a
round hand tablet from the Old Akkadian period in Mesopotamia, c. 2340-
2200 BCE. It is by its find site in a collapsed house in the ruins of the an-
cient city Nippur firmly dated to the reign of the king Sarkalli§arri. There
is drawn on it a trapezoid with a transversal line parallel to the upper and
lower fronts of the trapezoid. The lengths of all four sides of the trapezoid,
but not the length of the transversal, are indicated in the diagram.

The indicated common length of the two long sides of the trapezoid is
u =2 ‘reeds’, which is as much as 12 cubits (= 1 ninda), since 1 reed = 6
cubits. The given lengths of the two parallel fronts are m = 3 reeds — 1
[cubit] = 17 cubits and n =1 reed 1 cubit =7 cubits, respectively. It is likely
that the area of the trapezoid was meant to be computed by use of the “false
area rule” as

A = (2 reeds + 2 reeds)/2 - {(3 reeds — 1 cubit) + (1 reed 1 cubit)}/2

=2reeds - 2 reeds = 1 sq.ninda =1 Sar.
The circumstance that the area of the trapezoid, computed in this way, is a
conspicuously area round number suggests that the hand tablet is a math-
ematical assignment, rather than some surveyor’s sketch of a field.

obv.

1 reed 1 cubit

=
(]
—
|
12}
=
]
o
-
(3]

Fig. 11.3.1. IM 58045. An Old Akkadian hand tablet showing a bisected trapezoid.

Furthermore, it is known that in OB mathematical texts, 17, 13, 7 is the
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most frequently occurring example of a “transversal triple”, with the inter-
esting property that the area of a trapezoid with the fronts 17 and 7 is
“bisected”, that is, divided in two equal parts by a transversal of length 13.
(See Friberg, RIA 7 (1990), Sec. 5.4 k.) Generally, the OB “trapezoid
bisection rule” says that a trapezoid with the fronts s, and sy is divided in
two parts of equal area by a transversal d parallel to the fronts and satisfy-
ing the “trapezoid bisection rule”

sq. d =(sq. 5, + 5q. 5)/2.

It is likely that the trapezoid bisection rule was known already in the
Old Akkadian period, and that the teacher who handed out IM 58045 as an
assignment had the intention that his students should compute the length d
of the transversal in the trapezoid as follows:

sq.d = (sq. 5, + sq. 5)/2 = {sq. (3 reeds — 1 cubit) + sq. (1 reed 1 cubit)}

=5 sq.reeds — 2 reeds - cubit + 1 sq. cubit
=4 sq. reeds + 4 reeds - cubit + 1 sq. cubit
=5q. (2 reeds 1 cubit) =sq.d sothat d=2reeds 1 cubit.

Note that in the diagram on IM 58045 all lengths are given in the form
of traditional length numbers, measured in reeds and cubits. This is in con-
trast to drawings of trapezoids in OB mathematical texts, where lengths
normally are given in the form of abstract (sexagesimal) numbers, always
thought of as multiples of the main length unit, the ninda. An OB school
boy, living 500 years after the Old Akkadian period, would have computed
the transversal of the trapezoid in Fig. 11.3.1 (essentially) as follows:

s, = 1 ninda 5 cubits = 1525, s, =1/2 ninda lcubit = ;35,

sq.d =(sq. 5, + 5q. 5)/2 = (sq. 1525 + sq. ;35)/2 = (2;00 25 + ;20 25)/2 = 1;10 25,

d=sgs. 1;10 25 = 1;05 = 1 ninda 1 cubit.

It is an interesting question how the trapezoid bisection rule can have
been discovered originally by some mathematician living in Mesopotamia
in the Old Akkadian period or maybe even earlier. The discovery can, of
course, have been made in a number of ways, but one particularly intrigu-
ing possibility is that it happened as follows:

In decimal numbers, the squares of 7, 13, and 17 are 49, 169, and 289,
which cannot be said to be very interesting. In contrast to this, a Sumerian
or Old Akkadian mathematician constructing a table of areas of squares
with sides measured in ninda and counting with sexagesimal numbers
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may have made the interesting observation that 3
sq. (7 ninda) = 49 sq.ninda = 49 3ar,
sq. (13 ninda) = 2(60) 49 sq.ninda = 2(60) 49 $ar,
sq. (17 ninda) = 4(60) 49 sq.ninda = 4(60) 49 sar.
The observation may have led him to draw a diagram of the following
kind, with three “concentric (and parallel) squares™:

30 sar
N 30 sar ///

sq. (17 ninda) = 4(60) 49 Zar
): )§ \\)// sq. (13 ninda) = 2(60) 49 Sar
2| = 7 N sq. (7 ninda) = 49 Sar

.*" 7 ninda N

7 N {sq. (17 ninda) + sq. (7 ninda)}/2
13 ninda = sq. (13 ninda)
17 ninda

Fig. 11.3.2. How the transversal triple 17, 13, 7 may have been discovered.

11.3 b. VAT 8512, interpreted as a problem for a bisected trapezoid
The OB problem for a 2-striped triangle in VAT 8512 was discussed
above, in Sec. 11.2 g. The given parameters in that problem are
s=30n, u—u,=20n, A,—A=7(00)sq.n.

and the first step of the solution procedure is the following computation:

31. Three Mesopotamian tables of areas of squares are known at present, all from the third
millennium BCE. One of them, OIP 14,70 (Friberg, CDLJ (2005/2) § 4.9; RC (2007), Fig.
Al.4),is atable of areas of squares with sides measured in cubits. It is a Sumerian table text
from the Early Dynastic period IIIb, which preceded the Old Akkadian period. Another
such table text, VAT 12593 (Nissen/Damerow/Englund, ABK (1993), Fig. 119; Friberg,
RC (2007), Fig. 6.3) is a table of areas of squares with sides measured in tens or sixties of
the ninda. This table text is even older, from the Early Dynastic period IlIa. A third text of
a similar kind is CUNES 50-08-001 (Early Dynastic IIIb), a combined table of areas of
large and small squares (Friberg, op. cit., Figs. A.7.1-2).
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d=sqs.[{sq.(s+7r)+sq.7}/2] —r, where r=(A,— A/ (u—u,)=700/20=21.
The equation shows that the (length of) the transversal d is

d=sqgs.{(sq.51 +sq.21)/2} =21 =sgs. (2521)-21=39-21=18.
An interesting interpretation was suggested by Gandz (1948) and Huber
(1955). See the references to these authors in Hgyrup, LWS (2002), 234-
238. According to Gandz and Huber, the equation for d shows that

s+r,d+rr=51,39,21=3-(17,13,7)

is a transversal triple. Therefore, the idea behind the solution procedure in
VAT 8512 may have been the following.

The 2-striped triangle with the front s and the transversal r is interpreted
as a part of a bisected trapezoid with the upper front s + r, the transversal
d + r, and the lower front r (see Fig. 11.3.3 below). The condition that the
partial areas of the bisected trapezoid shall be equal determines the value
of the extension r, and when r is known, the condition that s + r,d + r, r
shall be a transversal triple determines the value of d.

e Bl ! s =30,
1
’ r A, —A =700,
Uy i
| uy —u, =20

Ajtu r=Act+u. r
= r=A,-A)/(uy —u) =21

sq.(d+7r)={sq.(s+71)+sq.7}/2
s+r=51, r=21 = d+r=39, d=18

Fig. 11.3.3. VAT 8512. The Gandz/Huber interpretation of the solution procedure.

11.3 c. YBC 4675. A problem for a bisected quadrilateral

As will be shown below, the basic ideas of a bisected trapezoid was
generalized in an amazing number of ways by OB mathematicians. One
interesting example is the problem in YBC 4675 (Hgyrup, LWS (2002),
244-249), a single problem text from the ancient Mesopotamian city Larsa,
where the usual bisected trapezoid is replaced by a very long and thin
quadrilateral, and where, consequently, in the solution procedure the
accurate area rule for trapezoids has to be replaced by the more or less
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inaccurate “false area rule” for quadrilaterals. Here is the statement of the
problem in YBC 4675:

O 0 1 N Lt AW N =

YBC 4675, literal translation

o

5

—

1°7

{°3 dal m

4 5°

If a field of ‘length-eats-length’,

the 1st length 5 10, the 2nd length 4 50,
the upper front 17, the lower front 7,

its field 2 bur.

1 bur each, the field in two I divided.
The middle transversal, how much?
The long length and the short length,
how much shall I set them,

so that they border 1 bur?

explanation

A long quadrilateral
u'=510,u"=450

S,=17,85,=7

A=2bur =10000 sq.ninda

A, =A=1bur =3000 sq.ninda
d=?

wy', uy", wy, w" = 7

The successive steps of the solution procedure in YBC 4675 are:

Cu=@'+u")2=(510+450)2=500
L f=(s,—su=(17-7)/500=1/30 =;02
. 2f-A,=2-;02-3000=200
. sq.d=sq.5,—2f A, =5q.17-200=249, d=13
U =A, (s, +d)2=3000/15=200
g=' —u")/(u'+u")=(510-450)/(510 + 4 50) = ;02
u'=u,+8 u,=204, u,"=u,—g-u,=156

= A/ (d+5/2=3000/10 =3 00

w'=u+g u =306, u"=u—g-u =254

the average length

the ‘feed’

silently understood

the transversal

the average upper length
the ‘obliquity factor’

the upper lengths

the average lower length
the lower lengths

Apparently, everything here was assumed to be at least approximately
correct; thus, the upper and lower front were assumed to be approximately
parallel, the average length was assumed to be approximately equal to the
distance between the upper and the lower fronts, efc. (Actually, as was
remarked in the original publication of YBC 4675 by Neugebauer and
Sachs in MCT (1945), text B, the data were poorly chosen, since they
violate the so called triangle inequality, so that there simply does not exist
any quadrilateral with the given fronts and lengths!)
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With these reservations in mind, most of the steps in the solution pro-
cedure make sense. Step 4, for instance, can be explained as follows, in
view of the linear and quadratic similarity rules,

Ay ={(sa=d)/ [} (53 + d)/2 = (5q. 5, — 5. D2 ).

In step 6, the term ‘obliquity factor’ is a conjectured translation of the
word arakariim in the text. The value of the obliquity factor is actually not
computed in the text; it is introduced without any explanation. Neverthe-
less, its use in this text can reasonably be explained as follows: It was as-
sumed that the ‘longer’ and ‘shorter’ upper lengths, and also the ‘longer’
and ‘shorter’ lower lengths are proportional to the ‘longer’ and ‘shorter’
lengths of the quadrilateral. More precisely, it was assumed that

w,"/u'=u,"/u" and w'/u'=w"/u".

It follows for the upper lengths, for instance, that

u,'=g-u'" and u,"=g-u", for some (unknown) factor g.
Then also

w,'+u,"=g - w'+u") and w,'-u,"=g-Ww'-u"),
so that

g=(uy —u,")/ (u,' +u,")=@'—u")/ (u'+ u") = the arakariim.

Similarly for the lower lengths. (The reasoning is a naive variant of the rea-
soning in the well known proportion theory in Elements V.)

It follows that, for instance, the first part of step 7 of the solution
procedure in YBC 4675 can be explained as follows:

Uy + g Uy = Uy +uy")2 + (' —uy") /(' +uy") - (uy' + uy")/2

= (' + u"V2 + (= u,")2 =y

The discussion above shows that YBC 4675 is a splendid example of
the surprising mixture of naive and sophisticated arguments that one can
meet in Babylonian mathematics!

11.3 d. YBC 4608. A 2-striped trapezoid divided in the ratio 1: 3

The quadrilateral in YBC 4675 and the trapezoid in Gandz’ and
Hubert’s explanation of VAT 8512 are both divided in two parts of equal
area by a transversal d, and in both texts the triple s,, d, s is proportional
to the transversal triple 17,3, 7, just as in the case of the trapezoid appear-
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ing in the Old Akkadian text IM 58045. As mentioned above, in a trape-
zoid divided in two equal parts by a transversal d parallel to the fronts, the
triple s,, d, sy satisfies the trapezoid bisection equation

sq. s, —sq.d =sq.d —sq. s, or,equivalently, sq.s,+sq.s,=2sq.d.

In a couple of examples discussed below, however, trapezoids are
divided instead by a transversal parallel to the fronts in two parts in a given
ratio P : Q. The “general trapezoid bisection equation” will then have a
correspondingly modified form, so that

If A,:A=P:Q, then

(sq. s, —sq.d)/P =(sq.d —sq. 5)/Q, or,equivalently,

0-sq.5,+P - sq.5.=(Q+P)-sq.d.

This is an indeterminate quadratic equation for the triple s,, d, sy, very
much like the diagonal equation for the sides of a right triangle. If arbitrary
rational values are prescribed for two of the parameters in the triple, then
in the general case, the third parameter will be a square side. However, as
the next example will show, Old Babylonian mathematicians had found a
way to construct rational triples satisfying the general trapezoid bisection
equation. Cf. the discussion in Sec. 3.3 above of the OB generating rule for
the construction of rational triples satisfying the diagonal equation.

YBC 4608 (Neugebauer and Sachs, MCT (1945), text D) is an OB
single problem text from the ancient Mesopotamian city Uruk. Here is the
statement of the problem in that text:

YBC 4608, literal translation explanation

An ox-face. A trapezoid

The field in two I divided, divided in two parts
42 11 15 the lower canal, A =4211:15

14 03 45 the upper canal, A, =1403;45

the Sth-part of the lower canal the upper canal, uy=1/5 - uy

52 30 its transversal. d=52;30

The upper front and the lower front are what? s,and s =7

Note that here the given partial areas are in the ratio
A, A=1403:45:4211515=1:3.

The successive steps of the solution procedure in YBC 4608 are:
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1. u,*=100, u*=500 false lengths in the ratio 1 : 5

2. A=A, +A =1403:45+4211;15=56 15 the total area

3. u=uyF+u,*=500+100=600 the false total length

4. s, +5.%=2A/u*=2-5615/600=18;45 the sum of the false fronts

5. ;¥ +d¥=2A,/u,*=28;07 30 the sum of the false upper front
and the false transversal

6. d* — s * = (5, +d¥) — (s,% + 5%) the difference between the false

=2A,/u,*-2A/u* =28;0730-18;45=9;2230 transversal and false lower front
7. (d* 4+ 52 =Ac /T uy ¥ =42 11;15/5 00 = 8;26 15 the half-sum of the false trans-

versal and the false lower front
8. d¥=A/uF+ (A, u,* — Al u¥)

=8;26 15+4;41 15=13;07 30 the false transversal
9. ¢=d/d*=52;30/13;0730=4 the correction factor
10.u,=u,*/c=100/4=15 the upper length
Muy=uy*/c=500/4=115 the lower length

12,5, +d=2A,/u,=2-1403;45/15=152;30 the sum of the upper front and

the transversal

13.5,=(s, +d)—d=152;30-52;30 =100 the upper front
14.5,+sy=2A/u=15230/130=115 the sum of the fronts
15,5 =(s,+85) —5,=115-100=15 the lower front

(In the text of YBC 4608 all values are in the form of relative sexagesimal numbers in place
value notation without zeros, efc. In the explanation above, the most likely absolute values
of the sexagesimal numbers in the text are indicated, always in accordance with the
observed rule that lengths and fronts regularly are measured in tens or sixties of the ninda.)

Note that the transversal triple in this example is

s, d, 5. =100,52;30,15=7;30- (8,7, 2).

Clearly this triple satisfies the general trapezoid bisection equation
3-5q.5,+1-sq.5,=4"sq.d. Indeed,
3-5q.8+1°5q.2=3-104+1-4=312+4=316, 4-5q.7=4-49=316.

The solution procedure in YBC 4608 is an unusual variant of the OB
rule of false value. The trick here is to choose false values for the partial
lengths in the prescribed ratio 5 : 1 and then compute the corresponding
false value for the transversal. It turns out that the computed false value
for the transversal is 1/4 of the prescribed value. However, since also the
partial areas of the trapezoid have prescribed values, the length of the trap-
ezoid on one hand and the two fronts and the transversal on the other are
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inversely proportional. Therefore, since the computed “correction factor”
for the transversal is 4, the corresponding correction factor for the partial
lengths must be 1/4. This is why the “true” values for the partial lengths
are computed as 1/4-100=15and 1/4-500 =1 15.

An inspection of the solution procedure in YBC 4608 reveals that OB
mathematicians had found the following “generating rule for (rational) so-
lutions to the trapezoid bisection equation”:

Let u,u,, u; and A, A,, Ay be given (rational) values for the whole or partial lengths and

areas of a 2-striped trapezoid. Then it follows from the area rule for trapezoids that the

triple s,, d, s satisfies the following system of linear equations:
(S, +5)2=Alu, (s;+d)2=A,1u, (d+s)2=A/u.
Then one finds by subtraction that
($,—d)2=A/u-A/u and
d-s)R2=A u,—Alu.
Consequently,
Sa= Ay uyg+ Al u—Ag/ uy,
d=A/u+A;/u,—Alu,
sk =Alu+Ac u—A, u,.

11.3 e. Str. 367. A 2-striped trapezoid divided in the ratio 29 : 51

Str. 367 (Hgyrup, LWS (2002), 239-244) is a single problem text from
Uruk, just like TBC 4608 above. It is another problem for a 2-striped trap-
ezoid. Here is the statement of the problem:

Str. 367, literal translation explanation

An ox-face. Inside it two canals. A 2-striped trapezoid
13 03 the upper field, 22 57 field 2. A,=1303,A, =2257
The 3rd-part of the lower length in the upper length. u,=1/3 - uy

‘What the upper front over the transversal is beyond (s,—d) +(d—s) =36

and the transversal over the lower front is beyond heap,

then 36. The lengths, the fronts, and the transversal are what?  u,, iy, s,, s, d =17
The given values in this problem are:
A,=1303, A =2257, u,=1/3 u, and (s,—s) = (5, —d) + (d—s) = 36.

The solution procedure is another application of the rule of false value,
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where the trick this time is to choose false values for the partial lengths in
the prescribed ratio 1 : 3 and then compute the corresponding false value
for the feed of the trapezoid in two different ways. A comparison of the two
results will then give the needed correction factor.

" 0 A, =1303(=27-29),
A, =2257(=27-51)
=4 &° = u,=1/3 - u
—————————————————————— s,— 8 =36
A | *
- | u*=1(00), w*=3(00), u*=4(00)
~
' fr=(s, =5/ u*=:09
“ feE= A, Tu*— A L *) w2 =302 42

= f=wu*/u-f* and f=sq.W*u)- f**
= u¥/u=f*¥*/f*=;0242/;09 =;18

= u, =1/W*u) -u*=18, etc.

Fig. 11.3.4. Str.367. A surprising application of the rule of false value.
The false values chosen for the lengths are
u,*=1(00), w*=3(00), hence u*=4(00).
In the first approach, the corresponding false feed is computed as
= (s, — s/ u*=36/4(00)=;09.
Then it follows that
sa—d=fru*=9, d-s = wr=27.
In the second approach, another value for the false feed is computed as

P = (5,7 — 8i5) [ = {(s* + dF)/2 — (d* + 5 )2Y | w2
= (A ] uy* — Ay ) w®) | w2 = 5:24 /2 (00) = ;02 42.

The meaning of the next series of computations is less obvious:
fE1f*=:097;0242=3;20, 1/3;20=;18, ;18-1(00)=u,, ;183 (00)=u,.
What this means is, presumably, that, as is easy to check,
f=u¥u-f* but f=sq.w*/u)- f**.
Therefore,
fE1f* =u*/u sothat 1/ (f*/f**)=u/u*, and w/u*-u,*=u,, wu* w*=u.

In other words, f**/f* is the “correction factor” for the false values.
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This far into the solution procedure, it is known that
u, =18, u, =54, hence u=18+54=112, and
A,=1303, A =2257, hence A=1303+2257=3600.
Since the trapezoid can be divided into a triangle of front s, — s = 36 and
a rectangle of front sy, both with the length u = 1 12, it follows that
A=3600=36/2-112+s.-112 sothat s, =(3600-2136)/112=12.

Therefore
5,=12+36=48 and d=12+27=39.

11.3 f. Ist. Si. 269. Five 2-striped trapezoids divided in the ratio 60 : 1

Ist. Si. 269 is a clay tablet from the ancient Mesopotamian city Sippar
with 4 diagrams of 2-striped trapezoids on the obverse and 2 on the
reverse. The hand copy in Fig. 11.3.5 below, with sexagesimal numbers in
transliteration, is based on a hand copy with cuneiform numbers, courte-
ously provided by V. Donbaz.

obv. rev.

-

5% 1°5 3 4°5
\

5°4 3°
6 3°
2 3%

5°94°5
11°5

30

5°8 5°
21°

]
(553300 | 4264°

4 5°1

AN J

(5069

/

Fig. 11.3.5. Ist. Si. 269. Six 2-striped trapezoids with associated values.

The partial lengths, the two fronts, and the transversals are given for all
the four trapezoids on the obverse and probably also for the first trapezoid
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on the reverse. The text may be either an assignment, where a student was
supposed to compute the partial areas of all those trapezoids, or it may be
the answer to an assignment, where a student has successfully computed
some, or all, of the indicated values.

Already a preliminary analysis of the trapezoids on the obverse reveals
some interesting features. The sum of the partial lengths is in all the four
cases equal to ‘1°:, probably meaning 1 00:

56;15 + 3;45 =53;20 + 6;40 =54 + 6 = 55;33 20 + 4;26 40 = 1 00.

Similarly, the sum of the two fronts is in all the four cases equal to 1 01:

54;30 + 6;30 = 59;45 + 1;15 =58;50 + 2;10 = 56;09 + 4;51 =1 O1.

On the other hand, the four 2-striped trapezoids are not similar figures,
since the upper lengths are various multiples of the lower lengths:

56;15 =15+ 3;45, 53;20=8-6;40, 54=9-6, 55;33 20 =12;30 - 4;26 40.

Note that the four factors 15, 8,9, and 12;30 are not arbitrarily chosen
numbers. Instead, they are small numbers n such that both n and n + 1 are
regular sexagesimal numbers (numbers for which there exists a reciprocal
sexagesimal number). Indeed,

15+1=16, 8+1=9, 9+1=10, and 12;30 + 1 =13;30.

Here, for instance, 12;30 = 25/2 and 13;30 = 27/2, with the reciprocals
2-12-12=448 and 2-20-20-20=42640.
It is likely that in the partial lengths were chosen, in all the four cases, so

that both the partial lengths and the whole length would be regular sexag-
esimal numbers. More specifically, it is easy to see that

56; 15,3:45 = (15/16, 1/16) - 1 00,
53;20 = (8/9,1/9)- 100,
54,6= (9710, 1/10) - 1 00,

55;33 20,4526 40 = (25/27,2/27) - 1 00.

Another idea behind the construction of the 2-striped trapezoids on the
obverse of Ist. Si. 269 is revealed if the area and the partial areas of one of
the trapezoids are computed. In the case of the first trapezoid, for instance,

A, =56;15 - (5430 +9;30)/2 = 5615 - 32 = 30 00,

Ay =3;45 - (9;30 + 6;30)/2 = 3;45 - 8 =30.

Thus, in this case (and also in the three other cases) the transversal divides
the trapezoid in two parts in the ratio 1 00 : 1 (thatis, 60 : 1).
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It is possible, therefore, that the obverse of Ist. Si. 269 is some student’s
answer to an assignment of the following kind:
Construct four 2-striped trapezoids
with the partial areas always equal to 30 00 and 30,
and with the total length always equal to 1 00.
Take, for instance, the first example, where the student apparently chose
Uy =15-100/16 = u, = 56;15,
u=100/16=3;45.
Knowing u, and uy, he could then set up the equations for s,, d, sy:
S,+5,=2A/u=10100/100=101,
s+ d=2A,/u;=10000/56:15=104
d+sg=2Ac/ uw=100/3:45=16.

Note that division by u =1 00, u, = 56;15, and u; = 3;45 is possible (with-
out approximations) precisely because u, u, and uy_ all are regular.

This system of equations can be solved as follows:

Sa+d+s =Alu+ Ay ug+ A/ =(101+104+16)/2=221/2=110;30,
5a=(sy+d+s)—(d+5)=11030-16=54:30 (= A/ u+ A,/ uy— A/ ),

d=(s,+d+5)—(5,+85)=110;30-101=9;30 = A/ u—A/u+A,/uy),
Si=(sy+ d +5) — (s,+d) = 110:30 = 104 = 6:30 (= Ay / uy— Ay / uy + A/ 1.

These are the values actually recorded in and around the first trapezoid.
The values associated with the remaining trapezoids on the obverse can be
computed analogously.

Only three of the five values associated with the first trapezoid on the
reverse are preserved. It is likely, however that these values were comput-
ed with departure from the values for the third trapezoid on the obverse by
scaling the lengths by the scaling factor ;50 = 1 — 1/6 and the fronts and the
transversal by the reciprocal scaling factor 1;12 = 1 + 1/5. Indeed,

5= (1-1/6)-6,
[45]= (1-1/6)- 54,
2;36= (1+1/5)-2;10,
9;24= (1+1/5)-7;50,

[110;36]= (1 + 1/5) - 58;50.

In this way, the first trapezoid on the reverse still has the partial areas
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30 00, 30, and it still has the partial lengths in the ratio 9 : 1, but the total
length is now 50 instead of 1 00 = 60.

The second trapezoid on the reverse of Ist. Si. 269 is inscribed with data
for a new kind of problem. Interestingly, the given partial areas A, = 8 00,
Ay =4 30 and the upper front s, = 30 are the same as in the favorite kind
of 2-striped triangle, the one appearing in TMS 18 and in Str. 364 §§ 4, 6.
It is likely that this second problem on Ist. Si. 269, rev. is identical with the
problem in Str. 364 § 4 a (Sec. 11.2 ¢ above and Fig. 11.2.1), even if the
number ‘10’ in the diagram for the former text is a careless notation corre-
sponding to the more correct ‘10 diri’ in the diagram for the latter text!

11.3 g. The Bloom of Thymaridas and its relation to
Old Babylonian generating equations for transversal triples

The ‘Bloom’ of Thymaridas, an ancient Pythagorean, not later than
the time of Plato, is mentioned by Iamblichus (the first half of the fourth
century) in his book On Nichomachus’ Introductio Arithmetica (see Heath,
HGM I (1981), 94; Thomas GMW 1 (1980), 139). The ‘Bloom’ is a rule
for solving a certain kind of systems of linear equations. Its name suggests
that the rule was well known and appreciated for its elegance.

The rule was stated as follows, in general terms, without the use of sym-
bolic notation (here in the translation proposed by Thomas):

“When any determined or undefined quantities amount to a given sum, and the

sum of one of them plus every other is given, the sum of these pairs minus the

first given sum is, if there are three quantities, equal to the quantity which was

added to all the rest; if there are four quantities, one-half is so equal; if there are

five quantities, one-third; if there are six quantities, one-fourth, and so on con-

tinually, there being always a difference of 2 between the number of quantities

to be divided and the denomination of the part.”

In modern notations, this rule says that a system of n + 1 linear equa-
tions of the type

d+s|+sy++s,=c, d+s;=c|, d+s,=c, ", d+s,=¢,
has the solution

d={(ci+cy++¢c,)—ct/(n-1).
The proof is easy, since one gets by summation

(ci+cp++c)—c=n-d+(sp+sy++s)—(d+s;+s,++s)=mn-1)-d.
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Now, consider again the OB system of equations for the fronts and
transversal of a 2-striped trapezoid, in the simplified form

S, +Sk=c, S,+d=cy, d+ s =0y,
where c=2A/u, ci=2A,/u,, c;=2Ac/u.
Since one gets here by summation
c+cp+cep=2-(d+s,+sp),
the mentioned system of equations can be reduced to the equivalent system
d+s,+sg=(C+ci+c2, d+s,=cq, d+sg=cy.
In this form, the OB system of equations for the fronts and transversal of a

2-striped trapezoid is clearly identical with the Bloom of Thymaridas in the
case when n = 2. Accordingly,

d=(ci+cy))—(c+ey+c)2=(ci+cy—)2=A,uy+ A/ ug— A/ u.

The obvious conclusion of this brief consideration is that the ‘Bloom of
Thymaridas’ can be interpreted as a generalization to the case of an
arbitrary n of the OB system of generating equations for the fronts and the
transversal of a 2-striped trapezoid, as it appears in YBC 4608 and,
indirectly, in Ist. Si. 269!

11.3 h. Relations between diagonal triples and transversal triples

There is an obvious connection between diagonal triples and transver-
sal triples in the case of a bisected trapezoid (A, = Ay). This can be shown
either algebraically or geometrically. The algebraic proof is as follows
(Vaiman, SVM (1961), 195):

If sq.s,+sq.sx=2-sq.d, then sq.(s,+s)/2+sq.(s,—s)/2=sq.d,
and conversely

If sq.u+sq.s=sq.d, then sq.(u+s)+sq.(u—s)=2-sq.d.

In other words,

If s,,d,s is atransversal triple, then d, (s, +s,)/2, (s, — 5,)/2 is a diagonal triple,

and if d,u, s is a diagonal triple, then u +s,d,u—s is atransversal triple.

The geometric proof is just as simple. In Fig. 11.3.6 below, left, a
square band viewed as a ring of four equal trapezoids is divided in two
parts of equal area by a concentric square of side d, provided that s,, d,
s 1s a transversal triple. In Fig. 11.3.6, right, the same square band, now
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viewed as a ring of four equal rectangles, is again divided in two parts of
equal area by a oblique square of side d, where d now is the diagonal of
the rectangles. Therefore, in both cases the area of the square of side d is
the half-sum of the areas of the squares bounding the square band. This is
the geometric explanation of the “algebraic” identities mentioned above.

Fig. 11.3.6. Two ways of constructing a square halfway between two given squares.

Now, since there exists a simple relation between transversal triples and
diagonal triples, it is clear that there must also exist a simple relation be-
tween the generating rule for transversal triples (Sec. 11. 3 d above) and
the generating rule for diagonal triples (Sec. 3.3 above).

Indeed, consider the generating rule for diagonal triples, in the form

d:u:s=(sq.m+sq.n):2m-n:(sq.m—sq.n), with n<m<n-(sgs.2+1).
(The stated restriction for the pair m, n ensures that 0 < s < u.) Then also
u+s:d:u—s ={2m-n+(sq.m—sq.n)}:(sq.m+sq.n):{2m-n—(sq.m-sq.n)}.
This is a corresponding generating rule for transversal triples. The same
rule can be derived as follows from the equations in Sec. 11.3 d. Set
A,=A,=B, and u,=n,u=m, where n<m<n-(sqs.2+1).
Then it follows that
S, 1d sy
= {2B/(m + n) — B/m + B/n} : {B/n—2B/(m + n) + B/m} : {B/m — B/n + 2B/(m + n)}
={2m-n+(sq.m—-sq.n)}:(sq.m+sq.n):{2m-n-(sq.m—sq.n)}.
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11.4. Old Babylonian Problems for 3-and 5-Striped Trapezoids

Two OB hand tablets with metric algebra diagrams of 3-striped trape-
zoids are shown in Fig. 11.4.1 below.

obv.

Fig. 11.4.1. Ash. 1922.168 and MS 3908. Hand tablets with 3-striped trapezoids.

In and around the trapezoid on Ash. 1922.168 (Robson, MMTC (1999),
273) are recorded the following values:

Uy, y, uz = 1 (00),2 (00), 3 (00),

51159, 83,54 = 15, 13;36 40, 10350, 6:40,

Ay, Ay, Ay =14 18 20,24 26 40, 26 15.
Similarly, in and around the trapezoid on MS 3908 (Friberg, RC (2007),
Sec. 8.1) are recorded the values

uy, uy, uz = 10,20, 30,

$1+ 89, 53,54 = [10;501,9 10, 5:50, :50,

Ay, Ay, Ay =[1]40,2 30, 1 40.
It is likely that both texts are answers to assignments, and that in each case
the simplest of the recorded values are the ones that were given initially,
while the more complicated values are the ones that were computed by the
student. In Ash. 1922.168, the given values may have been

Uy, g, u3 = 10,20,30, A;=As=140.
In MS 3908, on the other hand, the given values were probably instead

Uy, . uz = 1(00),2 (00),3 (00), s;,s54=15,6:40.
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In both cases, the partial lengths are to each other in the ratios 1 : 2 : 3, and
there are altogether 5 given values, which is precisely what is needed to
make a 3-striped trapezoid fully determined.

With the mentioned given values, the problem in Ash. 1922.168 is quite
simple, since it is clear that the ‘feed’ of the trapezoid is

f=(15-6:40) /(10 + 20 + 30) = 8;20/ 1 00 = ;08 20.
Therefore, three applications of the linear similarity rule will show that

§,=15-;0820-10=15-1;23 20 = 13;36 40, and so on.

In MS 3809, the following system of linear equations results from two
applications of the area rule and two applications of the similarity rule:

s +5,=2-140/10=20,

s3+5,=2140/30 = 6;40,

S3=Sl—3(S1—52)=3S2—2S1,

S4=Sl—6(S1—52)=6S2—5S1.
This system of linear equations can easily be shown to have the solution

$12 89,53, 84 = 1050, 9;10, 5:50, ;50 = ;50 - (13,11, 7, 1).
These are the values recorded on the hand tablet.

A diagram showing a 5-striped trapezoid precedes the problem text (of
which most is lost) on the clay tablet IM 31248 (Bruins, Sumer 9 (1953)).
It is likely that here the given values were, just as in the case of Ash.
1922.168, the partial lengths, 3 (00), 1 (00), 3 (00), 1(00), 3 (00), and the
upper and lower fronts, 45 and 1. With the ‘feed’ fequal to 44/ 11 (00) =
;04, the four transversals (33,29, 17, 13) can be computed by repeated use
of the similarity rule.

obv.

sag

sag = 'front, short side’'

1 sag

pirkum = 'cross-line'

157 asa

a.Sa = 'field, area'

Fig. 11.4.2. IM 31248. An easy problem for a 5-striped trapezoid.
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11.5. Erm. 15189. Diagrams for Ten Double Bisected Trapezoids

Bisected trapezoids with s, : d : s, =7 : 13 : 17 and A, = A were dis-
cussed above in Secs. 11.3 a (IM 58045), 11.3 b (VAT 8512),and 11 3 ¢
(YBC 4675).

With departure from this standard example, OB mathematicians gener-
alized the idea of a bisected trapezoid in a variety of ways. (Cf. the survey
in Friberg, RIA 7 (1990), Sec. 5.4 k, and see the continued discussion of the
topic in the sections below.) One interesting generalization is demon-
strated by the geometric table text Erm. 15189 (Vaiman, EV 10 (1955)),
which displays 10 closely related examples of a “double bisected trape-
zoid”, where in each case two bisected trapezoids are joined in such a way
that they together form a new trapezoid.
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Fig. 11.5.1. Erm. 15189. A table of 10 double bisected trapezoids.
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Fig. 11.5.2. Erm. 15189. Scale 1:2.
Photos: The State Ermitage Museum, St. Petersburg.

In example # 1 on the obverse of Erm. 15189, for instance, the first of
the two joined bisected trapezoids has the partial areas 30, 30, the partial
lengths 15, 22;30, and the fronts (actually two fronts and a transversal)
2 16, 1 44, 56. The second trapezoid has the partial areas 6, 6, the partial
lengths 7;30, 15, and the fronts 56, 40, 8. Here

216,144,56=8-(17,13,7) and 56,40,8=8-(7,5,1).

All the other 9 examples are constructed in precisely the same way as
# 1, so that in the first bisected trapezoid the partial areas are 30, 30 and
the three fronts are equal to a multiple of the standard triple 17, 13,7, while
in the second bisected trapezoid the partial areas are 6, 6 and the three
fronts are equal to a multiple of triple 7, 5, 1.

The situation is explained by a rudimentary diagram inscribed on the
lower edge of the reverse of the clay tablet. Apparently, according to the
diagram, the basic configuration is a double bisected trapezoid with the
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partial lengths 1 (00), 1 30, 30, 1 (00), and the fronts 17, 13,7,<5> 1.

Compared to this basic configuration, the lengths of the trapezoid #1 in
Erm. 15189 are scaled down by the factor 4 and the fronts are scaled up by
the factor 8. However, it is more interesting to investigate the relations
between # 1 and the remaining examples. Which are the relations between
the lower front 8 in # 1 and the lower fronts 6, 9;36, 6;40, 3;20 in the
remaining cases on the obverse, and the lower fronts 4,7;30,7;12, 10, 5 in
the five cases on the reverse? The answer is that, in a way which is typical
for OB mathematics, the lower fronts of the 10 trapezoids are

8 4=8-1-1/2)= 1-8/2
6=8-(1-14)= 3-8/4 7;30= 8-(1-1/16)= 15-8/16
9;36= 8-(1+1/5)= 6-8/5 7;12= 8-(1-1/10)= 9-8/10
6:40= 8-(1-1/6)= 5-8/6 10=8-(1+14)= 5-8/4
3;20= 1/2-6;40 5= 1/2-10

Here the pairs of numbers (1, 2), (3, 4), (4, 5), (5, 6), (9, 10), (15, 16) are
regular sexagesimal “twins”, just like the pairs (8, 9), (9, 10), (15, 16),
(12;5, 13;5) used to construct the data for the divided trapezoids in Ist. Si.
269, obv. (Sec. 11.3 f). Thus, the idea behind this particular choice of scal-
ing factors is to subtract nth parts where both n and n — 1 are regular sex-
agesimal numbers, or to add nth parts, where both n and n + 1 are regular!

Moreover, in Erm. 15189, the scalings of the partial lengths is inversely
proportional to the scaling of the fronts, in order to ensure that the partial
areas stay the same. Therefore, the lower lengths of the 10 trapezoids are

15 30= 15-1+1)= 2-15/1
20= 15-(1+1/3)= 4-15/3 16= 15-(1+1/15)= 16-15/15
12:30= 15-(1-1/6)= 5-15/6 16:40= 15-(1-1/9)= 8-15/9
18= 15-(1+1/5)= 6-15/5 2= 15-(1-1/5)= 4-15/5
36= 2-18 24= 2-12

Note that the use of regular sexagesimal twins is imperative in this
situation, in view of the following OB “reciprocity rule” (cf. Friberg, UL
(2005), Sec. 3.1 f):

The reciprocalof 1-1/n is1+1/(n—1), and

the reciprocal of 1+ 1/n is 1 —1/(n +1).

Note also that it is not obvious why there should exist any double
bisected trapezoid at all. The conditions for the existence of a double
bisected trapezoid can be analyzed as follows.
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There are two equations that the parameters for a double bisected trap-
ezoid like the one in Fig. 11.5.3 below must satisfy. The first condition is
that the lower front in the upper trapezoid must be equal to the upper front
in the lower trapezoid. The second condition is that the ‘feed’ f must be the
same for the two trapezoids.

Fig. 11.5.3. The parameters for a double bisected trapezoid.
In view of the generating rule for (rational) transversal triples, these
conditions can be expressed in the following way:
B'/m'-B'/n'+2B'"/(m'+n)=s5'=5,=2B/(m+n)-B/m+B/n,
and
Q@B'/n'=-2B"/mY/(m'+n)y=f=f=QB/n-2B/m)/(m+n).
Equivalently,

[B'/{(m'+n")y-m'-n}]-{2m' n'-(sq.m'—sq.n")} =5’
=s,=[B/{(m+n)-m-n}]-{2m-n+(sq.m—-sq.n)},

and

[B'/{(m'+n)-m'-n}]-(m'-n)=f=f=[BHm+n)-m-n}]-(m—-n).
Together, these two equations show that

{2m'-n'-(sq.m'—sq.n)} /(m'—=n)Y={2m-n+(sq.m-sq.n)} / (m—n),
or

{2sq.n'=sq.(m'=n"} /(m'—=n")={2sq.m—sq.(m—n)} / (m—n).
This single equation for the two unknowns m' and n' can be arbitrarily
complemented by the second equation

m'—n'=m-n.
Then the first equation collapses to

sq.n'=sq.m sothat n'=m.
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What all this means is that if m, n, B are known parameters for a given
bisected trapezoid, then the corresponding three parameters for a second
bisected trapezoid which together with the given trapezoid forms a double
bisected trapezoid can be computed as follows:

n'=m, m=n'+(m-n)=2m-n, and B'=B-{(m'+n")-m'-n}{(m+n) -m-n}.
Let, for instance, the given bisected trapezoid be the one with
m,n,B=2,1,6
and, consequently,
Spd,s=17,5,1, and m—-n=1.
Then,
n'=2, m=3, B=6-(5-3-2)/(3-2-1)=30,
and, consequently,
Spdy s = 17,13, 7.
Similarly, if
m,n,B=3,2,30,
then
m—-n=1, n'=3, m'=4, B'=30-(7-4-3)/(5-3-2)=1 24,
and
s, d, s =31,25,17.
Clearly it is possible, in this way, to construct chains of bisected trape-

zoids, 3,4, or more. As will be shown by the example in the problem text
AO 17264 (below), this fact was well known in Babylonian mathematics.

f=2 (relative place value notation)

Fig. 11.5.4. A chain of 3 bisected (rational) trapezoids.

Note, by the way, that the simplest way to compute the consecutive
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transversal triples in a chain of bisected trapezoids is to compute the ‘feed’
f for the first trapezoid and then use the similarity rule. When, for instance,
m, n, B=2(00), 1 (00), 6 (00), and s,, d, s, =7, 5, 1 in the first bisected
trapezoid, that (see Fig.11.5.4 above), then

f=(-1)/(200+100)=;02, d'=7+;02-300=13, 5,'=13+;02-200=17, etc.

11.6. AO 17264. A Problem for a Chain of 3 Bisected Quadrilaterals

AQO 17264 (Neugebauer, MKT 1 (135), 126-134) is a post-Old-Babylo-
nian (Kassite) single problem text with a curiously corrupt problem for a
threefold bisected quadrilateral. Here is the statement of the problem:

AO 17264, literal translation explanation

Ao . A quasi-trapezoid

2 15 the upper length, 1 21 the lower length, u=215v=121

3 33 the upper front, 51 the lower front. 5, =333,5,=31

6 brothers. The oldest and the next one equal, 6 sub-fields, A| = A,
3 and 4 equal, 5 and 6 equal. A3=A4,A5=A¢

The extents, the transversals, and the descents are what?

Here, as in the case of the bisected quadrilateral in YBC 4675 (Sec. 11.
3 ¢) the introduction of a quadrilateral instead of a trapezoid is an inten-
tional but quite meaningless complication of the problem. The correspond-
ing problem for a trapezoid would be the case when the upper and lower
fronts and the length of the trapezoid are given and when one asks for the
division of the trapezoid into 6 parallel stripes as in the example in Fig.
11.5.4 above. This appears to be an under-determined problem.32 The text
seems to be the result of a thoughtless teacher handing out a defective
assignment and a smart but dishonest student handing in his faked answer.

Note that the given ‘upper’ and ‘lower’ lengths of the quadrilateral are
so different in size that the quadrilateral would be unacceptably lopsided.
Therefore, in the explanation below (with notations as in Fig. 11.6.1) the
condition that the lower length should be given has been disregarded, and

32.Thus, Neugebauer writes (MKT 1, 130): “Man sieht sofort dass die Aufgabe in dieser
Form unbestimmt ist - - - Es ist also klar, dass zur eindeutigen Losung noch zwei weitere
Bedingungen nétig sind - - .
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it is assumed instead that the figure is a trapezoid.
The solution in the text proceeds (essentially) in the following steps:

Sy=(sy+s4+v/u)/ (u+v)2=2640;36/148=227(=3-49)
s3=8y)—(u—-v)=227-54=133(=3-31)

sq.dy =(sq. 51 +5q.5)/2=91809, d;=303(=3-101)
sq.dr =(sq. 5y +5q.53)/2=41209, dy, =203 (=3-41)
sq.d3=(sq.s3+5q.54)/2=13345, d3=115(=3"25)
n'=u-(s;—dp/(s;—s4)=3;110640-215=25
m'=u-(dy—s7)/(s1—54)=31320-215=30
n=u-(s,—dyl(s; —s54)=3;085320-215=20

‘you make the 3 remaining descents like the preceding ones’

~N NN R W=

Apparently, the student who handed in this answer to the assignment
knew beforehand that part of the answer should be that
Sas d1, 82, dy, 53, d3, 54
=3-(111,101,49,41,31,25,17)=333,303,227,203,1 33,1 15,51
Therefore, in steps 1 and 2, he brashly invented meaningless combinations
of the given data which gave the correct values for s, and s3. However,
from there on he proceeded correctly.

a+b

S

u=3(m+n)=6a

Fig. 11.6.1. A chain of three bisected trapezoids. The general case.

It is a remarkable fact that, in spite of appearances, the problem is well
posed, in the following sense:

Suppose that in Fig. 11.6.1 the chain of three bisected trapezoids has
been constructed with departure from the bisected trapezoid in the middle,
with the parameters m, n, B, and that the added bisected trapezoids to the
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left and right satisfy the condition, mentioned above, that
m-n'=m-n=m"-n".
Then all the parameters of the chain of bisected trapezoids are uniquely

determined as soon as the values of u, s|, and s, are given.

It is clear that if the values of m, n, and B can be found, then the other
parameters can be computed. Therefore, what is needed is 3 equations for
the 3 unknowns m, n, B. The first of these equations is easy to find. Indeed,
recall that (see Sec. 11.5 above):

n'=m, m=n'+(m-n)=2m-n, and
B'=B-{(m'+n") -m"-n}{(m+n) m-n},
and similarly for the parameters of the trapezoid to the right. Therefore,
u=m'+m)+(n+m)y+n"+m")=GBm-n)+(m+n)+Bn-m)=3 (m+n).
If, for the sake of symmetry, the pair m, n is called a + b, a — b, then
mn=a+b,a-b = m=a+3b,n'=a+b, and m"=a-b,n"=a-3b.
Then also
u=3(m+n)=6a, sothat a=u/6.
Next, in view of the equations above for n', m', B', together with the
generating rule for (rational) transversal triples
s1={2B"/(m'+n")-m'-n'}-{2m'-n"+(sq.m'—sq.n")}
={2B/(m+n)-m-n}-{2(@+3b)-(a+b)+sq.(a+3b)-sq.(a+b)}
={2B/(m+n)-m-n}-2(sq.a+6a-b+7sq.b).
Similarly, then
s4={2B/(m+n)-m-n}-2(sq.a-6a-b+7sq.b).
Consequently,
§1°(5q.a-6a-b+7sq.b)=s4(sq.a+6a-b+7sq.b).
Since s; and s, are known, this is a quadratic equation for a/b, and since
a = u/6, both a and b are now known. The values of the two interior fronts
and the three transversals can then be computed by use of similarity.
For a numerical example, choose
51=333=3-111,54=51=3-17,andu =215
as in AO 17264 (disregarding the given value v = 1 21, which transforms
the trapezoid into a distorted quadrilateral). Then
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a=215/6=22;30
and
111(sq.t—6t+7)=17(sq.t+6t+7), where t=alb.

This quadratic equation can be simplified to
9sq.t+108=128+¢.

The solution can be found in the usual way. One finds that

sq. (3 t—14;40) =sq. 12;20 sothat 3¢=14;40+ 12;20 =27, and ¢=09.
Therefore,

a=22;30 and b=22;30/9 =2;30,
and consequently

a+b,a+3b,a-b,a+b,a-3b,a-b=25,30,20,25,15,20.

Then, finally, by similarity,
f=(333-51)/215=6/5=1;12

=

§p=333-55-1;12=227, s3=227-45-1;12=1 33,
and so on.

It is likely that it was in this way that the author of the problem intended
it to be solved. If it was, then this Kassite (post-Old-Babylonian) problem
and its intended solution mark one of the high points of Babylonian
mathematics. In this connection it is worth pointing out that the only other
known Kassite mathematical problem text is MS 3876 (Sec. 8.3 above),
which with its computation of the weight of an icosahedron marks another
high point of Babylonian mathematics. Therefore, perhaps, Hgyrup was
too pessimistic with regard to the level of Kassite mathematics when he
wrote in his LWS (2002), 387, the following words about AO 17264

“ - - what the text offers is a mock solution - - - a piece of sham mathematics — all

that remains of the stringency and creativity of the Old Babylonian mathematical

school is the higher level on which the fraud is perpetrated.”

In the terminology of modern mathematics, the problem stated (and in-
correctly solved) in AO 17264 is the oldest known example of a “boundary
value problem”, where the initial and final values are known for a
sequence of numbers generated by a recursive procedure.
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11.7. VAT 7621 # 1. A 2 - 9-striped trapezoid

In OB examples of divided trapezoids, the lengths of the transversals
are, as arule, exactly determined sexagesimal numbers. An exception from
this rule is VAT 7621 (Thureau-Dangin, TMB (1938), 99).

VAT 7621, literal translation explanation
o - 4°
2 1°5
14°5
#1 Two are they, 9 each their sons. Divide each part of the 2-striped trapezoid
The upper bur in nine divide, in the diagram
and the lower bur in nine divide, into 9 equal parts.

and (each) soldier show him his stake. ~ Find the partial lengths.

#2 To 3 men divide equally, Divide into 3 equal parts.
and (each) soldier show him his stake. ~ Find the partial lengths.

As shown in the diagram, the given upper and lower fronts of a bisected
trapezoid are s,, sy, =145 =15+7,and 15 =15 - 1. The two partial areas
are both equal to 30 (00) sq. ninda = 1 bur. Therefore, the transversal is
d=15-5=1 15. The normalized length of the trapezoid, 1 00 ninda, is
divided in two parts, 20 and 40, in the ratio 1: 2.

An unusual feature of problem # 1 is that the two sub-trapezoids are fur-
ther divided in nine parts each, allotted to the 2 - 9 sons of two (men). Thus,
each son gets 1/9 bur = 1/3 ¢Se = 2 iku. To ‘show each soldier his stake’
means, as usual, to determine the positions of the transversals separating
the 18 lots from each other. This can be done by use of a method suggested
by Parker, JEA 61 (1975) as an explanation of the given length numbers in
the Egyptian demotic mathematical papyrus P.Heidelberg 663 # 2. (See
the discussion of P.Heidelberg 663 in Friberg, UL (2005), Sec. 3.7.)

Let the sum of the first n sons’ lots, counted from the left, be the trape-
zoid with the fronts s,, d,,, and the length (s, — d,,)/f, where f'is the inclina-
tion of the sloping side of the trapezoid. Let the corresponding area be A,,.
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Then (c¢f. YBC 4675, Sec. 11.3 c above)
A= (s, +d)2 (s,—d)If=(sq.5,—5q.d,)/(2f), sothat sq.d,=sq.5,—2f"A,.
In VAT 7621, 5, =145,f=(145-15)/1 00 = 1;30,and A,, = 1 00 00/18 -
n =320 n.Hence, the length d,, of the n-th transversal can be computed as
d,=sqs.(sq.5,—2f*A,)=sqs.(30345-1000n), for n=1,2, -, 18.
Once the transversals are known, it is easy to find also their positions.
The problem in VAT 7621 #2 seems to be to divide the same trapezoid
into three stripes of equal area. The solution can be found as follows:
sq.d;=sq.s,~2f A;=sq.145-2-1;30-20 00 = 3 03 45— 1 00 00 = 2 03 45,
sq.dy=5q. 5 +2f+ A=sq.15+2-1;30-2000=345+100 00 =103 45.
Hence,
dy=15-sgs.33 =appr. 1 26;15, and d, =15"sqgs. 17 =appr. 101;52.
Or, one can make use of the general trapezoid bisection equations:

sq.d; =(2sq.5,+sq.5)/3=5sq.15-(2-49 +1)/3=5q.15- 33,
sq.dy=(sq. 85, +2sq.5)/3=5sq.15-(49+2-1)/3=5q. 15 17.

11.8. VAT 7531. Cross-wise striped trapezoids.

VAT 7531 ## 1-4 (Friberg, UL (2005), Sec. 3.7 c; cf. Fig. 1.12.7 above)
are the only known OB examples of problems for “cross-wise striped trap-
ezoids”. In the trapezoids considered there, the lengths are parallel, not the
fronts, and it is likely that the transversals are required to be orthogonal to
the parallel lengths, as in the example shown in Fig. 11.8.1 below. (There
are no explicit solution procedures in the text that can confirm this reason-
able conjecture) Here is, for instance, the text of problem # 1.

VAT 7531 # 1, literal translation explanation

2 35 50 the long length, 1 54 10 the short length, u'=23550,u"=154;10
50 the upper front, 41 40 the lower front. s, =150, 5. =41;40

Its area, how much it is, find out, then A=7?

to 3 brothers equally divide it, Divided in 3 equal parts
and (each) soldier show him his stake Compute the partial lengths

In VAT 7531 # 1, the given figure can be interpreted as a trapezoid
composed of a central rectangle and two flanking non-equal triangles. If
the rectangle is removed, what remains is a rotated symmetric triangle,
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with two sides equal to 41;40 and the third side equal to 50. The height
against the side 50 can be computed by use of the diagonal rule. It is 33;20,
so that the triangle can be reinterpreted as the composition of two equal
right triangles with the sides 8;20 - (3, 4, 5).

The height & against the side 41;40 can be computed as follows:

I 41:40/2 = Aygiangte = 3320 - 5072, sothat /i=33:20 - 50/ 41:40 = 40.
After 4 has been computed, the two components a and b of the base of the
triangle can be computed by use of the diagonal rule. They are 30 and

11;40. Hence, the triangle has an alternative composition as two right tri-
angles with the sides 10 - (3,4, 5) and 1;40 - (7, 24, 25) joined together.

154;10
I
I
|
1 bur 1 bur 1bur
|
|
(30) (30) 45) (39;10)  (11;40)
2 3550

A=13000sq.n.=3bur
A/3=3000sq.n.=1 bur

(30)  (11:40)
41;40

Fig. 11.8.1. VAT 7531 # 1. Three brothers sharing a trapezoidal field.

The aim of exercise # 1 is to divide the given trapezoid equally between
three brothers. Now, it is clear that the area of the trapezoid is equal to
(235;50 +154;10)/2n.-40n.=215n.- 40 n. =130 00 (sq. ninda) = 3 bur.
One third of that area is 30 00 (sq. ninda) = 1 bur, which is equal to the
area of a rectangle with the length 45 n. and the height 40 n. Hence, the
middle brother gets a central rectangle with these sides, while the first
brother gets the left triangle plus a rectangle with the sides 30 and 40, and
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the third brother gets the right triangle plus a rectangle with the sides 39;10
and 40. In this way, each brother gets a field with the area 1 bur.
11.9. TMS 23. Confluent Quadrilateral Bisections in Two Directions

TMS 23 (Bruins and Rutten (1961)) is a fragment from the middle of
one side of a clay tablet. (See the proposed reconstruction in Fig. 11.9.1.)

1
48 Ja-na 1 4°5 sag™an. tai-si-ma 1 2°4 ta-mar i

3°6 a-na 1°5 sag/ﬁi. ta i-Si-ma 9 ta- man12°4 a-na 9 dah

1
i
1
1 3°3 ta-mar (1 3° 3 pi- ir- ku an. ta t(;— ur- ma 3°6 |
i
1
1

a-nal4’5 sag/an. ta i-Si-ma 1 3 ta-mar 4°\8 a-na 1° 5sag ki. ta

i-Si-ma 1° 2 t}z-mar 1°2i-nal 3 zi 5°1 ta<mar dal kita

1
:
1
tu- ur- ma /2 u 1im.gid.da le- gé 2 iu—tam—h%ir 4 ta- mar |
:
1
1
1

| Su-tam-hi-ir 1 ta- mar 4 u 1 wulgar5 ta- Jt’m' 2" he- pe

2 3 ta- marigi 2 3° pu- tu- ur 2°4 ta- maﬁre-a\*-kcl li-ki-jI

1 2°5 us anta g-na 1 im. gid. da i-s7 1 2"% ta-mar

35 us ki ta a-na 2 im.gid. da i-Si-ma 1 1° ta—‘vu/' i-nal 2°6zi

1
1°5 ta-mar Z%°4 Sa re- es- ka u- ki-lu a-na1°5 )z’— Si- ma 6 tamar

a-na 1 im. é@ da i-Si-ma 6 ta-mar 6 i-na 1 2°§ zi

11°9 ta- mar \Kl°9 dal anta fu- wr- ma 3°5 u§\{(i. ta a-nd

1
1 i-si-ma 3°5 ta}mar 6 sa 2°4 a-na 1°5 ta-as-su-u nﬁmZ i-Si-ma

1
1°2 ta- mar kl" 2 a-na 35 uS ki ta daw ta-mar 471
dal ki.ta 14°5 sa&@. ta e- li 1°5 sag ki.ta | 3° dirig

igi 1 3% pu- tu- ur 4" \ta- mar 4%1 2°5us$ an.ta dah
5° 6 4° ta-mar \/

Fig. 11.9.1. TMS 23. Proposed reconstruction of part of the text.

The interpretation of TMS 23 in the original publication of the text was
only partly successful. A more thorough analysis shows that TMS 23 is
among the most important of all known OB mathematical texts. Here is the
translation of the proposed reconstruction of the text:
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TMS 23, literal translation explanation

48 to 1 45, the upper front raise, then 1 24 you see. 48 -5, =:48-145=124
36 to 15, the lower front raise, then 9 you see. ;36 5, =336-15=9

124 to 9 add, then 1 33 you see, 348« 5, + 336 - 55

1 33 the upper crossline =124+9=133=d,
Turn around Begin again

36 to 1 45, the upper front, raise, then 1 03 you see. ;36 -5,=;36-145=103
48 to 15, the lower front, raise, then 12 you see. 485, =348 -15=12

12 from 1 03 tear off, 51 you see, the lower crossline. 336+ s, — 348 - s, =51 = dj
Turn around Begin again

Take 2 and 1 from the table. Choose the parameters 2 and 1
Make 2 equalsided, 4 you see. sq.2=4

Make 1 equalsided, 1 you see. sq.1=1

4 and 1 heap, S you see. sq.2+sq.1=4+1=5
1/2 break 2 30 you see. (sq.2 +sq. 1)/2=2;30
The opposite of 2 30 resolve, 24 you see. 1/2;30=;24

Let it keep your head. Remember this value!

1 25 the upper length, to 1 from the table, 1-u,=1-125
raise, 1 25 you see. =125

35, the lower length, to 2, from the table, 2-u=2-35
raise, 1 10 you see. =110
From 1 25 tear off, 15 you see. 1ru,—2-u=125-110=15
24 that held your head to 15 raise, then 6 you see. 1 uy—2-w) ;24=6

To 1, from the table, raise, then 6 you see.
6 from 1 25 tear off, 1 19 you see,

I-(1-uy—2-u)-3;24=6
uy,—1-A-u,-2-u)- ;24

1 19 the upper transversal. =119=¢,

Turn around Begin again

35, the lower length, fo 1 raise, then 35 you see. 1-uy=1-35=35

6, that of 24 that you raised to 15, to 2 raise, 2-(1-uyg—2-u) 24=6-2
then 12 you see. =12

12 to 35, the lower length, add, 47 you see. we+2-1-u,—2-u)- ;24
47, the lower transversal. =35+12=47=¢;

1 45, the upper front, over 15, the lower front, S,—S=145-15

is 1 30 beyond. =130

The opposite of 1 30 resolve, 40 you see. 1/(s3—s)=1/130=:0040
40 to 1 25, the upper length, raise, then 56 40 you see. u, / (s, — s) = ;56 40

The statement of the problem is not preserved, but apparently the object
considered in this text is a quadrilateral with the ‘upper front’ s, =145 (=
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15 - 7), the ‘lower front’ s, = 15 (= 15 - 1), the ‘upper length’ u, =125 (=
5-17),and the ‘lower length’ 1, =35 (=5 7). See Fig. 11.9.2 below. Note
that if the Sumerian/OB “quadrilateral area rule” had been used in this text
(which it is not), the area of the quadrilateral would have been found to be
a conspicuously round number:

A= (uy+u)/2 - (s,+5)/2=(125+35)/2- (145+15)/2=100-100= 10000 (sq.n.)

In the present case, the rule would yield a wildly inaccurate value.

Fig. 11.9.2. TMS 23. Confluent bisections in two directions.

As a matter of fact, all the computations in this text are wildly inaccu-
rate, because it is not taken into consideration that the quadrilateral is not
a (parallel) trapezoid in two directions. Apart from that, however, the pro-
cedures in the text are correct, so one way of saving the situation is to in-
terpret the text as dealing with two separate trapezoids, one where the
‘fronts’ are parallel and another where the ‘lengths’ are parallel.

With this amended interpretation of the text, the problem considered in
the exercise can be explained as follows: Let s, =145 (=15 7) and s, =
15 (=15 - 1) be given values for the upper and lower fronts of a (parallel)
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trapezoid. Then it is clear that the trapezoid is bisected by the transversal
d=115(=15"5), so that the triple s,, d, s, satisfies the equation

8q. S, +5q. 5, =2 sq.d.
The question is now if it is possible to find an ‘upper’ and a ‘lower’ trans-
versal, d, and dy, in the same trapezoid, such that also the trapezoid with
d, and dy as its upper and lower fronts is bisected by the transversal d.
This phenomenon can be called “a confluent trapezoid bisection”.

by=n-t , ¢ b, =m-t

Sk

s, = the upper front
d, = the upper transversal
d = the transversal

! dk = the lower transversal
s, = the lower front

B,+C,=B +C, and B,=B, = C,=C,

Fig. 11.9.3. A confluent trapezoid bisection.

The first part of the solution procedure in TMS 23 probably began with
the computation of (the length of) the transversal d. That computation is
now lost. Anyway, the solution procedure continues immediately with the
computation of the upper and lower transversals as

dy=:48 5, +36 5. =:48-145+:36-15=124+9=133,

d =336 5,— 48 5. =:36-145—:48-15=103-12=51.

Although this is not done in the text, it is easy to check that then, indeed,
sq.dy+5q.d =5q. 133 +5q.51=22409+4321=30730=2-13345=2"5q.d.
Therefore, in the trapezoid in Fig. 11.9.3, C, = Cy, as desired.

The explanation for this way of solving the problem comes in the sec-
ond part of the solution procedure, which is much more explicit. The main
idea is the following: The trapezoid in Fig. 11.9.3 is bisected by the trans-
versal d. Therefore the areas B, + C, and B + C are equal. Hence, if also
B, and By are equal, it will follow that C, and Cy are equal, as desired.



11.9. TMS 23. Confluent Quadrilateral Bisections in Two Directions 303

Suppose now that B, and By are equal, and that, in addition,
b, :by=n:m where b,, b, are partial lengths and m, n a given pair of integers.
(See again Fig. 11.9.3.) Then the upper and lower transversals d, and dj
can be computed as the solutions to the following system of equations:
$a—dy)/n=(d—s)/m, n-(s,+dy)=m" (dy+5p).
(The first of these equations is a similarity equation, the second an area
equation.) The system of equations can be solved in the following way:
Set d,=s,—n-t and d=s +m-t where ¢ isanew unknown.
Then the first equation is satisfied. The second equation is also satisfied if
n2s,—n-H=m-2s+m-1) thatis,if n-s,—m- s =(sq.m+sq.n)/2-t.
Consequently,
t=(n-s,—m-sp)/(sq.m+sq.n)/2.
Thus, finally,
dy=s,—n-t=s,—n-(n-s,—m-sy)/(sq.m+sq.n)/2, and
dy=sg+m-t=s+m-(n-s;—m-s)/(sq.m+sq.n)2.
This OB “confluent bisection rule” is used explicitly in the second part of

the solution procedure in TMS 23, where the upper and lower transversals
e, and ey between the “parallels” u, and u are computed as follows:
ea=u,—l-t=u,—1-(1-u,—2-w)/(sq.2+sq.1)/2=119, and
en=u +2 t=u+2 (1 uy—2-w)/(sq.2+sq. 1)/2=47.
Thus, the solution procedure in the second part of TMS 23 makes use of
the confluent bisection rule with m, n =2, 1. Note, by the way, that
sq.119+sq.47=14601+3649=22050=2-11025=2-sq.105.

(1 05 is the transversal in the bisected trapezoid with the parallels 1 25,35.)

How is this confluent bisection rule related to the method used in the
first part of the solution procedure in TMS 23? The answer to this question
is that one can show, with a little bit of algebraic manipulation, that the
equations above for the upper and lower transversals can be reduced to

dy=s,—n-(n-s,—m-s)/(sq.m+sq.n)/2

={(sq.-m—sq.n)/2 uy+m-n-u}/(sq.m+sq.n)2,
dy=sg+m-(n-s;,—m-s)/(sq.m+sq.n)2
={m-n-u,—(sq.m—sq.n)/2- w}/(sq.m+sq.n)/2.

In other words, an alternative form of the confluent bisection rule is that
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dy=a-s,+b-s, dg=b-s,—a- sy,
where
b=m-n/(sq.m+sq.n)/2, and a=(sq.m—sq.n)/2/(sq. m+sq.n)/2.

One recognizes here that a and b are the short sides of a right triangle with
the diagonal 1, given by a generating rule for diagonal triples. In the spe-
cial case when m, n =2, 1, the equations for a and b show that

b=2-1/(sq.2 +sq. 1)/2=4/5=:48, and

a=(sq.2-sq.1)/2/(sq.2 +5sq. 1)/2 =3/5=;36.
Therefore, the alternative form of the confluent bisection rule is used in the
first part of the solution procedure in TMS 23, with the same choice of the
parameters m, n as in the second part of the solution procedure.

This observation finally makes sense of the following cryptic remark at
the beginning of the second part of the solution procedure:

2 u 1 im.gid.da le-gé take 2 and 1 (from) the table

Here im.gid.da ‘long clay’ or ‘long clay tablet’ is a Sumerian word which
normally refers to a longish clay tablet inscribed with a mathematical table
text, such as a single multiplication table, or a table of reciprocals. In the
present context, it obviously refers to a mathematical table similar to but
slightly different from Plimpton 322 (Sec. 3.3), namely a table with sepa-
rate columns for the parameters m, n and for the fronts and lengths of a
number of right triangles satisfying the condition that the diagonal = 1.

11.10. Erm. 15073. Divided Trapezoids in a Recombination Text

Erm. 15073 (Vaiman, SVM (1961), 232-244), is a large fraction of an
OB mathematical recombination text. It is of the same kind as the more
well known recombination texts BM 85194 and BM 85196 (both men-
tioned in Sec. 1.12 above) and BM 96954+ (see Sec. 93, in particular Fig.
9.3.2), all from the ancient Mesopotamian city Sippar. Most of the text on
the reverse of Erm. 15073 is destroyed, but small parts remain of three
exercises, all dealing with divided figures.

The final part of the first exercise in the leftmost column on the reverse
(col. vi) contains the explicit computation of the partial lengths u, =20 and
u =40 of a bisected trapezoid with the upper front, the transversal, and the
lower front equal to 35,25,5=5- (7,5, 1).
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What remains of the second exercise in col. vi is only a diagram show-
ing a quadrilateral with some associated numbers. However, the numbers
are such that it is clear that this exercise is about a quadrilateral bisected in
two directions, thus to some extent a parallel to TMS 23.

X i- Si-ma
y6a-nad’s
°3 tg-maran.ta gar.1d
8 a—nal“Si—Si-mal“Z ta-ma
1°2i-nasall dal an.ta gar.r
a.zi-maS” 1dalta-marl4’ 5sag
ugu 1°5 sag Ki.ta mi- nam dif

I

1

u$ x x 4°2 3°u§ gid. da x i
° - |

|

Fig. 11.10.1. Erm. 15073 rev. Remains of three exercises concerned with divided figures.

Erm. 15073 col. vi # 2, literal translation explanation

42 30

46
14

17 30

A -+ 4230 the long length, A trapezoid(?). u' =42;30
17 30 the short length, 46 the upper front u" =17;30, s, =46
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According to the “quadrilateral area rule”, the area of the figure is
A =(42;30 + 17;30)/2 - (46 + 14)/2 =30 - 30 = 15 (00).
This number is recorded in the center of the diagram.

Assuming that there exists a transversal d “parallel” to the fronts and
bisecting the “trapezoid”, its length can be computed a follows:

sq.d=1(5q.46 +sq. 14)/2=(3516+316)/2 =19 16 =sq. 34, d=34.

Similarly, assuming that there exists a transversal e “parallel” to the
lengths, bisecting the “trapezoid”, its length can be computed a follows:

u, =42;30=2;30-17, w=17;30=2;30-7 = e=2;30-13.

Thus, the transversal triples for this in two ways bisected quadrilateral are

(sp.d,5) =2 (23,17,7), and (uy, e, u) =2;30- (17,13, 7).

What remains of the exercise in col. iv to the right on the reverse of
Erm. 15073 (see the text below) is partly a parallel to TMS 23, with a con-
fluent trapezoid bisection where the lower transversal is computed as fol-
lows:

dy=336"5,—348 -5, =336-145-;48-15=103 - 12 =51.

The computation of the transversals is followed by the computation of the
partial lengths, beginning with

by={(s,—dy) /! (s,—s0)}-1=(145-133)/(145-15)=12/130=8.

The rest of the exercise, including the computation of the partial areas, is

lost. It is clear, anyway, that the divided trapezoid in this case was the one
depicted in Fig. 11.10.2 below:

5, =145

Fig. 11.10.2. Erm. 15073 col iv. A confluent trapezoid bisection.
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Erm. 15073 col. iv, literal translation explanation
........................... you see

........................... you see

........................... you lift

........................... you see. S

36 to 1 45 lift, then 1 03 you see. Set it above. ;36 5,=;36-145=103
48 to 15 lift, then 12 you see. 48 -5, =348-15=12

12 our from 1 03 that you set above 3365, —348 -5, =103 -12
tear off, then 51 the transversal you see. =51 =dj

1 45 the upper front over 15 the lower front S,—S=145-15

is what beyond? 1 30 it is beyond. =130

its opposite resolve, then 40 you see. Set it. 1/130 =;00 40

1 45 over 1 33 the transversal is what beyond? S,—d,=145-133=12
12 you see. 12 to 40 that - - - lift, 12 -;00 40

then 8 the descent. =(s,—dy,) / (s,—5) =508

The problems on the obverse of Erm. 15073 are not related to the divi-
sion of figures problems on the reverse. The first problem appears to be a
combined work norm exercise, while the remaining problems on the
obverse are various kinds of volume computations. For details see
Vaiman, op cit.

The importance of Erm. 15073 rev. is that it clearly demonstrates how
readily mathematical ideas could spread from one Mesopotamian city to
another in the OB period. (In the present case from Sippar(?) in central Me-
sopotamia to Susa far to the east.) This is evident in the case of the conflu-
ent trapezoid bisections, and even more so in the case of the in two ways
bisected quadrilaterals, where a surprisingly lax attitude towards features
apparently judged to be non-essential allows the treatment of decidedly
unsymmetrical quadrilaterals as figures with two parallel fronts and two
parallel lengths.
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Fig. 11.10.3. Erm. 15073. Scale 3:5.
Photos: The State Ermitage Museum, St. Petersburg



Chapter 12

Hippocrates’ Lunes and
Babylonian Figures With Curved Boundaries

12.1. Hippocrates’ Lunes According to Alexander

Hippocrates of Chiosis the most famous of the Greek geometers of
the (last part of the) 5th century BCE. In 8iammanof Proclus, it is said
that “he is the first of those mentioned as having compkenent’
(Thomas,GMW 1(1980), 151. He also occupied himself with questions
related to the quadrature of the circle, in particular his famous “quadratures
of lunes” (Gr.meni skotittle moon’). Simplicius mentions, in hiSom-
mentary on Aristotle’s Physiceran der WaerdenSA (1975), 131ff.;
Thomaspp. cit, 235ff.; Knorr, ATGP(1993), 29f.) two different sources
allegedly dealing with Hippocrates’ quadratures of lunes.

One of these sources is a statement by Simplicius’ teacher Alexander
of Aphrodisias. Two different quadratures of lunes described by Alex-
ander are illustrated by the diagrams in Fig. 12.1.1 below, using metric
algebra notations. The construction of the first diagram begins with an
isosceles right triangle (a half-square) with the ladbe sides and the
areaT. Three semicircles are applied to the sides of the triangle, a large
semicircle to the base and smaller semicircles to the legs. In this way, two
lunes are formed, both bounded on one side by a semicircle of diameter
and on the other side by a 1/4-circle of raqilzs Clearly,

sSq.p=2sqs.

Assuming it to be known that the area of a semicircle is proportional to
the square of its diameter, it follows thia¢ area §of the large semicircle
is equal to the sum 2, 8f the areas of the small semicircl€n the other
hand,the figure formed by the two lunes and the large semicircle is the

309
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same as the figure formed by the right triangle and the two small semi-
circles This means that

$=25 and 2 +§,=T+2S, wherel is the area of each lune.
Consequently,
2L=T sothatL=T/2 (=sqs/2).
Therefore, a lune bounded by a semicircle and a 1/4-circle is squarable.

Sg.p=2sgs
2L+§,=T+25
(Sp andS; semicircles omp ands)
T ¢ C
$=25

2L=T= Atriang,e(squareable)

sq.p=4sqs
3L+§,=T+3§

(Sp ands; semicircles op ands)
&

$=45

3L+ §=T = Argpezoid(Squareable)

Fig. 12.1.1. Hippocrates’ lunes according to Alexander. Modern notations.

The next construction begins with one half of a regular hexagon with
the sides the base, and the ared. Four semicircles are applied to the
sides of the trapezoid, a large semicircle to the base and smaller semicir-
cles to the legs. In this way, three lunes are formed, all bounded on one side
by a semicircle of diametsrand on the other side by a 1/6-circle of radius
s. Clearly,

p=2s, sothat sp=4sqgs and, consequently§, =4S

On the other handhe figure formed by the three lunes and the large
semicircle is the same as the figure formed by the trapezoid and the three
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small semicirclesThis means that
$=4% and A +§,=T+3F, wherel is the area of each lune.

Consequently,

3L+S=T.
Assuming that it is known that every rectilineal figure (a figure bounded
by straight lines) is squareabt#.Euclid’'sElementdl.14), it then follows
that3 times the area of a lune bounded by a semicircle and a 1/6-circle,

and the area of a semicircle, all together, are equal to the area of a square

(In other words, the area of a circle is equal to the area of a square minus the
area of 6 such lunes. Maybe the idea was that in this way the problem of the
quadrature of the circle can be reduced to the problem of the quadrature of this
kind of lune.)

12.2. Hippocrates’ Lunes According to Eudemus

The other source used by Simplicius is a passage inigtery of
Geometryby Eudemus. The constructions of lunes in that passage are
more sophisticated than the constructions mentioned by Alexander. Also
the argumentation is more sophisticated. In particular, Eudemus says that

“The quadratures of lunes, which seemed to belong to an uncommon class of prop-

ositions by reason of the close relationship to the circle, were first investigated by

Hippocrates, and seemed to be set out in correct form; therefore we shall deal with

them in length and go through them. He made his starting-point, and set out as the

first of his theorems useful to his purpose, that similar segments of circles have the

same ratios as the squares on their bases. And this he proved by showing that the

squares on the diameters have the same ratios as the circles.”
Unfortunately, Eudemus does not tell how Hippocrates proved that circles
have the same ratios as their squai@s.Kl. X11.2.) Neither does he ex-
plain under which circumstances segments of circles are similar to each
other. Hippocrates’ definition of similar segments was probably the same
as Euclid’s irEl. Ill, Def. 11

“Similar segments of circles are those which admit equal angles.”

What this means is made cleaigh11.33, where the angle admitted by a
circle segment is seen to be the angle between the chord which is the base

of the segment and the tangent to the circle at the endpoint of that chord.
The situation is particularly simple in the case of semicircles, all of which
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can be interpreted as similar circle segments, since the angles that they ad-
mit are always right angles. Therefore, the constructions of lunes by means
of similar circle segments (Fig. 12.2.1), can be viewed as direct generali-
zations of the constructions of lunes by means of semicircles (Fig. 12.1.1).
Sg.p=2sgs
L+§=T+25
(Sp andS; circle segments opands)
&
$=2%
Sp L=T= phalf—square

S sg.p=3sgs

L+§,=T+35

(Sp and§, circle segments opands)
&

$73%

L=T= Atrapezoid

2sq.p=3sgs,

L+28§,=T+3§

(Sp and§; circle segments opands)
&

28,=35

L=T= Atrapezoid _Atriangle

d=p+q, d:s=s:q
C d-g=sqs d-g=p

Fig. 12.2.1. The three first of Hippocrates’ lunes according to Eudemus. Modern notations.

The construction of the first of Hippocrates’ lunes according to
Eudemus starts, just like the construction of the first lune according to
Alexander, witha half-square Tof sides and base, where then s =
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2 sg.s. A semicircle is circumscribed around this half-square, and on the
base of the half-square is constructed a large circle sednsimilar to
the two small circle segmerfiswith the basa which are cut off from the
semicircle by the sides of the half-square. The common chord-tangent
angle of the three segments is then half a right angle, and the large segment
is tangent to the sides of the half-square. In the process, a lune is formed,
bounded on one side by a semicircle with the dianpeterd on the other
side by the arc of a 1/4-circle segment with the pa3&e area of the lune
can be computed as follows:

L=T+ 285—%, where &= Sp, so that L =T = the area of the half-square.

The conclusion is that lune bounded on one side by a semicircle and on
the other by a 1/4-circle is squareabidthough it is not explicitly stated,

it is also clear thathe chord-tangent angle of the outer arc of the lune is
twice as large as the chord-tangent angle of the inner arc

The construction of the second of Hippocrates’ lunes according to
Eudemus starts with trapezoid Twith the sides and the smaller top all
equal tos and with the basg, where sgp = 3 sg.s. A circle segment with
the base is circumscribed around the trapezoid. It is shown as follows
thatthe circular arc of the segment is greater than that of a semicircle

Letd be (the length of) the diagonal of the trapezoid. Thep s® sq.s

and sqd> 2 sqs because the angle oppositeltis obtuse

C sg.p<sqg.d+sqg.s sothatthe angle oppositeptds acute.

Therefore the arc of the circumscribed segment is greater than that of a semicircle.
(Clearly, the arguments used here by Hippocrates are forerunners of
Euclid’s Elementd].12-13 and I11.31.)

Next, a segmen, is constructed on the bapesimilar to the three
small segmentS; with the basewhich are cut off from the circumscribed
segment by the trapezoid. A lune is then formed, bounded on one side by
an arc greater than that of a semicircle and on the other side by the arc of
the segmen®,. The ared. of the lune can be computed as follows:

L=T+ 3%—8‘,, where XHx= Sp so that L =T = the area of the trapezoid.

Thereforealso this lune with an outer arc greater than that of a semicircle
is squareableAlthough it is not explicitly stated, it is clear thlé chord-
tangent angle of the outer arc of the lune is three times as large as the
chord-tangent angle of the inner af€f. Euclid’sElements 111.32.)
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The construction of the third of Hippocrates’ lunes according to Eude-
mus is accompanied by a diagram which is excessively complicated
because it wants to show the construction in full detail. The third diagram
in Fig. 12.2.1 above is a somewhat simplified version of that diagram.

Essentially, the construction begins with a straight line of given length
s, the top of the trapezoid in the diagram. A circle of diamesas 2rawn
with its center at one end point of the given straight line. Next a straight
line of lengthp where sqp = 1 1/2 - sgsis constructed by use atusis
‘verging’, with one end point on the circle, with the second end point on a
perpendicular bisector of the given straight line, and such that its extension
p + g passes through the second end point of the given straight line.

Note that instead of using tmeusisconstruction, Hippocrates could
have computed the length= p + g of the diagonal as follows:

The triangle with the sides g, q is similar to the triangle with the siddss, s.

Therefored:s=s:q sothatd-q=sq.s.

Henced andq can be found as the solution to the rectangular-linear system of equations

d-q=sq.s, d—q=p.

A trapezoid with three sides equalstand with the diagonad + g can
now be constructed, as in the third diagram in Fig. 12.2.1. Finally, a circle
segment is constructed, with the same base as the trapezoid and circum-
scribing the triangle formed by the base and the two straight lines of length
p. The triangle cuts off two segmeigsof basep from this circle segment,
at the same time as the trapezoid cuts off three segRgitbases from
the circle segment circumscribing the trapezoid. It is clearShand S
are similar circle segments, since their chord-tangent angles are €dual. (
againkl. 111.32.) It is also clear that the angle at the base of the trapezoid
is twice as big.Cf. EL.111.27.)

A lune is now formed with its outer and inner arcs equal to the arcs of
the circle segments circumscribing the trapezoid and the triangle, respec-
tively. The ared of the lune can be computed as follows:

Since§, andS; are (the areas of) similar circle segments with the pasels, respec-

tively, and since 2 s@.=3sqs, itfollows that 25,=3S

Let nowT = (the area of) the figure equalttee trapezoid with the triangle torn off.

Then L=T+3&%-25,=T.

Since rectilineal figures are squarealak dgainkl. 11.14), it follows that
the lune with its outer and inner arcs equal to the arcs circumscribing the
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trapezoid and the triangle, respectively, is squareahlédwough it is not
explicitly stated, it is also clear thette chord-tangent angle of the outer
arc of the lune is 1 1/2 times as large as the chord-tangent angle of the
inner arc Finally, it is can be shown thtte outer arc is less than the arc

of a semicirclgThomaspp. cit, 247, footnote a).

The fourth of Hippocrates’ lunes according to Eudemus (see Fig.
12.2.2) is bounded on the outside by the arc of a 1/3-circle segment of base
pand on the inside by the arc of a 1/6-circle segiggwith the same base.

The ared. of the lune can be computed as

L=T+2&-S, whereTis atriangle with the sidep, s, s, with sqp=3sgs.
SinceS and$, are similar circle segments, it follows that

$=3% sothatL=T-S§
This is a somewhat unsatisfactory result, so the construction continues as
follows: A circle Cg is circumscribed around a regular hexagtyhwith

the diameter ', and with sgs= 6 sq.s". The hexagon then cuts of 6 circle
segments from the circumscribed circle, and it is clear that

§=6S; sothatL=T-6S;.
Then also

L+(Hg +6S)=T+Hg sothatL +Cg =T + Hg is squareable.
Thus, the final conclusion is thidwe area of the lune in Fig. 12.2.2 plus the
area of the small circle is equal to the area of a squahés is a result of

the same kind as the one for Hippocrates’ second lune according to Alex-
ander. See the second diagram in Fig. 12.1.1 above.

sq.p=3sgs and sgs=6sqs'

L+Sp:T+285
C
szssg and §=6S,

L+ % =T= Atriangle

L+C= A[riangle + Asmall hexagon
(C circle of diameter 2"

Fig. 12.2.2. The fourth of Hippocrates’ lunes according to Eudemus. Modern notations.
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12.3. Some Geometric Figures in the OB Table of Constants BR

A well known sequence of entries in the OB mathematical table of con-
stants BR = Bruins and Ruttefy1S(1961) text 3 was mentioned above in
Sec. 6.2. In these entries are listed, in a systematic way, the main parame-
ters for (in particular) the following plane geometric figures:

the ‘arc’ (circle) BR 2-4
the ‘crescent’ (semicircle) BR 7-9
the ‘bow’ (bow-like figure) BR 10-12
the ‘boat field’ (boat-like figure, rhomb) BR 13-15
the ‘barleycorn field’ (thin double circle segment) BR 16-18
the ‘ox-eye’ (thick double circle segment) BR 19-21
the ‘lyre-window’ (concave square) BR 22-24
the ‘lyre-window of 3’ (concave triangle) BR 25
the ‘5-front, 6-front, 7-front’ (regular polygons) BR 26-28
the ‘peg-head’ (equilateral triangle) BR 29
the %ar field’ (ring of right triangles) BR 30
the ‘divider of the square’ (diagonal of a square) BR 31

the ‘divider of the length-and-front’ (diagonal of a 1:0@5 rectangle) BR 32

The rather obvious meaning of the parameters for the circle and the semi-
circle was discussed above in Sec. 6.2. Constants for regular polygons
(including the equilateral triangle) were discussed in Sec. 7.4. The much
less obvious meaning of the parameters for the geometric figures in entries
10-25 of the list above (among them tha field; see Sec. 2.4) was
explained successfully for the first time by Vaimarvibl 1:83 (1963).

The discussion below is based on Vaiman'’s ideas.

12.3 a. BR 10-12. The ‘bow field’

The constants listed for th®w field in BR 10-12 are
A=63345 d=5230, p=15.

HereA, d, p are notations for tharc, thetransversal and thecrosslineof
a given geometric figure, “normalized” in some suitable way.

Suppose that the bow field is the bow-like figure shown in Fig. 12.3.1
below, bounded below by a straight line, and above by a curved line.The
curved line is composed of 1/3 of the perimeter of a circle in the middle
and 1/6 of the perimeter of a circle at either end. If the length of the whole
curved line is called, then each 1/6 of the perimeter of the circle is equal
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to a/4. Therefore, the radius of the circle is €24)/L = appr.a/4. Now, in
a circle with the radiua/4 the side of an inscribed regular hexagon is also
a/4, and the side of an inscribed equilateral triangle is sg@43 Conse-
quently, thg(longest) transversah the bow field is
d=2-sqgs.3 - (3a/4)/lL =appr. 2 - 7/4a/4=7/8 -a=;52 30 a.
Whena = 1 (00), this gives the listed value for the transvets@imilarly,
the (longest) crossline in the bow field, orthogonal to the transversal, is
p=(3-a/4)lL =appr. 1/4a=;15 -a.
Whena = 1 (00), this gives the listed value for the crosgtine
As can be seen from the diagram in Fig. 121Bid area of the bow field
is equal to the area of a triangle with the base d and the heigbbmse-
quently, the area of the bow field is
A=d/2 -p=sqgs. 3 -sq.{(3a/4)/L} = appr. 7/4 - 1/16 - s@.= ;06 33 45 - s;.
Again, whena = 1(00), this gives the listed value for the paraméter

)

al4 al4

1
<
|

R 7/8.24 R 7/4-a14 R 7/8.a4

a

QE p=(3-a/4)/lL=appr. l/4a
! d=4.sqgs. 3 pl2=appr. 7/8 a
d A=d/2 -p=appr. 7/64 - s@

Fig. 12.3.1. BR 10-12. Parameters for the ‘bow field’.

12.3 b. BR 13-15. The *boat field’

The constants listed for th®at field in BR 13-15 are
A =13 07 30, d = 52 30, p=30.
A probable connection with the bow field discussed above is obvious,

since the area and the crossline for the bow field are exactly twice as large
as the area and crossline for the bow field. Therefore, a reasonable inter-
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pretation is that the boat field is in some way equal to either a double bow
field or a double trianglewith the same transversal and crossline as the
bow field. As shown in Fig. 12.3.2 below, the second alternative gives the
most likely interpretation, namely thtite boat field is a rhomtwr, more
precisely,a double equilateral triangle

p=al2
d=sqgs. 3 a2 =appr. 7/8 a
A=d/2 -p=appr. 7/32 - s@

Fig. 12.3.2. BR 13-15. Parameters for the ‘boat field’, a double equilateral triangle.

Accordingly, the parameters for the boat field are

A=1/2-sgs. 3 -sgl2=appr. 7/32 - s@=;1307 30 - s
d=sqgs.3a/2=appr. 7/8a=;5230 a
p=a/2=;30 a.

Whena = 1(00), this gives the listed values for the parameters.

12.3 c. BR 16-18. The ‘barleycorn field’

The constants listed for tharleycorn field in BR 16-18 are
A=1320, d=56 40, p=2320.
The corresponding geometric figureaiglouble 1/4-circle segment

r=4a/2L =appr.2/3 a
d=sqs. 2 r=appr. 17/18a
p=2-(¢-d2)=appr. 7/18a
A=2-(1/4 - sqga-1/2 - sqr)
=appr. 2/9 - 1.

Fig. 12.3.3. BR 16-18. Parameters for the ‘barleycorn field’, a double 1/4-circle segment.
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Indeed, if the arc of the segment is caledhe remaining parameters
for the double circle segment can be computed as follows (Fig. 12.3.3):

the radius r =4a/ 2L = appr. 2/&

d=sqs.2r=appr. 17/12 - 2/3a=17/18 -a=;56 40 a
p=2-(¢-d2)=appr. 7/18a=;2320 a

A=2-{1/4-1/4 - sq. (4a) — 1/2 - sqr} = appr. 2/9 - sqa=;13 20 - sqa

12.3 d. BR 19-21. The ‘ox-eye’

The constants listed for tlex-eyein BR 19-21 are
A=165230,d=52 30, p=30.

The corresponding geometric figureaisiouble 1/3-circle segment

a

2z

- ———

p=r=3a/2L=appr.1/2a

d=sgs.3 r=appr. 7/8 a

A=2.(3/4 -sqa-d2 -p/2)
= appr. 9/32 - s4q.

.

Fig. 12.3.4. BR 16-18. Parameters for the ‘ox-eye’, a double 1/3-circle segment.

Indeed, if the arc of the segment is caledhe remaining parameters
for the double circle segment can be computed as follows (Fig. 12.3.4):

p=r=3a/2L=appr. 1/22a=;30 -a

d=sqgs.3r=appr. 7/8a=;5230 a

A=2.{1/3-1/4 -sq.(3a) —d/2 -p/2} = appr. 9/32 - sa=;16 52 30 - sp

12.3 e. BR 22-24. The ‘lyre-window’

The constants listed for tihge-window (sound-hole) in BR 22-24 are
A=2640, d=120, p=3320.
The corresponding geometric figuresigoncave squaréndeed, if the
arc of a concave square such as the one in Fig. 12.3.5 below isscétied
remaining parameters for the concave square can be computed as follows:
the radius r =4a/ 2L = appr. 2/&
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d=2.r=appr.4/3a=1;20 -a
p=(sgs.2-1)d=appr.5/9a=:;3320 a
A =A(square) -A(circle) = sqd — 16/4 - sg.a = appr. 4/9 scg = ;26 40 - sga

r=4a/2L =appr. 2/3a
d=2r=appr.4/3 a
p=(sqs.2—1)d =appr. 5/9 a
A=sq.d- 16/4 - sqa

= appr. 4/9 - sq.

Fig. 12.3.5. BR 22-24. Parameters for the ‘lyre-window’, a concave square.

12.3 f. BR 25. The ‘lyre-window of 3’

The only constant listed for tigre-window of 3in BR 25 is
A =15,
The corresponding geometric figureasconcave trianglelndeed, if

the arc of a concave triangle such as the one in Fig. 12.3.6 below is called
a, the area of the concave triangle can be computed as follows:

A = A(triangle) —A(semi-circle) = sgs. 3 - sg— 18/4. - sqa=appr. 1/4 - sp

r=6al/2L=appr.1a

A=sgs.3-sq.—18/4 - sqa
=appr. 1/4 - sq.

Fig. 12.3.6. BR 25. Parameters for the ‘lyre-window of 3’, a concave triangle.
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12.4. W 23291-x § 1. A Late Babylonian Double Segment and Lune

Even if both Hippocrates’ quadratures of lunes and the OB list of con-
stants for various plane geometric figures in the table of constants BR are
concerned with circle segments and computations of areas, it is not quite
clear what the connection is between Hippocrates’ lunes and the OB dou-
ble segments. The connection is much more clear in the c¢@8291-

X 8 1, an exercise in a Late Babylonian mathematical recombination text

(Friberg,et al, BaM 21 (1990).

W 23291-x § 1, solution

10ismy [+ ]-

10 of the expansion of the heart is what?
20 steps of 10 is 3 20.

Since 10 is 1/2 o20.

7 30, 1/2 of 15

to 30 pair, then 37 30.

3 20 steps of 37 30 is 2 05,
1iku 253ar, this is the field.
30 of the crescent field,

the area is what?

30 steps of 30 is 15,

550 go, 127 30,

1ubu 37 1/23ar,

this is 1 crescent field.

Steps of 2 he went,

1 27 30 steps 2 go, then 2 55,
1liku 1ubu 253ar,

this is 2 crescent fields.

Heap them, then

all of them, then 3ku.

explanation

1 27;30 (sg. ninda

2 05 (sg. ninda)

27;30 (sg. ning4

30 (ninda)

?2?7?
?2?7?
20 -10=3 20.
Since 10=1/2 - 20
take 1/2 - ;15 =;07 30
:07 30 +:;30=:;37 30
320 - ;37 30 = 2 O5nfisgla)
= 1ku 253%ar, the area of the heart
One half of a crescent.
Its area = ?
:30-:;30=:;15
;15 - 550 =1 27,30 (sgda)
=1lubu 37 1/28ar
= the area of 1 crescent
Since there are two crescents
127;30-2=255
= liku lubu 2538ar
= the area of 2 crescents.
The sum of the areas of all
the three parts of the circle F1du
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The rather poor diagram accompanying the exercise shows a circle di-
vided into three parts. In the text, the central part is cali¢tieart, core,
inner part’, while the two outer parts are calledsakar ‘crescent’. The
area of the ‘heart’ is recorded in the diagram as 2 0m{sda), and the
area of each crescent as 1 27;301$nda). As noted in the last lines of
the text, the area of the whole circle is

(205 +2-127;30) sginda =5 00 sgninda = 3iku (liku = 100 sgninda).

The use of the traditional kind of length and area measure in this exercise
(theninda and the squareinda and its multiples) is interesting. Actual-

ly, the recombination text W 23291-x is in its entirety a collection of
examples of mathematical exercises of various ways of measuring the size
of fields; it starts with three exercises employingS$lenerian/Old Baby-
lonian area measutgollowed by a number of exercises employing in-
stead several kinds bhate Babylonian reed measure or seed measure, etc.
Actually, the use of OB area measure in the first three exercises is an indi-
cation that those exercises are borrowed from some OB source, although
the text of the exercises has been “translated” into the Late Babylonian
mathematical jargon.

The statement of the problem in W 23291 § 1 is very brief and partly
destroyed. The only piece of information that can be extracted from it is
that the object of the exercise is the ‘extensidink{u) of a ‘heart’. Also
the first part of the solution procedure, the computation of the area of the
‘heart’, is quite hard to understand.

The computation of the area of the two crescents is somewhat more
straight-forward. Thus, as indicated by the number ‘30’ at the lower end of
the circle in the diagram, the length of the half circle which forms the outer
arc of a crescent is 3@ifida). Therefore, the crescent is half the size of a
“normalized” crescent with the outer arc equal to 13@da), so that the
area of the crescent is ;15 = 1/4 of the area of a normalized crescent.
Accordingly, the area of a crescent is computed in the text as

Agrescen S0 ;30 - 550 = ;15 - 550 = 1 27;30 (sg.da).
Here ‘5 50’ must béhe known area of a normalized crescent

In a similar way, the area of the whole circle (with the circumference
2 - 30 = 1 00) could have ben computed directly as

Acirc|e: sq. 1-500=500 (Sn]mda)



12.4. W 23291-x, § 1. A Late Babylonian Double Segment and Lune 323

The area of the central ‘heart’ could then have been computed as the
area of the circle minus the sum of the areas of the two crescents. Instead,
the text prefers to compute the area of the ‘heart’ directly. However, since
the length of the arc bounding the ‘heart’ is not known, the area of the
‘heart’ cannot be computed with departure from the presumably known
area of a normalized ‘heart’.

What is known is only that the (longest) transversal of the ‘heart’ is
approximately equal to 20, the diameter of the circle. Therefore, in order
to understand the curious computation of the area of the ‘heart’ in
W 23291-x § 1, it may be a good idea to investigate how the crossline and
the area of a ‘barleycorn field’ or an ‘ox-eye’ can be compinéerms of
the length of the transversadther than in terms of the length of the arc.

In the case ofthe barleycorn fieldsee Fig. 12.3.3),

Poarleycor= (S0s. 2 —1)d = appr. 5/12d = ;25 -d = 8,20 whend = 20,

Aparleycorn= (L/4—1/2) - sqd = appr. 1/4 - sqd =1 40 whend = 20.

Similarly, in the case dhe ox-eydsee Fig. 12.3.4),

Pox-eye= SUs. 3/3d=appr. 7/12d =35 -d= 11,40 whend = 20,

Aox-eye=2/3 - L/3 —sqs. 3/4) - sd.= appr. 3/8 - sqi =230 whend=20.
At the same time, the area ofiacle with the diameted is equal to

Agircle = L/4 - sqd = appr. 3/4 sqd = ;45 - sqd.

Knowing this, the are@ of the crescents one either side of a barleycorn
field or an ox-eyean be computed as follows:

Charleycorn= appr. (3/4—-1/4)/2 - sd.=1/4 - sqd =1 40 whend = 20,

Cox-eye= appr. (3/4 — 3/8)/2 - sd.= 3/16 - sqd = 1 15 whend = 20.

These results are listed together in Fig. 12.4.1 below.

barleycorn ox eye heart
(1/4-circle segm.) (1/3-circle segm.) (half-sum)
d=20 d=20 d=20
p=28;20 p=11;40 p=10
A=140 A=230 A=205
C=140 C=115 C=127;30

Fig. 12.4.1. The barleycorn field, the ox-eye, the heart, and the associated crescents.
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Itis now easy to check that the area of the héart2 05, both recorded
in the diagram in W 23291-x 8 1 and computed in the text of that exercise,
is the half-sum (mean value) of the areas of the barleycorn field and the ox-
eye. The crosslingof the heart is not mentioned in the text of the exercise,
but it is likely that it was thought of as the half-sum of the crosslines of the
barleycorn field and the ox-eye, (8;20 + 11;40)/2 = 10, under the naive as-
sumption that a double segment with the half-sum of the areas of the two
known double segments would also have the half-sum of the crosslines. It
is possible that the ‘10’ mentioned obscurely in the statement of the prob-
lem is the length of the crossline of the heart.

The crescent associated with the heart is also, in a similar way, the half
sum of the crescents associated with the other two double segments. It is
possible that the crescent of the barley.corn field was deemed to be too
thick and the crescent of the ox-eye too thin compared to the ideal image
of a crescent, as it is depicted in several known Kalssdarrus(bound-
ary stones). See the example in Fig. 12.4.2 below.

Istar (Venus)

N/

Sin (the Moon)

Samas (the Sun)

Fig. 12.4.2. Kudurru of Gula-Eresh. (KiBBS(1912), pl. 1.)



12.4. W 23291-x, § 1. A Late Babylonian Double Segment and Lune 325

It still remains to explain the computations in the text of W 23291-x § 1.
The computation of the area of the crescent associated with the ‘expansion
of the heart’ was probably quite simply based on a knestrof parame-
ters for a normalized cresceimilar to the sets of parameters for various
plane geometric figures in the table of constants BR (Sec. 6.2 above):

C=550, d=40, p=20.

The explanation for the computation of the area of the ‘heart’ itself is
not quite so obvious. Nevertheless, the first step of the solution procedure,
to compute the product 20 - 10 = 3 20, may be explained as the computa-
tion of the productl - r, whered is the diameter andthe radius of the cir-
cumscribed circle. Next, the remark “since 10 is 1/2 of 20" may be a
reference to the fact that the crosslraf the ‘heart’ is 1/2 of the diameter
of the circle. Therefore, the area of the ‘heart’ was reckoned to be half-way
between the areas of the barleycorn field and the ox-eye. As a result of this
consideration, the area of the ‘heart’ was computed as

Aneart™ Avarleycornt 12 @‘ox—eye_ Abarleycora =(;30+1/2-;15)d -r.

This explanation makes sense if the areas of the barleycorn field and the
ox-eye and their crescents were known to have the values

Aparleycor™ Charleycorn™ appr. ;30 d-r,

Aox-eye= 145 +d 1, Coxeye= appr. ;22 30d -r.

Such equations for the areas of the double segments and their crescents can
be compared with the following equation for the area of a semicircle:

Asemicircle= appr. ;45 d -r.

(See entry 54 of the OB table of constants NSd = YBC 5022 (Neugebauer
and SachdICT (1945) text Ud).)

Note, by the way, that ;30d - r is also the area of the half-square
inscribed in a semicircle of diagordind radius. (Compare with the first
of Hippocrates’ lunes in Fig. 12.2.1, which has the same area as the half-
square inscribed in the same semicircle as the lune.)

Another interesting observation is that, at least approximately, (the area
of) a circle is divided in three equal parts by an inscribed barleycorn field
and its two crescentSimilarly, at least approximatelg,circle is divided
in four equal parts by the two halves of an inscribed ox-eye together with
its two crescents
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12.5. A Remark by Neugebauer Concerning BM 15285 # 33

In NeugebauedMKT 1 (1935), 137-142, the geometric figures on the
first published fragment of BM 15285 are discussed. This is the triangular
fragment containing exercises in columns iii-v and vi-viii of the recon-
structed text. (See Fig. 6.2.3 above.) One of the figures caught his particu-
lar attention, namely the one in # 33 (which Neugebauer called figure XV).
He interpreted the central figure in # 33 as the outer boundary of a figure
composed of three partly overlapping circles, as shown in Fig. 12.5.1:

Aox-eye™ 2/6Agircie T 416 Buircie — Ahexagon
= 2[Agircie = 3Anexagon
A= 3Adircle = 2Aox-eye
c
A= BB8AG et 2/3Anexagon O TAcdircle t 2Aune
c

Acircle = 3A|une_ Ahexagon

Fig. 12.5.1. Neugebauer's computation of the area of the figure in BM 15285 # 33.

Neugebauer could not know, 26 years before the publication in 19610f
the table of constants BREMS 3, that Old Babylonian mathematicians
called a double 1/3-circle-segment an ‘ox-eye’. Nevertheless, he correctly
computed the ared, of the figure in BM 15285 # 3 (whose name is not
mentioned in the preserved part of the text of BM 15285) as follows:

A = (exactly) 3Agjrcle— 2Aox-eye™ D/3Acircle + 2/3Anexagon
He then made the observation that the &gia also the sum of the areas
of one circle and two lunes (grey in Fig. 12.5.1), with

Aune = 13 Beircle * Ahexagoa or, equivalently, Agjcle = 3 Aune —Anexagon
Neugebauer then observes that this result implies that

“If this lune can be squared, then also the circle is squareable.”

On the other hand, he concludes, this way of looking at the result would
hardly occur to a Babylonian mathematician.



Chapter 13

Traces of Babylonian Metric Algebra in the
Ar ithmeticaof Diophantus

Introduction 33

Diophantus and his work is described in the first lines of Chapter 1 of
Bashmakova'®DE (1997) in the words
“Diophantus represents one of the most difficult riddles in the history of science. We do

not know when he lived, and we do not know his predecessors who may have worked
in the same area. His works resemble a fire flashing in an impenetrable darkness”

On p. 3-4 ipbid.) it is stated that

“But the most mystifying riddle is the works of Diophantus. Only six of the 13 books
which make up the ‘Arithmetic’ have come down to us. Their style and contents differ
radically form the classical ancient works on number theory and algebra whose models
we know from Euclid’s ‘Elements’ and his ‘Data’ and from the lemmas of Archimedes
and Apollonius. The ‘Arithmetic’ is undoubtedly the result of numerous investigations
which are completely unknown to us.We can only guess at its roots and admire the rich-
ness and beauty of its results.”

Bashmakova then goes on to give a general description of the basic
methods employed by Diophantus in what she interprets as his search for
rational points on algebraic curves or, more precisely, for rational
solutions to indeterminate equations of the second or third order. Bashma-
kova's approach is mathematically interesting but unhistoric.

In GA (1990), Chapter 3, Sesiano gives a sketch of certain “Pre-alge-
braic aspects in th&rithmeticaof Diophantus”. In that insightful essay,

33.The ideas discussed in this chapter were first presentedtetimational Conference
on the History of Mathematics and Education of Mathemati&aotao, China, 1991.

327
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the basic methods of therithmeticaare illustrated through a handful of
well chosen examples. It will be shown below, among other things, that
quite a few of those basic examples can be explained as non-geometric re-
formulations of problems from Babylonian metric algebtés, therefore,

no longer necessary to postulate that Diophantus based his work on contri-
butions by now forgotten predecessors to Diophantus in Athens or Alex-
andria. It is much more likely that Diophantus got his inspiration from
some humble collection of originally Babylonian mathematical problems,
perhaps inscribed on a number of Egyptian demotic or Greek-Egyptian
papyrus rolls.Cf. the discussion in FribertL (2005), Sec. 3.5 b and Sec.

44 of the demoti®.Carlsberg 3G# 2 and the Greek-EgyptiéMich. 620

See also the discussionap. cit, Sec. 2.1 b of the OB theme text YBC
4652 and the Late Babylonian fragment BM 34800.)

13.1. Determinate Problems in Book | of DiophantusAr ithmetica

The Babylonian influence in Book | of Diophantdsithmeticais ob-
vious and well known. As a matter of fagt, | is organized in the same
way as an OB mathematical theme téxtthe following partial table of
contents, the notations are of the same kind as in the useful “Conspectus of
Problems in thérithmeticd in SesianoBooks IV to VII(1982), 460,
where the letters, b, ¢, --- stand for unknown magnitudes, and the letters
k,1,m,n,p,q, --- for given magnitudes. The letter D indicates that there is
adiorism(a necessary restriction on the given magnitudes).

Ar ithmeticd, (partial) table of contents

§1 l.a+b=m, a-b=n m, & 100, 40 a, b=70, 30
2.a+b=m, a=p-b m, p 60, 3 a, b=45, 15
3.a+tb=m, a=p-b+l m, p,* 80, 3, 4 a, b=61, 19
4.a-b=n, a=p-b n, p 20,5 a, b=25,5
5,.a+b=m, 1/p-a+l/g-b=n m, n, p, & 100, 30, 3,5Da, b=75, 25
6.a+b=m, I/p-a—1f-b=n m, n, p, & 100, 20, 4,6 Da, b=88, 12

8§82 T7.a-k=p-@-) k, I, p= 100, 20, 3 a=140
8.atk=p-@+l) k, I, p=100, 20,3 D a=20
9.k—a=p-(-2a) k, I, p= 100, 20,6 D a=4
10.k+a=p-(-2a) k, I, p=20, 100,4 D a=76

84 l1l4.a-b=p-@+b) p=3 b=12)D a,b=4,12

85 15.a+k=p-b-R,b+l=qg-@-) Kkl p,g=30,50,2,3 a, b=98, 94
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8§6 l1l6.a+tb=kb+c=l,c+a=m k, I, m=20,30,40D a, b, c=15,5,25
8§12 27.a+b=m, a-b=k m, k20,96 D P a,b=12,8
28.a+b=m, sq.a+sq.b=k m, k=20, 208 D P a,b=12,8
29.a+b=m, sq.a-sq.b=k m, k= 20, 80 a,b=12,8
30.a—-b=n, a-b=k n,k4,96DP a,b=12,8
8§13 31.sqa+sqg.b=p-@+b), a=gq-b p,q=3,5 a,b=6,2
32.sqa+sq.b=p-@-b, a=g-b p,g=3,10 a,b=6,2
33.sqa-sq.b=p-@+b), a=qg-b p,g=3,6 a,b=9,3
34.sqa-sq.b=p-@-bH, a=q-b p,g=3,12 a,b=9,3

This could just as well have been the table of contents for an Old or Late
Babylonian theme text with metric algebra problems, except for the
diorisms and for the fact that fractions such as, for instanpegrid 1¢jin
Ar. 1.5-6, in a Babylonian mathematical text typically would have “non-
regular sexagesimal values”, most commonly 1/7, 1/11, 1/13, or 1/14.

(Also all the other books of Diophantusrithmetica are in form,
although not in content, similar to OB theme texts.)

Thediorismin Ar. 1.5, for instance, says that

“The latter given number must be such that it lies between the numbers arising when

the given fractions respectively are taken of the first given number.”
Indeed,

Since 1f-(a+b)<1l/p-a+llg-b<lp-@+b) whenp<q,

it is necessary that d/ m<k<1fp-m,

as in the examplen, n, p, ¢¢ 100, 30, 3,5 where 1/5-100 < 30 < 1/3 - 100.
The letter P associated with the rectangular-linear or quadratic-linear
systems of equations in ## 27, 28, 30, indicates that there is a supplement
to thediorismmentioning the worg@lasmatikonof unknown significance
here. In # 27, for instance, td@rism says that

“The square of half the sum must exceed the product by a square number.

And this isplasmatik6n
The background to thdiorismis, of course, that&i+ b=nanda-b=k
are given, thela —b can be computed by use of the equation

sq. @—h)/2 =sq. a+b)/2—a-b=sqg.m/2 —k.
Therefore, there exists a solution to the problem (in rational numbers) only
if sq.m/2 —k is a square (of a rational number). Now, since the Greek word
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plasmameans ‘form, image'etc, it is likely thatplasmatikdénstands for
‘representable’ and that the meaning of the mentioned obscure phrase is
“And this can be shown in a diagram.”

The diagram in question would in this case (after transformation to metric
algebra notations) be like the one in Fig. 13.1.1, left (below).

a a+b a+b

b (a+b)/2 a b a b
: @ a-b
Lo S M R IR . o
| 8 ) s |
s, ] 96\ 9’6\
N 9 2 4
1 9, | N ! © T ]
‘ ! ! ‘ a-b o
7777777777777777777777 b a

sq. @+b)y2-a-b 2(sg.a+sg.b)—sq.a+b) 4-a-b+sqg.6-Db)
sq. @— B2 sq.@—b sq. @ +h)
Fig. 13.1.1. Diagrams explaining td®rismsfor Diophantus’Ar. 1.27, 28, 30.
In Ar. 1.28, thediorism says
“Double the sum of their squares must exceed the square of their sum by a square.”
This is because heee—b can be computed by use of the equation
sq. @—b)/2 =2 (sqa+sq.b) —sqg. &+ b) =2k —sq.m.
The corresponding diagram is the one in Fig. 13.1.1, middle.
In Ar. 1.30, finally, thediorism says that
“Four times the product, together with the square of the difference must be a square.”

The background to thdiorism in this case, is that&#—b =nanda -b =

k are given, thea + b can be computed by use of the equation
sq.@+b)=4-a-b+sqg. a—b)=4 -k+sq.n.

The corresponding diagram is the one in Fig. 13.1.1, right.

Note that there is ndiorismin Ar. .29 for the simple reason that the
problem in that case can be reduced linear equation.

It is remarkable that in bothr. 1.28 andAr. 1.30the solution procedure
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does not use the method suggested by the diofisns, inAr. 1.28, for in-
stance, the solution procedure is like this (ThorB#dGM (1980), 537):
“Let it be required to make their sum 20 and the sum of their squares 208.
Let their difference be & and let the greater Ise+ 10, again adding half the sum, and
the lesser 10 s: Then again their sum is 20 and their differense 2
It remains to make the sum of their squares 208. But the sum of their squares is
2 sq.s+ 200. Therefore 2 sg.+ 200 = 208 and it follows that= 2.
To return to the hypotheses—the greater = 12 and the lesser = 8. And these satisfy the
conditions of the problem.”
Here, Diophantus does not work with two unknowns (in the Babylonian
way), as suggested by the form of thierism Insteadhe prefers to work,
as he always does, with only one unkndanwhich he has a special sym-
bol, resembling aB. Settinga—b = 25, he gets that
a=s+(@+b)2=s+10 andb=(a+h)/2-s=10-s.

Consequently,
sq.a+sg.b=sq. 6+ 10) + sqg. (10 ) = 2 sq.s + 200 = 208.
Therefore, 2 ss=8,sqs=4,sothat=2,a=2+10=12p=10-2=8.
Among all the determinate problemsAnithmetical, there is actually
oneindeterminateproblem, namehAr. 1.14:

Find two numbers such that their product has a given ratio to their sum
One of the two numbers must be greater than the number representing the ratio.

Let the product be 3 times the sum, and let one of the numbsrs be

The other must be greater than 3, let it be 12.

The product is 18, the sum 12 &.

Therefore 1Z equals 3+ 36, ands= 4.

The two numbers are 4 and 12.

In the solution procedure, the indeterminate proldern=p - @+ b)
with p = 3 is made determinate by arbitrarily assuming that one of the
numbers is 12 (greater thgr= 3). Thediorismis not explained, but since

a-b=p-@+b) C (@-p2) - b-p2)=sq.p/2
it follows that one o& —p/2 andb —p/2 must be greater thai2.
It is interesting to compare this quite uninteresting solution procedure

with the corresponding solution procedure in the parallel OB exe&k€se
6770 # 1(Friberg,RC(2007), Sec. 11.2 k).
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AO 6770 # 1 literal translation explanation

The length and the front u+s

as much as the field | let be equal. A=u-

You, in your doing: Do it like this:

The step to its two you set. Write down two copies of the unkriown
Out of it 1 you tear off. Compute — 1

The opposite you resolve. Find /(1)

With the step that you set Take the other

you let (them) hold each other. and compute the product / (— 1)

The front it gives you. This is the valueof

This exercise is in several ways outstanding among OB mathematical
exercises. Thus, it is the only known OB mathematical exercise wigere
solution procedure is completely abstract, without an illustrating numeri-
cal examplelt is also one of very few OB exercises dealing withinde-
terminate problemand it is almost unique in that it haspecial term for
the unknown, here called the * step’

The obscure wording of the solution procedure can be explained as
follows: The length is (silently) assumed to have the unknown value
copies are made of this unknown value. One copy is used to form the new
value 1/{— 1). This new value is multiplied with the other copyt.afhe
result is the frons. Therefore,

u,s=t,t/ (- 1), for any given value oft.

The procedure is based on the silent assumption thiat which is neces-
sary, sinces ands, the sides of a rectangle, must have positive values.
For a metric algebra proof of the solution rule, see Frilmgrggit.

13.2. Four Basic Examples in Book Il of DiophantusAr ithmetica

13.2 a.Ar ]1.8 (SesianoGA (1990), 84; Thomasp. cit, 551)

To divide a given square number into two squares.

. . - . 34
Let it be required to divide 16 into two squares

34. lItis important to understand that, for want of better alternatives, Diophantus, like his
Babylonian predecessors, often introduced arbitrary numerical values into the mathemati-
cal discussion of a problem, just as we would introduce symbolic valués ljka.There-

fore, in many such cases, what seems to be only the solutiosptxialcase of a given
problem was certainly intended to demonstrateyreralcase.
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And let first the square be .

(which Diophantus writes as YD1, an abbreviation for ‘1 timesin po(wer)’).

Then the other will be 16 — sg.It is required therefore to make 16 —sg.square.

| take the square of any amount of ‘numbers’ (tha) minus as many units as there

are in the side of 16.

Letit be 2s—4, and the square itself 4 s¢: 16 — 165, and this equals 16 — sg.

Add to both sides the subtracted terms and take like from like.

Then 5 sgsequals 16, ands becomes equal to 16 fifths.

One will therefore be 256/25, one 144/25, and the two together make 400/25or 16,
and each is a square.

In this solution procedure, Diophantus chooses 16 as the given square
and tries to set 16 — sgjequal to, for instance, sq. $2 4). Then

16 —sqs=1sq. (2s—4) =4 sqs— 16s+ 16, sothat 5sg=16s and s=16/5.

A moderninterpretation of Diophantus’ methodAm. 11.8 is illustrated
in the diagram in Fig. 13.2.1 below:
y//tx r X+y? =r% y=tx-—r

(br,an C
X +t2x% = 2rtx
or x+¥x =2rt ifxCO
&
x,y)y=(r,an wih

b=2t(t? +1), a= (®-1)/(t? + 1

(O ’ _r)

Fig. 13.2.1.Ar. ll, 8. A modern interpretation in terms of the chord method.

As shown in the diagram, it is the given rational square number, then a line with ra-
tional slopet is drawn from the point (0,7 on a circle of radius until it cuts the circle in
a second point. The coordinates of this point are the solution to a pair of linear equations
with rational coefficients and are therefore themselves rational. By vargihthe rational
points on the circle can be reached.

In Diophantus’ example, t = 4, 2, so that the coordinates of the second poinbare
=4/5.-4=16/5andr=3/5- 4 =12/5. Hence, 16 = sq. 16/5 + sq. 12/5 = 256/25 + 144/25.

An alternative explanation of the solution procedurriril.8, in terms
of Babylonian metric algebras presented in Fig. 13.2.2 below.

In this alternative interpretation, a right triangle with its short sides in
the ratiot : 1 is inscribed in a semicircle with the radiysvith the side
proportional ta along the diameter. If a radius is drawn from the center of
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the semicircle to the vertex of the right triangle, as in Fig. 13.2.2, a small
right triangle is formed with the sides §, ¢), whereq =t - p—r. Accord-
ing to the diagonal rule,

sq.p+sg.t-p-r)=sq.r, sothat (sq.+1)-sqp=2t-p-r.
Consequently,
p={2t/(sq.t+1)}-r and q=t-p-r={(sg.t—1){(sq.t + 1)} -r.
Therefore the small right triangle has the sides
rnp,t-p—r={1,2t/(sq.t + 1), (sqt—1)A(sq.t + 1)} - r.
A new application of the diagonal rule then shows that
sg.r =sq. (2t/(sq.t+1)-r) +sq. ((sqt— 1) /(sqt + 1) -r).
This is the desired representation of the given square as a sum of two
squares, in its most general form.

sg.p+sg.q=sq.r, q=t-p-—r
C

(sq.t +1)-sqp= 2t-p-r

C

p={2t/(sq.t +1)}-r

q ={(sq.t—=1)/(sq.t + 1)}-r

Fig. 13.2.2.Ar. 1l, 8. Interpretation in terms of Babylonian metric algebra.

The proof of Ar. 11.8 can be interpreted as the derivation of a generat-
ing rule for (rational) diagonal triplesNote the similarity of this deriva-
tion with the proposed derivation of the generating rule used in the OB
table text Plimpton 322 (Fig. 3.2.1, right) Note also the similarity of the
diagram in Fig. 13.2.2 with (a part of) the diagram on the OB clay tablet
TMS1 (Fig. 1.12.4 above).

Whenr = 1 andt = m/n, one geta generating rule for diagonal triples
c, b, a with ¢ = 1Cf. the explanation in Sec. 11.9 of the tarmgid.da
in TMS23 as a reference to a table of diagonal triples ovitH.

13.2 b.Ar 11.9 (SesianoGA (1990), 85; HeatHDA (1964), 145)

To divide a given number which is the sum of two squares into two other squares
In his solution procedure, Diophantus lets the given number be 13 =9+ 4 =sqg. 3 +
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sq. 2. He assumes that the two new squares are+g) @nd sq.t(s— 3), wheres

is unknown and arbitrary, for instance= 2. Then he gets that sg.« 2) + sq. (2

s—3) =5 sqgs— 8s+ 13 which is required to be = 13.Therefsre8/5. Hence the

two squares are sq. (8/5 + 2) = sq. 18/5 = 324/25 and sq. (16/5 — 3) = sq. 1/5 = 1/25.

A moderninterpretation of Diophantus’ methodAm. 11.9 is illustrated
in Fig. 13.2.3 below:

X=s+uU Eryt =ute

y=ts—v X=s*u, y=ts-v

A c

. (@au+by, L+t?°L= 2vts—2us

av-b or s+s=2vt —2u

c
s=(vt —2u)/(t® +1)
c

x,yy)=(@u+bv,av-bu with
b=2t(t? +1), a= (®-1)/(t* + 1)

Fig. 13.2.3.Ar. Il, 9. A modern interpretation in terms of the chord method.

An alternative explanation of the solution procedurrirl.9, in terms
of Babylonian metric algebras presented in Fig. 13.2.4 below. In this
alternative interpretation, a right trapezoid with the height : (the difference
of the parallel sides) t: 1 is inscribed in a semicircle, with the height
along the diameter. In addition tothe lower parallel and its distance
from the center of the circle are known.

SQ.p + S0.9 = SQ.U + Sq.V
p=s+U, q=t-s-v

&

sq.6+uU +sqg.t-s—y =sq.u+sq.v
&

s=(2t- v —2u)/(sqt +1)

&

(p,g=(@u+bv,av-bu with

b=2t(t? +1), a= (®-1)/(t® + 1)

Fig. 13.2.4.Ar. Il, 9. Interpretation in terms of Babylonian metric algebra.
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The upper parallgh and its distancg from the center of the circle can
then be computed as follows: gt s+u. Theng=t -s—v, and it follows
from two applications of the diagonal rule that

sg. 6+u)+sq. - s—Vv)=sg.p+sg.q=sq =sq.u+sq.v (=theradius).
This equation for the unknowsan be reduced to
sqQ.s+sqQ.t-sqs=2t-v-s-2u-s, or s+sq.t-s=2t-v-2u.
Consequently,
s=(2t-v-2u)/(sq.t + 1).
Therefore,
p=s+u=a-u+b-.-v and g=t-s-v=a-v-b-u
where
b=2t/(sq.t+1), a=(sq.t—1)/(sqt + 1).
InAr. 11.9, u,v=2, 3and = 2, so thab, a = 4/5, 3/5. Compare with the

related computations in the case otanfluent quadrilateral bisection
problemin TMS23 (Sec. 11.9), whele a = ;48 (4/5), ;36 (3/5).

13.2 c.Ar 11.10 (SesianoGA (1990), 86; HeattDA (1964), 146)

To find two square numbers having a given difference.
In his solution procedure, Diophantus lets the given difference be 60. He assumes
that the sides of the two squares semds + 3, wheresis unknown and 3 an arbi-
trarily given number, the square of which is not greater than the given difference.
Then he gets that s € 3) — sqs= 6s+ 9 which is required to be = 60. Therefore
s=8 1/2. Hence the two squares are sg. 11 1/2 =132 1/4 and sq. 8 1/2 =72 1/4.
Here Diophantus lets thedeterminatesquation
sq.p—sqg.qg=D (withD = 60)
be replaced by theeterminatesystem of equations
sg.p—sg.g=D, p—g=n (with sq.n<D, for instancen = 3).
This isa quadratic-linear system of equations of type B3#® Sec. 1.1
above). It can easily be solved by use of metric algebra, interpE2iasg
the area of square differencas in Fig. 1.5.2, or as the areaacfquare
bandas in Fig. 1.13.5. The solution is
p={O/n+n)/2=0D +sqg.n)/2n, q=(D/n-n)/2=D -sq.n)/2n.
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13.2 d.Ar 11.19 (SesianoGA (1990), 86; HeatDA (1964), 146)

To find three squares such that the difference between the greatest and the middle
has to the difference between the middle and the least a given ratio.

Diophantus lets the given ratio be 3: 1. He lets the first square saraijthe second
square sgs(+ 1) =sqs+ 2s+ 1. Then the third square must be ss§4 - (2s+ 1) =
sq.s+ 8 s+ 4. Ifitis also equal to sg.« p), then, he says, eithem2> 8 and sqp < 4
(this cannot happen) or2< 8 and sgp > 4 (then 2 9 < 4). Diophantus chooses=

3. It follows that sqs+8s+4 =sqgs+6s+9, sothat =5 ands=2 1/2. Hence
the three squares are sq.51/2=301/4,sq.31/2=12 1/4,and sq.2 1/2=6 1/4.

In terms of Babylonian metric algehrdoe problem irAr. 11.19 can be
interpreted as finding the two fronsg s, and the transversal in a 2-
striped trapezoid, when the partial areas are to each other in a given ratio.
(See above, Sec. 11.3 d-f.)

(sgq.s,—sq.d):(sq.d-sqs)=q:1
(5,—8):d-s)=p:1
(P=9=3, d-5=1)

d (7/2)
% (5/2)

sq (11/2)

Fig. 13.2.5.Ar. 11.19. Interpretation in terms of Babylonian metric algebra.

As in the similar case d@ir. 11.10, this indeterminate problem for the
three unknowns,, s, andd can be made determinate through the intro-
duction of additional (linear) equations between the unknowns. Here,
these extra condition are (essentially) that

(S5—s):d-s)=p:1 andd-s.=1.

In other words, &, d, ) = (S+p -t s+t 5) for some value of.
Nothing essential is lost by assuming, as Diophantus doeszttaf hen,
if g is the given ratio between the partial areas, it follows that

sg. 6+p)—sq. 6+ 1) =g - {sq. 6+ 1) —sqs} or, after simplification,

(2s+p+1)-p-1)=q-(2s+1).

Hence, the solution in this general case is

either s=(Q+1—-sgp)/(2p-29—2) or s=(sq.p—q-1)/(29+ 2 - 2p).

In the special case considered by Diophantus, that is pleain= 3, the
corresponding solution is

s=5/2 sothat &, d,5)=(+p,s+1,9=(51/2,31/2,21/2).
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13.3.Ar .“V".9. Diophantus’ Method of Approximation to Limits

Ar “V".9 (SesianpGA (1990), 92; HeattDA (1964), 95, 206)
To divide unity into two parts so that if the same given humber is added to either
part the result will be a square.

Let the given number b¥. It is required to find two parts of unity v
and two numberm, n such that

N+u=sg.a, N+v=sqgb, u+v=1 a>h.
Then also

2N+1=sqga+sqb, and 0<sp-(N+1/2)<1/2, 0<N+ 1/2)-sqgb< 1/2.

: . " 35 .
Diophantus assumes that certain conditions are satisBedhat 2\ + 1
is indeed the sum of two squares,

2N+ 1=sga' +sq.b"
These are the essential steps of the solution procedure:

Diophantus choosehll = 6 so that N+ 1 = 13 = sq. 2 + sqg. 3. Then he notes that

itis necessary to divide 13 into two squares so that each one of them is greater than
6, and that if 13 is divided into two squares with a difference less than 1, then the
problem is solved. He takes half of 13, which is 6 1/2, and then wants to find a
fraction which together with 6 1/2 gives a square.

To achieve this Diophantus multiplies 6 1/2 with 4 and looks for the inverse square
of a ‘number’ which together with 26 gives a square. He multiplies with the square
of the number and gets that 26 squares of the number plus 1 unit must be a square.
Setting the side of that square equal to 5 numbers plus 1, he finds that the number
is 10.His conclusion is that 6 1/2 plus 1/400 equals the square of 51/20.
Diophantus now assumes that the sides of the two squares with the sum 13 are of
the form 2 + 11 ‘numbers’ and 3 — 9 ‘numbers’. The sum of the squares is then
202 squares of the number plus 13 units minus 10 numbers, which shall be equal
to 13 units. It follows that the number is 5/101. Consequently, the sides of the two
squares are 257/101 and 258/101. The squares of these sides exceed 6 units by
4843/10201 and 5358/10201, respectively.

The problem is solved.

A well known moderninterpretation of Diophantus’ method Ar.
“V".9 in terms of the chord meth@illustrated in Fig. 13.3.1 below: The
idea is actually quite simple. Firat b' are found such that

sq.a'+sq.b'=2N+ 1.

35. The text is partly destroyed precisely at this crucial point of the exposition.
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Thenc is computed as a close approximation to 94s: 1/2). Therefore,
sq.c +sq.c isverycloseto R +1.

In the final step, the poina(b) is found as the intersection of the circle of
radiusr, where sgr = 2N + 1, and the straight line through the two points
(a', b) and €, ¢). Then, sinced, b) is close to ¢, c) andc is close to the
square side dfl + 1/2, it follows that alsa andb are close tiN + 1/2, as
requested.

sg.a' +sq.b'=2N+1
sq.c very close toN + 1/2
C

sq.a+sq.b=2N+1 and

sqg.aand sqb both very close tol + 1/2

Fig. 13.3.1.Ar. “V".9. Modern interpretation in terms of the chord method.

In terms of Babylonian metric algehride problem irAr.”V".9 can be
interpreted as follows (see Fig. 13.3.2 below):

Let a trapezoid have the given upper and lower frepéds,. Then
the trapezoid is bisected (divided in two stripes of equal area) by a trans-
versald satisfyingthe Babylonian trapezoid bisection equation

SQ.S, + SQ.5¢ = 2 sqd.
It can happen, however, that thel@es not exist any rational solution to
this equationls it then possible to find insteactconfluent trapezoid bisec-
tion, as in Fig. 13.3.2 belowyith the upper and lower transversalgahd
d, very nearly equd If it is, then the confluent trapezoid bisection will
serve as an approximate bisection of the given trap&3oid.

That it is possible to find such an approximate bisection of a given trap-
ezoid will be shown below in a procedure completely parallel with the pro-
cedure in Diophantugr. “V”.9.



340 Amazing Traces of a Babylonian Origin in Greek Mathematics

sq.s,+sq.§, =2 - sqd

d not rational

Sq.s, + sd.§, = appr. 2 - sgi*
d* rational

b, b = (s,—d*): (d* -8)

Fig. 13.3.2.Ar. “V".9. Interpretation in terms of Babylonian metric algebra.

Thus, let the given fronts of the trapezoidshes, = 3, 2. Then
S0.S,+59.5=9+4=13=2sal sothat sqd=6 1/2 € not rational).
A first, obvious approximation td is then
d=sqgs. 6 1/2 = sqgs. 26/4 = appr. 5/2, error: 6 1/2 —sq. 5/2 = 1/4.
A second, improved approximation is obtained by use of the OB “additive
square side rule’cf. the discussion in Friber@aM 28 (1997) § 8):
d*=5/2+ (6 1/2—sq.5/2) / (2 - 5/2) =5/2 + 1/4 /| 5 = 5/2 + 1/20 = 51/20.
The new error is quite small:
6 1/2 — sg. 51/20 = 26/4 — 2601/400 = 1/400 (= sq. 1/20).
This way of computing a good approximation to sgs. 6 1/2 is closely related to the
method used by Diophantus. He sets sq. 2 - 6 1/2 + spg=(4¢. (5 + 19), or
26 sg.s+ 1 =sq. (5 + 1). This equation fos can be reduced to sg~= 10s.
Hences= 10. The final result is that 6 1/2 + sq. (1/20) = sq. (51/20).
In the general case of this method pify is a first approximation to sgbl, set
sq.q-N+sq. (18) =sqg. p+1k),0r sq.¢9 -N+1=sq.0 s+ 1). Equivalently,
(sg.q - N—sqg.p) - sqs=2p s Hence,s=2p/ (sq.q - N-sq.p). The final result
isthatN + sg. (199 =sq. plg+ 1/9 9, with 1/gs=(N-sq.p/q)/2pla.

36.Cf. the OB table text Plimpton 322 (Sec. 3.3 above), which can be interpreted as a re-
cording of the result of an attempt to find a solution to the indeterminate quadratic equation
sg.a +sq.b = sq.c, with a and b very nearly equahus with sqc nearly equal to 2 s@.

Indeed, the first entry in the table corresponds to the solutidmg) = (2 49, 2 00, 1 59)
=(169, 120, 119). —€f. also the OB exercise AO 64848 7 a (Frib&@g(2007), Appendix

7, in particular Fig. A7.5) which may be interpreted as the construction of a right triangle
(c, b, @) = (1;00 00 16 40, 1, 0;00 44 43 20) wittand b very nearly equaHerec = (t +

1h)/2, witht=121/1 20 = 1;00 45. It is likely that the construction was based on the ob-
servation that 1 21 and 1 20 are relatively large “regular sexagesimal twins”.
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Consider now a confluent trapezoid bisection as in Fig. 13.3.2, with
by by = (s,—d*) : (d* —s) = (3 — 51/20) : (51/20 — 2) = 9/20 : 11/20.
Then also, by similarity s —dy) : (dy —s¢) = 9/20 : 11/20, so that
d,=3-9/2065 d =2+ 11/20s.
The value ok is determined by the equation
sg. (3—-9/26) + sq. (2 + 11/28) = sq.dy + sq.dy =2 - 6 1/2 = 13.
This equation can be reduced to
(81 +121) - ss=20 - (54 — 44)s which givess= 20 - 10/202 = 100/101.
Consequently,
d,=3-9/205= 3 - 45/101 = 258/101 and =2 + 11/20s= 2 + 55/101 = 257/101.

Note that the corresponding squares are

sq.d, = 66564/10201 = 6 1/2 + 257 1/2 /10201 = 6 + 4358/10201 and
sq.dy = 66049/10201 = 6 1/2 — 257 1/2 /10201 = 6 + 4843/10201.

Remark: A Babylonian mathematician could have avoided the need to
divide by a non-regular sexagesimal number like 101, simply by assuming
that the given fronts of the trapezoid were equal to 3 - 101 and 2 - 101.

13.4.Ar 111.19. A Square Number Equal to
a Sum of Two Squares in Four Different Ways

Ar 111.19 (HeathDA (1964), 166; HeattHGM 2 (1981), 481-483)

To find 4 numbers such the square of their sum plus or minus any one of them
gives a square.

The basic idea in Diophantus’ solution procedure is the following: Suppose that
there exists a square number whickgsal to the sum of two squares in four dif-
ferent wayslIn other words, suppose that, for some nundbére equation s@l =
sg.a + sg.b has four distinct solutiong( b.), j = 1, 2, 3, 4. Then sqd.+ 2aj bj =
sg. @ b)) forj=1, 2, 3, 4. Hence, it is also true that

sg. 6-d) £sqg.s- 2aj -b. = sq. (s~aj +s-hb),j=1,2, 3, 4, foreverys>0.
Therefore, the four numbers sg.2a. b, j = i 2, 3, 4, will solve the stated prob-
lem, provided that the value sfs chosen so that

.s . .d: sq.s- 2.@1 -b1+a2 -b2+a3 -b3+a4-b4).
This will happen ifs=d/ {2 (al . b1+ a,- b2+ ay- b3+ a, - b4)}_
It remains to find a numbet with the wanted property. To do this, Diophantus
proceeds as follows: He starts by taking two right-angled triangles with small
numbers for the sides, such as 3, 4, 5 and 5, 12, 13. The sides of each triangle are
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multiplied by the hypothenuse of the other triangle. The result is the two triangles
39, 52, 65and25, 60, 65 These are two right-angled triangles with the same hy-
pothenuse. However, 65 can be represented as the sum of two squares in two ways,
16 + 49 and 64 + 1. This is true, says Diophariasause 65 is the product of 13

and 5, each of which numbers is the sum of two squares

Next, Diophantus takes the square sides 7 and 4 of 49 and 16 and forms a right-
angled triangles with these numbers. That is the triaBg}lé&6, 65 In the same

way, 64 and 1 have the square sides 8 and 1, and Diophantus forms thelfiangle
63, 65with these numbers. In this way, he finds four right-angled triangles with the
same hypothenuse.

With d = 65, Diophantus now computes the 4-fold areas of the four triangles, all
multiplied by sqs and obtains in this way sgmultiplied by
2-39-52=4056 2-25-60=30002 33 56=3696 2-16-63=2016

The sum of these four numbers is equal to on one hansl- 84768, on the other

hands - 65. Therefores = 65/12768, and the four requested numbers are
sq. (65/12768) - 405617136600/16302182tc.

Diophantus’ arguments for finding his examples of four right triangles
with the same hypothenuse are not very clear. It is possible, though, that
he was inspired by some now lost Babylonian collection of mathematical
exercises metric algebra exercises dealing with “cyclic quadrilaterals”.
(A cyclicquadrilateral is a quadrilateral which can be inscribed in a circle.
Squares and rectangles, symmetric triangles, and symmetric trapezoids are
the simplest cases of cyclic quadrilaterals.) In spite of the deplorable lack
of direct evidence, this conjecture is strongly supported by extrapolation
from two different directions. On one hand there are the examples dis-
cussed above of OB examples of symmetric or equilateral triangles and
squares inscribed in circles (see Figs. 1.12.4 and 6.2.4-5.) On the other
hand, there are the examples of more general cyclic quadrilaterals which
can be found in early Indian mathematical texts, such as the commentary
to theAryabhatiyaby Bha skara | (522 A. D.), tBeahmasphutasiddhanta
of Brahmagupta (628), th@anita-sara-samgrahby Maha vi ra (850), or
the L1 lavatby Bha skara Il (1156Y.The discussion below is an attempt
to explain the possibly Babylonian background to the Indian construction
of two important classes of cyclic rational quadrilaterals, and thereby also
the ideas on which Diophantus may have relied in his construction of the
data for the solution tar. IlI, 19.

37.See Datta and SingHHM 2 § 21, in particular pp. 235.



13.4. Ar. 111.19. A Square Number Equal to Four Sums of Two Squares 343

Everywhere rational cyclic quadrilaterals

An “everywhere rational quadrilateraltf( again Datta and Singh,
HHM 2 § 21, in particular pp. 23%.) is a quadrilateral with rational sides,
heights, diagonals, and area. A cyclic quadrilateral is one that can be
inscribed in a circleRectangles with rational sides and rational diagonals
are the simplest example @verywhere rational cyclic quadrilater-
als.Such rectangles can be constructed by joining two copies of a rational
right triangle along a common diagonBlkerywhere rational symmetric
(isoscelesjrapezoidscan be constructed by joining together two rational
right triangles along a common side as in Fig. 13.4.1, before drawing two
additional sides to complete the trapezoid.

av-b u16)
o <
»‘3’ O~
/ GA g.)/
. ©
’ b (4)
)/ b u(20) av(36) \
/ «—————av+bu6) ——— & 14,(13)
/ \ \5&
I
! v(12)
! 1
\\\ ’I
\ ) ¢ b,a=5,4,3
\\\ )/ w,Vv,u=13,12,5
(c,b, 3 -u=25, 20, 15
a-(,v,)=239, 36,15

Fig. 13.4.1. An everywhere rational symmetric trapezoid.

If a circle passes through three of the four vertices of a symmetric trap-
ezoid, it will also pass through the fourth vertex, because of the symmetry.
That is why a symmetric trapezoid is a cyclic quadrilateral.

There is a single known mathematical cuneiform text showing that OB
mathematicians were familiar with the trick of constructavgrywhere
rational non-symmetric triangless joins of suitably scaled-up versions of
rational right triangles. That text is VAT 7531. (See Fig. 1.12.7 above.)
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A single known example of asverywhere rational symmetric trape-
zoidin a mathematical cuneiform text is the trapezoid in the Seleucid text
VAT 7848 # 4(Neugebauer and SachCTY (1945); the last third of the
1st millennium BCE). The given sides of that trapezoid are 50, 30, 14, and
30. The height, which is computed as the height of a symmetric triangle
with the sides 30 and the base 50 — 14 = 36, is 24. Consequently, the diag-
onald (which is not computed in the text) can be found as follows:

sq. d =sq. 24 + sq. (50 + 14)/2 = sqg. 24 + sq. 32 = sqd4940.

Thus, the diagonal, the base, and one of the sides form a right triangle.
Thereforethe base of the trapezoid is also the diameter of the circum-
scribed circle as shown in Fig. 13.4.2 below.

av-—Dbul4)
S
7\
7
Jo
.‘ :
| T
' bu(18) av(32) !

— av+bu(50)4/s

Fig. 13.4.2. VAT 7848 #4. A Seleucid everywhere rational symmetric trapezoid.

What may be called an “everywhere rational birectangle” is formed by
joining along a common diagonal of length w its two “primary right
sub-triangles”, two rational right triangles with the sidgd(a) - w and
¢ - (w, v, u), respectively. Thus, birectangles are quadrilaterals twith
opposite right anglesand therefore obviouslgyclic quadrilaterals. The
common diagonal of the two right triangles, coinciding with the diameter
of the circumscribed circle, is the “first diagonal” of the birectangle. See
Fig. 13.4.3 below, wherg b, a=5, 4, 2, anav,v,u=13, 12, 5.

An alternative way of constructing an everywhere rational birectangle
is to start with two everywhere rational non-symmetric triangles, one a join
of two right triangles with the sides, @, @) - uanda - w, v, u), the other
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a join of two right triangles with the sides b, a) - vandb - (w, v, u). The

two triangles will both have the baae v+ b - u If they are joined along

this common base, the result will be the same everywhere rational birect-
angle as the one constructed as the join of two right triangles, and the com-
mon base will be a “second diagonal” of the birectangle. As a consequence
of this alternative construction, it is clear thath the second diagonal and

the two heights against the second diagonal are rational

b (4) v (12)
|+}=~+ =R
c,b,a=5,4,3

w,Vv,u=13,12,5

N
o
N
o
l_\
(&

Fig. 13.4.3. An everywhere rational birectangle and its three pairs of rational sub-triangles.

Diophantus’ Ar I11.19, Birectangles, and the OB Composition Rule

For every given everywhere rational birectangle inscribed in a circle
(grey in Fig. 13.4.4 below) there is a pair of interesting “associated every-
where rational birectangles” inscribed in the same circle. One of these as-
sociated birectangles is composed of the two right triangles with the sides

c-(w, v,y and ¢wbv+auyav-bu.
The other one is composed of the two right triangles with the sides

(c,b,a)-w and ¢w,av+bubv-auy.

In the example in Fig. 13.4.4, the sides of the generating triangles for
the given birectangle are
¢, b,a=5,4,3 andw, v,u=13, 12, 5.
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The first associated birectangle is then composed of the two right triangles

c- v, v,Y=6560,25and av,bv+auyav-bu=65, 63, 16
The second associated birectangle is composed of the two right triangles

(c,b,a)-w=65,52,39 andcw,av+bybv-au=65,56, 33
It follows directly from these representations of the sides of the associ-
ated right triangles for any given rational birectangle that
sq.bv+ay+sqg.av—-bQ=sqg. €-w)=(sg.a+sq.b) - (squ+sqg.v), and
sg.@v+by+sg.bv—ay=sqg. €-w)=(sg.a+sqg.b) - (sq.u+sq.v).
The second identity is closely related to the follow@tgequations for the
upper and lower transversals in a confluent bisection of a trapezoid
If dy=a-uy+b-u, and d¢=b-uy—a-u,
where a=[(sq.m-sq.n)/2/(sq.m+sq.n)/2 and b=m-n/(sq.m+ sq.n)/2,

then sga+sqg.b=1, and sql,+ sq.dg = SQg.uy + SQ.U.

av—Dbu16)
4 RN
P Q N -
78 y NCRNE :W(JS’)
// =} \\ =]
. b u(20)° a v (36) . v(12)
, s
! ©
b (4)

-7 bv—au3d) -

Fig. 13.4.4. A rational birectangle (grey) and its two associated rational birectangles.

These OB equations can be interpreted as saying that the “composition”
of adiagonal triplel, b, a with atransversal triple y, d, uy is a new trans-
versal triple with the same transverdalSimilarly, the equations for the
sides of the birectangles associated with a birectangle sah¢hedmpo-
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sition of a diagonal triple ¢, b, a with a diagonal triple w, v, u (in one of
two possible ways) is a new diagonal triple with the diagonal ¢ - w.

Now, consider again the way in which Diophantus\mll1.19 con-
structs an example of four right triangles with the same hypothenuse. He
starts by taking two right triangles with small numbers for the sides, such
asc, b, a=>5, 4, 3 andv, v, u=13, 12, 5, and he multiplies the sides of each
triangle with the hypothenuse of the other. The result is the two triangles
(c,b,a) -w=65,52,39and - (w, v,y =65, 60, 25These are two of the
right triangles making up the two associated birectangles in the example
in Fig. 13.4.438 Diophantus continues by saying that 65 can be represent-
ed as a sum of two squares in two ways, as 16 + 49, and as 64 + 1, “because
65 is the product of 13 and 5, each of which is the sum of two squares”. He
then takes the square sides 4 and 7 in the first case and 8 and 1 in the second
case and forms the right-angled triangles with the sides 65, 56, 33 and 65,
63, 16 from these numberiBhese are the other two of the right triangles
making up the two associated birectangles in the example above

It is not immediately obvious what Diophantus means with his rather
cryptic explanation, cited above. Anyway, here is a quite plausibtac
algebra explanatiorof Diophantus’ reasoning: Apparently, Diophantus
knew that he could construct any number of everywhere rational birectan-
gles by starting with a pair of right triangles with the sides

¢, b, a= (sg.m+ sq.n), 2m - n (sg.m- sq.n),
W, V, U= (sq.p + sq.q), 2p - g (sq.p — sq.q).

He would therefore think of the first diagonal in the birectangle as
d=c - w=(sq.m+ sg.n) - (sg.p + sqg.q).

Applying the OB composition rule, he would draw the conclusion that
d=sg.mp+nqg+sg.mg-np andd=sqg.ap+maq+sq.Mmp—-nJg

With the generating pairs for the triples 5, 4, 3 and 13, 12, 5, namely
mn=2,1 andp,q=3,2

this would imply that
d=sq.8+sq.1=65 od=sq. 7 +sq. 4 = 65.

38.Diophantus mentions the number for the diagtastin each diagonal triple, while in
OB mathematics the largest number in any series of numbers is usually mefitginkd
follow the Babylonian tradition and mention the diagonal first in each triple.
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This result would simultaneously tell him tltbt 65 is the diagonal of the
two right triangles with the short sides

2-8-1,50.8-—s9.1=16,63 and 2-7-4,sg.7—-sq.4 =056, 33.

An explanation like this of Diophantus’ construction An. 111.19
suggests thdbiophantus may have been familiar both with diagrams like
the one in Fig. 13.4.5 and with applications of the OB composition rule.

Remark: Ifm, nandp, gare generating pairs for the triples, aandw,
v, u,thenm p + n g, m g — n & a generating pair for the triptew, a v —
bu,bv+auywhilenp+maqg, mp-ns agenerating pair for the triple
cw,av+bu,bv-altis, forinstance, easy to see that

sg.mp+nq-sq.Mp-ng=2mn-2pq+ (sq.m-sq.n) - (sq.p—sq.q)

bv+au

The hypothesis that Diophantus may have been familiar with some con-
struction like the one in Fig. 13.4.4 above is supported by the fact that bi-
rectangles are known to play an important role in at least two known Greek
mathematical texts. One such text is EuclElsmentdl.9 (see Fig. 1.6.1
above). The other one is the Greek-Egyptian papyrus fragpi@ot nell
6 9(Friberg,UL (2005), Sec. 4.7 c), where problem # 3 is illustrated by a
diagram like the one in Fig. 13.4.5 below, left.

(W)
3 12 au+bv
o) au bv
o]
5 (N) 5 I
> >
©
3 ©
15 (S) X 2
4 =
0 0
5 (E)

Fig. 13.4.5.P.Cornell 69# 3. A problem for a birectangle.

The text of the problem is almost completely destroyed, except for the
computations of sq. 15 = 225 and sg. 5 = 25. However, this is enough for
the following tentative reconstruction of the problem and its solution.

Let the sides of a birectangle be 15, 15, 5, 5. What is then the area of the birectangle?

Let the sides of the birectangle be called, a u+b v, anda v—b u, where u=
5,v=15au+bv=15av-bu=5, and sqa + sq.b=sq.c=1. | is easy to find
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the values of andb as the solution to a pair of linear equations. It turns out that
a=(2-5-15)/(sq. 15 + sq. 5) = 150/250 = 3/5 andatbkasq. 15 — sq. 5)/(sq. 15

+ 0. 5) = 200/250 = 4/5. Consequentiy=4/5 - 15 =12au=5/5-5=3, and
bu=4/5-5=4.(These values are indicated in the diagram.) The area can now be
computed as, for instance, 6 - 9+ 3 - (9 +5)/2=54 +21 =75.

13.5.Ar . 'V”.30. An Applied Problem and Quadratic Inequalities

An indeterminate combined price problem

Ar V.30, the last exercise iAr. “V", appears there totally out of
context. The statement of the problem, in the form of an epigram, is repro-
duced below in a free translation, following CzwaliABA (1952), 94.

Someone who was obliged to do his shipmates a favor mixed together jars (of

wine) at 8 drachmas and jars at 5 drachmas. As the price of all of them he gave a

square, which increased by a given number gives you another square, the side of

which is the number of all the jars. Consider this, my boy, and say how many jars
there were at 8 drachmas and how many jars at 5 drachmas!
A related problem can be found in the OB t¥RC 4698 (Friberg,UL
(2005), Fig. 2.1.17 and Sec. 2.1 f). Among the various “commercial prob-
lems” in YBC 4698 is the following “price and weight problem”:

YBC 4698 # 4 literal translation explanation

Its 1 30 iron, its 9 gold. The price of iron is 1 30, the price of gold 9
1 mina of silver is given. The combined total price is 1 mina of silver
Iron and gold, How much iron and how much gold,
1 shekel, then buy. if the combined weight is 1 shekel?

The text is vaguely formulated and without any known OB parallel.
The question seems to be that if iron and gold are 90 (sic!) and 9 times
more valuable than silver, and if 1 shekel of iron and gold together is
bought for 1 mina of silver, what are then the amounts of iron and gold,
respectively? The question can be reformulated (in modern terms) as a sys-
tem of linear equations. #f shekels is the weight of the iron apdhekels
the weight of the gold, then these equations are:

a+g=1 130a+9-g=100.

Systems of linear equations of the same type are known from the pair of
OB problem text¥ AT 8389 andVAT 8391, solved there by use of a vari-
ant of the rule of false value, starting with a partial solution, satisfying only
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the first of the two given equations. (See Frib&g,(2007), Sec. 11.2 m:
Fig. 11.2.14 left.) In the case of YBC 4698 # 4, the first step would be to
give a andg the initial false values

a* =g* =,30.

If these values are tried in the second equation the result is that
130 -a* +9 -g* = 49,30,
which gives a deficit of 10;30 compared to the wanted value 1 00.

To decrease the deficié* is increased and* decreased by the small
amount ;01. The result is that the deficit is decreased by a corresponding
amount, namely

;01-(130-9)=1;21 (agularsexagesimal number with the reciprocal ;44 26 40).
Hence, the whole deficit can be eliminatedtfis increased and* de-
creased by the larger amount

;01 - 10;30 - 1/1;21 = ;10 30 - ;44 26 40 = ;07 46 40.
Therefore, the correct solution is that

a=;37 46 40,9 = ;22 13 20.
In terms of OB units of weight measure, the answer to the stated question
in YBC 4698 # 4 is that the amounts of iron and gold are, respectively,

1/2 shekel 23 1/3 barleycorns of iron and 1/3 shekel 6 2/3 barleycorns of gold.

The answer is correct, since
374640 +:;221320=1 and ;374640 130+ ;221320 -9 =56;40 + 3;20 = 1 00.

Consider now again the questiorAn V”.30 . It can be reformulated
as follows (in modern terms): Lptbe the price paid for a certain number
of jars at 8 drachmas each, dgbe the price paid for a certain number of
jars at 5 drachmas each, andiée the total number of jars of both kinds.
Suppose, as Diophantus does, that the given arbitrary number is 60! Then
p/8 +g/5=n, p+qg=-sq.n—60=sqgm, for some unspecified numbmar

This is anindeterminateproblem. What Diophantus does in his solution
procedure is, essentially, that he first showsnhmtst liebetween certain
limits. Then he chooses arbitrarily a value fidvetween these limits and
gets in this way determinateproblem forp andq, of the same type as the
system of equations in YBC 4698 # 4, which he then solves.

The restrictions on the size mfare consequences of the fact that
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p/l8+q/5<p/5S+g/5=(p+q)/5 andp/8+qg/5>p/8+0q/8=(p+0q)8.
Therefore,

(sq.n-60)/8 <n < (sq.n—60)/5 sothat sq.—8n<60<sgn->5n.
These “guadratic inequalities” can be solved as follows by completion of
the square although Diophantus gives only the result of the computations:

sq.i1—4)<60+16=76 C n-4<sgs. 76 = appr. 8 3/4,
sq.©-21/2)>60+61/4=661/4C n—21/2>sgs. 66 1/4 = appr. 8 9/64.

Instead of using the exact result of the computation, namely that
10 41/64 <n< 12 3/4 (approximately),
Diophantus mentions only the somewhat more narrow limits
11<n<12.
It remains to take care of the added restriction thahsg60 = sgqm.
Diophantus sets1=n —s, for some unknows, and finds that then
sg.n—60 =sq.1f—s) =sg.n—2n - s+ sq.s so that n=(sq.s+ 60) / 2s.
Since he has assumed that 11 <12, it then follows that
22s5<sq.s+ 60 < 24s.
This isa new pair of quadratic inequalitiefom which follows that
18 13/16 <s< 21 1/6 (approximately).
Diophantus is content with saying, somewhat less exactly, that
19 <s< 21 so that he can choose= 20.
With s = 20, he finds that the total number of jars is
n=(sq.s+ 60)/2s=460/40 = 11 1/2.
With this value fom, which is between the previously established limits,
the given system of equations fmandq takes the simplified form
pl8+qg/5=n=111/2, p+q=sq.n—60=sqg. 11 1/2-60 =72 1/4.
This determinate system of linear equations is then solved as follows:
Let g/5=t. Then q=5t and p=92 -8t
Insertion of these values into the second equation gives that
92 -3t=p+q=721/4 sothatt=67/12 =79/12.
Therefore, the number of jars of each kind is
g5=t=67/12 andp/8=111/2-67/12=411/12.
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This is the answer given by Diophantus to the questiéwm.ifiv”.30. It is
easy to check that the result is correct. Indeed,

p/8 +q/5 =4 11/12 + 6 7/12 = 11 1/2r%

p+q=394/12 + 32 11/12 = 72 1/4 = sq. 8 1/2 =raq.

sq.n—60 =132 1/4-60 =72 1/4 = sq.

13.6.Ar “VI". A Theme Text with Equations for Right Triangles

The Babylonian influence in the Greek Book “VI” of Diophantus’
Arithmeticais just as obvious as the Babylonian influence in Book | (see
Sec. 13.1 abovelr. “VI" is, just like Ar. |, organized in the same way as
an OB mathematical theme teXhis ought to be clear from the following
table of contentscf. Heath,HGM 2 (1981), 507-514), wherg b, a, P=
c + b + a,andA stand forthe unknown diagonal, the unknown sides, the
unknown perimeter, and the unknown area of a right trigngtéle m, n,
andr are undetermined, arkdstands for an arbitrary given value.

An often used tool irr. “VI” is the application ofa suitably scaled-
down version of the generating rule

c=sq.p+sq.g b=2p.-q a=sg.p—-sqq.

Ar ithmeticd'VI” , table of contents (sgq. meastpiare cu. meansubg

problem P, q c,b,a
la. c—a=cum c-Db=cu.n 10, 2 104, 96 40
b c¢c+a=cum c+b=cu.n 11/8, 2 377,352, 135
2a A+k=sqm (k=5) 24/5,5/24  (33240%tc) - 1/31800
b A-k=sg.m (k=6) 8/3, 3/8 (4177etc) - 1/504
¢ k—-A=sg.m (k=10) 80, 1/80 (4096000%tc) - 1/825600
3a A+a=k k=7) (25,7,24) - 1/4
b A-a=z=k k=7) (25,7,24)-1/3
c A+Db+a)=k (k=6) (53, 28, 45) - 1/18
d A-(p+a)=k (k=6) (53, 28, 45) - 6/35
e A+(c+a=k (k=4) 9,5 (53, 45, 28) - 4/105
f A-(Cc+a=k (k=4) 9,5 (53, 45, 28) - 1/6
4a A+b=sg.m A+a=sqg.n (5,4,3)-4/19
b A-b=sgm A-a=sg.n (5,4,3) - 4/5
¢ A-c=sg.m A-a=sg.n 4,1 (17,15, 8) - 1/
d A+c=sqm A+a=sg.n 4,1 (17, 15, 8) - 1/77
5 To find a rational bisector of an acute angle in a right triangle
6a A+c=sg.m P=cu.n (629, 621, 100) - 1/50
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A+c=cu.m, P=sg.n

A+a=sq.m P=cu.n 4,1
A+a=cum P=sg.n 8,1
P=sg.m A+P=cu.n 512/17,1

P=cum, A+P=sq.n [oreeeeeene ]

sqc=sq.m+m, sg.c/a=cu.n+n
c=cum+m, b=cur, a=cu.n—n

353

(24153953¢tc) - 1/628864

(17, 15, 8) - 1/5

(65, 63, 16) - 1/9

(30923%:tc) - 1/4708
(5968, 4400, 4032) - 1/225

(5,3, 4) - 3/4

10, 8, 6

Here is, for comparison, a table of contentsTS 5 (cf. Sec. 1.11

above), an OB theme text from Susa with metric algebra problems for one,
two, or threesquares In the table of content# stands for the area of a
square with the sidg A, Ay, A3 stand for the areas of squares with the
sidess,,s,, s3, andA, stands for the area of a square with the side

TMSS5, table of contents

[N

~N O 01 B w N
o 0O T 9 OO TV O T W

-~ DO QO O T QO

© B
)

equation ¢ (coefficient)

s=k c-s=7? 2,3, 4, 2/3, 1/2tc.

s+c-s=k 1/11, 2/11gtc.
s—c-s=k 2/3,etc, 1/7,etc.
s=k, c-A=? 2/3,etc, 1/7,etc.
c-A=k 1/11, 2/11getc.
s=k A.,=? 2, 1/3, 1/7etc.

A+A 2,3, 4, 213, 1/2etc.
A—AC = 2,3, 4, 2/3, 1/2etc.
A+c-s=k 2, 3, 4, 2/3, 1/2etc.
A-c-s=k 2, 3, 4, 2/3, 1/2etc.
c-s—A=k 1,2,2/3

c-s=A 1/2

A-c-A=k 1/3, 1/4, 1/3 - 1/4etc.
Slzk, (51—82)/2:|

=k 1—-9)/2=I

s, =kl, Aj+A,=?

Al + A2 =Kk, § = |

Al + A2 =Kk, 9= |

A1+A2:k, q+82:|

s1=k sp—-s5=1

Al—Azzk, %_—82:|

A -Ar=k, 9=c-g V7,17 17
S, 52,83:k, I, m Al—AZZ?,Az—A3:?

S, 8, S, s3 (sides of squares)
30,35,405(=5-7- ®@tc.
55,6 05 (=5:11 - 11gtc.
30, 35,etc.

30, 35, 4 O5etc.

55,1005 (=511 - 118tc.
30, 35, 4 O5etc.

30, 35, 4 O5etc.

30, 35, 4 Ob5etc.

30, 35,405

30, 35,405

30

30

30, 35, 4 O5etc.
(30, 20)
(30, 20)
(30, 20)
(30, 20)
(30, 20)
(30, 20)

(30, 20)
(35, 5), (4 05,5)
(30, 20, 10)
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b Al—A2=A2—A3=k, S:|_+82+SZ=| (30, 20, 10)
c A-Ar=Ay-Az=k s1-9=59-9=I (30, 20, 10)

BM 80209 (Friberg,JCS(1981)) is a brief OB theme text, probably
from Sippar, with metric algebra problems for squarescaotés Here is
an abbreviated table of contents (for more details, see Sec. 1.10 above),

with s, dstanding for the side and diagonal of a squaredaagdstanding
for the area, the circumference, and the diameter of a circle:

BM 80209 table of contents

equation ¢ (coefficient) s, a

1 s=k, sqs=7?
2 s=k d=? 20
3 s=k, diksum=7? (meaning not clear) 10
4 A=ka=? 10, 40, 50, 60
5a A+c-a=k 21,1 2'etc. 10

b A-c-a=k 21,1 2'etc. 10
6 Al—Azzk, al—a2=| 10, 30, 40, 50
7 A+d+a=k 10, 20, 30, 40

In addition, similar OB theme texts are known with metric algebra
problems forrectangles with the sides in a fixed ratio for semicircles
(Friberg and Al-Rawitp be publishey.

Strictly speaking, only the problemsAm. “VI” 88 3 a-3 f (## 6-11 in
the customary numbering) look like metric algebra problems in the men-
tioned OB theme texts, because all the other problems set various combi-
nations of the area and the sides of a right triangle equal to undetermined
squares or cubes or more complicated undetermined expressions. The ap-
pearance is deceptive, however, sialse the problems in Ar. “VI"88§ 3 a-
3 f (## 6-11) are indeterminatéonsider, for instano&r. “VI” § 3 a (# 6):

Ar “VI”.6 (Heath DA (1964), 228)

To find a right-angled triangle such that the area added to one of the perpen-
diculars makes a given number.

Diophantus chooses 7 as the given number and assumes that, for instadseqg)3

are the sides of the given right-angled triangle. Thend =) 6 sq.s+ 3s=7. This

is a quadratic equation ferwhich has a (rational) solution only if the square of half
the coefficient of plus the product of the coefficient for sqand the given number

7 is a (rational) square. However, sg. 1 1/2 + 6 - 7 (= 49 1/2) is not a square.
Diophantus now replaces the right triangle with the sides (3, 4, 5) with a new with the
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perpendicularp and 1. ThenA +a=)p/2 - sqs+ 1 -s= 7, and this equation has a

(rational) solution only if sq. 1/2 p/2 - 7 is a square, that is if b4+ 1 is a square.

Also, sincemand 1 are the sides of a right-angled trianglgy 3l must be a square.

Therefore, (sgp+ 1) — (14p + 1) =sqp— 14p =p - (p— 14) is a square difference.

Sincep - p—14) =sq. p + (p— 14)}/2 — sq. p — (p— 14)}/2, Diophantus sets 1t

+1=sq.p- (p—14)}/2 =sq. 7, which givegs = 24/7. Therefore, the “auxiliary tri-

angle” with the perpendiculapsand 1 is (24/7, 1, 25/7) or (24, 7, 25).

If then @, b, § = (24s, 7s, 259), it follows that A + a =) 84 sqs+ 7s= 7. This

guadratic equation has the solutem 1/4, so thatd, b, 9 = (24, 7, 25) - 1/4.

This problem and its solution, both typical for the style of Diophantus’
Arithmetica are potentially very important for the following reason. The
series of problems iAr.”VI” 8 3 (## 6-11),

A+a=k, A-a=k, A+b+a)=k, A-(b+a) =k, etc.

(whereA anda are the area and a short side of a right triangle)
looks likea series of determinate problems of the same type as similar se-
ries of OB problems fasquaresrectangles with the sides in a given ratio
circles orsemicircles Yet they are all indeterminate. The problem in # 6,
for instance, leads to a pair of indeterminate equationsdbthe form

14p+1=sgqm, sqp+1=sgh (mandnundetermined).

And so on. What all this means is that it is not inconceivablestimé OB
mathematician was inadvertently led to consider indeterminate problems
of the Arithmetica type when trying to work out a series of problems of
standard type for the area and the sides of a right triangle.

This conjecture may sound quite far off, but it is to some extent corrob-
orated by the testimony of four strangely formulated interest problems in
the OB brief theme teXYAT 8521 (NeugebauenKT (1935-37)1, 351
ff.; 3, 58). Here is the text of the first of those problems:

VAT 8521 # 1 literal translation explanation

For 1 mina of silver 12 shekels he gave. Interest: 12 shekels per mina.

May he give you (as) interest a square. May the interest be a square number
Set 1 mina, set interest 12 shekels. For 1 mina and 12 shekels in interest
Set 1 40 the ‘step’ Let, for instance,

that (as) a square he gives to you. 1 40 (= 100) be the square number
12, the interest, to 1 mina lift, 12. The interest on 1 mina is 12 shekels
The opposite of 12 resolve, 5. 1/12 = ;05

To 1 40 the step that you took lift 140/12=140-;05=8;20

8 20 the initial silver. The initial capital was 8 minas 20 shekels
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In this OB exercise, the interest is the usual 1/5 of the capital, expressed as 12 shekels
on each mina (= 60 shekels). However, instead of stipulating that the interest shall be a
given weight of silver, the text nonsensically says that it shall be a square number. (The
meaning of the term ‘step’ in this context is not clear, it may be simply ‘unspecified
number’.) There is no other known OB mathematical text with a similar requirement
The other exercises in VAT 8521 develop the theme. Exercise # 3 is
essentially identical with # 1, only with the square 36 instead of 1 40. Here

is a list of the form of the interest in the 4 exercises:

# 1. May he give you (as) interest a square. chosen ‘step”: 1 40 = sg. 10
# 2. May he give you (as) interest a cube. chosen ‘step’: 7 30 (00) = cu. 30
# 3. May he give you (as) interest a square. chosen ‘step’: 36 =sq. 6

# 4. May he give you (as) interest a ‘cube minus 1’  chosen ‘step’: 18 = cu. 3—-sq. 3

Neugebauerdp. cit) makes the following comment:

“Itis likely that what we have here is a degenerate form of some other problem type,
mathematically more meaningful but therefore also more difficult”

Neugebauer’s hunch may have been correct. As a matter of fact, there is at
least one uncanny similarity between the problems in VAT 8521 and the
problems inAr. “VI”. Thus, in Ar. “VI”, all the undetermined right hand
sides of the equations are of one or the other of the following 5 types

a) sgm b) cum c) sgm+m d) cum+m €) cum-m
In VAT 8521, the right sides of the equations are of the 3 types
a) sqm b) cum c) cum-m
In other words, the undetermined right hand sidésririVvI” are
squares, cubes, quasi-squares, and quasi-cubes,
while in VAT 8521 they are
squares, cubes, and quasi-cubes
The name “quasi-cube” was suggested in Frikeg(2007), Sec. 2.4, as
a suitable notation forarious combinations of cubes, squares, and linear
termswhich appear in three known OB mathematical table texts organized

in the same way as the more familiar tables of cube sides.
The types of quasi-cubes that appear in the mentioned table texts are

quasi-cubes of the form ocm+sg.m=m-m- M+ 1) in MS 3899 and VAT 8492
quasi-cubes of the form cm+ 3 sqm+2m=m- m+1) - M+ 2)in MS 3048

Hand copies of the three table texts can be found in Fribprgit) Figs.

2.4.1 and 2.4.2, where they are followed by a discussion of the possible
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reason for the existence of such table texts.
Properly speaking, MS 3899 and MS 3048 are tables of “quasi-cube
sides”. Here are, for instance, the first two lines of the table on MS 3048:

6.e 1 ib.sig 6 makes 1 equalsided 6=1-2-3)
24.e 2 ib.sig 24 makes 2 equalsided (24=2-3-4)

Ar VI".16. A right triangle with a rational bisector

Here is the statement Af. “VI” 8 5 (# 16), a problem appearirguite
out of contexin the theme texar.“VI” :

Ar “VI".16 (Heath,DA (1964), 240; CzwalinadDA (1952), 105)
To find a right-angled triangle in which the bisector of an acute angle is rational.

Diophantus sets the bisector equal £ & segment of one of the perpendiculars equal
to 3s, and the other perpendicular equal & Bhe whole first perpendicular is chosen

as 3, so that the second segment is 33-T&en the diagonal of the triangle is 4/3 -

(3 — 39) = 4 — 4s. Since the square of the diagonal is the sum of the squares of the
perpendiculars, it follows that 16 s+ 16 — 32s= 16 sqs+ 9. Hences= 7/32. The

rest is clear: If everything is multiplied by 32, the first perpendicular is 96, the second
is 28, the hypothenuse is 100, the bisector is 35, and the segments 21 and 75.

Diophantus’ method ir. “VI”.16 can be explained as follows, in
terms of metric algebra:

r=bla-@-a3=b-bs

L\J> ®
cs & ¢
------------ sg.b-b3=sqga+sqgbs
A r \qa ¢

o S=(sg.b-sq.a)/ (2 sq.b)

Fig. 13.6.1. Ar. “VI".16. A right triangle with a rational bisector of an acute angle.

In a right triangle with the basethe bisector of the opposite angle cuts
off a right sub-triangle with the sidess a 5 b § wheresis unknown and
¢, b, a a diagonal triple, for instance 5, 4, 3. kdie the third side of the
whole triangle, which then has the sides, b s It follows that ¢f. El.
VI.3)

r:-(@a-ag=bs:as=b:a sothatr=b/a-@-ag$=b-bs.
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Consequently, by the diagonal rule,
sq. b—-b3=sqga+sqgbs sothats=(sq.b-sq.a)/(2sqg.b), etc.
In particular,
if c b,a=5,4,3, thens=7/32, sothatr,a bs, ¢cs (100, 96, 28, 35) / 32.

The whole solution procedure becomes exceedingly obvious if the
construction is imagined to take place inside a rectangle as in Fig. 13.6.1.

13.7.Ar V.7-12. A Section of a Theme Text with Cubic Problems

Of the seven lost books of Diophantégithmetica four (Books IV-
VII) have survived in Arabic translations (SesiaBopks IV to VI[1982);
RashedDA 3-4(1984)). Of particular importance for the present discus-
sion is the following brief theme text in the Arabic Book V:

Ar V.7-12 (cu. means cube) m (or n), k a,b
V.7 a+b=m, cua+cu b=k 20,2240 DP 12, 8
V.8 a—-b=n, cua—cu.b=k 10,2170 D 13,3
V.9 a+b=m, cua+cub=ksqg.a-b 20,140 D 12,8
V.10 a—b=n, cua-cu.b=%sq.a+bh 10,81/8D 15,5
V.11 a—b=n, cua+cu b=k@+hb) 4,28 D 6, 8
V.12 a+b=m, cua—-cu.b=k@a-b 8,52 D 6, 2
Note the similarity with the following theme textAm.| (Sec. 13.1 above):
Ar 1.27-30 m (or n), k a, b
.27. a+b=m, a-b=k m, k20,96 D P 12,8
1.28. a+b=m, sg.a+sqg.b=k m, k=20, 208 D P 12,8
1.29. a+b=m, sqg.a—-sq.b=Kk m, k= 20, 80 12,8
1.30. a—b=n, a-b=k nk4,96DP 12,8

It is likely thatAr. V.7-12 andAr. 1.27-30 are two brief excerpts from
one common sourgea larger theme text with metric algebra problems,
probably of Babylonian origin.

Thediorismsin Ar. 1.27-30 (necessary conditions for the existence of
positive rational solutions), marked D in the catalog above, have already
been mentioned. There are simithorismsin V.7-12, as for instance in
V.7, where the stated necessary condition is that

(4 -k—cu.m/(3 -k) =sq.p for some undeterminga

What is much more interesting is that there is also a remark in V.7



13.7. Ar. V.7-12. A Section of a Theme Text with Cubic Problems 359

which, apparently, is the translation into Arabic of the Greek remarks in
1.27-30, that theliorismis plasmatikonrepresentable’. According to the
interpretation in Sec. 13.1 above, this cryptic expression meanghé¢hat
necessary condition can be explained by use of a diagtamthe case of
V.7, the origin of the necessary condition is the following: As is explicitly
shown in the solution procedure, Diophantus knew that

cu.@+b)=cu.a+3sga-b+3a-sqgb+cu.b.
Sincea andb are assumed to be solutions to the problem
at+b=m cua+cub=Kk,
it follows from this identity that
cum=k+3m-a-b.
Hencea andb are solutions to theectangular-linear system of equations
a-b=(cum-R/(3m), a+b=m
To solve this system of equations, one may start with the observation that
sg.@—b=sqg. a+b)—4a-b=sqgm-4 (cum-R/(3m) = (4 -k—cu.m)/(3 -K).
This identity implies that a necessary condition for the existence of a ratio-
nal solutiona, bis that (4 k— cu.m)/(3 -K) is a square. This is a hecessary
condition stated i\r. V.7. Since the necessary condition was obtained in
the process of solving a rectangular-linear system of equations, the neces-

sity of the condition can be demonstrabgduse of a diagrarike the one
in Fig. 13.1.1, right. That is why the necessary conditiqgraismatikén

In Ar. V.7, just as inAr. 1.27-28 and 30, Diophantus does not use the
solution procedure suggested by the form ofdibeismand the statement
that the necessary conditionplgsmatikon Instead, he starts by setting

a=m2+s=10+s b=m2-s=10-s,
and concludes that
cu.a=1000 + cus+ 30 sqs+ 300s, cu.b=1000+ 30 sgs— cu.s— 300s.

Therefore,
cu.a+ cu.b=2000 + sqs= 2240, 60scp=240, sqs=4, ands=2.

39.The meaning of the obscure teplasmatikdnand its alleged Arabic counterpart is a
hotly debated issue. Conflicting interpretations can be found in, for instance, Segiano (
cit., 192) and Rashedfocit, 133-138). See also Christianidifist. Sci.6 (1995).
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13.8.Ar IV.17. Another Appearance of the Term ‘Representable’

In addition toAr. 1.27-28 and 30 andr. V.7, there are just two other
problems in Diophantudirithmeticawhere a necessary condition is qual-
ified by the term ‘representable’, namely IV.17 and IV.19. Here is the con-
text in which those two problems appear (Sesiapocit, 186-198):

Ar IV.14-22 (p, qare undetermined numbers) k,lorm a, b
IV.14 k-a=cu.p, |-a=sq.q 10,5 8/5
IV.15 k-a=cu.p, |-a=sq.p 10, 4 25/16
IV.16 k-b=cu.p, k-a=p 10 3, 2700
IV.17 k-sg.b=cu.p, k-sg.a=p, b=m-a 520 DP 2,40
IV.18 k-cu.b=sqg.p, k-cu.a=p, b=m-a 8,3 D 3/2,9/2
IV.19 k-a=cu.p, |-a=p 20,5 DP 2/5
IV.20 k-cu.a=sqg.p, |-cu.a=p 200,5 D 2

IV.21 k-sq.a=cu.p, |-sq.a=p 401/2,2 D 3/2
IV.22 k-cu.a=cu.p, |-cu.a=p 911/8,2 D 3/2

There is no indication that this group of problems is in any way related
to the problemar. 1.27-28 and 30 andr. V.7, other than thdiorismsand
two cases of the term ‘representable’ in V.17 and IV.19.

The necessary condition in IV.17 is of the following form:

m - k= sg.q with g undetermined.
It is possible that what is meant by saying that this condition is ‘represent-
able’ (in a diagram) is tham, k, pare related as the two segments of the
diameter and the upright in a semicircle, as in Fig. 1.7.2 above, right.

The necessary conditions in IV.17-22 are the following ones:
IV.17 m - k=sq.q
IV.18 k=cu.q
IV.19 k-l=s0.q
IV.20 k-I=cu.q
IV.21 k-I=sg.sqq
IV.22 k-l=sqg.q, k-cu.l=sg.cuq
It is clear that the necessary conditions in IV.17 and IV.19 are of the same
kind and can both be ‘represented’ in a geometric diagram like Fig. 1.7.2,
right. On the other hand, the other necessary conditions cannot readily be
represented geometrically.



Chapter 14

Heron'’s, Ptolemy’s, and and Brahmagupta's
Area and Diagonal Rules

14.1.Metr icd.8 / Dioptr a31. Heron’s Triangle Area Rule

The area of a triangle with given sides can be found by first computing
the height against one of the sides. Then the area is half the product of the
height and the side. However, in his famous thedvistn ical.8, Heron
of Alexandria shows how the area of a triangle can be compuitiedut
the need to first compute a height in the triandlecording toAl-Birtini
(973-1038) inThe Book Concerning the Chordke proof of this theorem
is due to Archimedes. The proof is reproduced below, together with an ex-
planation in terms of metric algebra. The notations used in the metric
algebra version of the proof are the ones appearing in Fig. 14.1.1, right

In the lettered diagramassociated with the identical textetrica 1.8
andDioptra 31(see Hgyru@BSSM17 (1997)), a circle is inscribed in the
given triangle ABC (Fig. 14.1.1, left). D, E, F are the three points where
the circle touches the sides of the triangle, and O is the center of the circle.
BH is equal to AF, OL is orthogonal to OC, and BL is orthogonal to BC.

In the correspondingetric algebra diagranfFig. 14.1.1, right), the
sidesa, b, c of the triangle are cut by the points where the circle touches
the sides into six segments, of lengthsi, v, v, w, wThe bisectors of the
three angles of the triangle and the normals against the three sides from the
center of the circle cut the triangle into three pairs of right triangles. The
angles at the center of the circle of these right trianglep, &g}, }, ~, ~.

The right triangle drawn below the given triangle has the angieits
lower vertex and the sides+ w andt. The line joining the center of the

361
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circle to the same lower vertex is orthogonal to the line from the center of
the circle to the lower right corner of the given triangle and cuts the seg-
mentu in two piece9 andg. The radius of the circle is and half the
perimeter of the triangle &

u+v=a
v+w=bhb
w+u=c
Uu+v+w=s
=(a+b+0/2

Fig. 14.1.1. Heron'Metrical.8. Left: a lettered diagram. Right: a metric algebra diagram.

Metr icd.8 (Heath HGM 2(1981), 322) explanation in terms of metric algebra

ABC =BOC + COA + AOB A=U+V)-r+V+w) r+Ww+u)-r
ABC=CH-OD A=@U+v+w r=s-r

sq. ABC =sg. CH - sq. OD S8.=sQ.S- sq.r

since COL and CBL are right the lower triangle and its adjoining right
COBL is a cyclic quadrilateral triangles form awverlapping birectangle
angles COB+CLB=2R | +}+ =two right angles

angles COB + AOF=2R | +} +~=two right angles

angle AOF = angle CLB ~=

AOF and CLB are similar triangles therefore, by similarity,
BC:BL=AF:FO=BH:0OD g+v):t=w:r and
CB:BH=BL:0OD=BK: KD +v):w=t:r=p:q
CH:HB=BD:DK s:w=Uu+v+w):w=pP+qg:q=u:q
sq.CH:CH-HB=BD-DC:CD DK s§:s-w=u-v:v-q

=BD - DC:sq.OD ® - VIsq.r

sq. ABC =sg. CH - sq. OD sf.=sq.s- sq.r

=CH-HB -BD:DC =H{-wW-U-y=s-s-3-6-H-6-9



14.2. Two Simple Metric Algebra Proofs of the Triangle Area Rule 363

It is evident from this metric algebra explanatiomadtrical.8 that the
basic ideas in Archimedes’ proof of the triangle area rule are:
1) A=s-r wheres=u+v+w=(@+b+c)2
2) sqr=u-v-wWUu+v+w)=(s-9-6-H-6-9/s
In other wordsthe essential part of Archimedes’ proof is the computation
of the radius of the inscribed circle in terms of the segments u, v, w cut off
by the inscribed circleThis realization leaves us with two equally plausi-
ble explanations of how Archimedes can have found his proof of the trian-
gle area rule. One possible situation is that he first computed the radius of
the inscribed circle and then saw that he could obtain the triangle area rule
as an easy corollary. Another possibility is that he already knew the rule
and found a new proof for it in terms of the radius of the inscribed circle.
Assume that, as in the second alternative, Archimedes already knew the
triangle area rule in the form sfj=s- (-9 - s—BH - (-9, but that he
also knew the more obvious rude=s - r. He can then have understood
that he could obtain the former rule from the latter if he could prove that
sq.r=(s-9-6-H-6-9/s or sqr=u-v-wUu-+v+w).
He can also have seen that it would be easier to prove that
(U+v+w):w=u-v:sq.r.
This observation may have been a decisive first step towards the proof in
the form that we know it froriMetrical.8.

14.2. Two Simple Metric Algebra Proofs of the Triangle Area Rule

One simple proof of the triangle area rule is the one explicitly dismissed
by Heron in the first few lines d¥letrica 1.8, namely the rather obvious
proof in terms of the height against one of the sides of the given triangle.

Let, as in Fig. 1.8.1, right, above,q be the segments into which the
sideb of the given triangle is divided by the height agamsthen

sg.c—sg.p=sg.h =sg.a-sq.g.

Thereforep andg are solutions to the quadratic-linear system of equations
p+gq=b, sqp-sqg.g=sqg.c-sq.a
This was a familiar fact already in OB mathematics. See the discussion of
VAT 7531 in Sec. 1.1, in particular Fig. 1.12.7. Consequently,
p=b/2 +(sqc—-sqg.a)/2b=(sq.b+sqg.c—sqg.a)/2b, etc
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Whenp is known in this form, sch can be expressed as follows
sq.h=sqg.c-sq.p=(C+p-€-P
=(2b - c+sg.b+sg.c—sg.a) - (2b - c—sq.b—-sqg.c+sqg.a)/sq. (2b)
={sq. € +b)—sqg.a} - {sq.a—sqg. € — b}/ sq. (2b).
The triangle area rule then follows, in the form

sq. (4A) =sqg. (2b - h=sq. (2b) - sgh={sq. € + b) —sqg.a} - {sq.a—sq. € — b}.

It is easy to get from there to the rule in the more symmetric form
sqQ.A=s-5-9-6-H-6-9 with s=(@+Db+c)/2.

Another metric algebra proof, reproduced by Id and E. S. Kennedy in
King and M. S. Kennedye@ls), SIES(1969), 492-494, is given hxl-
Shanni in the medieval manuscripS 223 Bibliotheque Orientale,
Université Saint Joseph, Beirut The basic idea iAl-Shannt’s proof is to
inscribe the given triangle in a right triangle (essentially the lower right
half of the rectangle in the diagram in Fig. 14.2.1 below) in a suitable way,
and then make two applications of Ptolemy’s diagonal rule (HEei&V)

2 (1981), 278), which states thatany cyclic quadrilateral the sum of the
products of the two pairs of opposite sides equals the product of the diag-
onals Below, Al-Shanni’s proof is replaced by a simplified version.

2A=m/2 -tn

sq. €+b)—sga=m-n

sgq.a—sqg. €—b) =tm-tn

G

sq. (4A) =sqg. (n-tn)
=(m-n)-(tm-tn)

={sq. c+b)—sq.a} - {sq.a-sq. €-b)}

Fig. 14.2.1. A simplified version of Al-Shanni’s proof of the triangle area rule.

Consider a given triangle with the sidg$, a. Construct two concen-
tric, parallel, and similar rectangles with the sidesmandn, t n, respec-
tively, n <m, and such that the sideof the given triangle coincides with
the half-diagonal of the larger rectangle, while the kideincides with the
half-diagonal of the smaller rectangle, as in Fig. 14.2.1. Thebis the
diagonal in a symmetric trapezoid with the sides, n, a. Therefore,

sq.€+b) —sqa=m-n
in view of Ptolemy’s diagonal rule. Similarlg,is the diagonal in a sym-
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metric trapezoid with the sideésn c —h t n, ¢ — h Therefore,
sq.a-sq.t—-B=tm-tn
Combining the two identities, one finds that
{sg.c+b)—sq.a}-{sq.a-sq.€-B}=(m-n-tm-tn.
On the other hand, the given triangle can be formed by joining together
two triangles with the common basa and with the sum of their heights
against this base equali¥2. (See again Fig. 14.2.1.) Therefore, twice the
the area of the given triangle can be computed as
2A=m/2 -tn
Consequently, the triangle area rule is obtained in the form
sq. (4A) =sg. -tn)=(m-n-¢m-tn={sq. Cc+b)-sqa}-{sq.a-sq. € - b}

14.3. Simple Proofs of Special Cases of Brahmagupta’'s Area Rule

In his Brahmasphutasiddhanta XI1.21 (Colebrooke, AAMS (1973),

295), the Indian astronomer Brahmagupta (628) formulated as follows a
rule for the area of a triangle or quadrilateral in terms of the:sides

“The product of half the sides and countersides is the inexact area of a triangle or

quadrilateral. Half the sum of the sides set down four times, and in turn lessened by

the sides and multiplied together, the product is the exact area.”

Theinexact area rulementioned here by Brahmagupta is clearly the
proto-Sumerian/Sumerian/Babylonian “false area rule” for triangles and
quadrilaterals. (See, for instance, Sec. 11. 3 a above.)

The exactarea rule is stated here in the same form for triangles and
‘quadrilaterals’. Brahmagupta gives no information about which kind of
guadrilaterals he has in mind. However, the area ruerigct only for
cyclic quadrilaterals*©

According toAl-Birtinl, Brahmagupta's area rule was first found by
some anonymous Indian mathematician (TropfRg, 4 (1940), 155).
However, Tropfke himselfop. cit, 154) was of the opinion that

40. For a fairly exhaustive account of the interesting history of cyclic quadrilaterals in
ancient Indian and Islamic or more recent Western mathematical works, the reader is ad-
vised to consult TropfkéGE 4(1940), 150-169. In Europe, the fiedgebraicproof of the

area rule for general cyclic quadrilaterals was given by P. Naudé inop72i#t.,(166). A

simple proof by use of trigonometry was found by N. Fuss in 1G97c{t, 167).



366 Amazing Traces of a Babylonian Origin in Greek Mathematics

“It is hardly likely that an Indian mathematician could derive the area rule algebraic-
ally, and even less could Indian mathematicians accomplish it by geometric means.”

This verdict may be much too harsh, sigoerect derivations of the area

rule for the most interesting special kinds of (cyclic) quadrilatesadsso

easy to find that they may have been known to Indian mathematicians, or
even to their Babylonian predecessors. This will be shown below.

What has to be shown is thatpf s, q, t(in this order) are the sides of
a quadrilateral, then the area of the quadrilateral is given by the equation
sQ.A=(p+g+s-Y)2 -p+q-s+)2-6+t+p-09/2 - 6+t—p+9/2
or simply
sq.(4A)=P+q+s-) - pP+g-s+)-E+t+p-q- E+t—p+Qq.
Now, this rule iscorrect for triangles because
if t=0, then the rule is reduced to Heron'’s triangle area rule.
The rule is triviallycorrect for squares and rectangldadeed,
if p=qgands =t thentheruleisreducedto #g=p-p-s-ssqg.p 9.
The rule is als@orrect for symmetric trapezoidsecause

if pandg are parallelp > g, ands =t, then the rule is reduced to
SqQA=pP+qQ)/2-p+g/2-2s+p-q/2-(2s-p+q/2
=sq.ff +0)/2 - (sqs—sq. p—9/2) =sq. {b + 0)/2 -h},
whereh is the height of the trapezoid.

That the rule igorrect for birectanglesan be shown as follows:

sq.p + sg.t =sq.q + sq.s

and 2A=p-t+q-s

c

4A=2p-t+2q-s

=sq.p+t)—sg. -9

=sg. +9) —sq.{-p)

C

sq. (4A)

={sq. p+1t) —sq. q—9)}
{sq. G +9) —sq. (-p)}

Fig. 14.3.1. An easy metric algebra derivation of the area rule in the case of a birectangle.

Letp, s, g, t(in this order) be the given sides of a birectangla] lext
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the first diagonal, and |& be the area, as in Fig. 14.3.1. Then, clearly,
sq.p+sgt=sqd=sq.q+sq.s and 2A=p-t+q-s
Consequently,
4A=2p-qg+2s-t=sg.p+0g) —sqg.{—s) (if t>s, for instance),
but also
A4A=2p-qg+2s-t=sq.6+t)—sq.q—p (if g>p, for instance).
Through multiplication of the two alternative results, one arrives at
sq. (4A) ={sq. P + ) — sq. {—9)} - {sq. (s + ) — sq. (1 — P}.
After factorization, this expression becomes
sq.(4A)=p+gq+s-)-p+tq-s+)-c+t+p—-Qq)-G+t—-p+9.
Finally, it is easy to show that Brahmagupta’'s area rut®isct for
cyclic quadrilaterals with orthogonal diagonalshich here, for simplici-
ty, will be referred to as “cyclic orthodiagonals”. As is well known, there
is a simple relation between birectangles and cyclic orthodiagonals, which,

incidentally, shows thatince Brahmagupta's area rule holds for birectan-
gles, it holds also for cyclic orthodiagonals

Fig. 14.3.2. A simple relation between cyclic orthodiagonals and birectangles.

Indeed, all that is required to pass from a birectangle to a cyclic ortho-
diagonal is to join together the two pairs of right sub-triangles of a birect-
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angle in a different way. See Figs. 13.4.3, 14.3.2. Evidently, the
transformation does not change the area of the quadrilateral, and it changes
only the order of the sides, froms, g, top, s, t,

14.4. Simple Proofs of Special Cases of Ptolemy’s Diagonal Rule

As mentioned above, in Sec. 14.2, Ptolemy’s diagonal rule says that

In any cyclic quadrilateral the sum of the products of the two pairs of opposite

sides equals the product of the diagonals.
Ptolemy’s well known proof is simple enough, but it is interesting that it is
possible to find alternative proofs in special cases by use of metric algebra.

Thus, in the case ofractanglewith the sides, s, u, sand diagonald,
Ptolemy’s diagonal rule is identical with td diagonal rule

sq.u+ sg.s=sq.d.

In the case o symmetric trapezoidith the sidesn, s, n, sand diagonals
d, Ptolemy’s diagonal rule is identical with @ trapezoid diagonal rule
discussed in Appendix 1:

m - n+ sq.s=sq.d.
A simple metric algebra proof is given in Fig. 14.4.1 below.

n sg.d—sqg.p
=sq.h
=s0.s-504

&

sq.d—sq.s
=sq.p—sqq
=(P+a)-P-a
=m-hn

Fig. 14.4.1. A proof of Ptolemy’s diagonal rule in the case of a symmetric trapezoid.

In the case of hirectangle(see Fig. 14.3.2),

p=aw and g=cV is one pair of opposite sides,
s=cu and t=bw is another pair of opposite sides,
d=cw and e=bu + av are the two diagonals.

Then Ptolemy’s diagonal rule follows easily, because
p-g+s-t=aw-cwcu-bw=cw-@v+byg=d-e
Similarly, in the case of ayclic orthodiagonalsee again Fig. 14.3.2)

p=aw and t=b w is one pair of opposite sides,
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s=cu and g=c vV is another pair of opposite sides,
d=au+bvand e=bu+av are the two diagonals.
Here, too, Ptolemy’s diagonal rule follows easily, because
p-t+s-g=aw-bwtcu-cwvab-sqw+sg.c-uv
=ab-(squ+sqg.v)+(sga+sqb)-uv=@u+by-bu+tay=d-e
A simple derivation of Ptolemy’s diagonal rule can be given also in the
case of amverlapping birectangleby which is meant a cyclic quadrilat-
eral formed by two partly overlapping right triangles with a common diag-
onal, as in Fig. 14.4.2 below.

pg+st
=cv-aw+(bu—-av)-cw
=bu-cw=bw-cu
=d-e

Fig. 14.4.2. Ptolemy’s diagonal rule in the case of an overlapping birectangle.

Note that the diagram in Fig. 14.4.2 is essentially identical with the
diagram used in Ptolemy’s proof of a subtraction rule for chords. See
Heath,HGM 2 (1981), 279. (Note also the occurrence of an overlapping
birectangle in Archimedes’ proof of the triangle area rule.)

Although the proof of Ptolemy’s diagonal rule for an overlapping bi-
rectangle as in Fig. 14.4.2 is exceedingly sinplere seems to be no sim-
ple way of proving Brahmagupta’'s area rule for an overlapping
birectangle in the same way as the area rule was proved above for a
birectangle or a cyclic orthodiagonal!

It is not difficult to find a first expression for the arkaf an overlap-
ping birectangle, for instance as follows: It is obvious from the diagram in
Fig. 14.4.2 thaA is equal to the area of a trapezoid with the parallel sides
b v, a uand the height u + a vy minus the areas of two right triangles with
the sided v, a vanda v, a u. Therefore,

2A=bv+ay-bu+tay—@v-bv+au-awbv-bu+au-bu
The trouble is that it seems to be difficult to identify this simple equation
for the area with the one given by Brahmagupta in terms of the sides.
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14.5. Simple Proofs of Special Cases of Brahmagupta's Diagonal Rule

Brahmagupta’s rule for the lengths of the diagonals of a quadrilateral
in terms of the sides is formulated as followsBis XII.28 (Colebrooke,
AAMS (1973), 300):

“The sums of the products of the sides about both the diagonals being divided by each

other, multiply the quotients by the sum of the products of opposite sides; the square-

roots of the results are the diagonals in a quadrilateral with unequal sides”

The rule iscorrect for a cyclic orthodiagonalndeed, ifp, s, t, g are the
sides andl, ethe diagonals of a cyclic orthodiagonal, then with the nota-
tions in Fig. 14.3.2 above

p-t+s-g=d-e (asinPtolemy’s diagonal rule; see above),

p-s+t-gcFaw-cu+bw-cwcw-@u+by=cw-d,

p-g+s-taw-cv+cu-bwcw-@v+by=cw-e
Combining these results, one finds that

d-e=p-t+s-qgand d/le=(p-s+t-/(p-q+s-x C

sqd=(pP-t+s-Q-@P-s+t-y/(p-q+s-x and

sge=(P-t+s-Q-P-g+s-X/(p-s+t-Q

The rule is als@orrect for a birectanglelndeed, ifp, s, g, t are the
sides andl, ethe diagonals of a birectangle, then with the notations in Fig.
14.3.2 above

p-g+s-t=d-e (asinPtolemy’s diagonal rule; see above),

p-s+q-taw-cu+cv-bw=cw@u+by=d-(au+by,

p-t+g-ssaw-bw+cv-cueab-sqw+sqg.c-uv=
=ab-(sq.u+sq.v)+(sqga+sqgb)-uv=(@u+by-@v+by=@u+by-e

And so on, as in the case of a cyclic orthodiagonal.
14.6. A Proof of Brahmagupta’'s Diagonal Rule in the General Case

A simple proof of Brahmagupta’'s area rule Muktibhasa and
Kriyakramari (India, 16th century; see AmmaAMI (1979), Sec. 5.5.13)
is actually a straightforward modification of the first of the proofs of
Heron’s area rule mentioned in Sec. 14.2 above. In metric algebra nota-
tions, as in Fig. 14.6.1 below, the proof can be explained as follows:

Let the sides of a (concave) quadrilaterabbe, g, t and let the two
diagonals bel ande. Leth andk be the heights in the triangles with the
sidesp, s, e andq, t, e, respectively. Then the area of the quadrilateral is
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A=¢el2 -h+e2 -k sothat A=2e-h+Kk).
Finally, letf andg be the segments efto the left ofh andk, respectively.
Thend is the diagonal in a rectangle with the lenigth k and the width
g —f (if, say,g >f). Therefore,
sq. o+ K =sq.d-sq. g - f)
The lengths of the segmemtandf are known to be
g=(sq.e+sg.qg—sqt)/(2e) and f=(sq.e+sqg.s—sqp)/(2e).
Consequently,
2e-@-9=(sa.q+sq.p) - (sg.s+ sq.).
Hence,
sq. (4A) = sq. (2) - sq. b +K) = sq. (2) - {sq.d - sq. § — O}

=sq. (& - §—sq.{(sqq +sq.p) - (sq.s + sq.t)}
={2d - e+ (sq.q+sqg.p)—(sgs+sqgt)}-{2d-e-(sqq+sqg.p)+(sq.s+sq.t)}.

In the next step of the procedutrenust be assumed that the quadrilateral

is cyclic so that Ptolemy’s diagonal rule can be appliEgen
2d-e=p-q+s-t

and it follows from two completions of squares that (if, $&ys, 4 > p)

sq. (4A) ={sa. @+ p) —sq. (-9} - {sq. (t + $) —sq. 4 — P}

4A=2e-h+Kk)

sg. h+k)=sqg.d—sq. g-f)
g=(sg.e+sq.qg—sq.t)/(2e)
f=(sg.e+sq.s—sqg.p)/(2€)
2e-(@-f)=(sq.q+sq.p) - (sq.s + sq.t)

C ifd-e=p-g+s-t then sq. (4A) =

sg. (2d -€) —sq. {(sqq + sq.p) — (sq.s+ sq.t)} =
{sa. @+p)—sq. (-9} {sq. (t +s) —sq. 4 —p)}

Fig. 14.6.1. A simple proof of Brahmagupta’s area rule in the general case.

The proof is then complete. Note that this meansttiggproblem of prov-

ing Brahmagupta’s area rule has been reduced by a straightforward use

of metric algebra to the problem of proving Ptolemy’s diagonal rule
Unfortunately, there does not seem to be any simple way of proving

Ptolemy’s diagonal rulén the general casby use of metric algebra.
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A quick look at Ptolemy’s proof of his diagonal rule (HeattGM 2
(1981), 278) will show where the difficulty lies. Expressed in terms of
metric algebra notations, Ptolemy’s proof proceeds as follows:

Let a cyclic quadrilateral have the siges, g, t and the diagonals e
(as in Fig. 14.6.2). Then accordingBtements 111.21 : in a circle angles
on the same arc are equahe angle [) betweers ande equals the angle
betweend andt, and the angle}) betweenp ande equals the angle
betweend andg. Draw the linev cuttinge into e’ ande" so that also the
angle §) betweers andv equals the angle betwedrandp. Then the tri-
angles with the sides v, e'andd, p, t are similar, and it follows that: e'
=d:t,sothas-t=d-e" For a similar reasop,-q=d -e". Consequently,

s-t+p-ggd- (€' +¢'=d-e

Note that the proposition El. I11.21 which is used in this seemingly sim-
ple proof is totally beyond the scope of Babylonian-type metric algebra!l

The triangles with the sides

‘ s,v,e' andd, p,t are similar
' C s:e' =dtC s-t=d-e'.

The triangles with the sides
p,v,e" andd, s, q are similar
C p:e"=dqC p-g=d-e".

Therefore,
s-t+p-q=d-(e'+e)=d-e

Fig. 14.6.2. The proof of Ptolemy’s diagonal rule in metric algebra notations.

Conclusion The fairly detailed discussion above lderon’s and
Brahmagupta’s area rulesas well as oPtolemy’s and Brahmagupta’s
diagonal rulescan be summarized in the following way: All those rules
can be derived in a simple and straightforward way by use of metric alge-
bra, at least as long as no other cyclic figures are considerdtidmgtes,
rectangles, symmetric trapezoids, birectangles, and cyclic orthodiagonals
What that means is that it is not unlikely that all those rules were first dis-
covered (in these special cases) either by Babylonian mathematicians
(although there is no direct evidence for that), or by Greek or Indian math-
ematicians working in the Babylonian tradition.



Chapter 15

Theon of Smyrna’s Side and Diagonal Numbers
and Ascending Infinite Chains of Birectangles

The Greek “side and diagonal numbers algorithm” has been discussed
extensively in many previous studies of the topic, such as, for instance,
Heath,HGM 1 (1981 (1921)), 91-93, KnorEEE (1975), Chapter 2, and
Fowler,MPA (1987), Secs. 2.4(e), 3.6(b).

The key reference is a passage from Theon of Smyigissitio
Rer um Mathematicar um ad L eg endum Platonem Utilipirelow in a
translation borrowed from Fowlewp. cit, Sec. 2.4(e):

Theon of Smyrna,ERML PU 42-5.

“Just as numbers potentially contain triangular, square, and pentagonal ratios, and
ones corresponding to the remaining figures, so also we can find side and diagonal
ratios appearing in numbers in accordance with the generative principles; for it is
from these that the figures acquire balance. Therefore since the unit, according to the
supreme generative principle, is the starting point of all the figures, so also in the unit
will be found the ratio of the diagonal to the side.

For instance, two units are set out, of which we set one to be a diagonal and the other
a side, since the unit, as the beginning of all things, must have it in its capacity to be
both side and diagonal. Now there are added to the side a diagonal and to the diag-
onal two sides, for as great as is the square on the side, taken twice, the square on the
diagonal [is] taken once. The diagonal therefore became the greater and the side be-
came the less. Now in the case of the first side and diagonal, the square on the unit
diagonal will be less by a unit than twice the square on the unit side; for units are
equal, and 1 is less by a unit than twice 1.

Let us add to the side a diagonal, that is, to the unit let us add a unit; therefore the
side will be two units. To the diagonal let us now add two sides, that is, to the unit
let us add two units; the diagonal will therefore be three units. Now the square on the
side of two units will be 4, while the square on the diagonal of three units will be 9;
and 9 is greater by a unit than twice the square on the side 2.

373
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Again, let us add to the side 2 the diagonal of three units; the side will be 5. To the
diagonal of three units let us add two sides, that is, twice 2; there will be 7. Now the
square from the side 5 will be 25, while that from the diagonal 7 will be 49; and 49
is less by a unit than twice 25.
Again, if you add to the side 5 the diagonal 7, there will be 12. And if to the diagonal
7 you add twice the side 5, there will be 17. And the square on 17 is greater by a unit
than twice the square of 12.
When the addition goes on in the same way in sequence, the proportion will alter-
nate; the square on the diagonal will be now greater by a unit, now less by a unit,
than twice the square on the side; and such sides and diagonals are both expressible.
L

O [ e
S

49
d72‘3 9

The squares on the diagonals, alternating one by one, are now greater by a unit than
double the squares on the sides, now less than double by a unit, and the alternation
is regular. All the squares on the diagonals will therefore become double the squares
on the sides, equality being produced by the alternation of excess and deficiency by
the same unit, regularly distributed among them; with the result that in their totality
they do not fall short of nor exceed the double. For what falls short in the square on
the preceding diagonal exceeds in the next one.

The algebraicmeaning of this passage is clear. A double sequence of
‘'sides’ and ‘diameterss,, d, is formed in aecursiveprocedure starting
with a pair of units. The steps of the recursive procedure are the following:

d,5=1,1 and d,41=d,+2s,, Sp+1=dpt+s, for n=1,2,3,...
In this way are formed the pairs

d,$1=1,1, dy,5=3,2, d3,3=7,5, Uy 54=17,12, andso on.
It is observed that

sq.1=sq.1-2-1, sq.3=s¢0.2-2+1, sq.7=sq.5-2-1, sq.17=sq.12-2+1.
From this observation is inferred the conclusion that

sq.d,=s0.s,:-2—-1 forallodd, and sod,=sqg.s,:-2+1 foralleven.
Thereforejn averagesq.d, = sq.s, - 2.

Note the diagram in the text, headed by a figure with two straight lines

forming an angle, one horizontal and tagged withfar mAeupai ‘sides’,
the other slanting and tagged with for Si&auetpor ‘diagonals’.
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15.1. The Greek Side and Diagonal Numbers AIgorithﬁJr

sq.d=2

dp.s =11
dy,s,=1+2-1,1+13,2
d3,55=3+2-2,3+2%,5
d,s,=7+2-57+5%7,12
dg,55=17+2 12,17 + 1241, 29
etc.

Fig. 15.1.1. The first few steps of the side and diagonal numbers algorithm.

In the diagram in Fig. 15.1.1, the initial step of a geometric algorithm
producing the side and diagonal numbers is a half-square with the side 1
and the diagonal. These are the ‘units’ for the sides and the diagonals,
respectively. One of the sides is extended indefinitely to the left and the
diagonal is extended indefinitely to the left and downwards. In this way a
diagram is formed which closely resembles the leftmost figure in the small
diagram illustrating Theon'’s cited passage.

In the second step of the algorithm, a birectangle with two given sides,
1 andd, is joined to the initial half-square, so that a new half-square is
formed, one with the side @ and therefore with the diagonal 4. Conse-
quently, the third and fourth sides of the birectangle are 3 dnit side
2 d of the birectangle is the diagonal of a half-square with the side 2. Now,
a crucial observation is that the two new sides 3 athdfzhe birectangle
arenearly equal Therefore, 2l is theinexpressible diameter of &hile 3
can be interpreted as ampressible diameter of Zhe closeness of the
approximation is demonstrated by the equation

41.The ideas discussed in this chapter were first presented at a mathematical meeting at
Niagara Falls in the summer of 1996.

The proposed explanation in Sec. 15.1 of the side and diagonal numbers in terms of a chain
of birectangles is related to a similar proposal in Hofm@amtauruss (1956).
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sq.3=2-s0.2+1.

In the third step of the algorithm, a second birectangle, with two given
sides 2d and 3, is joined to the first birectangle in such a position that a
half-square is formed with the side 7 and therefore with the diagahal 7
Therefore the two other sides of the birectangle are 7 anevh 7 and
5d even more nearly equal than 3 andl Blere 5 d is the geometric, irra-
tional diagonal of 5, and 7 is the rational diagonal of 5. This time,

sq. 7=2sq9.5-1.

And so on. The general step in the algorithm is described by Proclus (410-
85), as follows:

Proclus, Comm. on Plato’s Republic, ii.2 7 .1 1 -(2Hbmas SIHGM 1(1939), 137)

“The Pythagoreans proposed this elegant theorem about the diameters and sides,

that when the diameter receives the side of which it is the diameter it becomes a

side, while the side, added to itself and receiving its diameter, becomes a diameter.

And this is proved graphically in the second book oBlementdy him (Euclid):

If a straight line is bisected and a straight line is added to it, the square on the whole

line including the added straight line and the square on the latter by itself are to-

gether double of the square on the half and of the square on the straight line made
up of the half and the added straight line.”

It has generally been taken for granted that the theorem kldhwents
referred to in this passagebk 11.10, since the statement of the proposition
in El. 11.10 is very close to the cited statement in Proclus’ commentary.
However, as will be shown below, it is equally possible that the proposi-
tion inEl. Il referred to by Proclus E&l. 11.9, the proposition proved by use
of a birectangle.@f. Fig. 1.6.1 above.)

In step @ + 1) of the algorithm, a birectangle with the given sides
ands, - dis joined to then-th birectangle along a vertical side of lendth
or a slanting side of lengt} - d As shown by the diagram in Fig. 15.1.2,
the other sides of the new birectangle are then ands, ;1 - d where
Oh+1=0dy+2s, and sy, =0dy + 5,
These are, evidently, the rules for the formation of the successive side and
diagonal numbers described by Theon of Smyrna and Proclus in the cited

passages. Now, since the birectangle can be divided into two right triangles
joined along a common diagonal, it follows that

sq. (2s, +dp) +50.d, = 5. & - d) + 9. {0, +3) -} =2{sq. &, + sq. O + S}
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This is preciselfl. 11.9, with 2 5, as the bisected straight line and with
as the straight line added to it. The result can be rephrased as

$0.0p +1 + 590y = 2 0.8, + 2 0.8, 4.
Equivalently,
S0.0h +1— 2 SOSy +1 = 2 54§, — S0y
This is a recursion formula with the known initial value
2sq.s;—sq.d;=2sg.1-sq.1=1.
Therefore,
2s0.8,—sq.d,=1 foralloddh, and sqd,—2sqs,=1 for all evemn.
In other words,
2s0.8,=sq.d,+1 foralloddh, and 2 sgs,=sqg.d,—1 forall evem.

All this agrees perfectly with the description given by Theon of Smyrna of
the properties of the side and diagonal numbers.

1
sq.d=2
2., <[4

Ayp =0y * 25, Ay =281~y
Si+1=0h* s, $i=0h1=Sha
sq.d, . +s0.d, =2{sq.s, ., +S0.5;}
(EL1L9) €

sq.d,,;— 2508, ,,= Sq. §,d) — 2 sgs,

Fig. 15.1.2. The general step in the side and diagonal numbers algorithm.

The result must have intrigued the ancient Greek mathematicians not
only because it is an “elegant theorem”, but also because it leadsries
of increasingly improved approximations to the square side lifd2ed,
it can be interpreted, in modern terms, as saying that

sq. Oh/sy) =2 £sq. (13,) where s, > the @ - 1)th power of 2.
(The estimate fos, follows from the recursion formula fay.)

15.2. MLC 2078. The Old Babylonian Spiral Chain Algorithm
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There is no known direct parallel to the Greek side and diagonal num-
bers algorithm in Babylonian mathematics. However, there is nothing in
the proposed explanation of the algorithm that would have been beyond
the capabilities of Old Babylonian mathematicians, and the idea of a
“geometric algorithm” producing a series of rational sides seems to have
been well known. Two OB examples have been mentioned already.

One such example is IM 55357 (Sec. 4.3 above), where a right triangle
with the rational sides 1 15, 1 00, 45 is cut iatohain of increasingly
small rational right sub-triangledy a series of heights, alternatingly
against the diagonal and against the long side of the given triangle.

A second example is provided by thkains of increasingly larger
rational bisected trapezoidsonsidered in the problem text AO 17264,
with three consecutive bisected trapezoids (Fig. 11.6.1 above).

A third example may possibly be provided by the well known but
previously never adequately explainedgorithm table MLC 2078
(Neugebauer and Sach4TC (1945), 35), referred to MCT as a table of
exponents and logarithms.

(" <21

B
L

A
A4

&14%
(OP2<

_

Fig. 15.2.1. MLC 2078. An Old Babylonian algorithm table.

The mathematical meaning of the table of sexagesimal numbers in two
columns on MLC 2078 is quite obvious. The new interpretation below is
concerned with a possible geometric background to the algorithm table.



15.2. MLC 2078. The Old Babylonian Spiral Chain Algorithm 379

Here is a copy and a tentative translation of the table in the text:

MLC 2078, transliteration tentative translation

15.e 2 ib.sig ;15 makes 2 a square side
30.e 4 ib.sig :30 makes 4 a square side
45.e 8 ib.sig ;45 makes 8 a square side
le 16 ib.sig 1 makes 16 asquare side
ga-mi-ru-um 4 - - - oo 2?2?2727

2e 1 ib.sig 2 is the 1st square side
4e 2 ib.sig 4 is the 2nd square side
8.e 3 ib.sig 8 is the 3rd  square side
16.e 4 ib.sig 16 is the 4th  square side
32.e 5 ib.sig 32 is the 5th  square side
104.e 6 ib.sig 104 isthe 6th  square side
1.15.e 32 ib.sig 1,15 makes 32 asquare side
130.e 104 ib.sig 1;30 makes 104 asquare side

The table can be divided into two or three parts. The first part consists
of the first four lines and is (possibly) concluded with the text in the fifth
line. Unfortunately, that text is badly preserved and without a known par-
allel in OB mathematics. No translation of it was offered in the original
publication of MLC 2078. The worga-mi-ru-um may be some derived
form of the verlzamarum ‘to complete’ (although that derived form is not
in the dictionary). The two lines on the edge of the clay tablet are, obvious-
ly, a continuation of the four lines in the first part of the table.

The second part of the table consists of the 6 lines after the line of text.

The Sumerian wordb.sig literally means something like ‘it is equal’.

It is used most often in tables of square sides, where a phrase like 4.e 2
ib.sig can be translated loosely as ‘4 makes 2 a square side’, or simply ‘4
has the square side 2'. The corresponding phraseiB.eig in a table of

cube sides (less common) means ‘8 makes 2 a cube side’, or simply ‘8 has
the cube side 2. The same kind of phrase appears also in the table of “qua-
si-cube sides” MS 3048 (see Sec. 13.6), and in Plimpton 322 (Sec. 3.3).
The tentative interpretation of the table text MLC 2078 proposed here is
based on the assumption that it is related to the spiraling chain of half-
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squares and right trapezoids shown in Fig. 15.2.2 below.

2
S d
2d /g 5
AR 16
4 pd \\EI-
4 44
. 8 8d
32 32
16d
" 16
104 2P
8 8d

Fig. 15.2.2. A chain of similar right trapezoids, made up of pairs of half-squares.

According to this interpretation, this OB “spiral chain algorithm”
begins, just like the Greek side and diagonal numbers algorithm interpret-
ed as in Fig. 15.1.1 above, with a half-square with the sidesliwhgere
sq.d = 2. This half-square and a larger half-square with the djdeg are
joined along the diagonal of the first half-square, forming a right(-angled)
trapezoid with the sides 1, d, 2. This right trapezoid is then, in its turn,
joined along its side of length 2 with a right trapezoid of the same form,
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but twice as large, that is with the sides 2, &, 2. And so on.

In terms of this spiral chain algorithm, the table text MLC 2058 can be
explained as follows. The first four lines say that

After ;15 = 1/4 turn of the spiral, the square side 2 is reached,

after ;30 = 1/2 turn of the spiral, the square side 4 is reached,

after ;45 = 3/4 turns of the spiral, the square side 8 is reached,
after 1 full turn of the spiral, the square side 16 is reached.

The enigmatic text line then probably says something like
After 4 quarter-turns, the spiral is complete.

Indeed, after the fourth quarter-turn, the spiral begins to overlap itself. See
the upper diagram in Fig. 15.2.2.

The second part of the table text is a kindnokrse of the first payt
apparently saying that

The square side 2 is reached after 1 quarter-turn,

the square side 4 is reached after 2 quarter-turns,

the square side 8 is reached after 3 quarter-turns,

the square side 16 is reached after 4 quarter-turns,

the square side 32 is reached after 5 quarter-turns,

the square side 1 04 (= 64) is reached after 6 quarter-turns.
Thus, in this second part of the table the spiral continues, overlapping it-
self, as in the lower diagram in Fig. 15.2.2.

Finally, for the sake of symmetry, the first part of the table is continued
on the edge of the clay tablet, with two additional lines saying that

After 1;15 = 1 1/4 turns of the spiral, the square side 32 is reached,
after 1,30 = 1 1/2 turns of the spiral, the square side 1 04 (= 64) is reached,

15.3. Side and Diagonal Numbers When Sq.= Sq.q-D -1

The proposed interpretation of the Greek side and diagonal numbers
algorithm in terms of a chain of birectangles can easily be extended to the
case when the initial half-square with the sides, 1, where sqd = 2, is
replaced bya right trianglewith the sides - d, p, 1, where sqd =D and
sq.p=sq.q D — 1 Examples of such triangles are

d, 2,1 with D=sq.d=5, and %, 18, 1 with D =sqg.d= 13.

Application of the algorithm in the mentioned cases will yield rational
approximations to the square sides of 5 and 13, in the same way as Theon’s
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algorithm yields approximations to the square side of 2.

The general step in the side and diagonal numbers algorithm in the case
when sqp =sqg.q-D —1is shown in Fig. 15.3.1 below. Note that the algo-
rithm can be run through backwardsd}f,, ands, +; are known, theud,
ands, can be obtained algebraically as the solutions to a system of linear
equations, or geometrically through inspection of the diagram.

1
o \.b sg.p=sqg.q-D-1
o > D =sqd
o .
by /
_DC
y dyy1=pP-d+q-§,-D d,=0-81°D-P -Gy

S = P § $1=0 Ghup =P " $u1

<

$q.d,,1—S0.8,41 D = sq.s, -D —sq.d,

Fig. 15.3.1. The general step in the case whemp sg.q - D— 1.

In the case wheB = 13, for instance,

d;=p=18, s;=9q=5, sq.5;-D-sq.d;=s9.5-13-59.8=325-324=1,
d,=18-18+5-5-13=sq. 18 +sq. 5 - 13 =324 + 325 = 649,
s,=5-18+18-5=90 + 90 = 180,

sg.d, — sqs, - D = sq. 649 — sg. 180 - 13 = 421201 — 421200etcl,

15.4. Side and Diagonal Numbers When Sg.=Sq.q-D +1

With the necessary modifications, the side and diagonal numbers algo-
rithm can be made to work also in the case when the initial right triangle
has the sideg, p - d, 1, where sqd =D and sqp=sq.q -D + 1. Examples
of such triangles are

2,d, 1 with sqd=3, and 5, 2,1 with sqd=6.

The diagram in Fig. 15.4.1 for the case whendsg.3 starts with an
initial right triangle with the sides 8, 1. Hered is theinexpressiblend 2
anexpressiblaliagonal of 1, and

sq.2-sqg.1-3=1.
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To the initial right triangle is joined the first birectangle, with the given
sides 2 and. The second pair of sides in the birectangle can then be shown
to be 7 and 4. Here 4d is theinexpressible diagonalorresponding to the
side 4, while 7 is thexpressible diagonaNote that 7 and d, the two long
sides of the birectangle are nearly equal. Indeed,

SqQ.7—-s9.4-3=49-16-3=1.

In the second birectangle, d&nd 26 are the inexpressible and expressible
diagonals of 15, and

Sq.26-sq9.15-3=676-225-3=1.

And so on.
7
7 4 3 1 1
© D=sqd=3
SEVS
/V/
- d;, =21
@ dy5,=2:2+1-1-3,1-2+2 - T4
© dy,8,=2-7+1-4-3,1-7+2-2615
n
‘_' etc.

Fig. 15.4.1. The first few steps of the algorithm wHer sq.d = 3.

The general step of the side and diagonal numbers algorithm in the case
when sqp=sqg.q- D + 1 is shown in Fig. 15.4.2 below:

d, 1
>S. ° sq.p=sq.q-D+1
© i 7 =R D =sq.d
uF 1
o |
£ b \*J o/ G =P-4+0a-5 D d;=p-¢.,;-9-8,D
©
- b“x'\/ Sh41=0-dhtP - $i=P - §4170 0y
SN
o .
] sq.d,,,—S0.8,41 - D= sq.d,—sqgs,- D

Fig. 15.4.2. The general step in the case whemp s&q.q - D+ 1.
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Chapter 16

Greek and Babylonian
Square Side Approximations

16.1.Metr icd.8 b. Heron’s Square Side Rule

An explicit rule for the approximation of square sides (square roots) is
given in Heron of Alexandria'®letrical.8 (in connection with an example
of the application of Heron’s triangle area rule):

Metr ica.8 b (Bruins, CCPV 3(1964), 189; SchonéJAVD (1903), 19)

“But as 720 does not have a rational side, we shall with the smallest difference take

the side like this:

Since the closest square to 720 is 729 and it has the side 27, divide 720 by 27, it

becomes 26 and two thirds.

Add 27, it becomes 53 and two thirds. Of this the half, it becomes 26 1/2 1/3.

Thus, the side of 720 is very close to 26 1/2 1/3.

For 26 1/2 1/3 on itself becomes 720 1/36.

Thus, the difference is the 36th part of the unit.

However, if we want the difference to be smaller than the 36th part, we shall re-

place 729 by 720 1/36 that we now have found, and when we do the same again,

we shall find that the difference becomes much smaller than1/36,”

This is an explicit example of “Heron’s square side rule”, a general rule
for the computation of an approximate square side to a given area number.
The rule can be formulated as follows:

Let D be a given area number andddie a known approximation to sd.

Setr = (a + D/a)/2. Thenr is animprovedapproximation to sg®.

To get an even more accurate approximation, repeat the process.

385
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An alternative, more precise, formulation of the rule is as follows:
LetD be a given area number anddéte an approximatiofifom aboveo sgsD.
Setr = (u + D/u)/2. Thenr is animprovedapproximatiorfrom aboveo sqsD.
If, instead sis an approximatiofrom belowto sgqsD, set r = (s+ D/s)/2. Therr is an
improvedapproximation to sq®, butfrom above

In Heron's example iMetrica .8,
D =720, u=27, D/u=720/27 = 26 18/27 = 26 2/3,
r=(27 + 26 2/3)/2 = 26 1/2 1/3,
sq.u—-D=729-720=9, sq-D =720 1/36 — 720 = 1/36.

A simple geometric proof of Heron’s area rule is given in Fig. 16.1.1
below. Cf. El.1l.14, Figs. 1.7.1-2.)

e RN u-s=sqd=D, u>s
/ . s=Dlu<d<u or u=D/s>d>s
/ \\ r=(u+D/u)/2>d or r=(s+Dls)/2>d
! i sq.r =D =sq. | —D/u)/2 = sq. DIs—9)/2
s

Fig. 16.1.1. Geometric explanation of Heron'’s square side ridieirica l.8.

16.2. Heronic Square Side Approximations

A complete and detailed survey of all examples of square side approx-
imations in Heron’s collected works is presented in Hofmdabmlv 43
(1934). In the first 3 examples, the first approximatioinas above
1 D=720 u=27 s=262/3 r=u+9/2=261/21/3
2 D=63 u=8 s=8-18 r=(U+9/2=71/21/41/81/16
3 D=250 u=16 s=155/8 r=(u+9)/2=1513/16

In the next 12 examples, the first approximatiofiasn below

4 D=72 u=8 s=9 r=u+s)/2=81/2

5 D=96 u=9 s=101/3 r=@U+9/2=91/21/3
6 D=150 u=12 s=121/2 r=@Uu+9/2=121/4
etc

In all but 2 of these examples, the first approximation is an integer.

In 7 further examples, an integegiving a good approximation to the
square side is found directly:

18 D=288 =sgq.12-2= sqg.17-1 p=17 (sgs. 34 = appr. 35/6)
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(p is here the approximate diagonal of a square with the side 12)

19 D=675 =s¢q.15-3= sg.26-1 p=26 (sgs. 3 = appr. 26/15)
(p is here the approximate height of an equilateral triangle with the side 30)

20 D=1224=s9.6-34= sq.35-1 p=35

21 D=1441/2=sq9.12+1/2 p=12

22 D=1951/21/41/81/16 =sq. 14 — 1/16 p=14
23 D=75600=sq.60-21=25-(sq.55—-1) p=275 (sgs. 21 =appr. 55/12)
24 D =67500=sq.150 -3 =sq.10-(sq. 26 —1p =259 (sgs. 3 = appr. 26/5)

Sixteen further examples are of the same types as the ones already men-
tioned, but with various round-offs.

The five remaining examples in Hofmann'’s survey are especially inter-
esting. According to Hofmann’s interpretation, they are all examples of
applications of second, more accurate square side rabmely

P (x2 —1)=apprx—1/2x—1) + 1 [{(2x— 1) (2x + 1)} =x— 1{2x — 1/(2x)}.

The five special examples are:
41 D=3 =sq.2-1
42 D=135 =9-(sq.4-1)

p=2-1/3+1/15
p
43 D=216 =9-(sq.5-1) p
p
p

2

=3.(4-17+1/68=111/2 1/14 1/21
3.6—1/9+1/99= 14 2/3 1/33
5. @ —1/15 + 1/25p= 39 2/3 1/51

-8 — 1/15 + 1/25p= 79 1/3 1/34 1/102

44 D=1575 =25-(sq.8—1) :

45 D=6300 =100-(sq.8-1) 10

16.3. A New Explanation of Heron’s Accurate Square Side Rule

The side and diagonal numbers algorithm in the case when
sg.a=sq.c-D-1, D=sq.d
(see Fig. 15.3.1 above) is governed byrdwmirsive equations
d,s;=ac dyiyp S+1=ad,+tcg-Dcecdy+as for n=1,2,3,...
It is, in certain situations, convenient to express these equations more
concisely in terms of formal multiplicationof pairs of number&?
(dps)=@0), @+ SH+)=@C) @ns) for n=1,2,3,...
The result of iterated birectangular compositions of the initial pair)(
with the factor 4, ¢) can then be interpreted fismal powerf (a, c):

42. The oldest documented use of this kind of formal multiplication can be found in
BrahmaguptaB ss XVI111.65-66 (Colebrooke AAMS(1973), 363). See also, for instance,
Weil, NTATH(1984), § IX.)
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dps)y=@0o", n=1,2, .
Take, for instance, the case whH2r 2. Then
do=11), 1,HB=1C1 -01=32, @AF@ 1) 3 2=(7 5)etc
In this case, it follows from the equation
SQ.0h+1—S0.Sh+1° 2 =50s,* 2—-sqd, foralln
that (in a deliberately anachronistic notation)
sg.d,—s0.s,- 2 =r, where r,=—1whemis odd, but, = +1 whem is even.
The result can be expressed in a concise way by expanding the number
pairs @, S,) to number triplesd, s,; rn). Thus, wherb = 2
(ds;r)=(1,1,-1), (1, 1,-1=3,2,1), 1,1;,-=(7.5,-1), etc
The situation in the case when, as in Fig. 15.4.2 above,
sg.c=sg.a-D+1, D=sq.d
is perfectly parallel, except thaanda change place, and
SQ.0h +1—S0.Sy+1* D =s0.d,—sq.s,-D sothat r,=1 for alln.
Therefore, in this case,
(dysyr) =€ a1), OGhiv S+ =6€a1) @, syl foralln,
and consequently
dpsyD=Cal)", n=1,2,---.
WhenD = 3, for instance, (Fig. 15.4.1 above):
(d, s 1) =(2,1;1), (2,1;,D=(7,4,1), (2,1;1F = (26, 15; 1) etc
Therefore, the “first”, “second”, and “third” approximationssigs. 3are
2/1=2, 7/4=11/21/4, and 26/152/3 1/15
The corresponding errors are
sq.2-3=1, sq.7/4-3=sq.1/4, sq.26/15-3 =sq. 1/15.
The case wheb = 6is only slightly more complicated:
(dy, s r) =(5,2;1), (5,2 H=(49, 20; 1), (5, 2; 1) = (485, 198; 1) etc
Thus, the first, second, and third approximationso®. 6are
5/2=21/2, 49/20=21/31/101/60, and 485/198.#3 1/9 1/198
The corresponding errors are
sq.5/2 -6 =sq. 1/2, sq.49/20 -6 =sq. 1/20, sq.485/198 — 6 =sq. 1/198.
Similarly in the case whel = 7:



16.3. A New Explanation of Heron’s Accurate Square Side Rule 389

(dy, ;1) = (8,3; 1), (8,3; D=(127, 48; 1), (8, 3; 1) = (2024, 765; 1) etc
Therefore, the first, second, and third approximatiorsgjgo 7are
8/3=22/3, 127/48=21/21/81/48, 2024/765H2 1/9 1/30 1/765

It should be obvious by now what the respective errors are in this case.

The case wheb = 15is just as simple as the case when 3:
(dy, s r) = (4,15 1), (4,1;,D=(31,8;1), (4, 1; 1P = (244, 63; 1) etc
Therefore, the first, second, and third approximatiorsgjso 15are
4/1=4, 31/8=31/21/41/8, an@44/63 =3 5/6 1/42 1/63

Note that all the mentioned approximations to sgs. 3, sgs. 6, sgs. 7, and
sgs. 15 arérom above

The special examples 41-45 of Heronic square side approximations
considered by Hofmanmp. cit), can now be explained as follows, all in
terms ofthird approximations
41 sgs. 3=  12/31/15 (= 26/15)

42 sgs. 135= 3sgs. 15=3 -3 5/6 1/42 1/6% 11 1/2 1/14 1/21 Geom 15.4

43 sgs. 216 = 6sqgs. 6= 6-21/31/9 1/198& 14 2/3 1/33 Geom 16.34
44 sqs. 1575 = 15sqs. 7= 15 -2 1/2 1/9 1/30 1/765 39 2/3 1/51 Geom 15.11
45 sgs. 6300 = 30sqgs. 7= 30 -2 1/2 1/9 1/30 1/765 79 1/3 1/34 1/102Geom 15.10

Note that in Heron’s work accurate expressions for sgs. 3 appear on
three occasions in connection wéhuilateral trianglesnamely

Aequil. rr.= 1/3 1/10- sqg:s (1/4 - sgs. 3 = 1/426/15= 13/30) Geom 10.1

hequil r=S—1/10 1/30's  (1/2 sgs. 3 = 1/226/15= 26/30) Geom 10.3

when s=30: hgqyil. 1= sgs. (900 — 900/4) = sgs. 675 =-B/15= 26 Geom 10.12

Hofmann’s explanation of the five special cases 41-45 is related in the
following way to the explanation above in termghufd approximations
D=sqc-1
C @usiry=@ 1),
O 5510 =(c, 1; 1)2 =(sq.c+D, 2c;1)=(2sqc-1, 2¢; 1)
s, s3;r3) = (C, 1; 1)3: (c-(2sgc—-1)+2c-D 1 -(2sqc—-1)+c- 2c; 1)
=(4cwc—-3c,4sqc—-1; 1).
Consequently, iD = sq.c — 1, the first, second and third approximations
to sgsD are, in agreement with Hofmann’s explanation,

dy/ g=c,
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dof $= (2 sqc—1)/(2c) =c— 1/(2c),
da/ $= (4 cu.c—3c)/(4sq.c—1)=c—1/{2c- 1/(2c)}.

Note, however, that in order to be able to make use of his explanation, Hof-
mann did not consider the simple caBes 6 andD = 7 in his special ex-
amples 43-45, but instedl=4 - 6 =24 an® =9 - 7 = 63.

16.4. Third Approximations in Ptolemy’s Syntaxis .10

The preliminaries to the Table of ChordsBiook 1.10 of Ptolemy’s
Syntaxis or the Almages{(150) include the computation of the side of a
regular polygon inscribed in a circle, expressed as a multiple of the 120th
part of the diameter of the circle, when the regular polygon in question has
10, 5, 6, 4, or 3 sides. (This is equivalent to computing the chords of 36°,
72°,60°, 90°, and 120°. See HeddGM 2(1921), 276-278.)

In all these cases, except the case of the hexagon, a crucial step in the
procedure is to find very accurate approximatidn the square side of a
small integer, namely 5 in the case of the decagon and the pentagon, 2 in
the case of the square, and 3 in the case of the equilateral triangle. A close
look at the approximations to these square sides actually appearing in
Syntaxid:10 reveals that they were probably computed, just like Heron’s
accurate square side approximationsthasl approximationshowever
with departure from good first approximatiorishe approximations men-
tioned by Ptolemy are:

1 sgs. 7200 860 sgs. 2 = 84,51 10

2 sgs. 10800 60 sgs. 3 = 103;55 23

3 sqgs. 4500 30 sgs. 5 =67,04 55

These approximations can be explained as follows:

sgs. 2: (17, 12; 13 =(sq.17+sq.12-2,2-17-12;1-1)=(577, 408; 1),
(17,12; 1F= (577 - 17 + 408 - 12 - 2,577 - 12 + 408 - 17; £ (19601, 13860; 1)
60 - sgs. 2= 19601/231 = 84 197/231 = 84 51/60 13/4620 = &ppb61 10

sgs. 3: (7, 4; 1f:(sq.7+sq.4-3,2-7-4; 1-1)=(97,56;1)
(7,4;1$=(97 - 7+56 - 4-3,97 - 4+ 56 - 7; 1= (3351, 780; 1)

60 - sgs. 3= 1351/13 = 103 12/13 = 103 55/60 1/156 = apPB;55 23

sgs. 5: (9, 4; 1f:(sq. 9+s9.4:-5,2-9-4;1-1)=(161,72;1)
(9,4;1P=(161-9+72-4-5,161 -4+ 72 - 9; 1= (2889, 1292; 1)
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60 - sgs. 5 67 53/646 = 67 4/60 149/9690 = appr;04 55

Remark. Ptolemy’s computation of sgs. 4500 is explained in the
commentary to thé\imagestoy Theon of Alexandria (380) by use of a
geometric diagram (see HealhGM 2, 60-63). Theon’s method is based

on sexagesimal place value notation and iteration. It is interesting that a
close parallel to this method may have been used in scribe schools in Me-
sopotamia in th®Id Akkadiarperiod, 500 yeatseforethe time of the OB
mathematical cuneiform texts. See Fribe&2§LJ (2005/2), Fig. 14.

16.5. The General Case of Formal Multiplications

In the preceding section, formal multiplications were considered with
factors of the formd, g; — 1) or 6, g; 1). It was shown that these two kinds
of formal multiplications can be used to construct sequences of increasing-
ly accurate approximations to the square sid®,ofvhen either sgp =
sq.q-D -1 (Fig. 15.3.1) or sgqp=sq.q - D + 1 (Fig. 15.4.2).

It is possible to modify the diagrams in Figs. 15.3.1 and 15.3.2 so that
they cover also the more general cases of formal multiplications with fac-
tors of the formig, g; - r) or (o, g; +r). This is done, in the first of the two

cases, in Fig. 16.5.1 below.
b
sq.p=sg.g-D-sq. b
= ;o;b D=sqd

m=p- mtq-n-D

nN=q-mtp-n

sq.m —sqg.n'-D=sqg.b- (sq.n-D-sg.m)
=(sq.q - D-sq.p) - (sq.n-D —sq.m)

Fig. 16.5.1. Formal multiplication in a more general case.

The result can be formulated as the Hitbat
(P, g-1N-Mmns)=@Em+gqn-Dgm+pn—rs9.

43. ActuallyBrahmagupta'’s ruléB ssXVII1.65-66 (ColebrookeAAMS(1973), 363)).



392 Amazing Traces of a Babylonian Origin in Greek Mathematics

In the second case, the following rule can be verified in a similar way:
(P.gr)-Mmnsy=Pm+gn-Dgm+pnrs).
It follows from this second rule that, in particular,
(Mmn;9?=(sgm+sqn-D2mnsqs).
Thereforethere is a simple connection between Heron’s square side rule
in Metrica I. 8 and formal multiplication with regard to Ihdeed,
(mn+D -n/m)/2 =(sg m+sqn-D/(2mn.
This means that, for any given initial approximatioim to sqsD the im-
proved approximation to sgb. given by Heron’s square side rule coin-
cides with the “second” approximation yielded by formal multiplication.
Note, by the way than an iterated application of Heron’s square side rule
yields not the “third” but the “fourth” approximation.
Note also that it is easy to see that
sg. (sgm+sgn-D-sq.(2nn -D =sq. (sqm-sqgn - D,
which is another way of proving th@t, n; s)>=(sq m+sqn-D2mnsg 9.

16.6. A New Explanation of the Archimedian Estimates for Sgs. 3

In the proof of Proposition 3 in ArchimedeMeasurement of the
Circle, the arguments are based on the followiregise lower and upper
bounds for sgs.,®r, more precisely, for the ratio of the diameter of a circle
to the side of a circumscribed hexagon:

265/153 < sgs. 3 < 1351/780.

Archimedes says nothing about the origin of these very accurate estimates.
Many different explanations have been proposed by various authors in the
course of more than a century. The difficulty is to reach a consensus about
which of these explanations is the one that has the greatest chance of being
historically correct. IIHGM 2(1921), 51, Heath writes:
“How did Archimedes arrive at these particular approximations? No puzzle has
exercised more fascination upon writers interested in the history of mathematics.”
More than fifty years later the matter was still not settledAHES 15
(1975/76), Knorr writes:

“These values have stimulated a massive scholarly commentary.”

The answer to the question proposed below, a further development of the
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answer proposed by Knoriog. cit), has the advantage of linking
Archimedes’ estimates to Heron’s second square side rule, as well as to
Ptolemy’s accurate approximations to the square sides of 2, 3, and 5.
Knorr begins his discussion of Archimedes’ estimates with the obser-
vation that a side and diagonal numbers sequence for the square side of 3
is generated by the formula
Oh+1=0dn+38, $H41=0h+s, =2, 5=1
From the terms of this sequence can be obtained the approximations
sgs. 3=2/1,5/3, 14/8 = 7/4,19/11, 52/30 = 26/15, 71/41, 194/112 = 98BE53etc
The eighthterm of the sequence is Archimedes’ lower estimate, and the
eleventhterm is his upper estimate. This does not sound right, so Knorr
proposes a revised sequence with fewer terms. His point of departure is
that 5/3 is dower estimatdor sgs. 3 and that 3/(5/3) = 9/5 is a correspond-
ing upper estimateTherefore, he introduces the following modified side
and diagonal numbers sequence, making useveighted average
Oh+1= 98+ 50y, $41=58,+3dy, ¢4 =5, 5=3.
The resulting sequence of lower and upper estimates is
5/3, 52/30 = 26/15265/153 2702/1560 4351/780
Thus, in this revised sequence, thied andfourth terms coincide with
Archimedes’ estimates, which sounds convincing.
In terms of formal multiplications with regard Bo= 3, Knorr’s analy-
sis can be explained as follows: Knorr’s first sequence actually starts with
the lower estimate 1/1, so that, more correctly, Archimedes’ estimates are
theninth andtwelfthterms of the sequence, namely
(1,1;-2Y and (1,1;- 3%
The terms of Knorr's modified side and diagonal numbers sequence are
(1,1;,-2¥"=(5,3;-2%, n=1,2,---.
Note that here, for instance,
(5,3, -2¥=(5-5+3-3-3,2-5-3;4)=(52, 30; 4) = (26, 15; 1).
The transformation of (52, 30; 4) into (26, 15; 1) is a way of exploiting the
circumstance that, through elimination of the square factor 4,
SQ.52-s9.30-3=4_ sq.26-sqg.15-3=1.
A similar transformation is needed for every second term of the sequence.
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Knorr's explanation can be refined in the following way (Frib&aj\
28 (1997), Sec. 9 d): Assume that Archimedes startedthetlOB stan-
dard approximation to the square side ofwdich was 7/4= 1;45). He
could then easily obtain the following improved estimates:
(7,4,1f=(7-7+4-4-4,2-7-4,1)=(97,56;1), and
(7,4,1P=(97 - 7+56 - 4 - 3,97 - 4+ 56 - 7; {1351, 780; 1)
Therefore, Archimedes can have been obtainegidmsr estimatef sgs. 3
as thethird approximatiorwhen starting with thapper estimate 7/4
To get an accurate lower estimate, Archimedes would have to start with
a relatively accurat®wer estimate. As such he could choose 5/3, from
which he could derive the following improved estimates:
(5,3, -2§=(5-5+3-3-3,2-5-3;4)=(52, 30; 4) = (26, 15; 1), and
(5,3, -2f=(26-5+15-3-3,26-3+15-5;1 - - @65, 153; — 2)
Therefore, Archimedes can have been obtaineldWisr estimat®f sgs. 3
as thethird approximationwhen starting with theawer estimate/3.
Remember, by the way, that one or several applications of Heron's
(first) square side rule will only lead tpperestimates of the square side.
Note also that Archimedes’ upper estimate coincides with the accurate
approximation to sgs. 3 used in Ptolenfyigitaxid.10! (Sec. 16.4 above.)

16.7. Examples of Babylonian Square Side Approximations

The additive and subtractive square side rules

The Demotic mathematical papym@8M 1 0 5 ZBarly Roman?) con-
tains a couple of exercises with explicit examples of the application of a
method for the approximate computation of square si@és-(iberg,UL
(2005), Sec. 3.3 f.) One of them is reproduced below.

P.BM 105 Z06 a(ParkerDMP (1972)# 62).

Let 10 be reduced to its square side.

You shall count 3 3 times, result 9, remainder 1. (Its) 2', result 2'.
You let 2' make part of 3, result 6'.

You add 6'to 3, result 3 6'. It is the square side.

Let it be known, namely:

You shall count 3 6', 3 6' times, result 10 36

Its difference of square side .36
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The computations in this exercise can be explained as follows:

1) sgs. 10 = s@s. (sq. 3+ 1) = appr. 3 + (1/2)/3 =3 1/6.
2) Check: sqg. 3 1/6 = 10 1/36. Error: 1/36.

Apparently, the rule in its general form was
sgs. (sgs+R) = appr.s+R/(259).
This is Heron’s square side rule (Sec. 16.1) in another form. Indeed,
sqs.D =appr.s, D=sq.s+R (R>0)
C (s+D/9g)/l2=(sqs+D)/(25) =(2sqs+R)/(2s) =s+R/(259).
The rule in this form presumes that the given approximatisralower
estimate for sqP. It may be called the “additive square side rule”. An in-
dependent, metric algebra derivation of this rule is shown in Fig. 16.7.1:

S R/s S P
i D=sq.(s+p-sap
sq.s R |s sa.s | i p=RI(29
i c
_‘: sgs.D = appr. sR/(29)
R/2 O
D=sg.s+R

Fig. 16.7.1. A metric algebra proof of the additive square side rule.

The diagram shows that the improved approximation igo@erestimate
for the square side.

There is also a corresponding “subtractive square side rule” with a sim-
ilar metric algebra proof. This rule, another reformulation of Heron’
square side rule, presumes that the given approximai®anupperes-
timate for sqsD. Note that

sgs.D = appr.u, D=squ-R (R>0)

C (U+D/u)/2=(squ+D)/(2u)=(2squ—-R)/(2u) =u—-R/(2u).

There is no known Babylonian mathematical text with an explicit for-
mulation of a square side rule. However, since computations with squares
and rectangles are much more common in Babylonian mathematics than
computations with circles, it is likely that the square side rule used in
Babylonian mathematics was the additive/subtractive square side rule
(Fig. 16.7.1) rather than Heron’s square side rule (Fig. 16.1.1).
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Late and Old Babylonian approximations to sgs. 2

A moderately good approximation to sgs. 2 appears in the following
isolated exercise in theate Babylonianmixed problem text AO 6484
(NeugebauemtKT 1 (1935), 98; Thureau-DangifiMB (1938) 158):

AO 6484 § g literal translation explanation

The great divider of an equalside,10 cubits. The diagboéh square is 10 c.
The length of the equalside is what? The side?

10 - 42 3@o, it is7 05, the length. d-;4230=s

705 - 125g9o,itis 10 25, the great divider. s- 1;25 =d

In this exercise, the length of the diagonal of a square is giveri0
cubits. The side of the square is computed as ‘42 30’ times the diagonal.
The constant has to be interpreted as

1/(sgs. 2) = 1/2 - sgs. 2 = appr. ;42.30
The obtained result is that the side is 7;05 cubits. This value, in its turn, is
multiplied by the constant ‘1 25’ in order to retrieve the length of the diag-
onal. The constant ‘1 25" must therefore be interpreted as

sgs. 2 = appr. 1;25 with sq. 1;25 = 2;00 2%= 2 1/144).
An approximation like this may, of course, have been obtained by trial and
error, but it is also possible that it was obtained through a combined appli-
cation of the additive and subtractive square side rules. Indeed,

1) sgs.2=sqgss(.1 +1)=appr. 1+ 1/2=1;30(=3/2), witlsq.1;30=2;15

2) sqgs. 2 =s0ss(.130 —;15) = appr. 1;30 — ;15/3 = 1;30 — ;05 = 1;25 (= 17/12)

A famous example of a@ld Babyloniantext with an accurate square
side approximation i¥BC 7289 (Neugebauer and SachdCT (1945),
42), a round hand tablet showing a square with the side 30. Along the di-
agonal of the square are inscribed the numbers ‘1 24 51 10’ and ‘42 25 35'.
These numbers can be interpreted as

sgs. 2 = 1,24 51 10with sq. 1;24 51 10 = 1,59 59 59 38 01 40
and

1/(sgs. 2) = 1/2 - sqgs. 2 = appr. 1;24 51 10/2 = ;42 25 35.

The two approximations 1;25 and 1;24 51 10 to sgs. 2 are mentioned in

two OB tables of constantBR = TMS 3, NSe = YBC 7248 in the fol-
lowing way:
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125 constant of the diagonal of a square BR 31
1245110 the diagonal of an equalside NSe 10

Itis interesting that 1;24 51 10 is the same accurate approximation to sgs. 2
as the one used in PtolemyByntaxisl.10! Indeed, it was shown in Sec.
16. 4 above that Ptolemy’s approximation can be obtained as follows:

(17, 12;15s = (19601, 13860; 1) which gives the third approximation
60 - sgs, 2 = 60 - 19601/13860 = 19601/231 = appr. 84;51 10.

The corresponding accurate approximation to sgs. 2 is
sgs. 2 = 84;51 10/ 60 = 1;24 51 10.

Fig. 16.7.2. YBC 7289. An OB hand tablet with an accurate approximation to sgs. 2.

Late and Old Babylonian approximations to sgs. 3

In theLate Babyloniarmathematical textV 23291 § 4 h(see Sec. 7.7
above), a computation rule for equilateral triangles is stated as follows:

1 peg-head-field, equilateral, the one with the 8th torn out.
Stroke steps of ditto, and steps 6f15 go.

This abstract rule is accompanied by a numerical example and a diagram
showing a triangle with the sides given as ‘1’ and the height as ‘52 30'.
What the rule means is that in an equilateral triangle with thes dide

heighth and the are& can be computed as follows:
h=s-1/8 s=(1-1/8) s=;5230 s and
A=h-92=;2615 " scp.
Evidently, this rule is based on the following series of approximations:
sqs. 3=1;45(=7/4) 1/2 - sqs. 3=;52 30 (=7/8), 1/4 - sgs. 3 =;26 15 (= 7/16).
In the next exercis&y 23291 § 4 camore accurateomputation rule
for equilateral triangles is stated in the following form:
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1 peg-head-field, equilateral, that with a 10th and a 30th torn off.
Stroke steps of ditto, and steps 6fgd.
Here, obviously,
h=s-1/101/30s=(1-1/10 1/30)s= (1 —;08) s=;52-s and
A=h.g2=;26 - sgs.
The rule is based on the following seriegoturate approximations
sgs. 3 =1;45 (= 26/15) 1/2 - sgs. 3 = ;52 (= 26/30), 1/4 - sgs. 3 =;26 (= 26/60).

These are the same accurate approximations as the ones used in the
pseudo-HeroniGeometricawhich can be obtained #sird approxima-

tions, starting with 2/1! What is particularly surprising is that this is the
only known example of the use in a Babylonian tex sfim of partsuch

as 1/10 1/30. What is even more surprising is that precisely the same rather
weird expression for the height,= s — 1/10 1/30 s, reappears in the
pseudo-HeroniGeometrical0:3! (See the end of Sec. 16.3 above.)

The continuity of the Babylonian mathematical tradition is demonstrat-
ed by the fact that the following constants for an equilateral triangle appear
in anOB table of constantsy = IM 52916, RobsonMMTC (1999), 40):

A peg-head, the one with the eighth torn out, 26 15 its constant Grev.7
The transversal of the triangle, 52 30 its constant Grev. 8
Thus here, just as in W 23291 § 4 b, the height of an equilateral triangle is

given ash = (1 — 1/8) s, expressed with an almost identical phrase!

The same rule for the computation of the height of an equilateral trian-
gle appears also in théassite(post-OB) mathematical text MS 3876, in
which the weight is computed of an icosahedron built of 20 equilateral tri-
angles (called ‘gaming-pieces’) made of 1 finger thick copper sheets. In
that text, the area of each one of the 20 equilateral triangles is computed as
follows, in preparation for the computation of its volume:

MS 3876 # JFriberg,RC (2007), Sec. 11.3)

If 3 cubits each a gaming-piece is equalsided, the volume (is) what?

Half (of) 15, the front, break, then 7 30.

7 30 steps of 15, the second front, 1 52 30, halved. 14 03 45, its eighth tear off, then
1 38 26 15 (is) the ground (of) one gaming-piece-field that you see.

Here, the area of an equilateral triangle with the side 3 cubitsmndia
is computed in the following steps:
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1 ¢2-s=;0730n.-;15n.=;0152 30 sq. n.
2 1/8§2-5s=1/8-;015230=;00140345sq.n
3 §2-.5s-1/8 92 -5=;015230sq.n—;00 14 03 45 sqg. n. =;01 38 26 15 sq. n.

A Late Babylonian approximation to sgs. 5

W 232918 4 dan the same Late Babylonian text where 88 4 b and 4 c
are based on two different approximations to sgs. 3, is devoted to the com-
putation of the area of a symmetric triangle with the base and the height
both equal to ‘1’ (actually 1 Ofinda). The exercise is illustrated by a
diagram showing a symmetric triangle, with the length of each sloping side
given as 1 Orinda 2', thatis as 1 07;3finda.This length can have been
computed in the following way:

sgs. (sg. 1 00 + sg. 30) =30 - sgs. (sq. 2 +sg. 1) =30 - sgs. 5=30 - 2;15 =1 07;30.
The approximation to sgs. 5 apparently used in this computation is

sgs. 5 =2;15 (= 9/4),

a value resulting from an application of the additive square side rule.

Note that the Babylonian approximations to the square sides of 2, 3, and
5, namely 1;25 = 12/17, 1;45 = 7/4, and 2;15 = 9/4 were the points of
departure for Ptolemy’s accurate approximations (17, £2y(7) 4; 1¥,
and (9, 4, 1‘“), while the OB accurate approximation to sgs. 2 was the same
as Ptolemy’s accurate approximation. (See Sec. 16.4 above.)

Late and Old Babylonian exact computations of square sides

In the Seleucid (late Late Babylonian) series of igi-igi.bi problams
6484 § 7 a-dsee Sec. 1.13 above), the following square sides of many-
place sexagesimal numbers are mentioned:

S0s. 332004374640 =444320 §7a
sgs. 302 15 =1330 §7b

s0s. 53404374640 =181640 §7c
sgs. 15 00 56 15 =35230 §7d

These square sides can have been computed as shown below (in relative
values), by use of the OB additive/subtractive square side rule:

3320 =appr. 3345 =sq. 45, 3320=sqg.45-25 §7a

sqs. 33 20 = appr. 45 - 25/(2 - 45) =45 -5/18 =45 — 16 40 = 44 43 20

sq. 44 43 20 =33 20 04 37 46 40 (the exact answer)
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534 =appr.sqg.18=524, 534=sq.18 +10 §7c

sqs. 534 = appr. 18 + 10/(2 - 18) =18 + 5/18 =18 + 16 40 = 18 16 40

sq. 18 16 40 =5 34 04 37 46 40 (the exact answer)
The two examples show how seemingly difficult computations of square
sides of given many-place sexagesimal numaersactually simpler than
expected when the given numbers are perfect squares

It is easy to find similar examples of computations of square sides of
many-place sexagesimal numbers that are actually perfect squ@Bs in
mathematical texts. One such example can be foudd/ig 20 (Bruins
and Rutten (1961)). INMS 20, a quadratic equation is set up for the area
A, the lengthe, and the divider (transversalpf a ‘lyre-window’ (cf. Fig.

6.2.6 above). The equation is

A+a+d=B=11640.

Inserting the constants for the lyre-window, as in Fig. 6.2.6, one gets:
CpSgat+ta+cy-a=2640-sga+(1+120)a=B=11640.

In the solution procedure for this quadratic equation, the need arises to find

the square side of

Ca - B+ sq. (1 cg)/2 = 1 55 44 26 40.

The indicated square side 1 23 20 of 1 55 44 26 40 can have been computed
in the following way, using sexagesimal relative place value notation:
15544 2640=20-20-17 2140, 172140=sgs.4 + 12140
sgs. 17 21 40 = appr. 4(00) + 1 21 40/8 (00) = appr. 4 10, sqg.4 10 =17 21 40
20-410=12320 (the exact answer).
The example shows how the computation of square sides of given many-
place sexagesimal humbessconsiderably simplified when it is possible
to find by inspection square factors of the given number
The idea of first eliminating any obvious square factors from a given
many-place sexagesimal number before attempting to find the square side
is demonstratedxplicitly by use of the example
sQgs. 26 00 15 =30 - sqs. 1 44 01 =30 - 1 19 = 39 30.
in the OB exerciséM 54472, See MuroiHSc9 (1999). The idea was ap-
parently routinely applied in OB mathematics. This is shown by 35 exam-
ples from 22 OB mathematical texts cited by Muogp.(cit).
The idea is demonstratedplicitly also by an example inscribed on the
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round hand tablet/ ET 6/ 222 from Ur (RobsonMMTC (1999), 252;
Friberg,RA 94 (2000), 108). The text on the revers&J&T 6/2222 is
organized as a table with seven rows and three columns:

10345
10345
15 107440345 16
15 18 03 45 16
17 449
345
10345

In the first three rows AJET 6/2222rev. are inscribed two copies of
the numben = 1 03 45, followed by their product, the square of 1 03 45:

sq. 1 03 45 =1 07 44 03 45.
In the next four lines of the table, the square side of 1 07 44 03 45 is com-

puted by use of a factorization algorithm based on the properties of sexag-
esimal numbers in Babylonian relative (floating) place value notation.

Mg W
romew

r
R

Fig. 16.7.3.UET 6/2222rev. A square side algorithm using elimination of square factors.

The first step of the algorithm exploits the fact that the “trailing part”
of the given number 1 07 44 03 45 is 3 45 = sq. 15, which is the reciprocal
of 16 =sq. 4, in the sense that 3 45 - 16 = 1 (times some power of 60). Now,
if a sexagesimal number ends with 03 45, the whole number contains 3 45
as a factor. In the present case, for instance,

107440345/345=(10744 0000+ 345)/345=10744-16+1

=18 0344 + 1 =18 03 45.

Therefore, the meaning of line 3 of the table is that if 1 07 44 03 45 is mul-
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tiplied by 16 (written to the right) then the factor 3 45 is eliminated, and
simultaneously the factor 15 (written to the left) is eliminated from the
square side of 1 07 44 03 45. The number 18 03 45 remaining after the
elimination of the factor 3 45 is written in the middle of line 4 of the table.
The process is repeated, and the result after the removal of another factor
3 45 is the number 4 49, which is written in the middle of line 5. Since the
square side of 4 49 is 17, the number 17 is written to the left in line 5.

Now, finally, sgs. 1 07 44 03 45 is computed in lines 5-6 as follows:

15-15=345, 345-17 =103 45.

A beautiful example of the probable application of a factorization
method of this kind is offered by the amazing OB problemT&&E 19b
(Hayrup,LWS(2002), 194), where the sidass and the diagonal of a
rectangle are required to satisfy the following system of equations:

u-s=A=20, squ-u-dB=14485320.

The solution procedure in the text for this highly unusual system of equa-
tions can be explained as follows:

sg.B=sq. (squ - u - §i=sq. squ - sq.u - sq.d

=sQ. sSqu - sq.u - (sg.u + sq.s) = sq. squ - (sg. squ + sq. ( - 9).
Therefore, the given system of equations can be reduced to the following
quadratic equation for a new unknoan

sq.a+sg.A-a=sq.B, a=sq.squ.
This quadratic equation is solved in the usual way, beginnind¥with

sq. @+ 1/2 - sqA) =sq.B +sq. (1/2 - sqd) =3 39 28 43 27 24 26 40 + 11 06 40

=350 35 23 27 24 26 40.

The square side of the 8-place sexagesimal number 3 50 35 23 27 24 46 40
is given in the text as 15 11 06 40, without any indication of how this result
was obtained. It is likely, however, that the square side was found without
trouble through an application of the same factorization technique as the
one inUET 6/2222. Indeed, 1511 06 40 =20 - 20 - 20 - 10 - 41, so that

35035232724 2640=sg.20-sq.20-sqg.20-sg.10 - sqg. 41.
Another beautiful example of the application of the same factorization

44. The reader can find a discussion of the many interesting copying or calculation errors
in this text in Hayrupdp. cit), footnotes 222-235. The errors are corrected here.
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technique is given by the round hand tabk#t Si. 428 from Sippar
(Friberg,RIA 7 (1990), Sec. 5.3 a). There the square side of 2 02 02 02 05
05 04 is computed by use of the factorization method, as follows:

Fig. 16.7.4. Ist. Si. 428. Computation of the square side of 2 02 02 02 05 05 04.

2020202050504 =4-3030303116 16
303030311616 =16-154242427 16
15424 242716=16-70901 314215
70901314215 =15 - 28 36 06 06 49
sgs. 28 36 06 = s@s. (sq. 5+336 06) =appr.5+21 =521
sgs. 28 36 06 06 49 = sgs. (sq. 521 -1155311) =appr. 521 -7 =520 53
sg. 520 53 =28 36 06 06 49 (exactly)
sgs. 20202 02050504=2-4-4-30-52053 =125 3408 (exactly)
Steps 5-6 are reconstructed here, since there is no explicit indication in
the text of how sgs. 28 36 06 06 49 was computed.

How did the author of this problem find out in the first place that the
funny number 2 02 02 02 05 05 04 is a square number? He probably started
with the even funnier 7-place sexagesimal number 2 02 02 02 02 02 02 and
found by computation, in some way, that its 4-place square side is

$(s.2020202020202=1253408 (approximately).
Therefore, the author of Ist.Si. 428 may have found 1 25 34 08 as an

accuratet-place approximatioto sgs. 2 02 02 02 02 02 02, and then used
this prior knowledge in order to construct for his students a surprisingly

©ONoGhAWDNRE
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elegant problem with a funny number andeaactanswer!

It is interesting to note that the construction of this exercise may have
been inspired by the observation that an accurate approximation to sgs. 2
is 12451 10, where sq. 1;24 51 10 = 1;59 59 59 38 01 40. Therefore,

sgs. 159595938 0140=1 2451 10.

Obviously, 2 02 02 02 05 05 04 and 1 59 59 59 38 10 40 are numbers of
the same kind. Both are 7-place sexagesimal numbers, both are exact
squares, and both are “funny numbers” in the sense that one of them con-
tains four sexagesimal places 02 in a row, while the other contains three
sexagesimal places 59 in a row.



Chapter 17

Theodorus of Cyrene’s Irrationality Proof and
Descending Infinite Chains of Birectangles

17.1.Theaetetus 147 C-D. Theodorus’ Metric Algebra Lesson

Below is reproduced a brief excerpt from Plato’s well known account
in the dialogueTheaetetuof a lesson given by Theodorus of Cyrene.
Cf. Knorr's translation irEEE (1975), 62, which is followed by a detailed
discussion of several difficult words in the text.

“Theaet. Theodorus drew something for us about powers,

about the one of three feet and the one of five feet,

demonstrating that these are not commensurable in length with the foot,

and selecting in this way each one separately up to the one of seventeen feet.

But in this, in some way, he ran into trouble.

Now, this is what occurred to us:

Since we recognized the powers to be unlimited in number,

we might try to collect them under a single name,

by which we would designate all these powers.”
Here ‘power’ is a term for (geometric) square, a power of 3, 5, or 17 feet
is a square with the area 3, 5, or 17 square feet, and the statement that
‘these (powers) are not commensurable in length with the foot’ means that
the sides of these squares are not commensurable with a length of 1 foot.

So, apparently, Theodorus gave a lesson in mathematics for Theaetetus
and his fellow students, demonstrating by use of diagrams that the sides of
squares with areas ranging from 3, and 5, all the way up to 17, square feet
(avoiding, of course, the trivial cases, 4, 9, and 16 square feet) are not com-
mensurable with the unit length of 1 foot. However, at 17 feet he could not
continue, for some unspecified reason.

405
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In the last part of the cited passage (and its continuation, which is omit-
ted here), Theaetetus seems to claim that he and some others managed to
do what Theodorus had been unable to do, namely to take care of the gen-
eral case of squaresNfsquare feet foall non-square positive intege¥s

All this is relatively easy to understand. There is only one obscure
point, although an extremely important one for any proposed interpretation
of the meaning of the whole passage. Did Theodorus have trouble with the
case of 17 square feet, or was he unable to corbeyendthis case?

17.2. A Number-Theoretical Explanation of Theodorus’ Method

Knorr (EEE (1975), Sec. 3.5) is definitely of the opinion that the text
says that Theodoresuld nothandle the case of 17 square feet, and he has
found a quite ingenious explanation of how Theodorus may have rea-
soned™ Knorr’s basic idea is to let the square siddldie represented by
the upright in a right triangle with the hypothenuSe+(1)/2 and the base
(N —1)/2, ifN is odd, and by half the upright in a right triangle with the
hypothenusé\ + 1 and the badd — 1, if N is even. Knorr also proves the
following crucial lemma of his own desigag. cit, 158):

If in a right triangle triple of integers the hypothenuse is even, then also the upright

and the base are even.

Four cases are considered by Knog, cit, Chapter 6. The first case is:

N=4n+ 3 Then N+ 1)/2=2n+ 2 and N — 1)/2 = 2n + 1. Assume thathe

square side dfl (square units) is commensurable with the unit, the rational ratio
between the two being, in its lowest terms,b. Thena s the upright of a right
triangle with the hypothenuse (2+ 2) -b and the base (@ + 1) - b. Here the
hypothenuse is even, so that also the upagind the base @+ 1) -bare even.

Hence botta andb are even, which is a contradiction, since the ratib is sup-

posed to be in its lowest terms. This means that the assumption was false, and
therefore the square sideis not commensurable with the unit.

The remaining three cases are:
N=8n+5 N=4n+2 and N=4n.

Also in these cases, the assumption that the square side and the unit length

45. InEEE, Chapter 4 Knorr has written a critical review of a series of earlier attempts to
explain Theodorus’ method. His conclusion is that they all fail to satisfy one or another of
several basic criteria he has set up for a successful explanation of the method.
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have a rational ratio leads to a contradiction.
In this way, it can be proved that the square side is irrational when

N=3,7 11,1519, - - - NE 4n+3)
N=5,13, 21, - - - N=8n+5)
N=6,10, 14, 18, - - - N(= 4n +2)
N=8, 12,20, - - - N(= 4n)

This takes care of all non-squdtestrictly between 2 and 17. Howevar,

the case N = 17, the method proposed by Knorr does not Wik result
seems to confirm Knorr’'s hypothesis that the method proposed by him is
also the method used by Theodorus and that Theodorus stofbedL#t
because he could not find a proof in that particular case.

17.3. An Anthyphairetic Explanation of Theodorus’ Method

Another way of explaining Theodorus’ method to prove the irrational-
ity of square sides is discussed by KnofEEE (1975), Sec. 4.3, following
in the steps of Zeuthe@KDVSF(1910), HeathHGM 1 (1981), 206-8,
and HellerCentauruss (1956). Here follows an account of Knorr’'s expla-
nation, somewhat simplified and improved.

n a da

5 sq.n+1=sqd=D

Y4 (for instanceD =2,n=10rD =5, n=2)
d=n+a, 1l=na+da

c c
S d-n-1=a, 1-n-a=da
S

c
lla=n+d, d=n+1/(n+d)
g -
d=1[n, 2n]

Fig. 17.3.1. An anthyphairesis proof of the irrationality of sgs.n(sql).

Consider first the case whdr= sgs. (sgn + 1) for a positive integer.
Draw a right triangle with the sidésn, 1, and divide the right triangle into
a symmetric birectanglevith the sides, n, n a, n aand a right triangle
with the sidesd, n, 1) -a, as in Fig. 17.3.1 above. Apply the Euclidean
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division algorithm &nthyphairesisto the paid, 1. As is evident from the
diagram in Fig. 17.3.1, the first couple of steps of the algorithm are
d-n-1=a, 1l-n-a=da
The next couple of steps are, similarly,
d-a-n-a=sqg.a n—n-sga=dsg.a
And so on, forever. Thereford,and 1 arencommensurabléEl. X.2).

The argument is, of course, closely connected to the expanglamof
acontinued fractionThis can be shown as follows:

d=n-1+a, 1l=n-a+da G d=n+a lhA=n+d C d=n+1/n+d).
(The last equation above can also be proved algebraically, since it is a con-
sequence of an application of the conjugate rule to the left hand side of the
equation sqd — sg.n = 1.) Now by substitution of the expressiondanto
the expression itself it follows that

d=n+1/(n+d)=n+1/2n+1/n+d)="-"-.
The substitution can be repeated any number of times. Therefore,

d=n+1/2n+ 1/2n+ 1/2n+ - - )=, 2n].

The case when = sgs. (sqn — 1) for a positive integem can be
explained similarly, although it is somewhat more complicated:

1

sq.n—-1=sqd=D
(for instanceD =3 andn = 2)

da na

n=d+a 1=na+da C
d=(n-1)-1+(1-g, 1=1-(1-9 +4,
l-ad=n-1)-a+da C
l/(1-9=1+a/(1-a, (1-a/a=(n-1)+d,
d=(n-1)+1/(1 +a/(1 - q)
=(n-1)+1/(1+1/(6-1)+d))

C d=[(n-1),1,20-1)]

Fig. 17.3.2. An anthyphairesis proof of the irrationality of sgs.n(sql).

Draw a right triangle with the sidesd, 1, and divide the right triangle
into asymmetric birectangleith the sidesl, d, d a d aand a right triangle
with the sidesn, d, 1) -a, as in Fig. 17.3.2 above. Apply the Euclidean
division algorithm énthyphairesisto the paid, 1. As is evident from the
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diagram in Fig. 17.3.2,

n=d+a and l1=a+da

Therefore, the first three steps of the algorithm are
d=(h-1)-1+(14), 1=1-1-a+a, (1-aa=(n-1)-a+da.
(The middle step is trivially true.) The next three steps are similar. And so
on, forever. Thereforel and 1 aregncommensurabléEl. X.2).
The argument is, in this case, t00, closely connected to the expansion
of d into acontinued fractionwhich can be shown as follows:
d=(h-1)-1+(14), 1=1.(1-a+a, (l-ag=(h—-1)-a+da
C d=n-1)+(1-a), /1-a)=1+a/(1-a), (L-a)/a=(Mn-1)+d
C d=(n-1)+ 1/ +a/(1-a) = (n—1) + 1/(1 + 1/ — 1) +d)).
Now by substitution of the expression fbiinto the expression itself it
follows that
d=(n-1)+1/(1 +1/(2{— 1) + /(2 + 1/(f — 1) +d)))).
The substitution can be repeated any number of times. Therefore,
d=(-1)+ 11+ 1/@2{-1) + /(1 + /(2= 1) +-))) = [(n— 1), T, 26— 1).
This anthyphairetic explanation of Theodorus’ method is completed as
follows (Knorr,op. cit, 124):
“For any non-square integhf, integerg andq are to be found such thaﬁM = q2 +1
(a relation frequently known as the Fermat-, or Pell-, equation). Having specaied
q for a givenM, the irrationality ofP g2 + 1 (whichever pertains) has been established

from the previous constructions. Henl?:ep2 M is irrational; as this equafsP M, the
irrationality of M follows.”

17.4. A Metric Algebra Explanation of Theodorus’ Method

Ingenious as it is, Knorr's number-theoretical/geometrical explanation
(Sec. 17.2 above) of the method used by Theodorus for his incommensu-
rability proof is not quite satisfactory, for the following reasons. First, a
method of this kind would ban isolated phenomendn the corpus of
Greek mathematics. There are no known parallel or related methods.
Secondly, the mention déetas units for area and length places Theo-
dorus’ method squarely in the same tradition as the pseudo-Heronic
Geometricams SV) andstereometricgsee Sec. 18.1 below). Since both
GeometricaeandStereometricahow clear signs of having been influenced
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by the Babylonian mathematical tradition, it is likely that also Theodorus’
irrationality proof was influenced by that tradition.

Indeed, Plato’s account irheaetetud 47 C-D may have been intended
to be a demonstration of how Greek-style mathematics, exemplified by
Theaetetus’ general proof of the irrationality of square sides (of non-
squares), was superior to Babylonian-style metric algebra, exemplified by
Theodorus’ attempted proof, which ran into difficulties.

It will be shown below how an alternative explanation of the method
used by Theodorus may be phrased in ternasdefscending infinite chains
of birectangleswhich means that Theodorus’ method of proof may have
been closely related to Theon of Smyrna’s side and diagonal numbers
algorithm, in the form in which it was explained in Seis3-4 above.

sq.p=s9.q-D-1, D=sqd

0hs1=08,"D=p -4,
S$1+41=0-d, =P - §

sq.s; -D-sq.d;=0
(&
sq.d,—-sq.s,-D=0 for n=1,2, -

Fig. 17.4.1. A metric algebra proof of the irrationality of €jswhen sqp=sq.q-D —1.

Consider the case when g0 sq.q - D — 1,D = sq.d, for some given
pair of positive integerp, g, andassume that the pair d, 1 is commensu-
rable. Then there exists another pair of integhrss; such that

dl =S d.

Now, construct a birectangle as in Fig. 15.3.1 above. Let the longer sides
of the birectangle bdy, s; - d, and let the sides ofdescendinghain of
birectangles be determined by the recursive equations

Oh+1=0-8%-D-p-d sH41=0-¢G-p-5 for n=1,2,....

See Fig. 17.4.1 above. Then

sg.d;—-sq.s,:D=0 € sqd;-sqs,:D=0C sq.d3—sqs:-D=0C - -
Consequently,

dy,=s,-d for n=1,2,---.
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This means that all the birectangles in the chairsanmemetric birectan-
gles similar to the first birectangle in the chain. Therefore, the chain goes
on forever, and the sides of the birectangles formn infinite strictly de-
creasing sequence of positive integ&isice this is impossible, the initial
assumption was incorrect. Therefohe pair d, 1 is not commensurable.

A similar argument holds also in the case wherpsgsqg.q - D + 1,
D = sq.d, for some given pair of positive integersa.

In the discussion below, it will be convenient to say that

p/g is an “optimal approximation” to sq®.when sqp=sq.q-D + 1.
The result obtained above can then be expressed in the following way:

sqs.D (D non-square) is irrational if there existsgatimalapproximatiorp/q to sqsD.
Since, for instance,

2=s0.1+1, 5=sg.2+1, 10=sq.3+1, 17=sg.4+1,
and

3=s0.2-1, 8=s9.3-1, 15=sqg.4-1,
it follows immediately that

the square sides of 2, 5, 10, 17 and 3, 8, 15 are irrational,
and that the corresponding optimal approximations are 1/1, 2/1, 3/1, 4/1

and 2/1, 3/1, 4/1, respectively.
It is also clear that

the square sides of 12 and 18 are irrational,
since sgs. 12 =2 - sqs 3 and sgs 18 = 3 - s(s. 2.
Another group of cases can be taken care of as follows: Take, for

instanceD = 6. It is clear that sq. 2 = sg. 1 - 6 — 2. Now, in view of the
discussion in Sec. 16.5 above,

(2,1, -2¥=(4+6,2-2;4)=(10, 4;4) = (5, 2; 1) whéh=6.
Hence, sq. 5=sq. 2 - 6 + 1, and 5/2 is an optimal approximation to sgs. 6.
Generally, when s@ = sq.q - D + 2, so that therefore spg+ sg.q -D
=2sq.g-D+2is even, asimilar argument shows that
(p.d; 2P =(sqp+sa.q-D,2p-q;4)=(sqq-D£1,p-q1).
For instance, since sq. 3 =sq. 1 - 7 + 2, it follows that
(3,1:2f=(9+7,2-3;4)=(16,6;4) = (8,3; 1) whén=7.
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Hence, sg. 8 =sq. 3 - 7 + 1 and 8/3 is an optimal approximation to sgs. 7.
Therefore, it is convenient to say that

p/g is a “pre-optimal approximation” to sd3, when sqp =sq.q -D + 2.

Then,
sqs.D is irrational if there exists jre-optimalapproximatiorp/q to sqsD.

In particular,
the square sides of 6, 7, 11, 13, 14, 18 are irrational.

Now, consider instead the cd3e= 13, with sq. 3 =13 — 4. Then,
(3,1;-4%=(9+13,2 - 3;16) = (22, 6; 16) = (11, 3; 4) and
(3,1;-4¥=(33+3- 13,9 +11; — 16) = (72, 20; —16) = (36, 10; — 4) = (18, 5; — 1).

Thereforea couple of formal multiplicationis enough to show that
sq.3=13-4C sq.11=sq9.3-13-4C sqg.18=sg.5:13-1.

This means that in this case the “third approximation” is optimal.
Although it is not necessary, it can be shown also that
(3,1;-4§=(18,5;- 1= (324 + 25 - 13,2 - 18 - 5; 1) = (649, 180;1).
Compare the example above and Brahmaguptas<VIII.69 (Cole-

brooke, AAMS(1973), 365) is a rule saying, without a proof, that
if sq.p=sq9.q-D +4, then sp*=sg.g*-D +1,

where
p* =(sq.p—3)/2 -p and g* = (sq.p—1)/2 -q.

The rule is applied iBssXVIII.70 to the case whep=4,q=2,D =3,

in which case* = 26,q* = 15, and sq. 26 — sq. 15 - 3 284Cf. the ex-

planation in Sec. 16.3 above of Hofmann’s example 41: sgs. 3 = 26/15.)
Actually, the proof of the rule is easy, since,

(p*,a*; 1) = @, q; 4)°
A similar rule inBss XVIII.71 says, without proof, that
if sq.p—sq.q-D=-4, then s@*-sqqg*-D=1,

where
p*=[(sq.p+3) - (sqp+1)/2-1]- (sgp +2) and
q*=(sgqp+3)-(sqp+1)/2-p-p.

46. For a brief but informative account of Brahmagupta's treatment of what he called the
“square-nature” equation 0= sq.q - D+r, see WeilNT (1984), 19-22.
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The rule is applied iBssXVIII.72 to the case whep=3,9=1,D =13,
in which case* = 649,g* = 180, and sqg. 649 — sq. 180 - 13 = 1.

The rule can be proved by observing that, in this case,

(p*, 9% 1) = p, o — 4F.

In view of these rules, it is convenient to say that

p/q is a “pre-pre-optimal approximation” @ when sqp =sg.q -D + 4.

If Theodorus used the metric algebra method outlined in this section (or
the related anthyphairetic/continued fraction method outlined in Sec. 17.3)

he apparently omitted the cd3e= 2, because it was already well known,
and he explained in some detail the two model dase8 andD =5 (“the

one of three feet and the one of five feet”), where sq. 2=sqg. 1 - 3+ 1, while
sg. 2=sg. 15— 1. Having done that, all that remained for him to do was
to show that he could find optimal approximations to the square sides of

all squares ob (square) feet, whel@ is any non-square positive integer.

He did not manage to do that, but it is possible that he showed how far he
had come by writing out for his students a tabular survey of (essentially)

the following kind:

o0 wN O

10
11

12

13

14

15

17
18

equation
sqg.1=2-1
sqQ.2=3+1
sq.2=5-1
sq. 2

sg.5
SQ.3=7+2
sg. 8
sgs.8=2-sgs. 2
sg.3=10-1
sqQ.3=11-2

sq.10=sg.3-11+1
sgs. 12=2-sgs. 3

sqQ.3=13-4

sq.11=s9.3-13+4
sq.18=s9g.5-13-1

sqQ.4=14+2

sq.15=sq.4-14+1

sq.4=15+1
sq.4=17-1

sgs. 18 =3 - sgs. 2

©.ar) appr. value ofd

(2,1,1) 2

(2,1, (5,2;1) 52=21/2
(3,12 3

(3,123 (8,3;1) 8/3=22/3
(3,1;%42(10,3;1) 10/3=31/3
(3,1,-4) 3
(3,1;44)(11,3;4) 11/3=32/3

(3,1;34)(18,5;, - 1) 18/5=33/5

@4, 1;2) 4
(4,123 (15,4;1)  15/4=233/4
@4, 1;1) 4
4,1,-1) 4

type of appr.

optimal

optimal

optimal

pre-optimal
optimal

pre-optimal
optimal

optimal

pre-optimal
optimal

pre-pre-optimal
pre-pre-optimal

optimal

pre-optimal
optimal

optimal

optimal
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Theodorus could not continue p&st 17 (not counting the trivial case
D = 18) for the reason that could not find an optimal, pre-optimal, or
pre-pre-optimal approximation to the square side ofN@te that the best
approximations by integers to the square side of 19 are 4 and 5, where

sq.4=19-3 and sq.5=196.

It is interesting to note that in the applications of Heron’s improved
square side rule by use of “third approximations” in examples 41-45 (see
Sec. 16.3 above) the improved square side approximations are based on the
optimal first approximations 2/1 for sgs. 3, 4/1 for sqgs 15, 5/2 for sgs. 6,
and 8/3 for sgs. 7, the same optimal approximations as in the survey above!

Remark 1.A way of solving the equation sp.=sq.q-D + 1 in the
general case was presented by the Indian mathematician Jayadeva in the
eleventh century, however with no indication of a strict pfédA totally
different solution method, with a complete proof, was published much
later (in 1767) by Lagrange.) Applying Jayadeva’s “cyclic process” one
can show that wheb = 19 the equation has the solutigmg = 170, 39.

These values are clearly so large that Theodorus must have given up long
before he could find them through trial and error.

Remark 2.In the tabular survey above (and elsewhere in this chapter)
the use of what looks like common fractions has been allowed only for the
sake of convenience. It is unlikely that Theodorus would have written, for
instance, the optimal approximation to sgs.13 in the form 18/5 = 3 3/5 as
here in the survey. (The correspondsugn of partof the standard Greek/
Egyptian kind is 3 1/2 1/10.) For this reason, the proper way to understand
18/5, for instance, is not as a fraction but as ‘18 divided by 5'. (The earliest
documented use of common fractions, in a very explicit form, is in the
early Roman Greek-Egyptian mathematical papy?lBM 1052%® 5
(Friberg, UL (2005), Sec. 3.3 €). An even earlier example of the use of
(a kind of) common fractions is in the Egyptian demotic mathematical
papyrus (Ptolemaic, 3rd c. BCB)Cair ¢8 1(Friberg,op. cit, Sec. 3.1 c).

47. See WeilNT (1984), 22-24. See also SrinivasienggkM (1967), Chapter 10, or Dat-
ta and SinghHHM (1962 (1938)), Chs. 16-17.



Chapter 18

The Pseudo-HeronidGeometr ica

18.1.Geometr icaa Compilation of Various Sources

Hayrup’s informative paper iANwR 7(1997) contains a detailed com-
parison of the contents of the HeroMetr icaand the “pseudo-Heronic”
Geometr icawith related issues in the Near Eastern “practical tradition”
and in various Arabic or Western medieval mathematical problem collec-
tions. He begins the comparison with the following summary of what
Heiberg himself wrote in Latin in the prefaceltAOO 5(1914) about the
sources he had used for his compilated versidgbemimetrica

“(1) Geometricdwas not made by Hero, nor can a Heronian work be reconstructed

by removing a larger or smaller number of interpolations’ (p. xxi).

(2) Mss AC represent a book which, with additions, changes and omissions, only

reached the present shape in Byzantine times; it was not meant to serve field

mensuration directly but was for use ‘in [commercial and legal] life’ and in general

education (p. xxi).

(3) Manuscript S, with the closely related ms V, was intended to serve youth study-

ing ‘architecture, mechanics and field mensuration’ in the ‘University of Constan-

tinople’ and thus ‘more familiar with theoretical mathematics’ — a use which in

Heiberg’s view agrees with the presence of Heron’s (more or less) gétetinea

in the same manuscript (p. xxiii).

(4) Both versions of the work merge (in their own ways) ‘various problem collec-

tions together with Heronian and Euclidean excerpts’ (p. xxiv). - - - As things are,

only a very careful observation or reading of the Latin prefageltone Vof the

Opera omniawill reveal that a work contained in volume IV is a modern conglom-

erate of two (indeed more) ancient conglomerates. - - - He (Heiberg) also seems to

415
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have known, but does not say it too directly, that the origin of the ‘problem collec-
tions’ was neither Heronian nor Euclidean.”

The following brief comparison ddeometricawith Metrica in Heath,
HGM 2(1981 (1921)), 318, is also interesting:

“The mensuration in th&eometryhas reference almost entirely to the same figures

as those measured in Book | of Metrica, the difference being that in teometry

(2) the rules are not explained but merely applied to examples,

(2) a large number of numerical illustrations are given for each figure,

(3) the Egyptian way of writing fractions as the sum of submultiples is followed,

(4) lengths and areas are given in terms of particular measures, and the calculations

are lengthened by a considerable amount of conversion from one measure into

another.”

To these important remarks about the natur&ebmetricacan be
added here the following observations:

(1) In Geometricathere are not, as Metrica, any lettered diagrams. Nor are there

any discussions of chains of “givens”, in the style of Euclithsa.

(2) In Metrica, lengths are measured in ‘units’ or abstract numbers. The “particular

measures” used iGeometrica are in mss AC ‘ropes’s¢hoini pand ‘fathoms’

(6rgyiai), but in mss SV ‘feet’ (as also 8tereometricgHeiberg HAOO 5(1914)).

(3) Hayrup chose to neglect the testimony of Greek-Egyptian mathematical papyrus

fragments from the Ptolemaic and Roman periods in Egypt (see Ftilke(g005),

Chapter 4) in his otherwise quite extensive comparison of geometric themes and ter-

minology inMetrica, Geometricaand medieval mathematical problem collections.

Hayrup op cit) ends as follows his scrutiny of, among other things, the
terminology used ifGeometricamss AC, mss SV, and the independent
source ms S, Chapter 24:

“.If we think of Moritz Cantor’s old metaphor, according to which the development

of mathematics is to be likened to a river landscape, the river that had sprung from

Near Eastern geometrical practice had dissolved itself in later antiquity into a delta,

in a multitude of independent streams now running together, now splitting apart. Hero

knew some of them and used them — at times literallyMeitnica; GeometricdAC
collected othersGeometricaS and S:24 still others. Further studies of terminology
and style may help us sort out more details; given the complexity of the situation and
the paucity of sources for precisely the practitioners’ level of mathematical activity,
however, we are not very likely to get very far.”
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18.2.Geometr icamss AC

Near the beginning of ms A, after a long metrological introduction,
there is a brief note mentioning that

One must also know thatnaddiosof seed is 40 tra

and eaclii traseeds 5 fathoms of land.
What this means is that here, just as in Late Babylonian field plans and
mathematical texts (see FribeBaM 28 (1997), Chs. 1-3), the size of a
field is measured in “seed measure” rather than area measuréxdthe
conversion ratas

11i train seed measure = 5 (square) fathoms in area measure, or

1 médiosin seed measure (= 4i0rg = 200 (square) fathoms = 2 (square) ropes.
After the mentioned brief note follow twoetrological conversion takde
No similar Late Babylonian tables are knowh Eriberg,GMS3 (1993)).

For width and length (meaning area measure) of 5 fathoms make li tral

width and length of 10 fathoms make li Zra
width and length of 15 fathoms make li &ra
width and length of 100 fathoms make I2@ra
width and length of 200 fathoms make l4@ra
width and length of 1000 fathoms make 200a
width and length of 2000 fathoms make 400a
width and length of 10000 fathoms make  200@a
200 fathoms are land for rodios
300 fathoms are land for 1 1fi@6dios
1000 fathoms are land for rBodios
2000 fathoms are land for T6dios
10000 fathoms are land for Bodios

The metrological tables are followed by what is, essentiallyarad
book in mensuratiof the kind that one finds in medieval Arabic and
Western texts. (See Hayrupp(cit), 74-78.) It begins with exercises for
squares, rectangles, trapezoids, and right-angled triangeGeom 7.1-
3/AC, for instance, the base and upright of a right-angled triangle are 4
ropes = 40 fathoms and 3 ropes = 30 fathoms, respectively. The size of the
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triangle is then computed first as 6 (square) ropes, with the corresponding
seed measure equal to 1/2 - 6md@lios and then as 600 (square) fathoms,
with the corresponding seed measure 1/200 - 606éd3os.

Then follows what must be anterpolationin mss AC, because only
abstractnumbers are used for lengths and surface§&sdom. 8.1, it is
shown how to construct a right-angled triangle by “the method of Pythag-
oras”, when amddnumber is given Gf. the discussion in Sec. 3.1 above.)
The method is demonstrated only by an example, in the case when the
upright 5 of the triangle is given. Then the base is (5 - 5 - 1)/2 = 12, and
the hypothenuse is the base + 1 = 13. In modern notations:

¢, b,a=(sq.a+1)/2, (sqa-1)/2,a forany odd numbex.

In Geom. 9.1it is then shown by an example how to construct a right-
angled triangle by the “method of Plato” wheneaennumber is given.

Let the upright be 8. Then the base is 8/2 - 8/2 — 1 = 15, and the hypothe-
nuse is the base + 2 = 17. In modern notations:

c,b,a=sq.al2+1,sqal2-1,a foranyeven numbex
The derivations of these rules by use of (metric) algebra is obvious. In the

first case (the “method of Pythagoras)andb are obtained as the solu-
tions to the quadratic-linear system of equations

sg.c—sq.b=sg.a, c—b=1 whereais a given odd number.
In the second case (the “method of Plate”andb are obtained as the
solutions to the quadratic-linear system of equations

sq.c—sg.b=sqg.a, c—b=2 whereais a given even number.

After this brief interruption, the hand book continues with exercises for
equilateral trianglesIn Geom 10.1-5 the following rules are stated:

A=1/31/10- s, h=s-1/101/30s (1/3 1/10 = 26/60, 1-—1/10 1/30 = 52/60).
(Cf. Sec. 16.3 above.) If, for instanses 10 ropes, then

A= (33 1/3 + 10) (square) ropes = 43 1/3 (square) ropesrodibs26 2/3li tra

In Geom. 11the topic igsosceles (symmetric) trianglesnd inGeom.
12 scalene (hon-symmetric) trianglda Geom.12.1-14 for instance, the
example is the triangle with the sides 13, 14, and 15 ropes. The rule used

for the computation of the segmenof the base can be explained as fol-
lows, with the same notations as in Fig. 1.8.1 above, right:

g ={(sq.b + sq.a—sq.c)/2}/b.
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This means, apparently, that the computation of the segment
Geoml2.14 is based on Euclidd. I1.13. The examples iGeom 12.15,
12.23, 12.28, and 12.29 are similar.

In Geom. 12.3Q the area of the triangle with the sides 13, 14, 15 ropes
is computed by use ¢feron’s triangle area rulécf. Sec.14.1).

In Geom. 12.33 anobtuse-angletriangle with the sides 17, 9, 10 ropes
is considered. The rule for the computation of the extergsafrthe base
is the following, with the same notations as in Fig. 1.8.1 above, left:

q={(sq.c—sqg.b —sqg.a)/2}/b {(289 — 81 — 100)/2}/9 = 54/9 = 6 (ropes).
Apparently, therefore, the computation of the segrgemiGeom12.33 is
based on Euclid’&l. 11.12.

Another rulefor the computation of the extensigrof the base of the
same triangle is used @eom. 12.38 Thereq is computed as follows:

q={(sq.c—sq.a)/b+hb)/2-b {(289-100)/9 + 9}/2-9=15—-9 =6 (ropes).

This alternative rule can be found by usenettric algebraby looking for
solutions to the quadratic-linear system of equatioh${g. 1.8.1, left):
sq.p—sg.g=sq.c—sqg.a, p—q=h.
Itis interesting to compare the rules for scalene trianglésam 12.1,
12.30 and 12.38 with the rules used in the Greek-Egyptian mathematical
papyrus fragments.Chicago litt. 3andP.Cornell69 (FribergUL (2005)
Secs. 4.7 b-c). In the exerciBeChicag o litt. 3# 2 a non-symmetric
trapezoid is reduced, by removal of a central rectangle, to a non-symmetric
triangle with the sides 13, 14, 15 ropes. The segmefithe baseqp. cit,
Fig. 4.7.1) is computed as follows:
q={b-(sg.c—sqg.a)/b)/2 —b {14 — (225 — 169)/14}/2 = 5 (ropes).
In P.Chicag ollitt. 3# 3 a non-symmetric trapezoid is reduced, by removal
of a central parallelogram, to a hon-symmetric obtuse-angled triangle with
the sides 15, 4, 13 ropes. Then the extengiofithe base is found as:
q={(sq.c—sg.a)/b—b)/2 —-b {(225 - 169)/4 — 4}/2 = 5 (ropes).
P.Cor nell 6 & 2is a similar exercise, where a given hon-symmetric trap-
ezoid is reduced to the same triangle with the sides 15b4jo%(1/16
rope). Here, the sumof the base and the extension of the base is found as
p={(sg.c—sqg.a)/b + b)/2 {(225 - 169)/4 + 4}/2 = 9 (ropes).
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It is clear that the computation rulesGeom 12.38,P.Chicago litt. 3##
2-3 andP.Cornell 69# 2 are closely related. Therefore, all of them were
probably obtained in the same way by usenefric algebra

The topic dealt with inGeom. 12.41-71is isosceles triangles with
inscribed squaresThe treatise on mensuration continue&eom. 13-16
with exercises for various kinds qfiadrilaterals and ends iGGeom. 17-
20 with exercises focircles and circle segmentéSee the discussion in
Hayrup,ANwWR 7(1997) 87-90.)

18.3.Geometr icams S 24

While Geometricamss A is throughout a rather dull hand book in men-
suration, the independent soufoes S 24” =Geom. 24.1-51is a compos-
ite of (a) another series of dull exercises concerned with triangles with
inscribed or circumscribed circles or squares, and (b) an interesting collec-
tion of cleverly designed problengwhat Hayrup likes to call “riddles™?

Take, for instancezeom. 24.1 The problem in that exercise &
indeterminate pair of equations for four unknowns

To find two fourangled fields [such the perimeter of the second is the threefold of

that of the first and] such the area of the first is the threefold of that of the second.
The following solution is given in the manuscript:

I make it so: Cube 3, result 27. This twice, result 54. Now take away 1 unit,

the rest is 53. Thus one side shall be 53 feet, the other side 54 feet.

And [the sides] of the other field like this: set together 53 and 54, result 107 feet.
Make this times 3 [and take away 3 units]: result 318 feet.

Thus that of the first side shall be 318 feet, the second side 3 feet.

The area of one becomes 954 feet, and of the other 2862 feet.

Note that here, as everywhere else in ms S, lengths are measured in feet
and the size of fields in (square) feet, that iarea measuré®

The explanations for the solution procedur&igom 24.1 suggested.

48. For reproductions of the pagesGd#om 24, see BruingCCPV 1(1964), 1:52-72.
49.Compare with the fact that, as mentioned, in the known Greek-Egyptian mathematical
papyrus fragments the sizes of fields are measured in area measure. PtVisdab. G.
26740(Friberg,UL (2005), Sec. 4.3) and P.Chic. litt. 3(op. cit, Sec. 4.7 b), fields are
measured in seschoini darouras. In P.Cornell 69(op. cit, Sec. 4.7 c), fields are mea-
sured in sgbaia, and inP.Gené ve 25@p. cit, Sec. 4.7 a) they are measured in (sq.) feet.
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by HeathHGM 2(1981 (1921)), 442, and Bruinsg cit), 111:83, are un-
necessarily complicated. There is, indeed, a much easier explanation:

Giventhat (l)u+v=p-@+bh), (2) a-b=p-@u-v (in the textp = 3).

Setu=2p-a

Then (2) € a-b=p-(2p-9:v C b=2sqgp-v

Then (1) € 2p-at+tv=p-@+2sqp-VY € (Rcup-1)v=p-a

This equation is satisfied when, for instanoesp and a=2cu.p—1

It follows thatb=2 cu.p and u=2p- (2cup-1)
The solution procedure given in the text can now described as follows:

1 2cup-1=54-1=53a

2 2cup=54=b

3 a+b=107, p-@+hb)=321=u+v

4 v=p=3, u=(@Uu+v)—v=318

5 u-v=318: 3 =954 (feet),a - b= 53 - 54 = 2862 (feet)
The extreme briefness of this solution procedure suggests that this partic-
ular exercise originally was one of several in a theme text, where full in-
formation was given only in the solution procedure for the initial exercise.
Single exercises appearing like this without the needed explaining context
are commonplace in Babylonian mathematical recombination texts.

A simple way of explaining the solution procedure works also in the
case ofGeom. 24.2 as in the case @deom 24.1:
To find a field in perimeter equal to a field and with the area the fourfold of the area.

The following solution is given in the manuscript:

I make it so: Cube 4 with itself, result 64 feet. Take away 1 unit, result: the rest is 63.
So much is each one of the perimeters of the 2 parallel-sides. Now separate the sides.

I make it so: Set 4. Take away 1 unit: 3 remains. Then one side is 3 feet.

The other side like this: From 63 take away 3, the rest is 60 feet.

[For the sides] of the other field make it so: 4 on itself, result 16 feet.

From this take away 1 unit, the result is the rest 15 feet. So much is the first side, 15 feet.
The second side like this: Take away 15 from 63, result: the rest is 48 feet.

The other side shall be 48 feet. Then the area of one is 720 feet, and of the other 180 feet.

This solution procedure can be explained as follows (witlB):
Giventhat (Qu+v=a+b, (2)a-b=p-@Uu-v (in the textp = 4).
Set u=p-a Then
(2) € a-b=p-p-3d-v C b=sqp-v
1) € p-atv=a+sqp-vC (sqp-1)v=(p-1)-a
This equation is satisfied when, for instanoezp—-1 and a=sq.p—1
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It follows that b=sqg.p - (p—1) =cu.p—sq.p and u=p-(sqp-1) =cu.p—p.
Therefore a+b=u+v=cu. p-1.

The solution procedure given in the text is, accordingly (pithd):

1 cup-1=64-1=63a+b=u+v

p—1=3=v

U+v)—-v=63-3=60=
sqp—-1=16-1=15a
(@+b)—a=63-15=48d

6 a-b=15-48 =720 (feet),u - v=60 - 3 = 180 (feet)

a b~ ownN

48

60

15 \ 720 3 \ 180

Fig. 18.3.1.Geom 24.2. An indeterminate problem for two rectangles.

Nothing like the indeterminate problems in Geom. 24.1-2 appears in
Diophantus’Arithmetica There is also nothing like these problems in the
known corpus of Babylonian mathematics. On the other hand, both the for-
mulation of the problems and the solution procedures are so simple and
straightforward that a Babylonian origin cannot be excluded. (In favor of
a Babylonian origin speaks also the circumstance thaeom 24. 2 the
areas of the two rectangles are multiples of 60.)

In Geom. 24.4 the problem is stated as follows:

The suma + b + c of the sides of a right-angled triangle is 50 feet. Find the sides.
It is assumed that the sides are proportional to 3, 4, 5, the “first” triple of
sides that can be constructed by use of the “method of Pythagoras”. Since
3+4+5=12, it follows directly that= 3 - 50/12 = 12 1/2 feedtc

In Geom. 24.5 the problem is:

The area of a right-angled triangle is 5 feet. Find the sides.
The brief solution procedure can be explained as follows: According to the

“method of Pythagoras”, the sides can be assumed o (sg.n — 1)/2,
(sgq.n + 1)/2, wheren is odd. Then the area is
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A=n/2-(sqh-1)/2=0-1) -n- (n+ 1)/4, withn odd.
Sincen is odd one of the numbers is a multiple of 4, another a multiple of
2, and a third a multiple of 3. Therefdkenust be a multiple of 6. Let, for
instanceA =5 - sq. 6 = 180. Thenis a solution to theubic equation
(n=1)n-(+1)=720.
The value ofh can be obtained by trial and error or from a “quasi-cube
table” like the OB table text MS 3048 (Sec. 13.6 above). It is found to be
n=9, sothak, b,c=29, 40, 41.
In Geom. 24.7,
The uprighta of a right-angled triangle is 12 feet (and the area is 96 feet).
The baséd and the hypothenuseare then found as
b=a+a/3 =16 feet, c=b + b/4 = 20 feet.
The embarrassingly simple-minded method can be explained as follows:
if a, b, c are proportional to 3, 4, 5, theh=4/3 -a and c=5/4 -b.
Similarly in Geom. 24.8-9 where the corresponding equations are
a=b-b/4(=3/4b), c=b+b/4(=5/4b) and
b=c-c/5(=4/5c), a=c—cl4 (=3/4 ).
An OB problem text of a similar kind 8IS 3971 § 4(Friberg,RC
(2007), Sec. 10.1 d), where it is stated that
The diagonalc = 7 of a right triangle is given.
The remaining sides of the triangle are then computed as
b=7-4/5=7-,48=5;36 and=7-3/5=7 ;36 =4;12.
A LB (Seleucid) exercise of a somewhat similar kinBh4 34568 # 1
(NeugebaueKT 3(1937), 20):

4 the length, 3 the dint, what is the great divider?

Since you do not know it: 2' of your lengthyour front add on, that is it.

4 the length - 30 go, then2to 3 add on, 5. 5 is the great divider.

The third of your front to your length add on, that is the great divider.

3 the front steps of 20 go, 1to 4 add on, 5. 5 is the great divider.
Although awkwardly formulated, the text of this exercise probably wants
to say that for the right triangle with the siadeb, a =5, 4, 3, the diagonal
c can be expressed in these two ways lagar combination ob anda:

c=b/2+a and c=b+a/3.
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This makes little sense, but BM 34568 is a large theme text concerned with
increasingly difficult systems of equations for the sides of right triangle.
(An application of the diagonal rule appears already in exercise # 2.) In a
theme text of this kind, the introductory first exercise should play an im-
portant role, rather than being nearly meaningless. Perhaps like this:
Letc, b, a be the sides of a right triangle. Suppose thab/p + a, for
some (regular sexagesimal) numiperThen the pairc, a satisfies the
following quadratic-linear system of equations:
sq.c—sg.a=sqg.b, c—a=hlp.
Consequently,
c+a=sq.b/(b/p)=p-b.
Evidently, then, the solution to the system of equations &mda is
c=@+1p)y2-b, a=({p-1p)2 b
This means that
c=blp+ta C c,b,a={(p+1p)/2, 1, - 1p)/2} - b, and, similarly,
c=b+alq C c, b, a={(q+10)/2, @-1k)/2, 1} -a
Therefore, it is possible that a teacher could use the seemingly trivial ex-
ercise # 1in BM 34568 as an introduction taaal presentation of a meth-
od to findtwo generating pairs of numbers p andq, 1 for every given
right triangle with rational sidesCf{. the discussion of OB igi-igi.bi
problems in Secs. 3.2-3 above.) In the given example, for instance,
5=4/2+3C 5,4,3={2+1/2)/2,1,(2-1/2)/2} - 4 and
5=4+3/3C 5,4,3={3+1/3)/2,(3-1/3)/2,1} - 3.
A particularly interesting problem i@eom 24 isGeom. 24.1Q where
The area plus the perimeter of a right-angled triangle is 280 feet.

This looks like one of the indeterminate problems for right-angled tri-
angles in DiophantusArithmetica“VI”.6-11. Nevertheless, the solution
method here is totally different. It is stated, quite cryptically, like this:

Always look for factors. Factorize by 2, 140, by 4, 70, by 5, 56, by 7, 40,

by 8, 35, by 10, 28, by 14, 20. | find that 8 and 35 meet the condition.

1/8 of 280, result 35 feet. Always take 2 away from 8, the rest is 6 feet.

Now 35 and 6 together, result 41 feet. These on themselves, result 1681 feet.
And 35 on 6, result 210 feet. These always on 8, result 1680 feet.

Take these away from 1681, the rest is 1. Of which the square side, result 1.
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Next set 41 and take away 1 unit, the rest is 40. Of which 1/2, result 20.
This is the upright, 20 feet. And set again 41 and add 1, result 42 feet.
Of which 1/2, result 21 feet. The base shall be 21 feet.

And set 35 and take away 6, the rest is 29.

The solution method is (silently) based on the observation thdi, i€ are

the sides and the area of a right-angled triangle, then
(a+b+c)-@+b-c)=sqg. 6+b)—sqgc=2a-b=4A.

Therefore, the stated problem can be reformulated in the following way:
A+@+b+c)=@+b+c)2- - {(a+b-c)2+ 2} =B=280 (feet).

Now, if B is factorized a8 = 35 - 8, it is possible to begin by setting
(a+b+c)2=35 4+b-c)/2+2=8, sothat a+b-c)/2=8-2=6.

Then
atb=(@+b+c)2+@+b-c)/2=35+6=41 and
a-b/2=@+b+0)/2-@+b-c)2=35-6=210.

This rectangular-linear systerof type Bla is solved as follows:
sq.b—-a)=sqg.&6+b)—4a-b=sq.41-8-210=1681-1680=1, dmda=1.

Therefore,
b={(a+b)+{O-a)}2=41+1)/2=21a={(a+b)—p-a)2=(41-1)/2 = 20.

Finally, the remaining sidecan be computed as
c=@+b+c)2-@+b-c)/2=35-6=29.

Hence, the solution to the problem is the diagonal tagdtec = 20, 21, 29.

The text ofGeom 24.10 ends with a verification:

A=210feet,a+b+c=70 C A+ (@+b+c)=210+ 70 =280.

Now, recall that the solution procedureGeom 24.10 starts with the
factorizations

280=2-140=4-70=5-56=7-40=8-35=10-28 =14 - 20,
after which it is stated that “8 and 35 meet the condition”. What this means

can be found out by looking at a couple of alternative factorizations of the
given number 280. If, for instance, the chosen factors are 7 and 40, then

(@+b+c)2=40 and g+b-c)2=7-2=5C
a+h=40+5=45 anda-b/2=40-5=200C
b —a=sgs. (sq. 45 — 8 - 200) = sgs. (2025 — 1600) = sgs. 425 =5 - sqs. 17.

Similarly, if the chosen factors are 4 and 70, say, then
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(a+b+c)2=70 and g+b-c)/2=4-2=2C

a+b=70+2=72 anda-b/2=70-2=140C

b —a=sgs. (sq.72 — 8 - 140) = sgs. (5184 — 1120) = sgs. 4064 = 4 - sqs. 254.
Thus, apparently, the factorization 280 = 35 - 8 was chosen because it was
the only one that would lead tasalution in integers

The proposed interpretation Gfeom 24.10 is supported by the testi-
mony ofGeom. 24.26 where the question is:

A circle is inscribed in a right-angled triangle with the sides 6, 8, and 10 feet.
Find the diameter of the circle.

The diameted of the circle is computed in the following two ways:

1 d=a+b-c=6+8-10 feet = 4 feet.
2 d=@4A)/(a+b+c)=(4-6-4)/(6 + 8+ 10) feet = 96/24 feet = 4 feet.

The given triangle can be divided into three sub-triangles, each with half
the diameter as height and one of the sides as base. Therefore,

2A=2A1+2A,+2A3=d/2 -a+d2-b+d2-c=dl2-@+b+c).

The second computation rule @eom 24.26 follows immediately from
this observation. The first computation rule then follows from the second,
in view of the identity§d+b +c¢) - @+b—-c) = 4A.

The suggested interpretation@éom 24.10 is important, because:

a) This isthe only known example of a Greek mathematical problem text contain-
ing an explicit solution procedure for a rectangular-linear system of equations.

b) The form of the entire solution procedure looks like a typical OB solution pro-
cedure, with an algorithmic series of instructions without theoretical motivations,
and with each step of a general procedure illustrated by an explicit numerical com-
putation.

c) One crucial step of the solution procedure, the factorizati@&~0280, would

be meaningless if it was not known beforehandtti@problem is constructed so
that it will have a solution in integer3his is a typically Babylonian feature.

d) The use of the identitaft b +¢) - @+b—c) = 2A (twice the area of ectanglg

is known from the Seleucid mathematical theme text BM 34568 ## 17-18.

Here is the text oBM 34568 ## 17-1&cf. NeugebaueKT 3, 14ff.):

BM 34568 # 17

The length, front, and great divider add, then 12, and the field 12.
What as the length, front, and great divider?

Since you do not know:

12 - 12 224, 12 -2 24. 24 from 2 24 lift, then remaining is 2.
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2-309o,then1l. 12 -whatshalllgosothat1? 12 -5 1. 5isthe great divider.

BM 34568 # 18

The length, front, and great divider add, then 1, 5 the field.

The length, front, and great divider - the length, front, and great divider go.

The field - 2 go, from <---> the great divider lift. What is remaining - the half go.

The length, front, and great dividewhat as your step do you set?

The great divider is your step.
The text of # 17 is condensed, with the elimination of words that are not
really necessary, and with the use of the cuneiformG#gvi for ‘times’,
here represented by the symbol ‘-’. Note that while # 17 gives a numerical
example, # 18 gives the general rule (with an omission in line 3).

The questions in ## 17-18 are both of the type

a, b, ¢, andA are the sides, the diagonal, and the area of a rectangle.
b +a+candA are given. Find, a, c.

The value of the diagonalis computed by use of the identity
c-b+a+c)={sqg. b+a+c)-2A}2.

This identity can be proved in several ways. See Neugelmuarit, 21,

and HagyrupLWS(2002), 397. The simplest proof is probably this:
c={(b+ta+c)-pb+a-0}y2 C
c-b+ta+c)= {sq.b+a+c)—p+a+c)- b+ra-c)}/2={sq. (b+a+c)—-2A}2.

Actually, the computation of the diagortak only the first step of the so-
lution procedure. Aftec has been computellanda can be found without
trouble as solutions to the following problem

The diagonat and the sunb + a of the sides of a rectangle are known. Firahda.
The way to solve a problem of this kind is showBM 34568 # 10

Another particularly interesting problem @eom24 isGeom. 24.21

In a right-angled triangle, the upright is 15, the base 20, and the hypothenuse 25 feet.
Another triangle is circumscribed at a distance of 2 feet. | look for its sides.
The problem is interesting for two reasons. Fiigtyres extended a cer-
tain fractional distance in all directionsre known from both OB and LB
(Seleucid) mathematical texts. See the discussion of thedtéu@u ‘to
push outwards’ in Fribergt al, BagM21 (1990), 488, and in FribeiglA
7 (1990), Sec. 5.4 The term is used for outwards extendgdarescir-
cles anddouble circle-segmentSecondly, the problem is interesting be-
cause the way it may have been solved (not explicitly indicated in the text)



428 Amazing Traces of a Babylonian Origin in Greek Mathematics

is loosely related to the proof of Heron'’s triangle area ruldetrica 1.8
(Chapter 14 above).

r*=r+e
2 ﬁ -
™ 36 1/9 N 19 a* > c*
a 's ) xE ey r n
r
2 7 % 3 e

282" 1/4 1/8 L sy b*

o,

Fig. 18.3.2. Left and middle: A diagram illustrating the extension proleom 24.21.

In Geom 24.21, the following answer is given without explanation:

1 a* =21 2/3 feet, b* = 28 1/2 1/4 1/8 feet,c* = 36 1/9 feet

2 a*=a+1/31/94a b*=b+1/31/9b, c*=c+1/31/9c.
Here is a proposed explanation of how the sides of the extended triangle
may have been computed: Latb, ¢ anda*, b*, c¢* be the sides of the
given and the extended triangle, édie the distance between the sides of
the two triangles, and let= d/2 andr* = d*/2 be the half diameters of the
inscribed circles (Fig. 18.3.2, right). With respect to the common center of
the inscribed circles, the two triangles are concentric, parallel, and similar.
Therefore, one is a scaled-up version of the other, with the scaletfactor
given by the equations (c&eom 24.26 above)

t-r=r*=r+e sothatt—1=e/r=2e/d=2e-(@+b+c)/(4A).
With the given valuee = 2 anda, b, c = 15, 20, 25 (feet) it follows that

t=1+4-60/(2-15-20)=1+4-1/10=1 1/3 1/15.

The answer given in the texttis 1 1/3 1/9 =1 + 4 - 1/9. The error is easy

to explain if the author of the problem looked up the value of 4 - 1/10 in a
table of fractions such & Akhmi niFriberg,UL (2005), Sec. 4.5 a). He

can then have chosen the wrong column in the table and found incorrectly
the value of 4 - 19 as ‘of 4Binstead of correctly the value of 4 - 1/10 as
‘of 4 315 (Baillet, PMA (1892) 27-28: columns 7-8).

Geom. 24.46-47are well known because they are the only known
examples of thexplicit solution of a quadratic equatiéma Greek math-
ematical text. The question éeom24.46 is

The sumd + a + A of the diameter, circumference, and area of a circle is 212 feet.
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Separate the three from each other.

An OB parallel to this question (without solution) can be founahh
80209 a “catalog text” with equations for circles (see Sec. 1.10 above).
The solution to the problem {Beom 24.46 proceeds like this:
212 - 154 = 32648, 32648 + 841 = 33489 = sq. 183 feet, 183 — 29 = 154,
1/11 - 154 = 14 feet = the diameter.
Actually, with the Archimedian approximation area of circle / square of ra-
dius of circle = appr. 3 1/7 = 22 - 1/7, the equatiordfoecomes

d+a+A=d+22-1/7d+11-1/14 - sql = 112.

Through multiplication with 14 - 11 = 154, this equation is reduced to
2.29-11d+sq. 11 - sq = 154 - 112 = 32648.

This equation, in its turn, is reduced through completion of the square to
sq. (11d + 29) = 32648 + sq. 29 = 32648 + 841 = 33489 = sq. 183.

Therefore, 14 + 29 = 183, and = (183 — 29)/11 = 14 (feet).

18.4.Metr icdll.4. A Division of Figures Problem

The difference in style between exercises in Herbtgsricaand in the
pseudo-HeronicGeometricA was mentioned above (Sec. 18.1). Here is
an example of the style Metrica (SchoneHA (1903), 149), where use is
made of dettered diagram

Metr ica3.4

Given the triangle ABC, take away from it the triangle DEZ, given in magnitude, so
that the remaining triangles ADE, BDZ, CEZ are equal to each other. If now <the
sides> are divided so that AD is to DB as BZ to ZC and as CE to EA, then the tri-
angles ADE, BDZ, and ZCE shall be equal to each other. Let now AZ be joined.
Since then as BZ is to ZC, so is CE to EA, and compounding, as BC is to CZ, so is
CA to AE. And therefore, as the triangle ABC is to AZC, so is AZC to AZE, and
subtracting, as the triangle ABC is to ABZ, so AZC is to ECZ, which is given. And
also ABC is given. - - -

The solution procedure continues in this manner, showing first that AZC
is given, and that, if AH is the height against BC, then the square of AH
times the product of BZ and ZC is given. Since the square of AH is given,
also the product of BZ and ZC is given, and since BC is given, Z is given,
and similarly E and D are given. Therefore, DE, EZ, and ZD are given.
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After this demonstratiom the style of Euclid’s Datfollows a numer-
ical examplewith AB, BC, CA =13, 14, 15 units, and DEZ = 24 units.

A ) a, b, c=13, 14, 15
h=12 A=84, P=24 G
Q= (84— 24)/3 = 20,
4A-Q=6720
N 4A-Q=sqh-b'-b" C
& b'-b" =6720/144 = 46 <2/3>
| | © b'+b" =14. Hence
B H z C b.:S'_bb..:t_bb',b":7:sqs.21/3
14 =appr. #1 1/2 (1/36)

Fig. 18.4.1.Metr. 3.4. An elegant division of figures problem.

If the three sides of the given triangle are divided in the samesrdtio
with s+t = 1, and ifA andQ are the areas of the given triangle and the
corner triangles, then the procedure shows @hatA = s - t. Therefore,
b'=s - bandb" =t - b are solutions to the followingctangular-linear sys-
tem of equations of type Bla:

b'-b"=4A-Q/sqh=4-84-20/sq.12=462/3p'+-b" =b=14.
The solution given in the textis = 8 <1/2>b" =5 1/2.



Appendix 1

A Chain of Trapezoids with Fixed Diagonals

by Joran Friberg and Joachim Marzahn

A.1.1. VAT 8393. A New Old Babylonian Single Problem Text

VAT 8393 is a well preserved and unusually interesting Old Babylo-
nian mathematical cuneiform text from the Near Eastern Museum
(Vorderasiatisches Museum) in Berlin, with a single metric algebra prob-
lem, illustrated by an intriguing diagram.

The diagram on the clay tablet is drawn in the usual OB way with little
regard to the true proportions of various parts of the figure. The diagram is
reproduced below, with corrected proportions:

39;52301 22;30
N —— 200

230
250;37 30

300;35 09 22 30
w
250;37 30

39;50 37 30

-

Fig. A.1.1. The diagram on VAT 8393, with corrected proportions.

On the following five pages are displayed together Aarad copyof
the tablet, 2) @onform transliteratiorof the text, within an outline of the
clay tablet, 3) dransliteration sentence by sentendg a corresponding
translationof the text, and 5) photos of the clay tablet.

431
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Fig. A.1.2. VAT 8393. (Hand copy by J. Marzahn, curator of the collection of clay tablets
in the Near Eastern Museum, Berlin.)
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ki ki.tg 3us si-li-ip-tum
| ' : 2 o X . .
Sum-ma sagki. gu 2. ud ; _ i "
id- da lu -
u-um

ki-ma- si lu- 1i-
o ki-ma- si a-na €
2 si- il- pa-a-tuma-nd €

us Sa si- il-pa-a-tum li-

le- nu-
le-

’ 22 uS bi- il- ma 3 u / u§c a-na 3sim-ma 2 3°
10. ass:;fn’zlz 3 u§ bi- il- ma 7 3% il S

a2 sag ki bu- ru- us-oma 127237 sagki ki ta

125 noa-nal223 sag. ki bf- il- ma Sa i- li- a- ku

. us ki. ta
) o s K bi- il- ma

Spa-na 2 5 3 7 3 ps kita ik
15. |1°5n.a-na 39 5373 sagkikita
20.

Fig. A.1.3. VAT 8393. A conform transliteration within an outline of the clay tablet.
(Transliteration by J. Friberg and J. Marzahn, with the assistance of M. Krebernik.)



434

Amazing Traces of a Babylonian Origin in Greek Mathematics

VAT 8393, transliteration sentence by sentence

obv.
Fig.
1 Sum-ma sag.ki.gu 2 u§ 2 30 sag.ki an.ta 2 u$ sag.ki ki.ta
3 si-li-ip-tum /|
2 ki ma-si lu-ri-id-da’ I’ 3 us si-li-ip-tum /
3 u ki ma-si a-na e-le-nu-um lu-li-i-ma lu 3 u$§ si-li-ip-tum /
4 2 si-il-pa-a-tum a-na e-le-nu-um 2 a-na Sa-ap-la-nu-um /
5 [3] us Sa si-il-pa-a-tum li-im-ta-ah-ra /
6 [z]a.e ak.da.zu.[d¢] /
lower edge
2 us§ 2 30 sag.ki an.ta sag.ki ki.ta /u-[x-x-x] /
sag.ki an.ta e-li sag.ki ki.ta mi-nam i-[te-er 30 diri] /
igi 2 us$ pu-tu-ur-ma
a-na 30 diri sag.ki an.ta [bi-il-ma 15] /
rev
10 15 ninda-nu a-na 2 us§ bi-il-ma 30
u 2 u$ a-na [30 si-im-ma 2 30 us§ ki.ta] /
11 15 ninda-nu a-na 2 30 us bi-il-ma 37 30 i-il-li-[a-kum] /
12 i-na 2 sag.ki hu-ru-us-ma 1 22 30 sag.ki ki.ta /
13 15 ninda-nu a-na 1 22 30 sag.ki [bli-il-ma Sa i-li-a-kum /
14 a-na $a 2 30 us si-im-ma 2 50 37 30 u$ ki.ta /
15 15 ninda-nu a-na 2 50 37 30 us ki.ta bi-il-ma/
16  Sai-li-a-kum i-na Sa 1 22 30 hu-ru-us-ma
39503730 sag.ki ki.ta /
17 15 ninda-nu a-na 2 30 sag.ki bi-il-ma Sa i-li-a-kum /
18  i-na 2 us hu-ru-us-ma 1 22 30 u$ an.t[a]
[15 ninda-nu] a-na 1 22 30 us /
19 Sai-li-a-kum bi-il-ma Sa i-li-a-kum
20  a-n[a2 30 sa]g.ki si-im-ma/2 50 37 30 sag.ki an.[ta]
[115 ninda-nu a-na 2 [50] 37 30 sag.ki bi-il-ma / Sa i-li-a-kum
21 i-na $a 1 22 [30] uS$ [Alu-ru-u[s] 39 50 37 30 us$ anta /
22 15 ninda-nu a-na 1 22 30 u$§ bi-il-ma sa i-il-li-a-kum /
23 [a-n]a 2 50 37 30 sag.ki si-im-ma

3 350922 30 sag.ki an.ta
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VAT 8393, translation
obv.
Fig.
1 If a trapezoid, 2 (00) the length, 2 30 the upper front, 2 sixties the lower front,
3 (00) the diagonal. /
2 How much shall | go down so that 3 (00) the diagonal? /
3 And how much above shall | go up so that 3 (00) the diagonal? /
4 2 diagonals above, 2 below. /
5 3 sixties what the diagonals may be equal. /
6 You in your doing: /

lower edge

7 2 (00) the length, 2 30 the upper front, 2 (00) the lower frontxmeay /
8 The upper front over the lower front what does ieext? 30 the excegs.
9 The reciprocal of 2 resolve (= 1/2 00 = 0;00 30).

To 30 the excess of the upper froning (= multiply) then ; 15.

rev

10 ;15 theninda (= growth rate) to 2 (00) the length bring, then 30.
And 2 (00) the length t80 double (= add), then 2 30, the lower lendth.
11 ;15 theninda to 2 30 the length bring, 37;30 comesfapyou /
12 From 2 (00) the front tear off (= subtract), then 1 22;30 the lower front. /
13 ;15 theninda to 1 22;30 the fronbring. What comes up for you /
14 onto 2 30 the length double, then 2 50;37 30 the lower length. /
15 ;15 theninda to 2 50;37 30 the lower length bring, then /
16 what comes up for you out from 1 22;30 tear off, then
39;50 37 30 the lower front. /
17 ;15 theninda to 2 30 the front bring. What comes up for you /
18 from 2 (00) the length tear off, then 122;30 theaupgngth.
; 15 therinda to 1 22;30 the length /
19 that comes up for you bring. What comes up for you
20 to 2 30 the frat double, then / 2 50;37 30 thepap front.
21 ; B theninda to 250;37 30 the front bring, then / what comes up for you
out from 1 2230 the lengthtear off, 39;50 37 30 the upper length. /
22 ;15 theninda to 1 22;3Q(error!) the length bring, then what comes up for you /
to 2 50;37 30 the front double, then
23 3 00;35 09 22 30 the upper front.
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Fig. A.1.4. VAT 8393. (From color photos courteously provided by Olaf M. Tel3 mer.)
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In the metric algebra explanation below of VAT 8393, the notations
used are the ones displayed in Fig. A.1.5.

Y

u

Y !

& \d g \d o
vy =u+f-t u;=u-f-s

- t=t—f-v s =s+f-u
v,=v; +f-tg u,=u;—f-s
t,=t;—f-v, s,=s +f-u,

Fig. A.1.5. Metric algebra notations for the parameters of the trapezoids on VAT 8393.

Hereu is the lengths andt the “upper” and “lower” fronts, and one
of the diagonals of a symmetric trapezoid, situated in the middielwdin
of five symmetric trapezoid3he two trapezoids “below” and the two
trapezoids “above” have diagonals of the same length as the trapezoid in
the middle. Their lengths are denotgdv,, andu,, u,, respectively, and
their frontsty, t,, ands,, s,, respectively. The question and the successive
steps of the solution procedure can then be described briefly as follows:
Question
Given a symmetric trapezoid. The lengih= 2 00 (120), the upper frorg= 2 30 (150),
the lower frontt = 2 00 (120), the diagonal = 3 00 (180), all measurediinda = 6 m.
Find 2 symmetric trapezoids below with the diagahal3 00 and 2 symmetric
trapezoids above witth= 3 00 so that all the trapezoids form a chain of trapezoids.
Procedure

1 f=(—-Y)Yu=30/200=;15 (the growth rai;xdanuin ninda /ninda) lower edge
2v;=u+f-t=200+;15-200(=30)=230 rev.1

3 ty=t-f-vy=200-;15-230 (=37;30) =122;30 rev.2-3

4 vy=vy+f-=230+;15-122;30 (= 20;37 30) = 2 50;37 30 rev.4-5

5 tp=t;—f-w»w=122,30-;15- 2 50;37 30 (= 42;39 22 30) = 39;50 37 3Qev.6-7

6 u=u-f.-s=200-;15-230 (=37;30) = 1 22;30 rev.8-9a

7 sg=s+f-uy=230+;15-122;30 (= 20;37 30) = 2 50;37 30 rev.9b-11a

8 up=u;—f-5=122;30-;15 - 2 50;37 30 (= 42;39 22 30) = 39;50 37e®0L1b-12

9 s,=5;+f - upb=250;37 30 + ;15 - 39;50 37 30 (= 9;57 39 22 30) = 3 00;35 09 22 30
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The numbers given or computed in the text agree with the ones dis-
played in the diagram (see Fig. A.1.1 above). The errogvnl3, with
1 22 30 instead of 39 50 37 30, does not influence the computatsgn of
This circumstance proves that the text is a copy of all or part of an older
text. Actually,it is likely that the exercise on VAT 8393 was the last exer-
cise in along theme text beginning with simpler exercises of the same kind.

A likely candidate for thénitial exercisein a theme text of this kind
would be the computation of the diagonal in a symmetric trapezoid with
given sides. How that could be done is shown in Fig. A.1.6, left.

u

sq.u=sq.h+sq. 6-1)/2 a) s—t=f-u

sq.d =sq.h + sqg. 6 +1)/2 C t- ty=f .y and s— t;=f-(v,+

(@ b) squ+s-t=sq.d=sq.v; +t; -t

sqgd=sq.u+ s-t C  sqv;- squ=(s—t) - t=f-(v; +1)
C vi—u=f -t

Fig. A.1.6. A metric algebra proof of the OB fixed trapezoid diagonal rule.

Let u be the (slanting) sids,andt the frontsd the diagonal, anHd the
distance between the fronts in a symmetric trapezoid. Then two applica-
tions of theOB (rectangle) diagonal rulshow that

sq.u=sg.h+sqg. 6-t)/2 and sqgd=sqg.h+sq.6+1)/2.

Through a combination of these two identities one finds that
sq.d=sqg.u+sqg. 6+t)/2—-sqg. 6—1)/2, sothatsq.d=sq.u+s-t.

Since the author of the exercise VAT 8393 must have been familiar with

this rule, itis motivated to call it “the OB trapezoid diagonal rule”. The rule

is, of course, identical with Ptolemy’s diagonal rule in the case of a sym-

metric trapezoid. See Fig. 14.4.1 above.

A likely candidate for aecond exercise a theme text of the kind men-
tioned above is an exercise where the set task is to extend a given symmet-
ric trapezoid from below (or from above) into a brief chain of two
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symmetric trapezoids, both with diagonals of the same length. Such a
chain may be called a “chain of symmetric trapezoids with fixed diago-
nals”. The situation is illustrated by the example in Fig. A.1.6, right, where
a symmetric trapezoid with the slanting side the frontst, t;, and the
diagonald is an extension from below of the given trapezoid.

Sincet andd are known, the only new parameters\grandt;. Their
values can be determined as the solutions to a system of two equations, one
a similarity equation, the other an equation for the diagonal of the added
trapezoid. Theimilarity conditionsays that if is thegrowth rate then

s—t=f-u C t-t=f-yy or s—f=Ff (v +u).

Thefixed diagonal conditiorsays, in view of the OB trapezoid diagonal
rule, that

sg.u+s-t=(sq.d=)sq.vy +1t; - t.

If these equations are combined, one finds that
sq.vi—squ=(s—t) -t=f-(vy +u)-t.
Since sqv; — sq.u = (vq +u) - (v, —u), it follows that

vi—u=f-t.

This means that the equations ¥grandt; can be reduced to the pair

vi=u+f-t and t;=t-f v.

This pair of equations my be called the “OB fixed trapezoid diagonal rule”.

A corresponding pair of equations determines how the given symmetric
trapezoid can be extended from above. It is also clear that the process can
be repeated, so that the given trapezoid can be extended several times in
either direction in aecursiveprocedure. In this way will be formed what
may be called “descending or ascending chains of symmetric trapezoids
with fixed diagonals”Examples of such descending or ascending chains
of trapezoidanay have been the object of successive exercises in an OB
mathematical theme text of the kind mentioned above.

It was conjectured above that the exercise in VAT 8393 may originally
have been thiast exercise in a theme text of this kind. This conjecture is
based on the following observation: Consider the diagrams in Figs. A.1.1
and A.1.5. If one tries to continue the descending chain of trapezoids one
step further, the next slanting side will have the length

V3=V, +f -ty = 250;37 30 + ;15 - 39;50 37 30 (= 9;57 39 22 30).
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This means that; > 3 =d, which is geometrically impossible. Therefore,
the descendinghain of trapezoids with fixed diagonalssilf-terminat-
ing. Similarly it can be shown that tlscendinghain is self-terminating,
since, with the given parameter values,

uz=u, —f-s, =39;50 37 30 —;15 - 3 00;35 09 22 30 (= 45,08 47 20 37 30).
This means thai; < 0, which is geometrically impossible.

A surprising feature of the diagrams in Figs. A.1.1 and A.1.5 is the con-
spicuoudopsided symmetry of the datamely that

t=200=u, s=230=v;, t;=122;30 =uy,

$1 = 250;37 30 w,, and t, =39;50 37 30 =,.
These unexpected relations between the values of the parameters can be
explained as follows by use of a recursive argument:

t=u C s=t+f-u=u+f-t=y,

t=u ands=v; C t1=t-f-y=u—-f-s=y,

s=vy andtj=u; C s;=s+f-u=vi+f-t=v,,

ty=up and s;=v, C th=t;—-f-v=u—f-g=u,.
Hence, the lopsided symmetry of the parameter values is an automatic con-
sequence of the initial relatidre u. It is, of course, impossible to know if
the author of the problem was aware of the fact that he would obtain this
lopsided symmetry of the parameter values by chodsing(= 2 00).

It is interesting to note that in certain ways the descending/ascending
chain ofsymmetric trapezoids with fixed diagomalFig. A.1.1 is similar
to the descending/ascending chairboectanglesin Fig. 15.1.1 above.
However, only the descending chain of birectangles is self-terminating.

Strictly speaking, the idea to construct such chains of trapezoids with a
fixed diagonal is completely new and unexpected. No similar constructions
appear to be known from any other mathematical documents, Greek, or
Islamic, or whatever.

A.1.2. VAT 8393. About the Clay Tablet

The clay tablet VAT 8393 was acquired by the Near Eastern Museum
in Berlin from the art dealer David in Paris at the beginning of the 20th
century, together with several hundred other clay tablets, of varied content,
linguistically as well as with regard to subject matter. Unfortunately, as far
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as is known today, all acquisition documents were lost in the war, so that
nothing more precise can be said about when the museum’s acquisition of
the clay tablets in the lot was made, or about from whom the dealer David
had purchased them, and therefore about the provenance of the clay tab-
lets. However, to judge from the inventory lists of the museum, the years
1913 or 1914 appear to be the most likely acquisition dates. All other texts
from the same lot that are mathematical, like VAT 8393, were published
long ago. In particular, VAT 8389, 8390, and 8391, with nearby catalog
numbers, were published in Neugebaudviathematische Keilschrift-
Texte 1(1935), pp. 317, 395, and 317. Only VAT 8393 has remained un-
published, why is not knowncidentally, the mathematical terminology

in VAT 8393 is quite different from the terminology used in all other math-
ematical texts of the lot, so a common provenance can be excluded.

For this and other reasons, the authors of this appendix are happy to be
able to present here this extraordinarily interesting mathematical cunei-
form text, which is an important testimony of the surprisingly high level of
Old Babylonian mathematics (in some instances). The difficult reading of
the cuneiform text was accomplished by the two authors in a mutual giving
and taking, where J. Friberg, who initially knew the text only from less
than perfect photos, had to rely on the exactness of the readings made by
J. Marzahn, while the latter, whose understanding of the mathematical
content was limited, had to rely on the former's explanations of the text.
Gradually, the increasing understanding of the text made possible a far-
reaching, error free cleaning of the text, which in its turn made it possible
to finally read large parts of the text that had been obscured by dirt ever
since the excavation of the clay tablet. When, eventually, in this way, the
meaning of the text was revealed, both authors were pleasantly surprised.

The clay tablet is 6.9 cm high, 8.8 cm wide, and 3.2 cm thick. It consists
of two large fragments glued together, with the addition of a small super-
ficial flake on the obverse. It is no longer possible to say if the pieces were
glued before the acquisition or in the course of some previous preservation
procedure. Although the clay tablet remains unbaked, not much of it has
been lost, so that almost the whole text can be read after the cleaning. Also
the diagram which accompanies and explains the text is relatively well pre-
served, even if the proportions in it are far from correct. In a few places,
the beginnings of straight lines in the diagram show that the same stylus
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was used for the drawing of the diagram as for the writing of the text.

The text is undated, but the hand writing and the inventory of cuneiform
signs used in it, as well as the form of the imprint of the tip of the stylus,
show that it is from the Old Babylonian period, most likely from between
the 18th and 16th centuries BC. A more precise dating is probably not pos-
sible. The size of the text and the diagram relative to the size of the clay
tablet, and also the sureness of the hand, indicate that the author of the text
was a well educated scribe with a considerable routine. On the other hand,
there are several peculiarities in the cuneiform text. The SigrsidT A,
normally easily distinguishable, can in VAT 8393 hardly be separated
from each other, they are almost completely identical. In other cases, vari-
ant writings can be found inside the text. Thus, the sign Kl is written in
lines 3, 7, 8, and 9 with a clear vertical wedge on the left side, a wedge that
IS missing in other places where it cannot be found even in a microscope
and after cleaning. The case is the same with the sign LI, which only in
lines 2, 3, and 8 displays its characteristic vertical wedge in the middle of
the sign, while the wedge does not appear elsewhere.

Itis, in view of such variations in the way of writing the signs, hard to
believe that VAT 8393 is a text written by a school boy. It is more likely
that it was produced by a well advanced student. This conclusion is sup-
ported by the observation above that VAT 8393 probably is an excerpt
from a large and systematically organized theme text.

VAT 8393 belongs to no known group of OB mathematical texts.
Characteristic terms in it arg-ip ‘double’ (= add),hu-ru-us ‘tear off’
(= subtract) pi-il ‘bring’ (= multiply), igi pu-tu-ur ‘resolve the opposite’
(= compute the reciprocalya i-li-a-kum ‘what comes up for you' (=
the result), andinda-nu ‘ninda’ (= the growth rate). The terms-ru-us,
bi-il, igi pu-tu-ur, andsa i-li-a-kum appear also iI€BS 19761 a mathe-
matical fragment from Nippur (Robso8¢ciamvsl (2000)), 36). There-
fore, VAT 8393, too, is probably a text from Nippur. In addition, the terms
bi-il, Sa i-li-a-kum, and (the inflected formyi-in-da-nam appear in the
brief textYBC 10522(MCT (1945), text Uc), while the terfm)in-da-nu
alone appears repeatedly in the two teW& 3052 andMS 2792 both
from Uruk (FribergRC (2007), Chapter 10).



Appendix 2

A Catalog of Babylonian Geometric Figures

A large number of Babylonian geometric figures have been mentioned
in this book, in various connections. On the following three pages, an
effort is made to enumeraddl plane or solid geometric figuregppearing
in cuneiform mathematical texts.

The following notations will be used:

¢ the most likely form of a figure mentioned in a mathematadale of constants

d the most likely intended form of a figure shown in a geomeiaigram

p  the most likely form of a figure mentioned in a mathemagioablem text

t the most likely form of a figure related to entries in a mathematibée text.

If nothing else is said the geometric figure appears, in one way or another,
in anOld Babylonianmathematical text. Otherwise, the following nota-
tions are used

(LB) the figure appearsnly in a Late Babylonian or Seleucid text

(+LB) the figure appearalsoin a Late Babylonian or Seleucid text

(+OAKk) the figure appeamasoin anOld Akkadiantext

(+OSum) the figure appeaassoin anOIld Sumerian (ED IllYext

(+pr-Sum) the figure appeaadsoin aproto-Sumeriarext.

The figures are generally of three kinds. In illustrations 1 a - 1 h are shown
a basic set of plane geometric figures, divided by diagonals, transversals,
etc In 2 a - 2 g are shown more complicated plane geometric figures, such
as figures within figures, concentric figures, repeatedly divided figures,
and rings or chains of figures. In 3 a - 3 g, finally, are shown a number of
solid figures, and in 3 h examples of the not very successful attempts of
Babylonian mathematicians to depict such solid figures.
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la
Squares and
rectangles

1b

Right, symmetric,
and equilateral
triangles

lc
Quadrilaterals
and trapezoids

1d
Circles,
semicircles,

segments c,

le
Rhombuses,

double-segments,

and crescents

1f

Concave squares,
concave triangles,

etc.

lg
Regular
polygons,
etc.

1lh
Other figures
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¢, p(+OAKK), c,d p(+pr-Sum, +OAkk), c,d,p
t(+OSum) t(+OSum)
LB [ % ‘
p(+ ) c,p d,p(B) d,p(LB)
p(+pr-Sum)  d(+OAKK), p, t p(+LB)

)ﬂl@@

d(+OSum), p,t c,d,p

/
I
l
[N
SRS
N

c c d, p(LB)

p(+LB)
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2a : - \\\
Basic ! 5 \
metric algebra . o
figures 0 D(+OAKK)
2b.
Concentric |:| IEI
figures A @
e g d, p (LB)
2c¢c
Figures within
el @ <> <
d d d 0
d+osum)  d d d a S

2d

Striped triangles D> I:D> l:l:l:l:l>

and trapezoids

2e

Bisected “

trapezoids D:l Confluent - “H
bisections

d(+OAKK), p
2f 2g
Rings of Chains of
figures figures

c.p d

4 -
t p P dp

AaN)
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Slmllar V V
sub-triangles

3a

Walls or canals
with rectangular
triangular, or
trapezoidal

cross sections

p(LB)

3b

Cubes, whole ; "

and truncated ko

square pyramids, ==

step pyramids p(+LB) p(LB), t

3¢
Cylinders, whole - — ————
and truncated ! !
circular cones,

p p p d,p

and ring-cones

3d 3e

Whole and —— Gate with [~ 1’
truncated interior /ﬁ |-
crest pyramids diagonal

3f

Ramps with Horn figure
straight or (icosahedron)
sloping sides

Drawrngs of >

solid figures
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Text, etc. Sec. Fig. Topic Kind
Al-Shannt 14.2 14.2.1 another proof of Heron’s triangle area rule Isl
AO 17264 11.6 11.6.1 a chain of three bisected trapezoids OB
AO 6484 8§87 1.13 1.13.9 4 rectangular-linear igi-igi.bi problems Sel
AO 6484 87 16.7 exact square side computations Sel
AO 6484 88 16.7 a problem with an approximation to sgs. 2 OB
AO 6770, 1 13.1 an indeterminate problem for a rectangle OB
Ar. | 131 (partial) table of contents Gr
Ar. .14 131 a product in a given ratio to the sum Gr
Ar. 1.27-30 13.1 13.1.1 diagrams explaining therisms Gr

Ar. 1.8 13.2a 13.2.1-2 s@ + sq.q = sq.r Gr

Ar. 11.9 13.2b 13.2.3-4 s + sq.q = sq.U + sq.v Gr

Ar. 11.110 13.2c sqp—-sq.q=D Gr

Ar. 11.19 13.2d 13.25 (sgy—sqgd):(sq.d—sg.s)=q:1 Gr

Ar. 111.19 134 1343 sqs(d)xsg.s-2a-b)j=1,2,3,4 Gr

Ar. 1V.14-22 13.8 diorismsand the terrlnplajsmatik@ Gr

Ar. V.7-12 13.7 cubic problems wittiorisms Gr

Ar. *V".9 13.3 13.3.1-2 approximation to limits Gr
Ar. “V".30 13.5 price problem, quadratic inequalities Gr
Ar. “VI” 13.6 contents: equations for right triangles Gr
Ar. “VI".6 13.6 area + upright of right triangle given Gr
Ar. “VI".16 13.6 13.6.1 aright triangle with a rational bisector Gr
Archimedes 16.6 accurate estimates for the square side of 3 Gr
Ash. 1922.168 11.4 11.4.1 adiagram of a 3-striped trapezoid OB
Before Writing1 9.2 pre-literate number tokens in the Middle East pre-lit
BM 13901 1.12a 1.12.1-3 a theme text with metric algebra problems OB
BM 13901, 12 54 541  aquadratic-rectangular system of type B5 OB
BM 15285 6.2 6.2.2-3 a catalog of 41 division of figures problems OB
BM 15285, 33 125 1251 double segments and lunes (Neugebauer) OB
BM 34568, 1 18.3 rules for computing the diagonal of a rectangle  Sel
BM 34568, 12 1.13 1.13.8 a “pole-against-a-wall problem” Sel
BM 34568, 17-18 18.3 given the area and perimeter of a right triangle LB
BM 80209 1.10 a catalog text with metric algebra problems OB
BM 85194, 21-22 1.12b two problems for a chord in a circle OB
BM 85196, 9 1.12b 1.12.6 a “pole-against-a-wall problem” OB
BM 96954+ 9.3 9.3.2 outline of the clay tablet, with contents OB
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BM 96954+, 81f 9.3 9.3.3
BM 96954+ § 4
BR 2-19

BR 10-12

BR 13-15

BR 16-18

BR 19-21

BR 22-24

BR 25

BR 26-28

BR 31
BssXIl.21
BssXll.28
BssXVII1.50-51
BssXVII1.65-66
BssXVII1.69-72
CBS 19761
CollectionslV.1, see Pappus
CUNES 50-08-001 11.3a
Data 54-55
Data 57
Data 58
Data 59
Data 66
Data 84
Data 86
DPA37
DPA 36-37
DPA39

El
El
El

El.
El.
El.
El.
El.
El.
El.
El.
El.
El.
El.
El.
El.
El.

.1.41. 43
.1.43
.1.44
11.2-3
1.4, 1.7
11.5-6
1.8
11.9-10
11.11%, 11.14*
11.12-13
1.32

\
IV.10-11
VI.19
VI.24
VI.25
VI.28
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a ridge pyramid truncated at mid-height OB
9.3 problems for cones and truncated cones OB
6.2 parameters for the circle, the semicietle, OB
12.3a 12.3.1 parameters for the ‘bow field’ OB
12.3b 12.3.2 parameters for the ‘boat field’ OB
12.3c 12.3.3 parameters for the ‘barleycorn field’ OB
12.3d 12.3.4 parameters for the ‘ox-eye’ OB
12.3e 12.3.5 parameters for the ‘lyre-window’ OB
12.3f 12.3.6 parameters for the ‘lyre-window of 3’ OB
7.8 parameters for the 5-, 6-, and 7-fronts OB
16.7 an approximation to sgs. 2 OB
14.3 14.3.1 Brahmagupta'’s area rule for quadrilaterals Ind
14.5-6 14.6.1 Brahmagupta’s diagonal rule Ind
9.4 volumes of conical piles of grain Ind
16.5 16.5.1 formal multiplication of number pairs Ind
17.4 Brahmagupta’s solution rules Ind
App.1 a mathematical fragment from Nippur OB
Gr
a combined table of areas of squares ED Il

10.4 10.4.3 figures given in form and magnitude Gr
10.1 10.1.3 parabolic applications of parallelograms Gr
10.2 10.2.2 elliptic applications of parallelograms Gr
10.3 10.3.1 hyperbolic applications of parallelograms Gr
111 a rule for the area of a triangle Gr
10.5 10.5.1 an equivalence rule for quadratic equations Gr
10.6 10.6.1-2 a rectangular-linear system of type B5 Gr
5.3 5.3.2  computation of the area of a square OAkk
1.14 1.14.1 computations of the areas of squares OAKk
10.1 10.1.2 a metric division exercise OAKk
5.3 5.3.1 relation to the OB similarity rule 76
10.1 10.1.1 equal complements about the diameter Gr
10.1 10.1.1 parabolic applications of parallelograms Gr
1.2 1.2.1-2 systems of equatiorss quadratic equations Gr
1.3 1.3.1-2 quadratic-lineass.rectangular-linear systems Gr
1.4 1.4.1-2 rectangular-linear systems of equations Gr
1.5 1.5.1-2 subtractive quadratic-linear systems of equations Gr
1.6 1.6.1 constructive counterpartEtoll.4, 1.7 Gr

1.7 1.7.1-2 constructive counterpartsib 11.5-6 Gr

1.8 1.8.1 constructive counterpartétoll.8 Gr

12.2 proposition about the chord-tangent angle Gr
6.1 outline of contents Gr
6.1 6.1.1  preliminaries to the construction of a pentagon Gr
10.4 10.4.2 similar triangles in duplicate ratio of sides Gr
10.1 parallelograms about the diameter Gr
10.4 10.4.1 afigure of given shape and size Gr
10.2 10.2.1 elliptic applications of parallelograms Gr
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El. VI.29 10.3 10.3.1 hyperbolic applications of parallelograms Gr
El. VI.30 7.1 7.1.1  cutting a line in extreme and mean ratio Gr
El. V1.33 7.4 angles have the same ratio as their arcs Gr
El. X 5.1 outline of contents Gr

El. X.16/17 105 an equivalence rule for quadratic equations Gr
El. X.17-18 5.2 5.2.1 commensurable solutions to a system of equations Gr
El. X.28/29 1la 3.1 3.1.1 generating rules for diagonal triples Gr
El. X.30 5.2 an auxiliary construction Gr

El. X.32/33 41 411 right sub-triangles in a right triangle Gr
El. X.33 52 522 a+b=ua-b=sqg.Vv/2 (uandvasin X.30) Gr

El. X.41/42 5.2 5.2.3 aninteresting metric algebra lemma Gr
El. X.54 5.2 5.24 the square sideetimes &first binomial Gr

El. X.57 5.2 the square side efimes afourth binomial Gr

El. X.60 5.2 5.25 the square orbmomialapplied toe Gr

El. X.63 5.2 the square onraajor applied toe Gr

El. X.112 5.2 an expressible area applied biremial Gr

El. X.114 5.2 an expressible area applied t@potome Gr

El. XI.Defs. 25-28 8.1 four (of the five) regular polyhedrons Gr
El XI1.3 9.1 911 dissection of a triangular pyramid Gr
El. X11.4-7 9.1 9.1.2 the volumes of pyramids Gr
El XI1.1-12 7.2 7.2.1  outline of contents Gr

El XII1.8 7.2 7.2.1 division of the diagonals in a pentagon Gr
El. X111.9 7.2 7.21 r+sgisdivided in extreme and mean ratio Gr
El. XIII.10 7.2 7.2.1 the square on the side of a decagon Gr
El. XII.11 7.2 721 metric analysis of the pentagon Gr
El. XII1.12 7.2 7.2.2 the square on the side of an equilateral triangle  Gr
El. X111.13-18 8.1 outline of contents Gr

El. X111.13 8.1 8.1.2-3 edge of a tetrahedron inscribed in a sphere Gr
El XIIl.14 8.1 8.1.4  construction of an octahedron in a sphere Gr
El XIII.15 8.1 8.1.5 construction of a cube inscribed in a sphere Gr
El. XIIl.16 8.1 8.1.6-7 construction of an icosahedron in a sphere Gr
El. XIIl.17 8.1 8.1.8-9 construction of a dodecahedron in a sphere Gr
El. XII1.18, ps 8.1 uniqueness of the five regular polyhedrons Gr
Erm. 15073 11.10 11.10.1 outline of the reverse of the clay tablet OB
Erm. 15073 11.10 11.10.3 photos of the clay tablet OB
Erm. 15073v 11.10 11.0.2 a confluent trapezoid bisection OB
Erm. 15073vi 11.10 bisections in two directions OB
Erm. 15189 11.5 11.5.1-2 ten double bisected trapezoids OB
ERMLPU 42-5 15.0 Theon of Smyrna’s side and diagonal numbers Gr
G =1IM 52916 16.7 approximations to sgs. 3 in a table of constants OB
GeometriceAC  18.2 a hand book in mensuration Gr
Geom 8.1 18.2 the “method of Pythagoras” Gr
Geom 9.1 18.2 the “method of Plato” Gr
Geom 24.1-2 18.3 18.3.1 indeterminate problems for pairs of rectangles Gr
Geom 24.4 18.3 a rational right triangle with given perimeter Gr
Geom 24.5 18.3 a rational right triangle with given area Gr
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Geom 24.7-9 18.3 relations between the sides of a right triangle Gr
Geom 24.10 18.3 given the area plus perimeter of a right triangle ~ Gr
Geom 24.21 18.3 a pair of parallel right triangles Gr
Geom 24.26 18.3 the diameter of a circle inscribed in a right triangle Gr
Geom 24.46 18.3 given the sum of diameter, arc, and area of a circle Gr
Hippocrates 12.1 12,1,1 quadrature of lunes according to Alexander Gr
Hippocrates 12.2 12,2.1-2 quadrature of lunes according to Eudemus Gr
IM 31248 114 11.4.2 a problem for a 5-striped trapezoid OB
IM 43996 11.2j 11.2.11 a problem for a 3-striped triangle OB
IM 51979 7.8 7.8.2 adrawing of an octagram OB
IM 52916 = G 7.7 a table of constants OB
IM 54472 16.7 elimination of square factors OB
IM 55357 4.3 4.3.1-2 achain of right sub.triangles in a right triangle OB
IM 58045 11.3a 11.3.1 adrawing of a bisected trapezoid OAKkk
IM 67118 5.4 5.4.2  aquadratic-rectangular system of type B5 OB
IM 121613, 1 104 a form and magnitude problem OB
Ist. Si. 269 11.3f 11.3.5 diagrams of six 2-striped trapezoids OB
Ist. Si. 428 16.7 16.7.4 the square side of 2 02 02 02 05 05 04 OB
JZSSV.2-16 9.4 outline of contents, with diagrams Chin
Kudurru 12.4 12.4.2 images of the Sun, the Moon, and Venus Kass
Practica Geom. 11.0 Leonardo Pisano’s classical work Eur
Liber Mahamelethl.13 a Latin manuscript based on Islamic sources Eur
Liu Hui 9.3 commentary tdZSSvV Chin

MAH 16055 11.2i 11.2.10 outline of the clay tablet with its 10 diagrams OB
MAH 16055 11.2i 11.2.9 a problem for a 3-striped triangle OB
Menq 82 B -85B 6.1 Socrates and the slave boy Gr
Metrical.8 14.1 14.1.1 Heron'’s triangle area rule Gr
Metrical.8 b 16.1 16.1.1 Heron’'s square side rule Gr
Metricall 9.3 volumes of pyramids and cones Gr
Metricalll.4 18.4 a triangle divided into four sub-triangles Gr
MLC 1950 11.2f 11.2.6 a problem for a 2-striped triangle OB
MLC 2078 15.2 15.2.1-2 an OB algorithm table for a chain of trapezoids OB
MS 1938/2 6.2 6.2.9 acircle in the middle of a hexagon OB
MS 2192 24 2.4.2 aring of three trapezoids OB
MS 2985 6.2 6.2.8 acircle in the middle of a square OB
MS304981a 1.12b 1.12.5 a problem for a chord in a circle OB
MS 3049 § 5 8.2 8.2.1 theinner diagonal of a gate OB
MS 3050 6.2 6.2.4  asquare with diagonals inscribed in a circle OB
MS 3051 6.2 6.2.5 an equilateral triangle inscribed in a circle OB
MS 305281¢c 11.2 a problem for a triangular clay wall OB
MS 3876, 3 8.3 8.3.1-2 the weight of a copper icosahedron Kass
MS 3908 114 11.41 adrawing of a 3-striped trapezoid OB
MS 3971 8§ 2 5.4 5.4.2  aquadratic-rectangular system of type B5 OB
MS 397183 3.2 3.21 fiveigi-igi.bi problems OB
MS 397184 3.3 a scaling problem for diagonal triples OB
MS 4632 9.2 9.2.2 aspherical envelope with number tokens pre-lit
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MS 511282c 54 5.4.2  aquadratic-rectangular system of type B5 OB
MS 5112 § 11 1.12 a rectangular-linear system of equations OB
MS 5112 1.12a a recombination text w. metric algebra problems OB
NSe = YBC 7243 16.7 a table of constants OB
NSe 10 16.7 an approximation to sgs. 2 OB
0 176 7.9 App.2 al2-pointed star (a zodiac diagram) Sel
OD 1-2, 30-31 11.1 11.1.1 atriangle divided into parallel strips Gr
OoD3 11.1. 11.1.2 atriangle bisector through a point on the side Gr
OD 4-5 11.1 11.1.3 atrapezoid divided into parallel strips Gr
oD, 12 11.1. 11.1.4-5 atrapezoid bisector through a point on the side  Gr
OD 19-20 11.1. 11.1.6 atriangle divided by a line through a given point Gr
OD 32 11.1 11.1.1 atrapezoid divided into parallel strips Gr
OIP 14, 70 11.3,fn. 31 table of areas of small squares ED Il
Pappus 2.2 Coll. IV.1: a generalization dl. 1.47 Gr
P.BM 105285 17.4 earliest use of common fractions Gr-Eg
P.BM 105208 6 a 16.7 a square side rule (demotic) Gr-Eg
P.Cairo§ 1 17.4 early use f a kind of common fractions Eg-dem
P.Cairo§ 11 6.2 an equilateral triangle inscribed in a circle  Eg-dem
P.Cairo§ 12 6.2 a square inscribed in a circle Eg-dem
P.Chicago 32-3 18.2 areas of a hon-symmetric trapezoids Gr-Eg
P.Cornell69,3  18.2 the area of a non-symmetric trapezoid Gr-Eg
P.Heidelberg 66311.7 a divided trapezoid Eg-dem
P.Moscow 17 104 a form and magnitude problem Eg-hier
Plimpton 322 3.3 3.3.1 atable of parameters for 15 igi-igi.bi problems OB
Proclus 3.1 In Primum Euclidis Elementorum Comm. Gr
Proclus 121 SummaryHippocrates of Chios Gr
Proclus 15.1 Comm. on Plato’s Republi@.27.11-22 Gr
Ptolemy 14.4 4.4.1 the diagonal rule for a symmetric trapezoid Gr
Ptolemy 14.6 4.6.2 the diagonal rule for a cyclic quadrilateral Gr
Ptolemy 16.4 Synt 1.10: accurate square side approximations  Gr
P.vindob. G. 1996.4 volumes of pyramids and cones Gr-Eg
Str. 364obv. 11.2a 11.2.1 outline of clay tablet OB
Str. 364 § 2 11.2a a problem for a 3-striped triangle OB
Str. 364§ 3 11.2b 11.2.2 a quadratic equation for a 2-striped triangle OB
Str. 364 88 4-7 11.2c problems for 2-striped triangles OB
Str. 364rev. 11.2d 11.2.3 outline of clay tablet OB
Str. 3648 8¢ 11.2d 11.2.4 a problem for a 5-striped triangle OB
Str. 367 11.3e 11.3.4 a problem for a 2-striped trapezoid OB
Suan Shu Shu 9.3 early mathematical text on 190 bamboo strips  Chin
Syntaxid.10, see Ptolemy Gr
Theaetl47 C-D 17.1 Theodorus’ incommensurability proofs Gr
Theon of Smyrna, séeERMLPU 42-5 Gr
Thymaridas’ Bloom 11.3g a special kind of systems of linear equations Gr
TMH5, 65 5.3 5.3.2 metric division OAKkk
TMS1 1.12b 1.12.4 adrawing of a symmetric triangle in a circle OB

TMS2 7.8 7.8.1 drawings of a hexagon and a heptagon OB
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TMS3 =BR
TMS5
TMS5
TMS5 § 7-8
TMS14
TMS18
TMS19b
TMS20
TMS21
TMS23
TSS77

UE 3, 78
UE 3, 286
UE 3, 393
UE 3 518
UET 6/2222
VA 5953
VAT 7351
VAT 7531
VAT 7621
VAT 7848, 4
VAT 7848, 4
VAT 8389
VAT 8393
VAT 8512
VAT 8512
VAT 8521
VAT 12593
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6.2 a table of constants OB
1.11 a catalog text with metric algebra problems OB
13.6 a theme text with problems for squares OB
2.4 problems for concentric and parallel squares OB
9.3 9.3.1 aproblem for a ridge pyramid OB
11.2e 11.2.5 aclever problem for a 2-striped triangle OB
16.7 an amazingly elegant metric algebra problem OB
16.7 an exact square side computation OB
6.2 6.2.6  aconcave square in the middle of a square OB
11.9 11.9.1-2 confluent bisections in two directions OB
6.2 6.2.1 four circles inscribed in a square ED Il
79 7.9.1 drawing of a conjugate pair of hyperbolas pr-Sum
7.9 7.9.3 two entangled acrobats (a concave square)  pr-Sum
79 7.9.4  four entangled acrobats pr-Sum
79 7.9.6 four entangled armed men (a concave square) ED lll
16.7 16.7.3 asquare side algorithm by use of factorization OB
7.9 7.9.7 apentagram of entangled bearded men OB
1.12c 1.12.7 cross-wise striped trapezoids OB
11.8 11.8.1 cross-wise striped trapezoids OB
11.7 a 2 - 9-striped trapezoid OB
1.12c a problem for a rational symmetric trapezoid Sel
13.4 13.4.2 arational symmetric trapezoid Sel
135 systems of linear equations OB
App.1 A.1.1-6 a chain of trapezoids with fixed diagonals OB
11.2g 11.2.7 aclever problem for a 2-striped trapezoid OB
11.3b 11.3.3 Gandz’ and Huber’s interpretation OB
13.6 indeterminate interest problems OB
11.3a table of areas of squares ED Il

W2329181a-g 1.13 1.13.1-6 metric algebra problems in terms of seed measure LB
W 2329184 ab 7.7

W2329184a
W 2329184b
W 2329184c
W23291-x§1
W 23291-x § 2
W 23291-x § 4
YBC 10522
YBC 4608
YBC 4675
YBC 4696
YBC 4696
YBC 4698, 4
YBC 4709
YBC 7289
YBC 7359

16.7
16.7
16.7
124 12.4.1
113 1.13.7
1.13
App.1
11.3d
11.3c
11.2h 11.2.8
11.2h
13.5
10.8
16.7 16.7.2
6.2 6.2.7

two rules for the area of an equilateral triangle LB
a standard approximation to sgs. 5 LB
a standard approximation to sgs 3 LB
an accurate approximation to sgs. 3 LB
double circle segment and lunes LB
a problem for five concentric circles LB

metric algebra problems in terms of area measure LB

a brief text related to VAT 8393 OB

a problem for a 2-striped trapezoid OB
a problem for a bisected quadrilateral OB
outline of the clay tablet OB

a series of problems for a 2-striped triangle OB
a price and weight problem for gold and iron OB
systems of equations of types B5 and B6 Kass
an accurate approximation to sgs. 2 OB
a square in the middle of a square OB



Index of Subjects

accurate construction of a figure MS 3051 (OB) 136
additivity of areas El 1.1 (Gr) 7
algorithm table MLC 2078 (OB) 378
analytic and non-constructive solutionskl. 11.4-8 (Gr) 24
apotomes El. X.73; XII1.6, 17(Gr) 101 f, 142, 172
application of areas El. 1.44; Data 57-61, 84-85 (Gr) 114, 211 f
approximation to limits Ar. “V".9 (Gr) 338
Archimedes (c.250 BC) Metr. 1.8 (Gr) 361
Meas. of Circleprop 3 (Gr) 391
ascending and descending chains VAT 8393 (OB) 439
barleycorn field BR TMS 16-18 (OB) 133, 318, 323
basic problems in metric algebra (OB), W 23291 § 1 (LB) 6, 50
binomial El. X.36 (Gr) 101 f, 107
birectangle El. 11.19 (Gr) 16
P.Cornell 69 3 (Gr-EQ) 348
overlapping El. 11.10; Metr. 1.8; Synt (Gr) 17, 362 f, 369
bisected quadrilateral YBC 4675 (OB) 272
bisected trapezoid IM 58045 (OAKk); VAT 8512 (OB) 269, 271 f
Bloom of Thymaridas Nichomachulsitroductio (Gr) 282
boat field BR =TMS3, 13-15 (OB) 133, 317
bow (field) BR =TMS3, 10-12 (OB) 133, 316
Brahmagupta (628 AD) Brahmasphutasiddhanta (Ind) 206, 342, 365
arearule BssXIl.21 (Ind) 365f, 371
——— diagonal rule BssXII.28 (Ind) 370
——— formal multiplication of pairs  BssXVII1.65-66 (Ind) 387, 391
square-nature equation BssXVIII.69 (Ind) 412
capacity number W 23291 § 1 (LB) 52
catalog of metric algebra problems BM 80209 (OB) 27
chain of birectangles Fig. 15.1.1 (Gr) 375, 410, 440
chain of bisected trapezoids Erm. 15189, AO 17264 (OB) 287, 293
chain of right sub-triangles IM 55357 (OB) 97
chain of symmetric trapezoids VAT 8393 (OB) 439
characteristic triangle for an octahedron  Fig. 7.6.2 157
characteristic triangle for a pentagon Fig. 7.3.2 148
chord problem MS 3049 § 1; BM 85194, 21 (OB) 44
chord method Ar. 11.8, 9;Ar. “V".9 (Gr) 333, 338, 339

453



454 Amazing Traces of a Babylonian Origin in Greek Mathematics

chord-tangent angle
circumscribed circle
cleverly designed problem

commensurable straight lines or areas El. X.Def. 1.1 (Gr)

commensurable in square only
complements about the diagonal
completion of the square

composition of triples

concave square (lyre-window)

in the middle of a square
triple of constants
A+a+d=B=11640
concave triangle

area constant
concentric circles

concentric and parallel squares

concentric and parallel triangles

cones
confluent trapezoid bisection

conjugate pair of hyperbolas
constant of copper

El. 111.32 (Gr) 313f
TMS1; MS 3050, 3051 (OB) 42,135
TMS18; VAT 8512 (OB) 255, 259
102, 104 f
El. X.Def. 1.2 (Gr) 104 f, 145
El. 1.43 (Gr) 113, 212
El. I1.5; Ar. “v".30 (Gr) 3,351
Geom 24.46 (Gr) 429
Str. 364 §8 3-7 (OB) 248 f
TMS 23 (OB) 301 f, 346
BM 15285 ## 28, 40 (OB) 132-134
TMS21 (OB) 137
BREMS3, 22-24 (OB) 316, 319
TMS20 (OB) 400
BM 15285, 40 (OB) 132, 133
BRTMS3, 25 (OB) 316, 320

constants, mathematical and metrological (OB)51, 79, 133, 152, 159, 161, 208, 222, 316

correction factor for false values
cross-wise striped trapezoid
cube inscribed in a sphere

cubit (= 1/2 m.)

cyclic orthodiagonal

cyclic quadrilateral

deliberately introduced difficulty
diagonal quartet

diagonal rule in three dimensions

diagonal triple

Diophantus (c. 250 AD ?)
diorism (condition)
dissection of a triangular pyramid

dodecahedron

W 23291 8§19;W23291-x§2 (LB) 59, 61
TMS5 88 7-9; YBC 7359 (OB) 3,1384
W 23291 § 1 f(LB) 58
Geom 24.21 (Gr) 428
MS 2192 (OB) 80

BM 96954+ § 4 (OB) 199, 202 f
TMS23; Erm. 15073 colv (OB) 301 f; 306
Ar. “V".9 (Gr) 39, 346
UET 3 78 (pr-Sum) 164

MS 3876 (Kass) 187 f

IM 121613, 1; YBC 4608 (OB) 224,276 f
VAT 7531 (OB) 297
El. XIII.15 (Gr) 171, 175

(OAKk, Sum, OB, LB) 51f, 68

(Ind) 367 f

(Gr, Ind) 342 f, 362, 364 f

MS 3049 § 5 (OB) 183

MS 3049 § 5 (Kass) 183
El. XIII.17 (Gr) 178 f
MS 3049 § 5 (Kass) 183
El. X.28/29;Ar. 11.8 (Gr) 83, 105, 334
MS 3971 8§ 3-4 (OB) 86, 93
MS 3049 § 5; Str. 364 § 3 (OB) 183, 248 f
MAH 16055;TMS23 (OB) 265, 304
Arithmetica(Gr) 327 f
Ar. 1; Ar. V (Gr) 328f, 358 f
El. XI1.3 (Gr) 189 f
Liu Hui's commentary (Chin) 207

EI XII1.17 (Gr) 178
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double bisected trapezoid
double circle segment
down (= to the right) VAT 7531, 4(c) (OB)
Early Dynastic 11l period (ED 1)

Elements II*, forerunner dElementdl  (Gr)

elliptic application El. VI.28; Data 58 (Gr)
equalsided (square, square side) (oB)

W 23291-x (LB)

Erm. 15189 (OB)
BR = TMS, 16-21 (OB)

equilateral triangle

G = IM 52916rev. 7 (OB)
MS 3876 (Kass)

W 23291 § 4 (LB)

El. XIII.12(Gr)

Geom 10 (Gr)

equilateral triangle inscribed in a circle  MS 3051 (OB)
equilateral triangular band MS 2192 (OB)
Euclid’'s Elementgc. 300 BC) (Gr)

everywhere rational quadrilateral (Ind)

exact computations of square sides AO 6484 § 7 (Sel)
expressible diameter ERMLPU 42-5 (Gr)
expressible straight lines or areas El. X; EL XIII.6, 11 (Gr)
extreme and mean ratio, construction EI. 1.11 (Gr)
construction El. VI.Def. 3A, EI. VI.30 (Gr)
metric analysis El. XIII.1-6 (Gr)

explanation of the term Fig. 7.4.1 (Gr)

factor diagram for systems of numbers  pre-litevateroto-literate
factorization method UET 6/2222; Ist. Si 428 (OB)
false values (see rule of false value) (OB)

feet as units for area and length Sec. 17.4; Sec. 18.1 (Gr)

field between two squares Fig. 1.1.2

two or three squares TMS5 (OB)

concave square in a square  TMS21 (OB)
field expansion procedure Sec. 1.15 (pr-Sum)
first apotome (with respect &) El. XIII.6 (Gr)

first binomial (with respect te)
form and magnitude problem

El. X.Def. II.1; El. X.54 (Gr)
El. VI.25; Data 55 (Gr)
P.Moscow 17 (Eg-hier)

IM 121163, 1 (OB)

form and magnitude rule TMS18 (OB)

formal multiplication of pairs of number8ssXVII1.65-66, 69-71 (Ind)
fourth apotome (with respect to €) El. X.Def. lll 4 (Gr)

fourth binomial (with respect to e) El. X.Def. Il 4 (Gr)

and the square of a major El. X.57, 63 (Gr)

the height of a pentagram Fig. 7.3.1

funny number Ist. Si 428 (OB)
gaming-piece field (equilateral triangle) MS 3876 (Kass)

455

287 f
316 f
48

2,126, 271

24
217
28
63

MS 2192; MS 30501MS2 (OB) 80, 135,162

159, 398
184 f, 398
160, 397

143, 146, 172

389, 418
135
80
1-308
343 f
399
373 f

1021, 142 f, 179 f

19
141
142
151
194
90, 401 f

409, 416

5
31
137
69
143
108 f
220 f
223
224
258
387 f, 412
145
108
110, 112
147
403-4
185



456 Amazing Traces of a Babylonian Origin in Greek Mathematics

general computation rule W 23291 88 1, 4 (LB) 54 f, 397
generating rule for diagonal triples MS 3971 § 3 (OB) 87
table of parameters Plimpton 322 (OB) 92
——— igi-igi.bi problem TMS23 (OB) 304
— Euclid El. 28/29 1 a (Gr) 83
—— Plato Proclusomm;Geom 9.1 (Gr) 84,418
—— Pythagoras Proclusomm;Geom 81. (Gr) 84, 418
——— square number equal to 2 squares 11.8 (Gr) 334
used as a tool by Diophantus Ar. “VI” (Gr) 352
generating rule for transversal triples YBC 4608 (OB) 277
Fig. 11.3.6 (OB) 284
geometric(al) algebra (Gn) vi-vii, 71, 232
geometric progression in the literal sense IM 55357 (OB) 100
going-out (coefficient) BM 13901 § 1 (OB) 37
grain measure TMS14; BM 96954+ (OB) 198
hand tablet, triangle inscribed in a circl@MS1 (OB) 42
four circles in a square TSS77 (ED 1) 126
——— square inscribed in a circle MS 3050 (OB) 135
—— equilateral triangle in a circle MS 3051 (OB) 135
——— square in the middle of a square  YBC 7359 (OB) 138
——— octagram IM 51979 164
——— 3-striped triangle IM 43996 (OB) 267
——— bisected trapezoid IM 58045 (OAKKk) 269
—— 3.striped trapezoid Ash. 1922.168 (OB) 285
——— 3-striped trapezoid MS 3908 (OB) 285
——— square with diagonal YBC 7289 (OB) 396
——— square side algorithm UET 6/2 222 (OB) 401
square side algorithm Ist. Si 428 (OB) 403
heptagon = 7-front BR ¥MS3, 28 (OB) 161
Heron of Alexandria (c. 60 AD) GeometricaMetrica (Gr) 361f, 385f, 415 f
Heron’s accurate square side rule Geom 10, 15 (Gr) 387 f
Heron’s triangle area rule Metr. 1.8 (Gr) 361f
Heron’s square side rule Metr. 1.8 b (Gr) 385
Heronic triangles VAT 7531 (OB) 49 f
hexagon = 6-front MS 1938/2; BR 27 (OB) 139, 161
Hippocrates (c. 430 BC) lunes according to Alexander (Gr) 309
lunes according to Eudemus (Gr) 311
Hofmann, side and diagonal numbers Fig. 15.1.1 (Gr) 375
square side approximations Sec. 16.2 (Gr) 386
horn figure (icosahedron) MS 3876 (Kass) 185 f
Hayrup, J. 37, 40, 295, 402, 416, 417, 420
hundred-cubit-square W 23291 § 1 (LB) 52
hyperbolas, conjugate UE 3 78 (pr-Sum) 165
intersecting Data 86 (Gr) 232
hyperbolic application El. VI.29; Data 59 (Gr) 219

icosahedron El. X1.Def.27;El. XII1.16 (Gr) 171,176
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igi-igi.bi problems

im.gi d.da ‘long clay’ (table text)
impressed tablets

inexpressible diameter

inner diagonal of a gate

AO 6484 § 7 (Sel)

457

66, 399

MS 3971 § 3; Plimpton 322 (OB) 87, 88

Jiu Zhang Suan SHg Nine Chapters  Sec. 9.4 (Chin)

Kassite

Knorr, W.

TMS23 (OB) 304, 334
(pr-Sum) 193
(Gn) 375
MS 3049 § 5 (Kass) 181

202
MS 3049, 3876; YBC 4709 181, 184, 233
AO 17264; Fig. 12.4.2 (Kass) 292, 324

101, 105, 147, 153, 211, 309, 373, 392, 405-409

Larsa ancient Mesopotamian city 88, 272
lettered diagram (Gn) 2,24,74, 361, 416, 429
linear correction factor IM 121613, 1 (OB) 224
linear similarity rule for triangles Str. 364 88§ 2-3¢8; (OB) 246 f, 254 f
Liu Hui’s dissection commentary tfZSSChin) 207
lunes Figs. 12.1.1, 12.2.1 (Gr) 309 f
(crescent) W 23291-x § 1; BM 15285, 33 (LB) 321 f
lyre-window, see concave square (OB)
lyre-window of 3 BR =TMS3, 25 (OB) 134, 316, 320
major, definition El. X.39 (Gr) 107
relation to a fourth binomial El. X.57, 63 (Gr) 110, 112
——— the diagonal of a pentagon Fig. 7.3.1 (Gr) 148
possible origin of the term Fig. 7.5.1 (Gr) 153
many-place sexagesimal numbers (OB, LB) 91, 183, 399 f
medial straight lines or areas El. X.21,etc (Gr) 102 f
metric algebra (OAKk/OB/LB) vi f
metric algebra diagram (OAKk/OB/LB) vii, 2
metric analysis, pentagon El. XIII.8-11 (Gr) 146 f
octagon Fig. 7.6.1 156
metric conjugate rule W 23291 § 1 (LB) 58
metric square side computation (OAKK) 69
metric division W 23291 § 1b; W 23291-x § 4 d (LB) 50 f, 63
TMH 5, 65;DPA 39 (OAKK) 115, 214
metric squaring W 23291 § 1 a; W 23291-x, § 4 b (LB) 50, 63
minor, definition El. X.76 (Gr) 107
the side of a pentagon El. XI11.11 (Gr) 143
——— possible origin of the term Fig. 7.5.1 (Gr) 153
the edge of an icosahedron El. XI11.16 (Gr) 171, 176
missing analysis El. XIll. 13, 16, 17 (Gr) 174, 177, 179
OD 19-20, 32 (Gr) 241 f
Muroi, K. 46, 137, 400
neusisconstruction Hippocrates (Gr) 314
ninda = c. 6 meters (Sum/OB) 5
ninda and cubit sections W 23291 § 1 (OB) 54
Nippur ancient Mesopotamian city 269, 440
non-symmetric (scalene) triangle Geom 12 (Gr) 419
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VAT 7531 (OB) 49
non-symmetric trapezoid P.Chicago 33;P.Cornell 69 2 (Gr) 419
VAT 7531 (OB) 49
normalized diagonal triple Plimpton 322; MS 3971 § 3 (OB) 92, 152
normalized side of a figure BRHEMS3,2-32 (OB) 152, 161, 316, 322
number tokens BW 1(pre-lit) 192 f
octagram IM 51979 (OB) 164
octahedron El. X1l1.Def.26, 14 (Gr) 171, 174
Old Akkadian, square expansion rule Fig. 1.14.1 (OAKKk) 68 f
early examples of metric algebr@aMH 5, 65;DPA 37, 39 (OAKK) 115, 214
——— bisected trapezoid IM 58045 (OAKKk) 269
computation of squareside Ash. 1924.689 (OAKK) 391
overlapping birectangle El. 11.10; Metr. 1.8; Synt (Gr) 17, 362, 369
ox-eye (fat circular double-segment) BRMS3, 19-21 (OB) 133, 319, 323
parabolic application El. 1.43-44;Data 57 (Gr) 212
Pappus’ proof (c. 320 D) Fig. 2.2.1 (Gr) 75
peg-head (triangle) (Sum/OB/LB) 97, 129, 246, 261, 316, 397
pentagon = 5-front El IV.11-14, XI11.7-11 (Gr) 123, 142f, 171 f
BR =TMS3, 26 (OB) 161
pentagram of bearded men VA 5953 (OB) 169
plasmatikon(representable) Ar. 1.27, 28, 30; IV. 17, 19; V.7 (Gr) 329, 359
Plato, the diagonal of a square Menq 82 B - 85 B (Gr) 132
Theodorus’ proof Theaetetud 47 C-D (Gr) 410
Plimpton 322 Sec. 3.3 (OB) 88 f
pole-against-a-wall problem BM 85196, 9 (OB) 46 f
BM 34568, 12 (LB) 64 f
pre- and proto-literate number notations  (pre-lit) 194
pre-optimal approximation 412 f
pre-pre-optimal approximation BSSXVIII.70-71 (Ind) 413 f
price and weight problem, indeterminatér. “v”.30 (Gr) 349
indeterminate YBC 4698, 4 (OB) 349
Proclus (c. 450 AD) IPEEC, Summ.CPR(Gr) 84, 235, 309, 376
pseudo- HeroniGeometrica Ch. 18 (Gr) 415 f
Ptolemy’s diagonal rule (c. 150 AD) Synt 1.10 (Gr) 364 f, 3711, 438
Ptolemy’s accurate approximations  Synt 1.10(Gr) 399
purpose of Babylonian mathematics MS 3049 § 5 (OB) 183
pyramid, volume El. X111.13, XII.3-7 (Gr) 173,189 f
BM 96954+ (OB) 199
quadratic correction factor IM 121613, 1 (OB) 224
quadratic equations for 2-striped triangles Str. 364 § 3-7 (OB) 247 f
quadratic equation, type B4a El. 11.3, VI. 29, 30;Data 59 (Gr)6, 8, 142, 220
quadratic equation, type B4b El. 11.2; Data 59 (Gr) 6, 7,220
guadratic equation, type B4c El. 1.3, VI.28; Data 58 (Gr) 6,9, 219
guadratic equation, types B4a-c TMS5 § 4; BM 13901 § 1 (OB) 3,384
quadratic inequalities Ar. “V".30 (Gr) 351

quadratic-rectangular system, type B5 El. X.33, 54, 57 (Gr) 116, 120
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_—_ BM 13901, 12 (OB) 116, 120
 — MS 5112 § 2; IM 67118 (OB) 118,121
 — MS 3971 § 2 (OB) 119, 121
_ YBC 4709 § 15 (Kass) 233,234
TMS18 (OB) 257
quadratic-rectangular system, type B6 Data 86 (Gr) 228
YBC 4709 § 1 (Kass) 234
quadratic similarity rule (oB) 222,246 f
quadratic-linear system, type B3a El. 1.8, 11.13 (Gr) 6, 15, 23, 26
quadratic-linear system, type B3b El. 11.12; Ar 11.10 (Gr) 6, 23, 26, 336
TMS5 (OB)

W 23291 § 1 f; BM 34568, 12(LB) 58, 64
quadrilateral bisected in two directions TMS23; Erm. 15073 colv (OB) 301, 306

quasi-cube Ar. “VI"; Geom 24.5 (Gr) 356, 423
VAT 8521, 4 (OB) 356
quasi-cube table MS 3048, 3899; VAT 8492 (OB) 356, 423
rational bisector Ar. “VI".16 (Gr) 357
reciprocals (Sum/OB/LB) 28
reciprocal pair of numbers (igi, igi.bi) AO 6484 8 7 (Sel); MS 3971 § 3 (OB) 66, 87
recombination text, problems for squares BM 13901 (OB) 35, 116
problems for squares/rectangles MS 5112 (OB) 41, 118
——— mixed geometric problems MS 3049 (OB) 43,181
——— mixed problems BM 85194 (OB) 45
——— mixed problems BM 85196 (OB) 46
——— expressions for surface content W 23291 (LB) 50
——— expressions for surface content W 23291-x (LB) 61, 321
——— mixed problems BM 34568; AO 6484 (Sel) 64, 66
——— mixed problems MS 3971 (OB) 86
problems for pyramids and cones BM 96954+ (OB) 199
mixed problems Erm. 15073 (OB) 304
rectangular-linear system, type Bla  El. I.4, 5, 14*; X.54 (Gr) 6 f, 21, 26, 109
AO 6484 § 7 (Sel) 66
_ Data 58, 85 (Gr) 227
R Geom 24.10;Metr. 111.4 (Gr) 425, 430
TMS18; YBC 4709 § 15 (OB) 234, 257
rectangular-linear system, type B1b  EIl. 1.2, 3, 6, 7, 11* (Gr) 6, 8,9, 11, 13, 26
MS 5112 § 11 (OB) 41
rectangular-linear system, types Bla-b W 23291 8§ 1d-e (LB) 50, 55, 57
rectangular-linear system, types B2a-bEl. 1.4, 7, 9, 10 (Gr) 6,11, 17
TMS5 § 4; BM 13901 § 2 (OB) 3,394
recursive procedure IM 55357 (OB) 929
AO 17264 (OB) 295
S ERMLPU 42-5 (Gr) 374,387,410 f
VAT 8393 (OB) 440
reed measure, a surface measure W 23291-x § 4 (LB) 63, 70, 322

reed, a length measure IM 58045 (OAKKk) 269
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regular sexagesimal numbers (OB) 92, 93, 255, 289
DPA 39 (OAKK) 214
AO 6484 § 7 (LB) 340
regular sexagesimal twins Erm. 15189 (OB) 289
AO 6484 8§ 7 a (LB) 340
representable, segasmatikon (Gn)
riddles Geom 24 (Gr) 420
ridge pyramid TMS14; BM 96954+, 8§ 1 a-m (OB) 196 f
ridge pyramid truncated BM 96954+, § 1 f (OB) 200
right sub-triangle rule (OB) 212
right sub-triangles El. X.32/33 (Gr) 95
right(-angled) triangle vii
ring of four trapezoids Figs. 2.3.2,11.3.6 (OB) 78, 284
ring of four rectangles W 23291 8§ 1 (LB) 78 f
ring of four right triangles TMS 3, 30 (OB); UE 3, 393 (pr-Sum) 79, 167
Robson, E. 163, 198
royal seal UE 3 518 (ED lII) 168
rule of false value TMS5; IM 121612, 1 (OB) 33, 224, 276 f
Data 55 (Gr) 225
VAT 8389, 8391 (OB) 349
sag ‘front’ (short side) (Sum/OB) 5
$ar (= 1 square ninda) W 23291, W 23291-x (LB) 70
§ar-figure BR =TMS3, 30 (OB) 79
§ar-sign Fig. 2.4.1 (Sum/OB) 79
scaling problem for right triangle MS 3971 § 4 (OB) 93
scaling rule for plane figures (OB) 208
scaling rule for solid figures (OB) 208 f
scaling, reciprocal, of length and width  Ist. Si 269; Erm. 15189 (OB) 281, 289
seal imprints UE 3(pr-Sum) 164 f
seed constant W 23291 (LB) 50 f
seed measure W 23291 (LB) 50, 70, 322
Geometricamns A (Gr) 417
semichord in a semicircle BM 34568, 12 (OB) 65
separate ninda and cubit sections W 23291 § 1 (LB) 54, 62, 70
series text YBC 4696 (OB) 264
YBC 4709 (Kass) 233
sexagesimal place value notation (OB/LB) 34, 86, 91, 215, 276, 400 f
side and diagonal numbers algorithm Theon of Smyrna (Gr) 373f
similar segments of circles Sec. 12.2 (Gr) 311f
Sippar, ancient Mesopotamian city 27, 46, 205, 279, 304, 354, 403
solution in integers Geom 24.10 (Gr) 426
solution procedure, abstract AO 6770, 1 (OB) 332
W 23291 § 4 (LB) 160, 397
spherical envelopes (pre-lit) 193
spiral chain algorithm MLC 2078 (OB) 377

square band TMS5, §8 7-9 (OB) 34 f
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square corner (gnomon)

square contraction rule
square expansion rule
square in a circle
square side algorithm
square side rule

accurate

step (= unknown)

string (radius)

striped triangles

stroke (= straight line, side)
student’s awkward copy
Suan Shu Shu

surface content

Susa, ancient city east of Mesopotamia

symmetric (isosceles) triangle

symmetric trapezoid

synthetic and constructive solutions
synthetic arguments
system of linear equations

systematic variation of a basic idea
table of areas, small squares

large squares

large and small squares
table of constants

table of diagrams, 3-striped triangles
2-striped trapezoids

double bisected trapezoids
table of fractions

Taisbak, M.

tetrahedron

theme text, basic metric algebra probleEisll* (Gr)

problems for squares

——— basic metric algebra problems

461
W 23291 § 1 (LB) 50, 58 f
(Gr) 15, 59, 85
MS 5112 § 2 ¢ (OB) 118
Fig. 1.14.1 (OAKK) 68
Fig. 1.14.1 (OAKK) 68
MS 3050 (OB) 135
UET 6/2222; Ist. Si 428 (OB) 401, 403
Metr. 1.8 b (Gr) 32,114
P.BM 10520 § 6 a (Eg-dem) 394
Geom 15 (Gr) 389
Sec. 16.7 (OB/LB) 396 f
AO 6770, 1 (OB) 332
MS 3049 § 1 (Kass) 45
Sec. 11.2 (OB) 244 f
AO 6770, 1 (OB) 160. 397
YBC 7359 (OB) 138
on 190 bamboo strips (Chin) 205
W 23291, W 23291-x (LB) 50, 70

29, 42, 193, 196, 255, 307, 353

TMS1 (OB) 42
Geom. 11 (Gr) 418
VAT 8393 (OB) 431
VAT 7848, 4 (LB) 344
Figs. 14.2.1,14.4.1 364, 368
El. 11.9-14;El. VI1.28 (Gr) 24,219
El. X; El. XIll; OD 19-20 (Gr) 85,173, 241
YBC 4698 (OB) 277,349 f
bloom of Thymaridas (Gr) 282
MS 3809 (OB) 286
VAT 8389, 8391 (OB) 349
(OB) 79
OIP 14 70 (OB) 271
VAT 12593 (OB) 271
CUNES 50-08-001 (ED III) 271

BRMS3 (OB) 79, 133, 151, 161,
222, 316, 396
G =1M 52916 (OB) 159, 398
MAH 16055 (OB) 264
Ist. Si 269 (OB) 279
Erm. 15189 (OB) 287
P.Akhmi n(Gr-EqQ) 428
211, 213, 219, 231, 232
El. XI11.13 (Gr) 171,173
24
BM 13901 (OB) 35
W 23291 § 1 (LB) 50
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basic metric algebra problems W 23291-x § 4 (LB) 64
——— figures within figures El. IV (Gr) 123
subdivided squares BM 15285 (OB) 126 f, 133
volumes of basic solid figures Jiu Zhang Suan Shd (Chin) 205
striped triangles Str. 364 (OB) 245
determinate linear equations  Ar. | (Gr) 328
equations for right triangles Ar. “VI" (Gr) 352, 357
problems for one or more squarddS5 (OB) 353
indeterminate interest problems VAT 8521 (OB) 355
cubic-linear systems of equationar. V.7-12 (Gr) 358
problems for right triangles BM 34568 (Sel) 424
trapezoids with fixed diagonals VAT 8393 (OB) 438
Theodorus’ lesson (c. 400 BC ?) Theaet 147 C-D (Gr) 405 f
Theon of Smyrna ERMLPU 42-5 (Gr) 373f
third approximation, pseudo-Heronic Geom 15 (Gr) 388 f
Ptolemy Syntaxid.10 (Gr) 390
—— Archimedes Measurem. of the Circl@Gr) 392
—— Theodorus(?) Sec. 17.4 (Gr) 409
YBC 7289; NSe 10 (OB) 398
Thymaridas, see bloom (Gn)
traditional area measure (OB/Sum) 62
YBC 4608 (OB) 275 f
transversal triple IM 58045 (OAKKk) 269 f
and the bloom of Thymaridas Sec. 11.3 g (Gr) 282
composition with a diagonal triple Fig. 13.4.4 (OB) 346
trapezoid bisection equation IM 58045 (OAKKk) 275
trapezoid bisection rule IM 58045 (OAKkKk) 270, 275 f
trapezoid diagonal rule VAT 8393 (OB) 368, 438
triangular prism, see wedges
triangular pyramid El. XII.3 (Gr) 189 f
twelve-pointed star, months and planets O 176 (Sel) 170
two completions of squares Str. 364 § 3; VAT 8512 (OB) 248 f, 260
up (= to the left) MS 3049 8§ 1 a; VAT 7531, 4 (OB) 43, 48
us$ ‘length’ (long side) (Sum/OB) 5
Ur, ancient Mesopotamian city 164, 401
Uruk ancient Mesopotamian city 48, 50, 86, 193, 245, 258, 275, 277, 440
volume (Gn) 4,189f,
(OoB) 186, 197 f
(Chin) 203 f
wedges (triangular prisms) El. X11.3-4 (Gr) 190
TMS14 (OB) 196
JZSSV.14-16 (Chin) 204 f
zeros and separators, not used (OB) 51

Zeuthen’s conjecture Data 86 (Gr) 211, 232
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