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Preface

A discussion of the ways in which Greek commentators in the (late)
antiquity tried to explain the origin of Greek mathematics, as well as a his-
torical survey of early cultural contacts between the Greeks and the Near
East can be found in, for instance, van der Waerden, Science Awakening 1
(1975 (1954)), 83 ff.

In the present book, a sequel to the author’s Unexpected Links Between
Egyptian and Babylonian Mathematics, Singapore: World Scientific
(2005), Greek and Babylonian mathematical texts will be allowed to speak
for themselves.

The following passage, of interest in the present connection, can be
cited from the Preface to my Unexpected Links:

“My observation that there seems to exist clear links between Egyptian and Baby-
lonian mathematics is in conflict with the prevailing opinion in formerly published
works on Egyptian mathematics, namely that practically no such links exist.
However, in view of the dynamic character of the (writing of the) history of Meso-
potamian mathematics, not least in the last couple of decades, it appeared to me to
behigh time to take a renewed look at Egyptian mathematics against an up-to-date
background in the history of Mesopotamian mathematics! · · · ·
The detailed comparison in this book of a large number of known Egyptian and
Mesopotamian mathematical texts from all periods has led me to the conclusion
that the level and extent of mathematical knowledge must have been comparable in
Egypt and in Mesopotamia in the earlier part of the second millennium BCE, and
that there are also unexpectedly close connections between demotic and “non-
Euclidean” Greek-Egyptian mathematical texts from the Ptolemaic and Roman
periods on one hand and Old or Late Babylonian mathematical texts on the other.”

Also of relevance in the present connection are the following words from
the summing-up in the last few lines of Unexpected Links:

“The observation that Greek ostraca and papyri with Euclidean style mathematics
existed side by side with demotic and Greek papyri with Babylonian style mathe-
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matics is important for the reason that this surprising circumstance is an indication
that when the Greeks themselves claimed that they got their mathematics from
Egypt, they can really have meant that they got their mathematical inspiration from
Egyptian texts with mathematics of the Babylonian type. To make this thought
much more explicit would be a natural continuation of the present investigation.”

The following deliberation is in agreement with the cited passages: 

The simplest way of explaining the many parallels found in this book
between (certain parts of) Greek mathematics and Old or Late Babylonian
mathematics is to assume that in ancient Greece elementary education in
mathematics for young students (not necessarily intending to become
mathematicians) was conducted in terms of metric algebra in the Babylo-
nian style. Here “metric algebra” is a convenient name for the very special
kind of mathematics, with an elaborate combination of geometry, metrol-
ogy, and linear or quadratic equations, which is first documented in proto-
Sumerian texts from the end of the fourth millennium BC, and which pre-
vailed in Mesopotamia without much change to the Seleucid period close
to the end of the first millennium BC. During the 2500 years of its exist-
ence already before the dawn of Greek mathematics, this kind of mathe-
matics ought to have had ample opportunity to spread to more or less
distant neighbors of Mesopotamia itself. That this hypothesis is correct in
the case of Egypt was demonstrated in Unexpected Links. To show that it
may be correct also in the case of ancient Greece is the object of the dis-
cussion below. 

It is important to understand that one of the obstacles in the way for a
better understanding of possible relations between Greek and Babylonian
mathematics is the circumstance that Greek mathematics is documented
mainly through copies of copies of important manuscripts with advanced
mathematics, while Old Babylonian mathematics is documented mainly
through clay tablets with relatively low level mathematics, written by me-
diocre scribe school students, and Late Babylonian/Seleucid mathematics
is documented only through a small number of texts, for the simple reason
that in the second half of the first millennium BC clay tablets had been re-
placed by more easily perishable materials as the preferred medium for
writing. For these reasons, it is difficult to know what Greek mathematics
at a lower level was like, and equally difficult to find out how advanced
Old and Late Babylonian mathematics at a higher level may have been.
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It is also important to understand that since the heated but inconclusive
debate about Greek “geometric algebra” in the late 1970’s, much has
happened in the study of Babylonian mathematics. Thus many new
mathematical cuneiform mathematical texts have been published since
then, several of them with unexpected and astonishing revelations about
the scope of Babylonian and pre-Babylonian mathematics, and many of
the earlier published mathematical cuneiform texts have been explained in
new, and much more satisfactory ways. Therefore, it is now obvious that
the mentioned debate was conducted against a background of regrettably
insufficient knowledge about the true nature of Babylonian mathematics.

More or less accidentally, the dedicated search in this book for parallels
between Greek and Babylonian mathematics has, in addition, resulted in a
rather extensive survey of certain important parts of Greek mathematics,
as well as in new answers to a number of open problems in the history of
Greek mathematics.

Here follows a brief survey of the contents of the book:

Chapter 1 is a continuation and more or less definite conclusion of the
debate about what has been known as the “geometric algebra” in Euclid’s
Elements II. In this chapter it is shown that far from being Greek reformu-
lations in geometric terms of Babylonian (non-geometric) algebra, the
propositions in Elements II are abstract, non-metric reformulations of a
well defined set of basic equations or systems of equations in Babylonian
metric algebra, that is of quadratic and linear equations or systems of
equations for the lengths and areas of geometric figures.

Strictly speaking, Elements II is not about “geometry” at all, in the lit-
eral sense of the word, which is ‘land-measuring’.

Characteristically, as a consequence of the different Greek and Babylo-
nian approaches to geometry, diagrams illustrating non-metric proposi-
tions in the Elements are what may be called “lettered diagrams”, while
diagrams illustrating Babylonian metric algebra problems are “metric
algebra diagrams” with explicit indications of relevant lengths and areas.

As a whole, Elements II is a well organized “theme text” of the same
kind as similarly well organized Babylonian mathematical theme texts.

Chapter 2 begins with a presentation of Euclid’s proof of El. I.47, and
of Pappus’ proof of a generalization of El. I.47. Then follows a discussion
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of the OB (Old Babylonian) forerunner of El. I.47, “the OB diagonal rule
(for rectangles)”. It is suggested that the rule may have been discovered ac-
cidentally in connection with the study of “rings of four rectangles (or four
right triangles)”.1 The argument is supported by the recent discovery of an
OB “hand tablet” with a picture of a ring of three trapezoids. The hand tab-
let is published in the author’s A Remarkable Collection of Babylonian
Mathematical Texts, New York: Springer (2007).

Chapter 3 is a confrontation of Greek rules for the generation of pairs
of numbers (integers) such that the sum of their squares is also a square
with OB rules for the generation of “diagonal triples”, rational sides of
right triangles. The Greek rules are attributed to Euclid (lemma El.
X.28/29), Pythagoras, and Plato, while the OB rule is manifested in a num-
ber of OB “igi-igi.bi problems”, as well as in the famous OB table text
Plimpton 322.

Chapter 4 begins with a discussion of Euclid’s important lemma El.
X.32/33, which says, essentially, that a right triangle is divided into two
right sub-triangles similar to the whole triangle by the height against the
hypothenuse. That this result was known also in Babylonian mathematics
is demonstrated by an OB problem for a right triangle divided by use of a
recursive procedure into a “chain of similar right sub-triangles”. 

Chapter 5 contains a completely new approach to the study of the no-
toriously difficult tenth book of the Elements. It is shown that the theory of
inexpressible straight lines in El. X is based on a number of fundamental
lemmas and propositions such as the lemmas X.28/29, X.32/33, X.41/42,
and the propositions X.17-18, X.30, X.33, X.54, X.57, X.60, all of which
can best be explained by use of Babylonian metric algebra. As a matter of
fact, a particularly great role is played in El. X by “quadratic-rectangular
systems of equations of type B5”, by which is meant problems where both
the sum of the squares of two unknowns and the product of the unknowns
are given. Such problems appear as well in Babylonian mathematics.

Also discussed in this chapter is the relation between Euclid’s “para-
bolic application of areas” in El. I.44 and Babylonian “metric division”.

1. Note that, since angles was a relatively unknown concept in OB mathematics, it is less
anachronistic to speak of OB “right triangles” than of OB “right-angled triangles”.
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Chapter 6 is devoted to a discussion of Elements IV, a well organized
theme text concerned mainly with “figures within figures”. It is shown,
through a great number of examples, that figures within figures was a pop-
ular subject also in Babylonian mathematics.

Chapter 7 explains in terms of metric algebra the cutting of a straight
line in extreme and mean ratio in El. VI.30, as well as the theory of the reg-
ular pentagon and the equilateral triangle in El. XIII.1-12. It is pointed out
that the propositions El. XIII.1-11 can be interpreted as a “metric analysis”
of the regular pentagon relative to the radius of the circumscribed circle,
while a (hypothetical) corresponding Babylonian metric analysis of the
regular pentagon necessarily would have operated relative to the side of
the pentagon.

The relation of such a metric analysis of the regular pentagon (alterna-
tively the regular octagon) to the theory of inexpressible straight lines in
El. X is investigated. 

The chapter ends with a survey of examples of regular polygons and
related objects in Babylonian mathematics.

Chapter 8 is an account in terms of metric algebra of the construction
of regular polyhedra inscribed in spheres in El. XIII.13-18. The account
highlights the role played in some of these constructions by the diagonal
rule in three dimensions. 

Then follows the presentation of a Kassite (post-OB) text with the com-
putation of the interior diagonal of a gate by use of the diagonal rule in
three dimensions, and of another Kassite text with the computation of the
weight of a colossal ‘horn-figure’ (icosahedron), constructed by use of 20
equilateral triangles with sides measuring 3 cubits and made of copper
sheets 1 inch thick. Both texts are published in the author’s Remarkable
Collection(2007).

Chapter 9 begins with Euclid’s demonstration in El. XII.3-7 of (essen-
tially) the fact that every triangular prism can be cut into three triangular
pyramids, each one of which has a volume equal to one third of the volume
of the prism. Then follows a discussion of texts showing that OB mathe-
maticians could compute correctly the volumes of various kinds of whole
and truncated pyramids, as well as of whole and truncated cones. The man-
ner of computation of the volume of a “ridge pyramid” in an OB mathe-
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matical text is compared with the dissections used in El. XII.3-7 and with
similar dissections used by the famous Chinese mathematician Liu Hui in
his commentary to problems in the Chinese mathematical classic Nine
Chapters. It is pointed out that there are indications that also Babylonian
mathematicians knew about similar dissections of prisms and pyramids. 

Chapter 10 contains a detailed discussion in terms of Babylonian met-
ric algebra of Euclid’s parabolic, elliptic, and hyperbolic “application of
areas” propositions El. I.43-44,El. VI.24-29 and Data 57-59, 84-85. In
addition, a completely new explanation is given of Euclid’s intriguing
propositionData 86, which is here shown to give the detailed solution to
a complicated “quadratic-rectangular system of equations of type B6”,
related to the already mentioned quadratic-rectangular systems of equa-
tions of type B5 in the proofs of El. X.54 and X.57.

Chapter 11 begins with an account of some of the most interesting
propositions in Euclid’s lost book On Divisions, known mainly from an
abstract published by a 10th century Persian geometer. Particular attention
is given in this account to problems where triangles or trapezoids are di-
vided by lines parallel to the base, and to an appealing proposition where
the problem of dividing a triangle in two parts in a certain ratio by a line
through a given point in the interior of the triangle is reduced to the prob-
lem of solving a certain quadratic equation.

Then follows a detailed discussion of numerous OB parallels in the
form of problems for triangles or trapezoids divided in certain ratios by
one or several transversals parallel to or orthogonal to the base. Among
these problems are several of the most interesting and sophisticated of all
known Babylonian mathematical problems. In particular, a completely
new explanation is given here of an OB quite sophisticated “boundary
value problem”, where a trapezoid with known base and top is divided into
a chain of three rational bisected sub-trapezoids. 

The “confluent trapezoid bisections” in a couple of OB mathematical
texts show that OB mathematicians knew how to combine a solution to an
indeterminate quadratic equation of the form sq. sa+ sq. sk = 2 · sq. d with
a solution to the indeterminate quadratic equation sq. a+ sq. b = 1 in such
a way that the result is a new solution to the first equation.

An interesting observation is that the famous “Bloom of Thymaridas”
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is a generalization of a system of equations connected with an OB method
for the construction of solutions to trapezoid bisection problems.

Chapter 12 compares Hippocrates’ quadrature of lunes with various
Old and Late Babylonian computations of the areas and diameters of cer-
tain figures with curved boundaries, in particular certain double circle seg-
ments, but also “concave squares” and “concave triangles”.

Chapter 13 contains a discussion of a large number of examples of par-
allels to Babylonian metric algebra in Diophantus’ Arithmetica. Thus, for
instance,Arithmetica I is organized precisely like an OB theme text with
equations or systems of equations for one or two unknowns. Particularly
interesting here is the appearance of the word plasmatikón, the meaning of
which has been debated. However, it is likely that when a problem is called
plasmatikón, that means that it is ‘representable’, namely by a metric alge-
bra diagram. It is also interesting that the diorisms appearing in certain
problems are conditions for the existence of solutions which seem to have
been derived from the study of such diagrams.

In ArithmeticaII, some “basic examples” which are usually explained
by reference to the “chord method”, can just as well be explained by refer-
ence to metric algebra problems for triangles or trapezoids inscribed in
circles, or by reference to trapezoids divided into parallel stripes. Simi-
larly, the interesting and well known method of “approximation to limits”
in Ar. “V”.9, which can be explained by a variant of the chord method, can
just as easily be explained with reference to the OB method of “confluent
trapezoid bisections”.

Diophantus’ extremely interesting but obscure construction in Ar.
III.19 of a square number equal to a sum of two squares in four different
ways can with advantage be explained in terms of metric algebra with ref-
erence to a “birectangle” (a quadrilateral with two opposite right angles).
This construction, too, seems to be intimately connected with the OB
method of confluent trapezoid bisections and with the OB rule for the com-
position of a solution to an indeterminate quadratic equation of the form
sq.sa+ sq. sk = 2 · sq. d with a solution to the indeterminate quadratic equa-
tion sq. a + sq. b = 1.

An indeterminate “price and number problem” which appears totally
out of context in Ar. “V”.30, is closely related to similar OB problems
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leading to systems of linear equations, but it is interesting also because it
is solved by use of solutions to “quadratic inequalities” obtained through
“completion of the square”.

Arithmetica “VI” which is concerned with indeterminate equations for
right triangles, has, like Arithmetica I, precisely the same form as an OB
theme text. The construction problem Ar. “VI”.16: To find a right-angled
triangle in which the bisector of an acute angle is rational, appears in Ar.
“VI” totally out of context, and is solved by what looks like metric algebra.

One of the few occurrences in Babylonian mathematics of indetermi-
nate equations is particularly interesting because it equates (in a totally
artificial way) the interest on a loan with a square, a cube, or a “cube-
minus-1”, the latter term meaning a “quasi-cube” of the form “cube n –
squaren”. It is interesting to note in this connection that in Ar. “VI” all the
undetermined right hand sides of equations are, likewise, either a square,
a cube, a “quasi-square”, or a “quasi-cube”.

Heron’s well known area rule for triangles, the Indian mathematician
Brahmagupta’s closely related area rule for cyclic quadrilaterals, and
Ptolemy’s and Brahmagupta’s diagonal rules for cyclic quadrilaterals are
treated together in Chapter 14. It is shown that all these rules can be de-
rived in simple and straightforward ways by use of metric algebra, as long
as no other cyclic quadrilaterals are considered than triangles, rectangles,
symmetric trapezoids, and birectangles or “cyclic orthodiagonals”.

In Chapter 15, Theon of Smyrna’s “side and diagonal numbers algo-
rithm” is explained in terms of an “ascending chain of birectangles”. It is
shown that a similar construction works just as well when the equation  sq.
d = 2 is replaced by more general equations of the forms  sq. p = sq. q · D
– 1 or  sq. p = sq. q · D + 1, where D = sq. d.

In this connection is discussed also a previously never clearly under-
stood OB mathematical table text which may be related to an “ascending
spiral chain of trapezoids”. An OB “ascending and descending chain of
trapezoids with fixed diagonals” is considered in Appendix 1.

Chapter 16 is devoted to a detailed discussion of two methods for the
approximation of “square sides” (square roots) used in Heron’s collected
works. One method, which is essentially the same as a Babylonian “square
side rule” is used in the great majority of cases. A second, more accurate
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method is explained here in terms of “third approximations”, by which is
meant approximations obtained through a kind of repeated composition of
an initial approximation with itself, resulting in a “formal third power”.

Interestingly, the use of third approximations can explain not only
Heron’s accurate square side approximations, but also the well known and
much debated Archimedian accurate estimates for sqs. 3, as well as the
accurate square side approximations in Ptolemy’s Syntaxis I.10.

The chapter ends with a discussion of Babylonian square side approxi-
mations and of examples of an elegant OB method of eliminating square
factors from an area number before the computation of its square side.

In Chapter 17 it is suggested that Theodorus of Cyrene’s famous irra-
tionality proof for square sides of non-square numbers, mentioned in Tha-
etetus 147 C-D, can have been carried out by use of a “descending chain
of birectangles”, of the same form as the ascending chain of birectangles
used in Chapter15 for the explanation of Theon’s side and diagonal num-
bers algorithm. The irrationality proof by use of such a descending chain
of birectangles works only as long as a solution (in integers) is known to
the equation sq. p = sq. q · D ± 1, where D is the given non-square number.
If the pair p, q is a solution to an equation of this kind, it is convenient to
call p/q an “optimal approximation” to sqs. D. As it turns out, it is easy to
find such optimal approximations for all non-square numbers (integers) D
from 2 to 17, when D = 13 by use of a “third approximation” of the kind
discussed in Chapter 16, but not for D = 19. This circumstance may explain
why Theodorus stopped his demonstration after reaching the case D = 17.
(The case D = 18 can be neglected, since sqs. 18 = 3 · sqs. 2.)

There is an interesting connection between the explanation above of
Theodorus’ irrationality proof and Brahmagupta’s well known observa-
tion that he could find a solution to the equation sq. p = sq. q · D + 1 in
every case when he already knew a solution to the equation sq. p = sq. q ·
D + r, with r = – 1, ± 2, or ± 4. As a matter of fact, the method used by
Brahmagupta in the non-trivial cases r = ± 4 can be explained in terms of
“formal third powers”.

In Chapter 18 it is observed that the Heronic Metrica is a typically
Greek (Euclidean) mathematical hand book, while the “pseudo-Heronic”
Geometrica is a compilation of various sources, some of them clearly in-
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fluenced by Babylonian mathematics. The chapter contains, among other
things, surprisingly simple new explanations of the solution procedures in
Geom. 24.1-2 for a couple of indeterminate problems for the areas and
perimeters of a pair of rectangles. Another interesting problem discussed
in this chapter, with an obvious relation to a number of Babylonian math-
ematical problems, is concerned with the sides of a right triangle at a dis-
tance of 2 feet from a right triangle with given sides. The chapter is
concluded with an explanation of an intricate division of figures problem
in Metrica 3.4, which can be reduced to a rectangular-linear system of
equations for two segments of one side of a triangle.

In Appendix 1, a new OB mathematical problem text of extraordinary
interest is published jointly with J. Marzahn, curator of the collections of
clay tablets at the Vorderasiatisches Museum, Berlin. The text begins with
a diagram showing a chain of five trapezoids, all with the diagonal 3. The
explicit computation of the various sides and transversals of this chain of
trapezoids demonstrates that OB mathematicians were familiar with Ptole-
my’s diagonal rule in the case of symmetric trapezoids, and that they had
found, in addition, an elegant rule for the construction of a linked pair of
symmetric trapezoids with diagonals of the same length. The recursive
procedure used for the computation of the sides and transversals in the
chain of five trapezoids starts with the central trapezoid and continues with
ascending and descending chains of trapezoids, much like the ascending
and descending chains of birectangles discussed in Chs. 15 and 17 above.

The book ends with Appendix 2, which is a catalog of all plane and sol-
id geometric figures appearing, in one way or another, in Mesopotamian
mathematical texts. There are also an index of texts, an index of subjects,
a bibliography, and a comparative set of Mesopotamian, Egyptian, and
Greek timelines showing periods of documented mathematical activities.

The work with the manuscript for this book has been supported by 
The Royal Society of Arts and Sciences in Gothenburg‚
Wilhelm och Martina Lundgrens Vetenskapsfond 1, and
Gunvor och Josef Anérs Stiftelse.

September 1, 2006         Jöran Friberg
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1

Chapter 1

Elements II and Babylonian Metric Algebra

The enigmatic nature of Euclid’s Elements II and the related proposi-
tions El. VI.28-291 (Heath, TBE I-III (1956); HGM 1 (1981), 379-380;
Christianidis (ed.), CHGM(2004), Part 6) has given rise to a heated debate
among historians of mathematics, summarized by Artmann (Apeiron 24
(1991)) in the following words:

“Traditionally VI.28 and 29 have been considered under the rubric ‘geometrical
algebra’, a concept introduced by Zeuthen (1896), 7, following Tannery (1882).
Subsequently Neugebauer (1936), van der Waerden (1954), Freudenthal (1977) and
Weil (1978) adapted and extended Tannery’s and Zeuthen’s position. Heath followed
Tannery in his comments on II.5 and 6, which he interpreted as solutions to quadratic
equations. This traditional position was attacked by Szabó (1969), Unguru (1975) and
Unguru and Rowe (1981), (1982). Van der Waerden (1954), 118-126 gives a clear state-
ment of the position of the proponents of ‘geometrical algebra’. His main claims are:
     (i) The real content of VI.28 and 29 is algebraic (as solutions of quadratic equations);
geometry is only a mode of expression.
     (ii) Geometrical algebra originated with the Pythagoreans, who took it (somehow)
from the Babylonians. 
     (iii) The Greeks had to use a geometrical formulation of the theory of quadratic equa-
tions because they had no other way to deal with incommensurable magnitudes.”

Since those words were written, one of the basic premises for the whole
controversy has been shown to be invalid. Thus, it has been demonstrated
by Høyrup, through a detailed analysis of the technical vocabulary in
mathematical cuneiform texts, that Old Babylonian (OB) mathematicians
understood quadratic equations in terms of the dimensions and areas of
rectangles and other measurable geometric magnitudes, and not primarily
in terms of anything like our school algebra. (See, for instance, Høyrup,
LWS (2001).) Subsequently, it has been shown by Friberg (BaM28 (1997),

1. A useful survey of the contents of all the thirteen books of Euclid’s Elements is given
online by D. E. Joyce, <http://aleph0.clarku.edu/~djoyce/java/elements/elements.html>.
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Ch. 1) that also Late Babylonian mathematicians used a similar “metric al-
gebra” in order to visualize and solve quadratic equations. Intriguingly, the
roots of the Old and Late Babylonian metric algebra can be traced back to
examples of “metric squaring” and “metric division” in Old Akkadian and
Early Dynastic mathematical texts, half a millennium older than the better
known Old Babylonian mathematical texts (Friberg, CDLJ 2005/2; RC
(2007), Apps. 6-7)), and perhaps even to the surprising “field expansion
procedure” in proto-cuneiform texts from the end of the 4th millennium
BCE (Friberg, AfO 44/45 (1997/98); RC, Sec. 8.1 b). 

The changed premises will make it possible to resolve the mentioned
controversy by showing, in this chapter, that the alleged “geometrical alge-
bra” in Euclid’s Elements II  is of the same nature as closely related results
in Old and Late Babylonian metric algebra, and that therefore the assump-
tion that the Greeks had to use a geometric reformulation of an originally
purelyalgebraic theory of quadratic equations “because they had no other
way to deal with incommensurable magnitudes” must be false.2

1.1. Greek Lettered Diagrams vs. OB Metric Algebra Diagrams

The style of Euclid’s exposition in Book II of his Elements is shown by
the following analysis of the text of one of the propositions in Book II:

El. II.5  (Heath, TBE 1(1956)) begins with a statement in general terms:

If a straight line is cut into equal and unequal segments, 
the rectangle contained by the unequal segments of the whole 
together with the square on the straight line between the points of section 
is equal to the square on the half.

Then follows a more comprehensible reformulation of the statement in
terms of a suitable diagram:

For let a straight line AB be cut into equal segments at C
and into unequal segments at D;
I say that the rectangle contained by AD, DB together with the square on CD
is equal to the square on CB.

2. The ideas discussed in this chapter were presented at the Zeuthen-Heiberg Centenary
Symposium on Current Studies in Ancient Greek Mathematics, Copenhagen, August, 1994.

A C D B
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In a careful construction of the following complete diagram, step by step,
this initial diagram is then extended into a combination of rectangles and
squares, where lettered vertices are introduced in alphabetic order:

For let the square CEFB be described on CB, and let BE be joined;
throughD let DG be drawn parallel to either CE or BF (cutting BE in H),
throughH again let KM be drawn parallel to either AB or EF,
and again through A let AK be drawn parallel to either CL or BM.

Since the diagonal BE has been drawn, the proof of the statement can begin
with an application of the “diagonal complements rule” in El. I.43:

Then, since the complement CH is equal to the complement HF,
let (the square) DM be added to each; 
therefore the whole (rectangle) CM is equal to the whole (rectangle) DF.

Next, by a transitivity argument,

But (the rectangle) CM is equal to (the rectangle) AL,
since (the segment) AL is also equal to (the segment) CB;
therefore (the rectangle) AL is also equal to (the rectangle) DF.

Hence the following intermediate result:

Let (the rectangle) CH be added to each; 
therefore the whole (rectangle) AH is equal to the gnomon NOP.

This intermediate result is rephrased in terms of the initial diagram:

But AH is (equal to) the rectangle (contained by) AD, DB, for DH is equal to DB,
therefore the gnomon NOP is also equal to the rectangle (contained by) AD, DB.

The last step of the procedure is the completion of the gnomon to a square:

Let (the square) LG, which is equal to the square on CD, be added to each;
therefore the gnomon NOP and (the square) LG
are equal to the rectangle contained by AD, DB and the square on CD.
But the gnomon NOP and (the square) LG are the whole square CEFB,
which is described on CB;
therefore the rectangle contained by AD, DB together with the square on CD
is equal to the square on CB. Therefore etc.

A C D B
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The consequent use of lettered vertices in all geometric diagrams is per-
haps the most visually striking feature of Greek mathematics of the kind
that one meets in Euclid’s Elements. The lettered vertices are used not only
in the diagrams themselves but also in the text, in all references to the
diagrams. In the example above, straight lines are named after their end-
points, as in AB, CD, etc., rectangles or squares after their vertices, as in
‘the square on CB’, or ‘the square CEFB’, or simply ‘(the square) DM’,
and ‘the rectangle contained by AD, DB’, or simply ‘(the rectangle) AL’,
and so on. There are never any metrological or numerical specifications for
given plane or solid figures or their parts, such as their lengths, angles, ar-
eas, or volumes. The device that is used, perhaps a bit too cleverly, in order
to avoid any mention of lengths, areas, etc., is to say that one straight line
is ‘equal to’ another straight line, or that one plane figure is ‘equal to’ an-
other plane figure, etc. In the statement in the example above, for instance,
a rectangle and a square are said to be equal to another square.

The situation is completely different in Babylonian mathematical
cuneiform texts, where in all diagrams showing plane or solid figures,
straight lines are denoted by their lengths and/or suitable names such as
‘the upper length’, ‘the middle length’, ‘the lower length’, ‘the first
length’, ‘the second length’, etc., and where similarly areas or volumes are
denoted by numbers and/or suitable names. (A good example is IM 55357.
See Sec. 4.3 below.) The numbers or names for the lengths are normally
placed alongside the figures in their proper places, while the numbers for
the areas or volumes are placed inside the figures. The situation is similar
in Egyptian hieratic or demotic mathematical papyri, and even in Greek-
Egyptian mathematical papyri from the Ptolemaic and Roman periods.
(See the many examples in Friberg, UL (2005).)

There is another obvious fundamental difference between the example
above and a typical Babylonian mathematical text. In El. II.5, the object of
the text is to prove that two geometric figures ‘are equal’. The object of a
Babylonian mathematical text is nearly always to compute something. So,
how can there be any kind of relation between a Greek text like El. II.5 and
Babylonian mathematics? To begin to see why, one has to see what be-
comes of the lettered diagram in El. II.5 if the letters are removed and in-
stead lengths and areas with their numerical values are explicitly
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indicated in the Babylonian style. In Fig. 1.1.1 below, a (hypothetical)
example of such a diagram in the Babylonian style is shown to the left, and
a modernized version in the same style to the right.

Fig. 1.1.1.  A diagram in the Babylonian style (left), and a modernized version (right).

The names used for the long and short sides of a rectangle in OB math-
ematical texts were normally the Sumerian terms u$ ‘length’ and sag
‘front’. The most commonly chosen values for the length and the front
were 30 and 20 length units (Sum. ninda = c. 6 meters, or 1/60 ninda = 1
dm). In the diagram above, to the left, the length is 30, the front 20, the sum
of the length and the front 50, and half that sum 25. The area of the rectan-
gle is 30 · 20 = 10 (· 60), the area of the small square is sq. 5 = 25, and the
area of the large square is sq. 25 = 10 25 = 10 (· 60) + 25.

The numerical example shows how Babylonian mathematicians could
arrive at interesting results through experimentation with numerical values
for the parameters of a geometric figure. Another way in which they could
find new insights was through shrewd observation. Thus, for instance, it is
known that OB mathematicians were familiar with what they called a.$à
dalbani ‘the field between’ two plane geometric figures.

In the example in Fig. 1.1.2, the field between two concentric and
parallel squares is what may be called a “square band”. Now, if you want
to divide the square band equally into four simple pieces, you can do it in
several ways. In particular, you can divide the square band into four equal
rectangles, as in Fig. 1.1.2, left, or into four “square corners” (what the
Greeks called “gnomons”), as in Fig. 1.1.2, right. Evidently, the area of
any one of the four square corners is then equal to the area A of any one of
the four rectangles. It is also clear from the figure that if p is the side of
nígin k‰ditum ‘the outer square’ and q the side of nígin qerbitum ‘the in-
ner square’, then the area of the whole square band is sq. p – sq. q, while

sq.q/2

u

s

s

AA

q/2

s
p/2

p
30 length 20

1010 field

50

25

255

20
 fr

on
t
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the area of one of the square corners is sq. p/2 – sq. q/2. In Fig. 1.1.2, right,
the notations p and q have been chosen for the sum u + s and the difference
u – s, respectively, where u = u$, the ‘length’, and s = sag, the ‘front’.

Fig. 1.1.2.  Two simple ways of dividing a square band into four equal pieces.

Rectangles, squares, and square corners played a dominant role in OB
metric algebra. Often, the first step in the solution of a given metric algebra
problem was a transformation of the problem into one of a small number
of OB “basic” metric algebra problems (Friberg, RlA 7 (1990), Sec. 5.7 c):

Two basic rectangular-linear systems of equations:
B1a: u · s = A, u + s = p
B1b: u · s = A, u – s = q

Two basic additive quadratic-linear systems of equations:
B2a: sq. u + sq. s = S, u + s = p
B2b: sq. u + sq. s = S, u – s = q

Two basic subtractive quadratic-linear systems of equations:
B3a: sq. u – sq. s = D, u + s = p
B3b: sq. u – sq. s = D, u – s = q

Three basic quadratic equations:
B4a: sq. s + q · s = A
B4b: sq. u – q · u = A
B4c: p · u – sq. u = A

The important thing to remember is that all these types of rectangular-
linear, quadratic-linear, or simply quadratic metric algebra problems were
actuallyvisualized as problems for rectangles and squares.

Below, the thirteen propositions El. II.2-14 will be compared with this
list of nine OB basic metric algebra problems.

 sq. p/2 – sq.q/2 = Au · s = A

A A

A A

A
A u

p

p

u s 

p
q

qq

A s

A
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1.2.El. II.2-3 and the Three Basic Quadratic Equations

The proposition El. II.1  states that if two straight lines are given, and if
one of them is divided into a number of segments, then the rectangle con-
tained by the given lines is ‘equal to’ the (sum of) the rectangles contained
by the second line and the segments of the first. The purpose of this prop-
osition is not at all clear, although it is likely that the proposition is meant
as a reminder of the additivity of areas. In this sense, it paves the way for
the following two propositions, El. II.2 and El. II.3.3

El. II.2
If a straight line is cut at random, 
the rectangles4 contained by the whole and both of the segments
are equal to the square on the whole.

El. II.3
If a straight line is cut at random, 
the rectangle contained by the whole and one of the segments
is equal to the rectangle contained by the segments, 
and the square on the mentioned segment.

Fig. 1.2.1.  Diagrams in El. II.2 (left), and El. II.3 (right).

The diagram in El. II.2  (Fig. 1.2.1, left) is replaced in Fig. 1.2.2 below
by a diagram in the (modernized) Babylonian style, which shows that for
any triple of straight lines (of length) u, s, and q, with u – s = q, the state-
ment in El. II.2 saying, essentially, that, by the additivity of areas,

u · s + u · (u – s) = sq. u

can be reformulated5 as a quadratic equation of type B4b:

sq. u – q · u = A,   where A = u · s.

3. All translations of propositions in the Elements are borrowed from Heath, TBE (1956).
4. Note the plural. Cf. the remark in Vitrac, EA (1990), I: 328, fn. 3.
5. Contrary to Euclid who avoids talking about one plane figure subtracted from another.

A C B A C B

D F E F D E
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Alternatively, the same statement can be reformulated as a rectangular-
linear system of equations of type B1b:

u · s = A,   u – s = q.

See again the diagram in Fig. 1.2.2.

Fig. 1.2.2.  The diagram in El. II.2 replaced by a diagram in the Babylonian style.

Therefore, the purpose of El. II.2 may have been, essentially, to demon-
strate that any quadratic equation of type B4b:6

sq. u – q · u = A

is equivalent to a rectangular-linear system of equations of type B1b:

u · s = A, u – s = q.7

Fig. 1.2.3 below shows that there are two ways of similarly replacing
the diagram in El. II.3  with a diagram in the Babylonian style. According
to the interpretation in Fig. 1.2.3, left, the statement in El. II.3, saying,
essentially, that 

u · s = (u – s) · s+ sq. s

can be reformulated as a quadratic equation of type B4a:

sq. s + q · s = A,   where A = u · s.

Alternatively, the same statement can be reformulated as a rectangular-
linear system of equations of type B1b:

u · s = A,   u – s = q.

6. Necessarily with q and A positive, if u and q are interpreted as lengths and A as an area.
7. Necessarily with s positive and s less than u.

u

u

A

q s El. II.2 : u · s + u · (u – s) = sq. u
B4b :  sq. u – q · u = A
B1b : u · s = A,   u – s = q
(Hereu, s, q  are straight lines, sq. u a squarewith
the side u, and u · s a rectanglewith the sides u, s.
Simultaneously,u, s, q  denote the lengthsof the 
straight lines with these names, while sq. u and
u · s denote the areasof the square and the rectangle 
with these names.)
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Therefore, one purpose of El. II.3 may have been to demonstrate that any
quadratic equation of type B4a:8

sq. s + q · s = A

is equivalent to a rectangular-linear system of equations of type B1b:9

u · s = A, u – s = q.

Fig. 1.2.3.  Two possible interpretations of the diagram in El. II.3.

According to the interpretation in Fig. 1.2.3, right, the statement in El.
II.3 can be reformulated as a quadratic equation of type B4c:

p · u – sq. u = A,   where A = u · s.

Alternatively, the same statement can be reformulated as a rectangular-
linear system of equations of type B1a:

u · s = A,   u + s = p.

Therefore, another purpose of El. II.3 may have been to demonstrate that
anyquadratic equation of type B4c:

p · u – sq. u = A

is equivalent to a rectangular-linear system of equations of type B1a:

u · s = A, u + s = p.

8. With some obvious restrictions because of the geometric interpretation.
9. With some obvious restrictions because of the geometric interpretation.

s

q
p

s

A u A

us

El. II.3 : u · s = (u – s) · s + sq. s

B4a :  sq. s + q · s = A

B1b : u · s = A,   u – s = q

El. II.3 :    (u + s) · u = u · s + sq. u

B4c : p · u – sq. u = A

B1a : u · s = A, u + s = p

u
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1.3.El. II.4, II.7 and the Two Basic Additive Quadratic-Linear
       Systems of Equations

El. II.4
If a straight line is cut at random, 
the square on the whole is equal to the squares on the segments,
and twice the rectangle contained by the segments.

El. II.7
If a straight line is cut at random, 
the square on the whole and that on one of the segments, both together,
are equal to twice the rectangle contained by the whole and the said segment,
and the square on the remaining segment.

Fig. 1.3.1.  Diagrams in El. II.4 (left), and El. II.7 (right).

In Fig. 1.3.2, left, below, the line AB is called p, its segments u and s.
The statement in El. II.4  can then be interpreted as saying that

sq. (u + s) = sq. u + sq. s + 2 u · s.

This equation, in its turn, can be reformulated in the following way:

sq.p = S + 2 A    where p = u + s, S = sq. u + sq. s,   and A = u · s.

Therefore, the purpose of El. II.4 may have been, essentially, to demon-
strate that any quadratic-linear system of equations of type B2a:

sq.u + sq. s = S,    u + s = p

is equivalent to a rectangular-linear system of equations of type B1a:

u · s = A, u + s = p    where A = (sq. p – S)/2.

The interpretation of El. II.7  in Fig. 1.3.2, right, is not quite as straight-
forward, since in order to get an interpretation where El. II.4 and El. II.7
are closely related, one has to assume that the diagram in El. II.7 is only

A C B

D

H KG

F E

A C B

D

H FG
K

M
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N E
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the upper right corner of a larger diagram, based on two concentric and
parallel squares. If this assumption is allowed, the given straight line AB
in El. II.7 can be called u, and its arbitrary segments sandq, where q is the
side of the inner square. The statement in El. II.7 can then be interpreted
as saying that

sq.u + sq. s = 2 u · s + sq. (u – s).

This equation, in its turn, can be reformulated in the following way:

S = 2 A + sq.q    where q = u – s, S = sq. u + sq. s,   and A = u · s.

Therefore, the purpose of El. II.7 may have been, essentially, to demon-
strate that any quadratic-linear system of equations of type B2b:

sq.u + sq. s = S,    u – s = p

is equivalent to a rectangular-linear system of equations of type B1b:

u · s = A, u – s = q    where A = (S – sq. q)/2.

Fig. 1.3.2.  Interpretations of the diagrams in El. II. 4 and El. II.7.

In Sec. 1.4 below it will be shown how systems of equations of type
B2a (or B2b) can be solved by use of El. II.4 in combination with El. II. 5
(or by use of El. II.7 in combination with El. II.6).

Similarly, it will be shown how quadratic equations of type B4a (or B4b
or B4c) can be solved by use of El. II. 3 in combination with El. II.6 (or
El. II.2 in combination with El. II.6, or El. II.3 in combination with
El. II.5). See Figs. 1.2.2 and 1.2.3 above.

u q

sq.s sA

s s

Asq.u u

El. II.4 :

sq. (u + s) =  sq. u + sq.s + 2 u · s

B2a :

sq.u + sq. s = S, u + s = p

Ç u · s = A = (sq. p – S)/2

p

El. II.7 :

sq.u + sq.s = 2 u · s + sq. (u – s)

B2b :

sq.u + sq. s = S, u – s = q

Ç u · s = A = (S – sq. q)/2

u

sq.q

A

q
A

sq.s s
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1.4.El. II.5-6 and the Two Basic Rectangular-Linear 
       Systems of Equations

El. II. 5
If a straight line is cut into equal and unequal segments, 
the rectangle contained by the unequal segments of the whole, 
together with the square on the straight line between the points of section,
is equal to the square on the half.

El. II. 6
If a straight line is bisected and a straight line is added to it in a straight line,
the rectangle contained by the whole with the added straight line, and the added straight
line, together with the square on the half, is equal to 
the square on the straight line made up of the half and the added straight line.

Fig. 1.4.1.  The diagrams in El. II.5 (left), and El. II.6 (right).

The proofs of El. II. 5 and El. II. 6, respectively, both start by assuming
that the straight line AB in the associated diagram is the given line.

In Fig. 1.4.2, left, the given straight line AB is called p, and so on, as
above. Then, the statement inEl. II.5  can be interpreted as saying that

(p – s) · s + sq. (p/2 – s) = sq. p/2.

This equation, in its turn, can be reformulated in the following way:

A + sq. q/2 = sq. p/2    where A = u · s,   p = u + s,   and q = u – s.

Therefore, the purpose of El. II.5 may have been, essentially, to demon-
strate that any rectangular-linear system of equations of type B1a:

u · s = A,    u + s = p

can be solved as follows (with sqs. meaning “the square-side of”):10

(u – s)/2 = q/2 = sqs. (sq. p/2 – A),

10. With some obvious restrictions because of the geometric interpretation.
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u = p/2 + q/2 = p/2 + sqs. (sq. p/2 – A),
s = p/2 – q/2 = p/2 – sqs. (sq. p/2 – A).

Here sqs. (short for “square side”) stands for the side of a given square.
Note that when both p and q are known, u and s can be found as the “half-
sum” and “half-difference”, respectively, of p and q.

Fig. 1.4.2.  Interpretations of the diagrams in El. II. 5 and El. II.6.

In Fig. 1.4.2, right, the given straight line AB is called q, and so on.
Then, the statement in El. II.6  can be interpreted as saying that

(q + s) · s + sq. q/2 = sq. (q/2 + s).

This equation, too, can be reformulated in the following way:

sq.p/2 = A + sq. q/2  where A = u · s,   p = u + s,   and q = u – s.

Therefore, the purpose of El. II.6 may have been, essentially, to demon-
strate that any rectangular-linear system of equations of type B1b:

u · s = A,    u – s = q

can be solved as follows:

(u + s)/2 = p/2 = sqs. (A + sq. q/2),
u = p/2 + q/2 = sqs. (A + sq. q/2) + q/2,
s = p/2 – q/2 = sqs. (A + sq. q/2) – q/2.

As mentioned above, the solution to a quadratic-linear system of equa-
tions of type B2a can be obtained by use of El. II.4 in combination with El.
II.5. Indeed, suppose that 

sq.u + sq. s = S,    u + s = p.

q/2

s

sq.q/2

q s

A

sq.q/2

u

s

s

A

q/2

s
p/2 p/2

p u

El. II.6 :

(q + s) · s  + sq. q/2 = sq. (q/2 + s)

B1b :  u · s = A, u – s = q

Ç sq.p/2 = A + sq. q/2, etc.

El.. II.5 :

(p – s) · s  + sq. (p/2 – s) = sq.p/2

B1a :  u · s = A, u + s = p

Ç sq.q/2 = sq. p/2 – A, etc.
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ThenEl. II.4 can be used to show that 

u · s = A, u + s = p    where A = (sq. p – S)/2.

In combination with El. II.5, this shows that

(u – s)/2 = q/2 = sqs. (sq. p/2 – A) = sqs. (S/2 – sq. p/2).

Consequently,

u = p/2 + q/2 = p/2 + sqs. (S/2 – sq. p/2),
s = p/2 – q/2 = p/2 – sqs. (S/2 – sq. p/2).

Similarly, of course, in the case of a system of equations of type B2b.

In the same way, a quadratic equation of, for instance, type B4a can be
solved by use of El. II. 3 in combination with El. II.6. Indeed, if

sq. s + q · s = A,

then it can be shown by use of El. II.3 that if u = s + q, then

u · s = A, u – s = q.

Therefore, in view of El. II. 6,

s = sqs. (A + sq. q/2) – q/2.

1.5.El. II.8 and the Two Basic Subtractive Quadratic-Linear
       Systems of Equations

El. II.8
If a straight line is cut at random, 
four times the rectangle contained by the whole and one of the segments, 
together with the square on the remaining segment, is equal to 
the square described on the whole and the mentioned segment as on one straight line.

Fig. 1.5.1.  The diagram in El. II.8.
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In Fig. 1.5.2 below, the given straight line AB is called u and the two
segments into which it is cut are called s andq. If also, as usual, u + s is
calledp, then the statement inEl. II.8  can be interpreted as saying that 

4 u · s + sq. (u – s) = sq. (u + s) (cf. Fig. 1.1.2!)

This equation, in its turn, can be reformulated in the following way:

4 A = D    where A = u · s, p = u + s, q = u – s,   and D = sq. p – sq. q.

In other words, if

sq.p – sq. q = D,

then

D = 4 A = 4 u · s = 2 u · 2 s.

(Note that 2 u and 2 s can be interpreted as the length of the mid-line and
the width, respectively, of the square corner formed by removing a square
of side p from a square of side p, as in Fig. 1.5.2.)

Therefore, any rectangular-linear system of equations of type B3a:

sq.p – sq. q = D, p + q = 2 u

can be solved by use of El. II.8 as follows:

p – q = 2 s= D/2u,
p = u + s= u + D/(4 u),
q = u – s = u – D/(4 u).

Fig. 1.5.2.  Interpretation of the diagram in El. II. 8.

One would now expect a further proposition related to the case of a
rectangular-linear system of equations of type B3b. However, this addi-
tional proposition was omitted by the author of El. II, obviously because
this case, too, can be taken care of by use of El. II.8.

u

sq.q

El. II.8 :

4 u · s + sq. (u – s) = sq. (u + s)

B3a-b :

sq.p – sq. q = D

p + q = 2 u  (or p – q = 2 s)

Ç 4 A = 2 u · 2 s = D,

p – q = 2 s =D/2 u

(or p + q = 2 u = D/2 s), etc.

s

s

q

A

A

A A

s
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1.6.El. II.9-10, Constructive Counterparts to El. II.4 and II.7

It Secs. 1.2-1.5 above, it was demonstrated that the first half of
Elements II, comprising the seven propositions El. II.2-8, can be interpret-
ed as a catalog of various steps in the geometric solution procedures for
the nine basic problems of OB metric algebra, six kinds of quadratic-lin-
ear or rectangular-linear systems of equations, and three kinds of qua-
dratic equations. In this first half of El. II, all the proofs are based on
manipulations with squares and rectangles.

It will be shown below that the second half of Elements II, comprising
the six propositions El. II.9-14, can be interpreted as a parallel catalog of
various steps in geometric solution procedures for six of the nine basic
problems of OB metric algebra, namely the six kinds of quadratic-linear
or rectangular-linear systems of equations. In this second half of El. II, all
the proofs are based on manipulations with right triangles and circles.

El. II.9
If a straight line is cut into equal and unequal segments, 
the squares on the unequal segments of the whole 
are double of the square on the half and of the square on the straight line 
between the points of section.

El. II.10
If a straight line is bisected, and a straight line is added to it in a straight line, 
the square on the whole with the added straight line 
and the square on the added straight line, both together, 
are double of the square on the half, 
and of the square described on the straight line made up of the half 
and the added straight line as on one straight line.

In Fig. 1.6.1 left, below, the given straight line in El. II.9 is called p, and
the unequal parts of p are called u and s, just as in the interpretation of the
diagram in El. II.4, in Fig. 1.3.2 above.

A considerable part of the proof of El. II.9 is devoted to a careful con-
struction of the various parts of the plane figure shown in the diagram. The
most essential part of that plane figure consists of two right triangles with
the sides u, s anda, b, respectively, joined along a common diagonal of
lengthd. A plane figure of this kind can be called a “birectangle”, because
it has two right angles.
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The most essential part of the plane figure appearing in the diagram for
El. II.10 consists of two partly overlapping right triangles with the sides
u, sanda, b, respectively, joined along a common diagonal of length d. A
plane figure of this kind can be called an “overlapping birectangle”. 

Fig. 1.6.1.  Interpretations of the diagrams in El. II.9, and El. II.10.

The simple proof of the proposition in El. II.9 is based on repeated
applications of the “diagonal rule” in El. I.47. On one hand,

sq. d = sq. a + sq. b = 2 sq. p/2 + 2 sq. q/2,

sincea and b are the diagonals of two half-squares with the sides p/2 and
q/2. On the other hand,

sq. d = sq. u + sq. s.

Therefore,

sq.u + sq. s = 2 (sq. p/2 + sq. q/2).

The proof of the similar proposition in El. II.10 is similar.

The purpose of El. II.9 may have been to show that any quadratic-
linear system of equations of type B2a:

sq.u + sq. s = S, u + s = p,   with S and p given,

can be solved as follows: The diagram in Fig. 1.6.1, left, is constructed,
with d = sqs. S. Then it can be shown, as in the proof of El. II. 9, that 

S = sq. u + sq. s = 2 (sq. p/2 + sq. q/2).

El. II.9 :

sq.u + sq. s = 2 (sq. p/2 + sq. q/2)

B2a :

sq.u + sq. s = S = sq.d,  u + s = p

Ç q/2 = sqs. (S/2 – sq. p/2), etc.

El. II.10 :

sq.u + sq. s = 2 (sq. p/2 + sq. q/2)

B2b :

sq.u + sq. s = S = sq.d, u – s = q

Ç p/2 = sqs. (S/2 – sq. q/2), etc.

u
sp/2

p/2

s

d

d
u
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a
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s
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Consequently,u and s can be computed in the following way:

(u – s)/2 = q/2 = sqs. (S/2 – sq. p/2),
u = p/2 + q/2 = p/2 + sqs. (S/2 – sq. p/2),
s = p/2 – q/2 = p/2 – sqs. (S/2 – sq. p/2).

Similarly, of course, El. II.10 can be interpreted as a geometric solution
procedure for a quadratic-linear system of equations of type B2b:

sq.u + sq. s = S, u – s = q,   with S and q given.

The reason why El. II. 9 and 10 can be understood as “constructive
counterparts” to El. II.4 and 7 will be disclosed below, in Sec. 1.9.

1.7.El. II.11* and II.14*, Constructive Counterparts to  El. II.5-6

El. II.11
To cut a given straight line so that 
the rectangle contained by the whole and one of the segments 
is equal to the square on the remaining segment.

El. II.14
To construct a square equal to a given rectilineal figure.

Fig. 1.7.1.  The diagrams in El. II.11 and El. II.14.

In these two propositions, the author of Elements II has chosen to con-
sidertwo particularly important constructions related to two propositions
that would have been the “constructive counterparts” to El. II. 5, 6. 

In the diagram for El. II.11 (Fig. 1.7.1, left), AB is the given straight
line. The first step of the solution to the stated construction problem is to
construct the square ABDC with sides of length h. AC is bisected at E, and
the diagonal BE is drawn. A point F on the extension of AC is found such

A
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C D
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that EF = BE. (This can be done most easily by finding the intersection of
an extension of AC with a circle through B with center E.) The square
AFGH is drawn on AF, and the side GH is extended to K. With this, the
construction is completed, and it remains to prove that the given line AB
is cut by H in the desired way. 

The construction in El. II.11 can be explained as follows: In Fig. 1.7.1,
left, let h be the length of AB = AC, let s be the length of AF, let u = s + h
be the length of CF, and let p/2 = s + h/2 be the length of EF = BE. Then, 

s + h/2 = EF  and h/2 = EA.

Now, according to El. II.6,

CF · AF + sq. EA = sq. EF = sq. EB.

In other words,

u · s + sq. h/2 = sq. p/2.

An application of the diagonal rule in El. I.47 then shows that

u · s = sq. h   where h is the given length of AB.

This means that the rectangle FGKC is equal to the square ABDC. Hence,
if the rectangle AHKC is subtracted from both, it follows that also the rect-
angle HBDK is equal to the square FGHA. Therefore the point H divides
AB in the desired way.

Fig. 1.7.2.  The general ideas behind El. II.11 and El. II.14.

What is going on here is revealed in El. VI.30, where it is shown that if
a straight line AB is divided in the way described in El. II.11, then it is
“divided in extreme and mean ratio”. Note that the diagram in El. II.11 is
nearly identical with the diagram in El. VI.30.

El. II.11* : sq.h + sq. q/2 = sq. p/2

B1b : u · s = A = sq.h, u – s = q

Ç p/2 = sqs. (A + sq. q/2), etc.

El. II.14*: sq.h + sq. q/2 = sq. p/2

B1a: u · s = A = sq.h, u + s = p

Ç q/2 = sqs. (sq. p/2 – A), etc.

h
p/2

u
s

h
p/2

q/2p/2
u

sq/2p/2
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Now, consider the construction of the diagram in Fig. 1.7.2, left. Begin
by assuming that q is a given length and A a given area, and construct a
right triangle with the sides q/2 and h = sqs. A. Then, according to the
diagonal rule in El. I.47, the diagonal of the right triangle is also known. If
it is called p/2, then 

A + sq. q/2 = sq. h + sq. q/2 = sq. p/2.

Next, construct a semicircle with the radius p/2 and with its center at the
lower left vertex of the right triangle. The result is the diagram shown in
Fig. 1.7.2, left. Let 

u = p/2 + q/2 = sqs. (A + sq. q/2) + q/2,
s = p/2 – q/2 = sqs. (A + sq. q/2) – q/2.

Then

u + s = p, u – s = q,

and it can be shown geometrically, as in Fig.1.1.2 above, that 

u · s = sq. p/2 – sq. q/2   so that u · s = sq. h = A.

Therefore, the lengths u and s constructed in this way with departure from
the given quantities q and A are solutions to the following rectangular-
linear system of equations of type B1b:

u · s = A = sq. h,  u – s = q.

It is important to realize that proposition El. II.11 in the form that
Euclid gave to it is, essentially, the special case when h = q of the more
general proposition El. II.11*, illustrated by the diagram in Fig. 1.7.2, left.

Now, consider instead the diagram in Fig. 1.7.2, right, related to the
diagram in Fig. 1.7.2, left. Begin by assuming that p is a given length and
A a given area, and construct a right triangle with the diagonal p/2 and the
upright h = sqs. A. Then, according to the diagonal rule in El. I.47, the
length of the base of the right triangle is also known. Call it q/2. Then 

sq.p/2 – A = sq. p/2 – sq. h = sq. q/2.

Next, construct a semicircle with the radius p/2 and with its center at the
lower left vertex of the right triangle. The result is the diagram shown in
Fig. 1.7.2, right. Let

u = p/2 + q/2 = p/2 + sqs. (sq. p/2 – A),
s = p/2 – q/2 = p/2 – sqs. (sq. p/2 – A).
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Then

u + s = p, u – s = q,

and it can be proved as above that the lengths u and s constructed in this
way with departure from the given quantities p and A are solutions to a
rectangular-linear system of equations of type B1a:

u · s = A = sq. h,  u + s = p.

What does this result have to do with El. II.14, where Euclid shows
how to “construct a square equal to a given rectilineal figure”? The prop-
osition is illustrated by the diagram in Fig. 1.7.1, right. Euclid begins by
constructing a rectangle equal to the given figure (which is a paraphrase
for a rectangle of given area A) by use of El. I.45. How he then continues
can be explained as follows: He lets u (BE) and s (ED) be the sides of the
rectangle with the given area A, and constructs a semicircle with the diam-
eterp = u + s (BF). Next, he constructs a perpendicular, whose length may
be called h, in the semicircle from the point (E) where the diameter of the
semicircle is divided into two segments of lengths u and s, and draws a
right triangle with the given upright side h (EH), the given diagonal p/2
(HG), and the base p/2 – s = q/2 (GE). This is, essentially, the same con-
struction as in Fig. 1.7.2, right. Then he notes that, according to El. II.5,

u · s + sq. q/2 = sq. p/2.

In view of the diagonal rule in El. I.47, this means that 

sq.h = sq. p/2 – sq. q/2 = u · s = A,

whereh is the length of the upright side of the right triangle, and where A
is the given area. Therefore, h is the side of a square with the given area.

Essentially, what Euclid does in his construction in El. II.14 is that he
starts with any rectangle with the given area A, say one with the sides u, s
= A, 1. He then constructs the diagram in Fig. 1.7.2, right, in the case when
p = u + s. In this way, he manages to construct the side h of a square with
the given area A, as the upright side of a right triangle. Therefore, proposi-
tion El. II.14 in the inverted form that Euclid chose to give to it (with u and
s, hence also p and q, given from the beginning rather than A and p) may
very well have replaced an original proposition El. II.14* in some earlier,
now lost, version of the Elements, one which showed how to construct a
solutionu, s to a rectangular-linear system of equations of type B1a.
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1.8.El. II.12-13, Constructive Counterparts to El. II.8

El. II.12
In obtuse-angled triangles the square on the side subtending the obtuse angle 
is greater than the squares on the sides containing the obtuse angle 
by twice the rectangle contained by one of the sides about the obtuse angle, 
namely that on which the perpendicular falls, and the straight line cut off outside
by the perpendicular towards the obtuse angle.

El. II.13
In acute-angled triangles the square on the side subtending the acute angle 
is less than the squares on the sides containing the acute angle 
by twice the rectangle contained by one of the sides about the acute angle, 
namely that on which the perpendicular falls, and the straight line cut off within
by the perpendicular towards the acute angle.

Just as the pair of propositions El. II. 9-10 were shown above to be con-
cerned with pairs of right triangles joined in two different ways along a
common diagonal, so the pair of propositions El. II.12, 13 are concerned
with pairs of right triangles joined in two different ways along a common
upright side (perpendicular). Thus, in Fig. 1.8.1, right (below), two right
triangles are added to each other, joined along a common upright side,
while in Fig. 1.8.1, left, one right triangle is subtracted from another right
triangle, to which it is joined along a common upright side.

Fig. 1.8.1.  Interpretations of the diagrams in El. II.12 and El. II.13.

El. II.12 : 

sq.c = sq. a + sq.b + 2 b · q

B3b :

sq.p – sq. q = D, p – q = b,

with D = sq.c – sq.a

Ç 2 b · q = D – sq.b, etc.

El. II.13 :

sq.c = sq. a + sq.b – 2b · q

B3a :

sq.p – sq. q = D, p + q = b,

with D = sq.c – sq.a

Ç 2 b · q = sq. b – D, etc.

q
p

b

c
h h

q p

a
a

c

b
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With the notations introduced in Fig. 1.8.1, left, the proof of El. II.12
proceeds as follows:

sq.p = sq. b + sq. q + 2 b · q El. II.4
sq.p + sq. h = sq. b + sq. q + sq. h + 2 b · q
sq.c = sq. b + sq. a + 2 b · q El. I.47

Similarly in the case of El. II.13, with the notations in Fig. 1.8.1, right:

sq.b + sq. q = 2 b · q + sq. p El. II.7
sq.b + sq. q + sq. h = 2 b · q + sq. p + sq. h
sq.b + sq. a = 2 b · q + sq. c El. I.47
sq.c = sq. b + sq. a – 2 b · q

The purpose of El. II.12 may have been to demonstrate that any
subtractive quadratic-linear system of equations of type B3b:

sq.p – sq. p = D, p – q = b,   with D and b given,

can be solved as follows: Express D as a square-difference, for instance as

D = D · 1 = sq. c – sq. a   with c = (D + 1)/2, a = (D – 1)/2.

(Cf. Fig. 1.1.2.) Then it follows from the result in El. II. 12 that

2 b · q = D – sq. b.

Therefore,

q = (D – sq. b)/(2 b), p = (p – q) + q = b + q = (D + sq. b)/(2 b).

In a similar way, the purpose ofEl. II.13 may have been to demonstrate
that any subtractive quadratic-linear system of equations of type B3a:

sq.p – sq. p = D, p + q = b,   with D and b given,

can be solved as follows: Express D as a square-difference, 

D = sq. c – sq. a.

Then it follows from the result in El. II. 13 that

2 b · q = sq. b – D,

so that

q = (sq. b – D)/(2 b), p = (p + q) – q = b – q = (sq. b + D)/(2 b).

It may seem a bit strange that in El. II.12-13 the case of the obtuse-
angled triangle precedes the case of the acute-angled triangle. The reason
can be that, as pointed out above, the proof of El. II.12 makes use of El.
II.4, while the proof of El. II.13 makes use of the later proposition El. II.7.
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1.9. Summary. The Three Parts of Elements II

The discussion above aimed to demonstrate that Elements II can be
divided into three distinct parts with obvious relations to the nine basic
equations or systems of equations in OB metric algebra:

A.   El. II.(1), 2, 3: related to the basic quadratic equations
B.   El. II.4-8: related to the basic quadratic- or rectangular-linear systems of equations
C.   El. II.9-14: related to the same quadratic- or rectangular-linear systems of equations

The question then naturally arises why work that was already done in part
B of Elements II is repeated in a different way in part C. The answer to this
question may be as follows:

It is possible that a lost Greek forerunner to Elements II, call it Elements
II*, was written in imitation of a Babylonian theme text with the same sub-
ject. (See below, Sec. 1.12, for examples of OB theme texts.) Presumably,
Elements II* contained only parts A and B, possibly with Babylonian style
metric algebra diagrams rather than the lettered diagrams preferred by
Euclid, and with solutions to concrete metric algebra problems instead of
abstract geometric propositions. Then, somebody may have reacted to the
circumstance that the solutions to the metric algebra problems in part B of
Elements II* were analytic and non-constructive, in the sense that the dia-
grams associated with the forerunners to El. II.4-8 cannot be drawn accu-
rately until after the solutions to the stated metric algebra problems have
been found. Therefore, the non-constructive solutions in part B were com-
plemented with alternative synthetic and constructive solutions in part C,
consisting of forerunners to El. II.9-14.

Take, for instance, a renewed look at the pair El. II.9-10. Suppose that
p is a given length and that S = sq. d is the area of a square with sides of
given length d. Then a solution to the metric algebra problem

B2a:   sq. u + sq. s = S = sq. d, u + s = p

can be constructed in the following way: 
Draw a straight line of length p, as in Fig. 1.9.1, left. Bisect the straight

line, and erect a perpendicular of length p/2 at its midpoint. Complete a
half-square with the straight line of length p as its diagonal and base. Then
draw a circle of radius d with its center at one of the endpoints of the given
straight line. Draw a perpendicular to the given straight line from the point
where the circle intersects that half-square. This perpendicular cuts the
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given straight line into two segments. Call the lengths of the segments u
ands. Then s is also the length of the perpendicular from the point of inter-
section of the circle and the half-square. Therefore, it is clear that u, s is a
solution to the stated metric algebra problem of type B2a.

As mentioned above (Fig. 1.6.1), this constructive geometric solution
to the problem can be transformed into the following metricsolution:

u = p/2 + sqs. (S/2 – sq. p/2), s = p/2 – sqs. (S/2 – sq. p/2.

Fig. 1.9.1.  Geometric constructions of solutions in possible forerunners to El. II.9, 10.

A similar constructive solution to the metric algebra problem of type
B2b is illustrated in Fig. 1.9.1, right. It is a likely forerunner to El. II.10.

In a similar way, consider the following likely forerunners to the pair
El. II.11*  and El. II.14*  (Fig. 1.7.2), the proposed forerunners to El. II.11
and II.14. First, suppose that q is a given length and that A = sq. h is the
given area of a square. Then a solution to the metric algebra problem

B1b: u · s = A = sq. h, u – s = q

can be constructed in the following way: Draw a rectangle with sides of
lengthq and h, as in Fig. 1.9.2, left, and draw a semicircle with its center
at the midpoint of one of the sides of length q, and passing through the two
opposite vertices of the rectangle. Then the diameter of the circle is cut into
three segments of which one is the side of the rectangle of length q. Let s
be the common length of the remaining two segments, let u = s+ q, and let
p = u + s. Then p/2 is the length of the radius of the semicircle. Therefore,
by the diagonal rule, sq. p/2 – sq. q/2 = sq. h. On the other hand, 

sq.p/2 – sq. q/2 = u · s. 

(See Fig. 1.1.2.) Consequently, u · s = sq. h, and it follows that u, s is a

s

s

s
sp

d

du

u

q

B2a: sq.u + sq. s = S = sq.d
u + s = p  (p > d)

B2b: sq.u + sq. s = S = sq.d
u – s = q  (q < d)
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solution to the mentioned metric algebra problem of type B1b.

Fig. 1.9.2.  Geometric constructions of solutions in possible forerunners to El. II.11*, 14*.

A similar constructive solution to the metric algebra problem of type
B1a is illustrated in Fig. 1.9.2, right. It is a likely forerunner to El. II.14*.

Note: A shortcoming in the proposed constructive solutions to systems of
equations of types B1a-b or B2a-b depicted in Figs. 1.9.1-2 is that they are
based on the assumption that the square sides d and h of S and A, respec-
tively, are known. Apparently, Euclid observed this shortcoming in the
mentioned constructive solutions, and that is why he included a description
of the geometric construction of square sides in his El. II. 14. Having in-
sertedEl. II.14 in Elements II, he did not bother to include also El. II.14*
(Fig. 1.7.2, right), for which the diagram would be, essentially, the same.

Consider, finally, the following likely forerunners to the pair El. II.12,
El. II.13. Suppose that a, b, q are given lengths of the three sides of a tri-
angle. Then a geometric solution to the metric algebra problems

B3a-b:   sq. u – sq. s = D = sq. a – sq. b, u – s = q   (or u + s = p)

can be constructed as in Fig. 1.9.3. The uncomplicated details of the argu-
ment are left to the readers.

Fig. 1.9.3.  Geometric constructions of solutions in possible forerunners to El. II.12, 13.

B1b: u · s = A = sq.h,  u – s = q B1a: u · s = A = sq.h, u + s = p

h

q
su su

h

p

B3b: sq.u – sq. s = D, u – s = q
D = sq. a – sq. b

B3a: sq.u – sq. s = D, u + s = p
D = sq. a – sq. b
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u

q
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s s
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1.10. An Old Babylonian Catalog Text with Metric Algebra Problems

There does not exist any known OB mathematical text that is an exact
parallel to Elements II, or to any one of the three parts of it. On the other
hand, there do exist examples of OB catalog texts or theme texts with met-
ric algebra problems, which therefore in a restricted sense can be called
forerunners to Elements II. One such text is BM 80209, a small clay tablet
from the OB city Sippar, now in the collections of the British Museum in
London. The interpretation of that text given in Friberg, JCS 33 (1981) will
be partly repeated here.

BM 80209 is a very special kind of theme text, namely a very brief but
systematically arranged “catalog” of metric algebra problems of a number
of different types, each represented by one or several numerical examples.
There are no solution procedures and no answers to the stated problems.

Here is an abbreviated transliteration and translation of the text. In the
transliteration, square brackets indicate destroyed parts of the text, Sume-
rian words are written in normal style, and Akkadian (that is, Babylonian)
words in italics. (Sumerian terms were used in Babylonian mathematical
texts in much the same way as words of Greek or Latin origin are used in
modern mathematical texts.) Sexagesimal numbers are written as they are
in the original text, without zeros and without any indication of where the
fractional part of a number begins.

BM 80209

1. ··· each it is equalsided. The field is what?

2. If 20 each it is equalsided, the transversal is what?

3. If 10 each it is equalsided, the expansion is what?

1. [···. ta im]-ta-‹ar a.$à mi-nu-um

2. [$um-ma] 20. ta im-ta-‹ar dal mi-nu-um

3. [$um-m]a 10. ta im-ta-‹ar di-ik-$um mi-nu-um

4. $um-ma A a.$à gúr mi-nu-um

5. a-na a.$à gúr c  u$ da‹ P

i-na a.$à gúr c  u$ ba.zi Q

6. a.$à 2 gúr ul.gar A    gúr ugu gúr 10 diri

7. a.$à gúr dal gúr  ù sí-‹i-ir-ti gúr ul.gar-ma A
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4. If A is the field, the arc is what?

5. To the field of the arc c (times) the length I added, P.

 From the field of the arc c (times) the length I tore off, Q.

6. The fields of 2 arcs I joined, S.   Arc over arc 10 beyond.

7. The field of the arc, the transversal of the arc, the go-around of the arc I joined, S.

(In the translation, destroyed parts of the text are written in italics.)

For various reasons, it is advisable to use literal translations of Baby-
lonian mathematical texts. In the translation above, the literal translations
‘equalsided’, ‘field’, and ‘arc’ correspond to the modern terms ‘square’,
‘area’, and ‘circle’. The ‘transversal’ of a square is its diagonal, while the
‘transversal’ of a circle is its diameter. The circumference of a circle is
called its ‘arc’, its ‘length’, or its ‘go-around’. ‘Tear off’ means ‘subtract’,
and ‘arc over arc is 10 beyond’ means that the circumference of one circle
is 10 (length units) longer than the circumference of another circle.

The very convenient approximation L = appr. 3 is used in all Babylo-
nian mathematical texts. More precisely, the area A and the diameter d of
a circle are expressed as follows in terms of the arc (circumference) a:

A = 5 · a,     where   ‘5’ means ;05 = 5/60 = 1/12  = appr. 1/4L,
d = 20 · a,   where   ‘20’ means ;20 = 20/60 = 1/3 = appr. 1/L.

In addition to sexagesimal fractions, such as the circle constants ‘5’ and
‘20’, there are also two other kinds of fractions of numbers that appear in
Babylonian mathematical texts. One kind is the “basic fractions”

3' (= 1/3)
2' (= 1/2)
3" (= 2/3)
6" (= 5/6)

for which there existed special signs in the cuneiform script. Another kind
are the “reciprocals”

1/n,   where n = 4, 5, 6, …,   often written in Sumerian in the form igi.n .gál.

In §§ 4-7 of the catalog text BM 80209, the coefficients A, P, Q, S, and
c are allowed to take various values, so that there are several examples of
each type of problem. In quasi-modern notations, the contents of BM
80209 can be described as follows. (The answers, which are not given in
the text, are listed in the last column. A minor numerical error in the text
is corrected here.)
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BM 80209, table of contents            (sexagesimal numbers with floating values)

1. sq. s = ? s = [···]

2. sq. s = A, d = ? s= 20 d = 20 · 1 24 51 10

3. expansion of  s = ? s= 10             (meaning unknown)

4. 5 sq. a = A, a = ? A = 8 20 a = 10
A = 2 13 20 a = 40
A = 3 28 20 a = 50
A = 5 a = 1 (· 60)

5. 5 sq. a + c · a = P, a = ? c = 2' P = 8 25 a = 10
5 sq. a – c · a = Q, a = ? Q = 8 15 a = 10

c = 1 P = 8 30 a = 10
Q = 8 10 a = 10

c = 1 3' P = 8 33 20 a = 10
Q = 8 06 40 a = 10

c = 1 2' P = 8 35 a = 10
Q = 8 05 a = 10

c = 1 3" P = 8 36 40 a = 10
Q = 8 03 20 a = 10

c = 1 1/4 P = 8 332 30 a = 10
Q = 8 07 30 a = 10

c = 1 1/5 P = 8 32 a = 10
Q = 8 08 a = 10

6. 5 sq. a + 5 sq. b = S,  a – b = 10, a, b = ? S = 41 40 a = 20, b = 10
S = 3 28 20 a = 40, b = 30
S = 41 40 a = 50, b = 40
S = 8 28 20 a =1 (· 60), b = 50

7. 5 sq. a + 20 a + a = B, a = ? B = 8 33 20 a = 10
B = 1 a = 20
B = 1 55 a = 30
B = 3 06 40 a = 40

1.11. A Large Old Babylonian Catalog Text of a Similar Kind

Another similar, but much more extensive, OB catalog text with metric
algebra problems without answers isTMS 5, from the ancient city Susa
(Western Iran). Here is an abbreviated transliteration and translation, with
several corrected readings of crucial but misunderstood words in the
original edition of the text in Bruins and Rutten, TMS (1961):
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TMS 5

1a. s is the equalside. c (times) my length is what?
1b. c (times) my length is b. The equalside is what?
1c. Equalside and c (times) my length I added, e.
1d. Equalside over c (times) the length is d beyond.

2a. s is the equalside. c (times) the field is what?
2b. c (times) the field is A. The equalside is what?

3a. s is the equalside. The field of c (times) the length is what?

1a. s nígin c  u$-ia mi-nu
1b. [c u$-ia b nígin  mi-nu]
1c. nígin ù c  u$-ia gar.gar-ma e

1d. nígin ugu  c  u$ d  diri

2a. s nígin c  a.$à mi-nu
2b. c  a.$à A  nígin mi-nu
3a. s nígin a.$à  c  u$ mi-nu
3b a.$à  ù a.$à  c  u$ gar.gar-ma S
3c. a.$à  ugu  a.$à  c  u$ D diri  

4a. a-na a.$à nígin-ia  c  u$ da‹-ma P
4b. i-na a.$à nígin-ia  c  u$ zi-ma Q
4c. c  nígin ugu a.$à  D diri
4d. c  nígin ki-ma a.$à [···]-ma

5. nígin.ba a.$à  ab-ni mi-nu íb.si  ù [···]-ma

6. c  a.$à  it-ba-al íb.tag4 a.$à D  nígin  mi-nu

7a. p  nígin  ki-di-tum d me-$é-tum nígin  qer-bi-tum mi-nu
7b. q  nígin  qer-bi-tum d me-$é-tum nígin  ki-di-tum mi-nu
7c. p  nígin  ki-di-tum q  nígin  qer-bi-tum ul.gar a.$à 2 nigin  mi-nu
7d. a.$à 2 nigin  ul.gar-ma S  p  nígin  ki-di-tum qer-bi-tum mi-nu
7e. a.$à 2 nigin  ul.gar-ma S  q  nígin  qer-bi-tum ki-di-tum mi-nu
7f. a.$à 2 nigin  ul.gar-ma S u$-$i-na gar.gar-ma b nigin mi-nu
[··················································································································]

8a. [···] nígin qer-bi-tim [···] qer-bi-tum nigin mi-nu
8b. [D] a.$à dal-ba-ni d me-$é-tum nígin ki-di-tum ù qer-bi-tum mi-nu
8c. D a.$à dal-ba-ni c nígin  ki-di-tim nígin ki-di-tum qer-bi-tum mi-nu

9a. p nígin ki-di-tum q múr r nígin  qer-bi-tum a.$à  dal-ba-an dal-ba-ni mi-nu
9b. a.$à  dal-ba-an dal-ba-ni E u$-$i-na ul.gar-ma b nigin mi-nu
9c. a.$à  dal-ba-an dal-ba-ni E múr ugu nígin  d nigin  mi-nu

4 22 mu.bi nigin.me$
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3b. The field and the field of c (times) the length I heaped, S.
3c. The field over the field of c (times) the length is D beyond.

4a. To the field of my equalside c (times) the length I added, P.
4b. From the field of my equalside c (times) the length I tore off, Q.
4c. c (times) the equalside over the field is D beyond.
4d. c (times) the equalside is like the field [····]

5. (meaning not clear)

6.  c (times) the field he took away. The remaining field is D. The equalside is what?

7a. p the outer equalside, d the distance. The inner equalside is what?
7b. q the inner equalside, d the distance. The outer equalside is what?
7c. p the outer equalside, q the inner equalside. 

The join of the fields of the 2 equalsides is what?
7d. The fields of two equalsides I joined, S.

p is the outer equalside. The inner equalside is what?
7e. The fields of two equalsides I joined, S.

q is the inner equalside. The outer equalside is what?
7f. The fields of two equalsides I joined, S.

Their lengths I heaped, b. The equalsides are what?
····· (several problems missing)

8a. (badly preserved)
8b. D is the field between, d the distance. 

The outer and inner equalsides are what?
8c. D is the field between. 

c (times) the outer equalside is the inner equalside. The inner equalside is what?

9a. p is the outer equalside, q the middle, r the inner equalside.
The field between between is what?

9b. The field between between is E. Their lengths I joined, b.
The equalsides are what?

9c. The field between between is E. The middle over the <inner> equalside is d.
The equalsides are what?

The theme of TMS 5 is problems for squares. This is confirmed by the
subscript which states that the text contains ‘4 22 (262) cases of squares’.

It is interesting to note that the cuneiform sign nígin, which in this text
stands for ‘equalside’ has the form of a square. The related sign nigin,
which stands for ‘equalsides’ has the form of two adjoining squares. Note
also that it is difficult to establish the exact meaning of ‘equalside’. Thus,
for instance, ‘the length of the equalside’ means the side of the square,
while ‘the field of the equalside’ means the area of the square.
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In quasi-modern notations, the problems in TMS 5 can be explained as
follows:

TMS 5, table of contents

1 a. s  given c · s = ? 20 values for c
1 b [c · s given s = ?] 20 values for c
1 c s + c · s given s = ? 20 values for c
1 d s – c · s given s = ? 17 values for c

2 a. s given c · sq. s = ? 19 values for c
2 b c · sq. s given s = ? 19 values for c

3 a. s given sq. (c · s) = ? 20 values for c
3 b sq. s + sq. (c · s) given s= ? 20 values for c
3 c sq. s – sq. (c · s) given s = ? 20 values for c

4 a. sq. s + c · s given s= ? 27 values for c
4 b sq. s – c · s given s= ? 27 values for c
4 c c · s– sq. s given s= ? 3 values for c
4 d c · s = sq. s s = ? 1 value for c

5 ···················                    (meaning not clear) 1 problem

6 sq. s – c · sq. s given s= ? 5 values for c

7 a. p   and   (p – q)/2 given q = ? 1 problem
7 b q   and    (p – q)/2 given p = ? 1 problem
7 c p   and q given sq. p + sq. q = ? 1 problem
7 d sq. p + sq. q   and p given q = ? 1 problem
7 e sq. p + sq. q   and q given p = ? 1 problem
7 f sq. p + sq. q and p + q given p, q = ? 1 problem
·······························································································(10 problems missing?)

8 a. p   and p – q given q = ? 1 problem
8 b sq. p – sq. q and p – q given p, q = ? 1 problem
8 c sq. p – sq. q   given,  q = c · p q = ? 2 values for c

9 a. p, m, q given   sq. m– sq. q = ? 1 problem
9 b sq. m – sq. q  and   p + m + q given p, m, q = ? 1 problem
9 c sq. m – sq. q  and   m – q given p, m, q = ? 1 problem

Note: In 9b-c it is tacitly assumed that p – q = q – r.

In §§ 1-4 of TMS5, the given values of the coefficient c are allowed to
vary in the same way as the given values of the coefficient c in § 5 of BM
80209 (Sec. 1.10 above), but much more extensively. Here is a list of given
values of c and the corresponding values of the solution s (the asked for
length of the square side):
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Probably in order to save space, the values given for c in this text make
use of some otherwise undocumented notations for fractions. Take, for
instance the most complicated examples, those of the values 3" 2' 3' 11 7
and 2 3" 2' 3' 11 7. They appear in § 1 c, in the two lines

nígin ù 3" 2' 3' 11 7 u$-ia gar.gar-ma 12 51 06 40
nígin ù 2 3" 2' 3' 11 7 u$-ia gar.gar-ma 12 52 13 20.

This means that

s + 3" 2' 3' 11 7 · s = 12 51 06 40,   ands + 2 3" 2' 3' 11 7 · s = 12 52 13 20.

This and other examples together show that what is meant here is

3" 2' 3' 11 7 · s= 2/3 · 1/2 · 1/3 · 1/11 · 1/7 · s

and

2 3" 2' 3' 11 7 · s = 2 · 2/3 · 1/2 · 1/3 · 1/11 · 1/7 · s.

It is likely that the student who got these equations as problems to solve
was assumed to make use of the rule of false value, a frequently used meth-
od in Babylonian mathematics. He would then start with a tentative value
for s, such as 

s* = 7 · 11 = 1 17 (77). 

c s c s c s

1
2
3
4
3"
2'
3'
4

3' 4
1 3"
1 2'
1 3'
1 4

1 3' 4
2 2'
3 3'
4 4

30 1
7

2 7
1 7

1 2 7
7 1/7

7 2 1/7
1

7 7
2 7 7
1 7 7

1 2 7 7
1
11

2 11

35

4 05

55

1
11 11

2 11 11
1

11 7
2 11 7

1
3" 2' 3' 11 7

2 3" 2' 3' 11 7

10 05

6 25

12 50

35 = 5 · 7

4 05 = 5 · 7 · 7

55 = 5 · 11

10 05 = 5 · 11 · 11

6 25 = 5 · 7 · 11

12 50 = 2 · 5 · 7 · 11
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Using this tentative value, and working with sexagesimal numbers in
“relative place value notation” without zeros, he would then find that

2/3 · 1/2 · 1/3 · 1/11 · 1/7 · 1 17 = 2/3 · 1/2 · 1/3 · 1/11 · 11 = 2/3 · 1/2 · 1/3 · 1 
= 2/3 · 1/2 · 20 = 2/3 · 10 = 6 40.

Therefore, keeping track of the relative size of the computed fraction of
1 17, he could conclude that

s* + 3" 2' 3' 11 7 · s* = 1 17 + 6 40 = 1 17 06 40,

where

1 17 06 40 = 1/10 · 12 51 06 40.

This means that s = 10 · s* = 10 · 1 17 = 12 50 is the correct solution to the
first of the mentioned equations. It is left to the interested reader to show
that it is also the solution to the second equation.

Note the following important connection between TMS 5 and the expla-
nation of Elements II suggested in Secs. 1.2, 1.3, and 1.5 above: The prob-
lems in TMS 5 § 4 a-c are basic quadratic equations of types B4a, B4b,
and B4c. Similarly, the problems in TMS 5 § 7 f (and probably the lost §
7 g) are basic additive quadratic-linear system of equations of types B2a
(and B2b). Finally, the problem inTMS 5 § 8 b is a subtractive quadratic-
linear system of equations of type B3b.

In TMS 5 §§ 7-9 are also of interest in this connection, because they
demonstrate quite clearly that OB mathematicians were familiar with the
concepts of concentric and parallel squares, and square bands. (Cf. the
discussion of Fig. 1.1.2 in Sec. 1.1 above.)

Fig. 1.11.1.  The concentric squares and square bands in TMS 5 §§ 7, 8, and 9.
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m
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In TMS 5 § 7, and § 8 b, two squares have the sides 30 and 20, respec-
tively. It is silently assumed that the two squares are concentric and paral-
lel. The distance between the squares is 5. 

In § 8 c, two cases are considered. In the first case, the area of the ‘space
between’, that is of the square band, is 20 (· 60), and the length of the inner
square is 1/7 of the length of the outer square, with 1/7 written simply as
‘7’. The solution procedure, which is not given in the text, is simple, since
the length q of the inner square can be found as the solution to the equation

sq. (7 q) – sq. q = 20 (· 60),   and   sq. 7 – sq. 1 = 48,
so that   48 sq. q = 20 (· 60),   hence   sq. q = 25,   and
q = 5, p = 35.

In the second case, the area of the square band is 16 40 (· 60), and the
length of the inner square is 1/7 · 1/7 of the length of the outer square, with
1/7 · 1/7 written simply as ‘7 7’. In this case,

sq. (49 q) – sq. q = 20 (· 60),   and   sq. 49 – sq. 1 = 40 01 – 1 = 40 (· 60),
so that   40 sq. q = 16 40,   hence   sq. q = 25,   and
q = 5, p = 4 05.

In TMS 5 § 9, there are three concentric squares and two square bands.
It is silently assumed that the middle square is halfway between the other
two. The sides of the three squares are simply 30, 20, and 10.

1.12. Old Babylonian Solutions to Metric Algebra Problems

1.12 a. Old Babylonian problems for rectangles and squares

The two OB catalog texts with metric algebra problems discussed in
Secs. 1.10 and 1.11 above are well organized but lack both answers and
explicit solution procedures to the stated problems.

BM 13901 (Neugebauer, MKT 3 (1937); Høyrup,LWS (2002), 288) is
of a different type, a theme text with metric algebra problems. It is a large
text containing 23 exercises for squares, each with a complete solution
procedure. The table of contents below, where the exercises are listed in
their order of appearance in the text, reveals that BM 13901 is a mathemat-
ical “recombination text”, by which is meant a somewhat disorganized
collection of more or less closely related mathematical exercises from a
number of sources.
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BM 13901, table of contents           (sexagesimal numbers with floating values)

1 a. sq. s + s = 45 s = 30
1 b sq. s – s = 14 30 s = 30
1 c sq. s – 3' sq. s+ 3' s= 20 s = 30
1 d sq. s – 3' sq. s + s= 4 46 40 s = 20
1 e sq. s + s + 3' s= 55 s = 30
1 f sq. s + 3" s = 35 s = 30
1 g 7 s + 11 sq. s = 6 15 s = 30
2 a. sq.p + sq. q = 21 40, p + q = 50 p = 30, q = 20
2 b sq.p + sq. q = 21 40, p – q = 10 p = 30, q = 20
2 c sq. p + sq. q = 21 15, q = p – 1/7 p p = 3 30, q = 3
2 d sq. p + sq. q = 28 15, p = q + 1/7 q p = 4, q = 3 3 0
2 e sq.p + sq. q = 21 40, p · q = 10 p = 30, q = 20
2 f sq. p + sq. q = 28 20, q = 1/4 p p = 40, q = 10
2 g sq. p + sq. q = 25 25, q = 3" p + 5 p = 30, q = 25
4 sq. p + sq. q + sq. r + sq. s = 27 05,

   q = 3" p, r = 2' q, s = 3' r p = 30, q = 20, r = 15, s = 10
1 h sq. s – 3' s= 5 s = 30
3 a. sq. p + sq. q + sq. r = 10 12 45,

   q = 1/7 p, r =1/7 q p= 24 30, q = 3 30, r = 30
3 b sq. p + sq. q + sq. r = 23 20, p – q = q – r = 10 p = 30, q = 20, r = 10
2 h sq. p + sq. q + sq. (p – q) = 23 20, p + q = 50 p = 30, q = 20
······················································································· (3 exercises lost)

1 i 4 s + sq. s = 41 40 s = 10
3 c sq. p + sq. q + sq. r = 29 10,

   q = 3" p + 5, r = 2' q + 2 30 p = 30, q = 20, r = 10

Four of the exercises in BM 13901 are closely associated with the
theme of parts A and B of Elements II. (See Sec. 1.9 above.) These four
exercises will be discussed separately below.

BM 13901 § 1 a, literal translation explanation   (relative values)

The field and my equalside I heaped, 45. sq. s+ s= A = 45
1, the going-out, you set. Set q = 1
The halfpart of 1 you break. q/2 = 30
30 and 30 you make eat each other. sq. q/2 = sq. 30 = 15
15 to 45 you add. A + sq. q/2 = 45 + 15 = 1
1 makes 1 equalsided. sqs. 1 = 1
30 that you made eat itself, q/2 = 30
inside 1 you tear out. subtracted from 1 = 30
30 is the equalside s= 30.
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See (Høyrup, LWS(2002), 50) for a transliteration of this text, and for
a literal translation, differing in some details from the one proposed here.
It is, by the way, not easy to find adequate literal translations of the terms
in a Babylonian mathematical text, since there is often no exact correspon-
dence between Babylonian and modern mathematical terms. Nevertheless,
it is advisable to use literal translations, for the reason that OB mathemat-
ical terminology was not standardized. The fact that crucial elements of the
terminology are different in texts from different sites and different periods
ought to be apparent in the translations. 

Besides, the use of non-literal translations can obscure important fine
points of the text, such as the fact, first pointed out by Høyrup in AoF 17
(1990), that OB mathematicians used different terms for several different
kinds of addition, several different kinds of multiplication, etc. Thus, for
instance, in the text above, when two lengths are multiplied with each
other, the term used is that the numbers for the two lengths “eat each other”
(and become replaced by a number for an area).

Note in the explanation the use of the abbreviations sq. for the square
of a length number and sqs. for the square side of an area number. (The use
of modern notations for squares and square roots would be anachronistic.)

The term ‘going-out’ (Akk. wª%‰tum ‘that which goes out’) in this text
refers to the coefficient q in the quadratic equation sq. s + q · s = A. It has
to be understood as a length number, which explains why it is possible to
add together the area number sq. sand the product q · s. In the present case,
whenq = ‘1’, the phrase ‘the field and my equalside’ has to be understood
as sq. s + 1 · s, where both sq. s and 1 · s arearea numbers!

Note, by the way, that it is not absolutely clear what it means that in this
text the going-out is equal to ‘1’. Høyrup is of the opinion that it means that
q = 1 length unit, and is then forced to interpret the answer ‘30 is the equal-
side’ as meaning that the computed side of the square is ;30 = 1/2 length
unit. However, there is plenty of evidence that plane figures in OB
mathematical texts were normally (but perhaps not always) thought of as
actual fields, with the size of their sides in the range of tens or sixties of
the length unit ninda (= about 6 meters). Since the situation is unclear, it
may be a good idea to stay neutral on this issue and interpret ‘1’ as either
1 or 1 00 = 1 · 60 and ‘30’ as either 30 or ;30 = 30 · 1/60.
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The quadratic equation in BM 13901 § 1a is of type B4a. The solution
procedure can be interpreted as a combination of the ideas behind El. II.3
and II.6. (Fig. 1.2.3, left, and Fig. 1.4.2, right.) See Fig. 1.12.1 below:

Fig. 1.12.1.  A geometric explanation of the solution procedure in BM 13901 § 1 a.

Note that if it is assumed here that s = ‘30’ = 30, then sq. s = ‘15’ = 15 00
and consequently A = ‘45’ = 45 00 and q = ‘1’ = 1 00!

Now, consider instead BM 13901 § 1 b (Høyrup, LWS (2002), 52):

BM 13901 § 1 b, literal translation explanation   (floating values)

My equalside inside the field I tore out, 14 30. sq. s– s= A = 14 30
1, the going-out, you set. set q = 1
The halfpart of 1 you break. q/2 = 30
30 and 30 you make eat each other. sq. q/2 = sq. 30 = 15
15 to 14 30 you add. sq.q/2 + A = 15 + 14 30 = 14 30 15(!)
14 30 15 makes 29 30 equalsided. sqs. 14 30 15 = 29 30
30 that you made eat itself, Recall that q/2 = 30
to 29 30 you add. 30 is the equalside 30 added to 29 30 = 30, s= 30

The problem in BM 13901 § 1 b can be interpreted as a quadratic equa-
tion of type B4b, sq. s– q · s= A, with q = ‘1’. The most likely interpreta-
tion of the solution procedure is that it is a combination of the ideas behind
El. II.2 and II.6 (Figs. 1.2.2 and 1.4.2, right). See Fig. 1.12.2 below:

Note that in § 1b the computed value of u is again ‘30’, but when s =
30, then in Fig. 1.12.2, left, the going-out q = ‘1’ cannot possibly have the
value 1 00, which is greater than 30. Indeed, in a geometric interpretation
like the one in Fig. 1.12.2, the difference s – q must be a (positive) length
number. For this reason, the author of BM 13901 apparently chose to in-
terpret ‘the going-out is 1’ in § 1 b as meaning that q = 1, not q = 1 00!

s

q s

A

B4a:  sq. s + c · s = A

s + q/2 = sqs. (A + sq.q/2)

s

q/2

q/2

s

A

sq.. q/2
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Fig. 1.12.2.  A geometric explanation of the solution procedure in BM 13901 § 1 b.

Next, consider BM 13901 § 2 a (Høyrup, op. cit., 66):

BM 13901 § 2 a, literal translation explanation   (floating values)

The fields of my two equalsides I heaped, 21 40, sq. p + sq. q = S = 21 40
and my equalsides I heaped, 50. p + q = 2 u = 50
The halfpart of 21 40 you break. S/2 = 10 50
10 50 you write down. make a note of S/2 = 10 50
The halfpart of 50 you break. u = (p + q)/2 = 50/2 = 25
25 and 25 you make eat each other. sq. u = sq. 25 = 10 25
10 25 inside 10 50 you tear out. S/2 – sq. u = 10 50 – 10 25 = 25
25 makes 5 equalsided. sqs. (S/2 – sq. u) = sqs. 25 = 5 = s
5 to the first 25 you add, u + s= 25 + 5 = 30
30 is the first equalside. p = 30
5 inside the second 25 you tear out, u – s= 25 – 5 = 20
20 is the second equalside. q = 20

The problem in BM 13901 § 2 a can be interpreted as a quadratic-linear
system of equations of type B2a, sq. p + sq. q = S, p + q = 2 u. The solution
procedure is based on the identity

sq.s= S/2 – sq. u   when   sq. p + sq. q = S,   p = u + s and q = u – s.

BM 13901 § 2 b (Høyrup, op. cit., 68) is similar:

BM 13901 § 2 b, literal translation explanation   (floating values)

The fields of my two equalsides I heaped, 21 40. sq. p + sq. q = S = 21 40
Equalside over equalside is 10 beyond. p – q = 10
The halfpart of 21 40 you break. S/2 = 10 50
10 50 you write down. make a note of S/2 = 10 50
The halfpart of 10 you break. (p – q)/2 = s = 5

sq.q/2

s

q
s

–
q

A

s – q/2q/2

s
–

q/
2

q/
2

A

B4b:  sq. s – q · s = A

s – q/2 = sqs. (A + sq.q/2)
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5 and 5 you make eat each other. sq. s = sq. 5 = 25
25 inside 10 50 you tear out. S/2 – sq. s = 10 50 – 25 = 10 25
10 25 makes 25 equalsided. sqs. (S/2 – sq. s) = 25 = u
25 you write down twice. make two notes of u = 25
5 that you made eat itself Recall that s = 5
to the first 25 you add, u + s = 25 + 5 = 30
30 is the equalside. p = 30
5 inside the second 25 you tear out, u – s = 25 – 5 = 20
20 is the second equalside. q = 20

The problem in BM 13901 § 2 b can be interpreted as a quadratic-linear
system of equations of type B2b, sq. p + sq. q = S, p – q = 2 s. The solution
procedure is based on the identity

sq.u = S/2 – sq. s  when   sq. p + sq. q = S,   p = u + s and q = u – s.

In LWS (2002), 67-70, Figs. 10-12, Høyrup presents three different pos-
sible configurations in terms of squares and rectangles which the OB math-
ematicians may have used to prove identities like the ones mentioned
above. There is, however, a fourth possible, and perhaps more plausible,
configuration, which Høyrup did not consider in this connection (but
which he did consider elsewhere, op. cit., 259, Fig. 67). 

Fig. 1.12.3.  Left: A geometric explanation of BM 13901 § 2 a-b. Right: El. II.9.

Indeed, in Fig. 1.12.3 above, left, 

sq.d (= the area of the oblique square) = (sq. p + sq. q)/2.

This is so because sq. d plus the areas of four right triangles = sq. p, while
sq.d minus the areas of four right triangles = sq. q (see Fig. 2.3.2, right).

q q

d ds

p
u s u s

s

p

(sq.p + sq. q)/2 = S/2 = sq.d = sq. u + sq. s
p = u + s, q = u – s

or



1.12. Old Babylonian Solutions to Metric Algebra Problems 41

On the other hand, in view of the diagonal rule (Sec. 2.3), it is also true that

sq.d = sq. u + sq. s,   where u = (p + q)/2,  ands = (p – q)/2.

Therefore,

S/2 = sq. u + sq. s  when   sq. p + sq. q = S, (p + q)/2 = u and  (p – q)/2 = s.

The identity that can be derived in this way by use of the configuration
in Fig. 1.12.3, left, can also derived by use of a birectangle as in the proof
of El. II.9 (Fig. 1.6.1 above, left). That this is no coincidence is shown in
Fig. 1.12.3 above, right.

MS 5112 is a large fragment of a mathematical recombination text with
metric algebra problems, published in Friberg, RC (2007), Sec. 11.2 n. The
text is late OB, maybe younger. It is inscribed on the obverse with a num-
ber of metric algebra problems for squares, and on the reverse with metric
algebra problems for rectangles. There are explicit solution procedures for
all the problems. One of the problems on the reverse is a rectangular-linear
system of equations of type B1b:

MS 5112 § 11, literal translation explanation

Length (and) front (I) made eat each other, u · s = A
1 è$e the field. = 1 è$e = 10 00 square ninda
The length over the front is 10 beyond. u – s= q = 10 (ninda)
The length (and) the front are what? u, s = ?
You with your doing: Do it like this:
1/2 of 10 that the length over the front q/2 = 10/2 = 5
is beyond crush, 
5 steps of 5 (make) eat (each other), 25. sq. q/2 = sq. 5 = 25
To 10 the field add, 10 25. A + sq. q/2 = 10 00 + 25 = 10 25
What is it equalsided? sqs. (A + sq. q/2) = sqs. 10 25 = ?
25 each way equalsided. sqs. (A + sq. q/2) = 25 = p/2
Twice write it down. Write down 25 = p/2 twice.
5 that was eaten to the 1st 25 add, 30.  p/2 + q/2 = 25 + 5 = 30
30 ninda is the length. u = p/2 + q/2 = 30
From the second 25 the 5 tear off, 20 .p/2 – q/2 = 25 – 5 = 20
20 ninda is the front. s = p/2 – q/2 = 20

The geometric model on which, apparently, both the question and the
solution procedure in MS 5112 § 11 are based is obviously an OB forerun-
ner to the construction in El. II.6 (see Figs. 1.4.1 and 1.4.2 above, right).
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1.12 b. Old Babylonian problems for circles and chords 

The examples discussed in Sec. 1.12 a above make it clear that parts A
and B of Elements II (El. II.2-II.8) have many OB forerunners in the form
of metric algebra problems for squares and rectangles. It is also easy to
find examples of OB forerunners to part C of Elements II (El. II. 9-II.14),
in the form of metric algebra problems for right triangles and circles. As
suggested above, maybe the pair of exercises BM 13901 § 2 a-b is one such
example. Further examples will be offered in the discussions of OB “igi-
igi.bi problems” in Secs. 3.2-3 below, and in the discussion of an OB
geometric algorithm in Appendix 1.

For some reason, there are few known metric algebra problems specif-
ically for circles in the known corpus of OB mathematical texts.

Fig. 1.12.4.TMS 1. A school boy’s hand tablet with a diagram of a triangle in a circle.

An interesting first example is TMS 1 (Bruins and Rutten, TMS (1961);
Fig. 1.12.4 above). This is a relatively late OB “hand tablet” from the
ancient city Susa, with a diagram of a “symmetric” (isosceles) triangle and
its circumscribed circle. The triangle is constructed as two right triangles
with the sides 50, 40, 30, glued together along a common side of length 40.
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3˚ 3˚
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The object of the exercise was probably to compute the radius of the cir-
cumscribed circle. This can have been done, essentially, in the following
way: Let d/2, s/2, b/2 be the sides of the small right triangle with d/2 = the
radius and with s/2 = 1/2 the front of the symmetric triangle (in the diagram
called2' sag ‘1/2 of the front’). Then d and b can be found as the solutions
to the following subtractive quadratic-linear system of equations:

sq.d/2 – sq. b/2 = sq. s/2 = sq. 30 = 15 00
d/2 + b/2 = 40 (the height of the symmetric triangle)

Apparently it was known that then 

d/2 –b/2 = (sq. d/2 – sq. b/2)/(d/2 + b/2) = 15 00 / 40 = 15 · 1;30 = 22;30‚   so that
d/2 = (40 + 22;30)/2 = 31;15,b/2 = (40 – 22;30)/2 = 8;45.

The correctly computed values are recorded in the diagram as ‘31 15
the length’ and ‘8 45’, respectively. It is, by the way, easy to check that the
diagram is amazingly accurate. The person who made the diagram must
have known quite well how to work with ruler and compass. 

Presumably, he started by drawing, very carefully, a triangle with the
sides proportional to 1 00, 50, 50, with the front 1 00 vertical and facing to
the left, in agreement with an OB convention. Next, he found the midpoint
on the front. (Euclid shows how to bisect a given straight line in El. I.10,
with reference to the constructions in El.I.1 and I.9.) Then he drew a line
from there to the opposite vertex of the triangle, a line which necessarily
turned out to be horizontal. (Cf. the remark in Høyrup, LWS (2002), 265
that “the angle between the height and the base is as right as can be con-
trolled on the photo”.) The next step of the construction must have been to
find the center of the circumscribed circle. How this was done is not
known, of course, but it is likely that it was done by use of the method dem-
onstrated by Euclid in El. IV.5, with reference to El. 1.11.)

The next example is taken from MS 3049 (Friberg, RC (2007), Sec.
11.1), a small fragment of an OB mathematical recombination text, where
only one exercise (§ 1 a) is preserved on the obverse:

MS 3049 § 1 a, literal translation explanation

An arc I curved, A circle
20 the transversal, The diameter isd = 20
and 2 that which I went down.11 A chord is p = 2 below the top
The upper (= left) transversal(is) what? The chord s = ?
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You: Do it like this:
20, the transversal, break, then 10 you see, d/2 = 10
10, the descent that like a string is set. 10 = the “vertical” radius
Turn back, then solve(?). Continue like this:
20, the transversal, break, 10 you see. d/2 = 10
10, a copy, lay down, Write down d/2 = 10 again
let (them) eat each other, then 1 40 you see. sq. d/2 = 1 40
2, the upper descent, from 10, the descent d/2 – p = 
that like a string is set tear off, then 8 you see. 10 – 2 = 8 = b/2
8 let eat itself, then 1 04 you see. sq. b/2 = 1 04
1 04 from 1 40 that you saw sq.d/2 – sq. b/2 = 1 40 – 1 04 
tear off, then 36 you see = 36 = sq. s/2
Its likeside let come up, then 6 you see. sqs. 36 = 6 = s/2
To two repeat, then 2 · 6 =
12, the upper transversal, you see. s = the chord
Such is the doing. Done

The straightforward solution procedure is explained in Fig. 1.12.5, left
Given are the diameter d of a circle and the distance p of a chord from the
circumference of the circle along a radius orthogonal to the chord. The
length of the chord is computed by use of the diagonal rule (see Ch. 2
below), applied to the triple d/2, s/2, b/2.

Fig. 1.12.5.  Left: MS 3049 § 1 a. Right: BM 85194 # 21.

11. According to an OB convention, in cuneiform texts ‘up’ is to the left and ‘down’ to the
right. The well known explanation is that the cuneiform script was originally written in ver-
tical columns, but at some (unknown) point of time, the direction of writing seems to have
changed so that texts became written in horizontal rows. After this rotation of the direction
of writing, the meaning of ‘up’ and ‘down’ had changed correspondingly.

b/2 d/2p p

s/
2

d/2

d

b = d – 2 p

s

a (thearc)
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The strange way of calling half the diameter of the circle ‘that (which)
like a string is set’ is not known from any other Babylonian mathematical
text. It may refer to the fact that if a piece of string has one end point fixed,
then upon rotation of the stretched string the other end point of the string
describes a circle. Therefore a radius of a circle can be likened to a ‘string’.
(There is no competing word for the radius of a circle used in any other
known mathematical cuneiform text.)

On the reverse of MS 3049, a subscript says that the text (originally)
contained 6 problems for circles (and also 5 problems for squares, 1 for a
triangle, etc.). Although only 1 of these 6 problems has happened to be pre-
served, it is a reasonable conjecture that the 6 circle problems resulted
from the 6 possible ways of choosing 2 of the 4 parameters d, p, s/2, and
b/2 as the given pair of parameters in the problem. In § 1 a, the given pair
of parameters is d and p. The remaining possible choices of given pairs of
parameters are d and s/2, d and b/2, p and s/2, p and b/2, s/2 and b/2. In
TMS 1, by the way (Fig. 1.12.4), the given parameters are s and d/2 + b/2.

BM 85194, another OB mathematical recombination text contains two
problems for circles, ## 21-22 (Høyrup, LWS (2002), 272):

BM 85194 ## 21-22, literal translation explanation

1 the arc, The circumference is  a = 1 00
2 that which I went down. A chord is  p = 2 below
The transversal (is) what? The chord  s= ?
You: Do it like this:

2 square, 4 you see. 2 p = 2 · 2 = 4
4 from 20, the transversal, tear off, d = a/3 = 20, d – 2 p = 20 – 4 
16 you see. = 16 = b
20, the transversal, square, 6 40 you see. sq. d = sq. 20 = 6 40
16 square, 4 16 you see. sq. b = sq. 16 = 2 24
4 16 from 6 40 tear off, 2 24 you see. sq. d – sq. b = 6 40 – 2 24
2 24 is what equalsided? sqs. 2 24
12 equalsided, the transversal. = 12 = s
Such is the doing. Done

If an arc 1 I curved, a = 1 00
12 the transversal. s = 12
That which I went down? p = ?
You: Do it like this:

20, the transversal, square, 6 40 you see. d = a/3 = 20, sq. d = sq. 20 = 6 40

2
12
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12 square, 2 24. sq. s = sq. 12 = 2 24
From 6 40 tear off, 4 16 you see. sq. d – sq. s = 4 16 = sq. b
16 is what equalsided? 4 equalsided. sqs. 16 = 4 (error for  sqs. 4 16 = 16) 
(In) half 4 break, 2 you see, 1/2 · 4 = 2  (cheating)
2 that which you went down. p = 2 (the correct answer)
The doing. Done

The stated problem in BM 85194 # 21 is closely related to the problem
in MS 3049 § 1. The only difference is that in BM 85194 # 21 the circum-
ferencea = 3 d is given (with the usual Babylonian approximation L =
appr. 3), while in MS 3049 § 1 the diameter d is given directly. The
straightforward solution procedure in # 21 is based on a geometric con-
struction like the one in Fig. 1.12.5, right. It is an interesting variant of the
solution procedure based on the construction in Fig. 1.12.5, left. Note that
because the sides of the triangle in the circle to the right are twice as long
as the sides in the right triangle in the circle to the left, it is “obvious” that
in the figure to the right the triangle with its diagonal along the diameter
is a right triangle. (Cf. a similar remark in Høyrup, LWS(2002), 274.)

In BM 85194 # 22, the stated problem is to find p when the circumfer-
encea = 3 d and the chord s are given. The solution is corrupt, but leads
nevertheless to the correct answer (known in advance from # 21).

A dressed up problem, closely, although indirectly, related to the circle
problems discussed above is problem # 9 in BM 85196, like BM 85194 an
OB mathematical recombination text from the ancient city Sippar. This is
the well known “pole-against-a-wall problem”, discussed before by sever-
al authors, for instance, Friberg, HM 8 (1981), Muroi, KK 30 (1991),
Høyrup,LWS (2002), 275, Melville, HM 34 (2004), 151.

BM 85196 # 9, literal translation explanation

A pole. 30, a reed, at a wall is placed equally.c = 30   (;30 ninda  = 1 reed)
Above, 6 it went down, s = 6
below,what did it move away? b = ?
You: Do it like this:
30 square, 15 you see. sq. c = 15
6 from 30 tear off, 24 you see. c – s= 30 – 6 = 24
24 square, 9 36 you see. sq. (c – s) = sq. 24 = 9 36
9 36 from 15 tear off, 5 24 you see. sq. c – sq. (c – s) = 15 – 9 36 = 5 24
5 24 what is it equalsided? sqs. 5 24
18 it is equalsided. = 18
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18 on the ground it moved away. = b

If 18 on the ground, Conversely, given that b = 18
above, what did it go down? s = ?
18 square, 5 24 you see. sq. b = sq. 18 = 5 24
5 24 from 15 tear off, 9 36 you see. sq. c – sq. b = 15 – 5 24 = 9 36
9 36, what its it equalsided? sqs. 9 36
24 it is equalsided. = 24 = a
24 from 30 tear off, c – a = 30 – 24
6 you see, (what) it went down. = 6 = s
The doing. Done

In this dressed up problem, the stated question is as follows: 

A wooden pole with the length 1 reed = 1/2 ninda (about 3 meters) at first stands up-
right against a wall of the same height. Then it starts sliding so that its upper end moves
straight down ;06 ninda . How much does its lower end move along the ground?

The situation is illustrated in Fig. 1.12.6, left, where it is assumed that
a pole of length c at first was standing upright along a wall of height c. Its
top then slid down the distance s and its foot slid out a corresponding dis-
tanceb. The set task is to find b if c and s are given. The connection be-
tween this dressed up problem and straightforward circle problems of the
kinds discussed above is demonstrated in Fig. 1.12.6, right.

Fig. 1.12.6.  BM 85196 # 9. A pole-against-a-wall problem.

The solution to the stated problem is obtained without effort by use of
the diagonal rule. It is found that b = ;18 ninda. This result is then checked
by a reversal of the problem. 

The pole-against-a-wall problem in the form given to it in BM 85169
# 9 is in itself quite trivial and uninteresting. Yet it is important for a couple
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b b
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1. c ands given. Find b.

2. c and b given. Find s.
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of reasons. One reason is that dressed up problems like this one are quite
rare in OB mathematics. The other reason is that the problem type reap-
pears in a Seleucid mathematical recombination text and in an Egyptian
mathematical recombination text, both from the latter third of the first mil-
lennium BCE (See Friberg, UL (2005), Sec. 3.1 b)

As mentioned above, the corpus of known OB metric algebra problems
for circles and chords is small, compared to the related corpus of known
metric algebra problems for squares and rectangles. Yet this fact may in
part be due to unlucky circumstances. Thus, it is clear that all known OB
problems for circles and chords are isolated exercises in mathematical re-
combination texts. It is likely that there once existed one or several exten-
sive and well organized OB mathematical theme texts with relatively large
numbers of such problems, from which exercises like MS 3049 § 1 a-[f],
BM 85194 ## 21-22, and BM 85169 # 9 were borrowed. Be that as it may,
there appears to be a close relation between on one hand such OB problems
for circles and chords, and on the other hand El. II.11 and II.14, and their
hypothetical forerunners El. II.11* and II.14* (Sec. 1.7 above).

1.12 c. Old Babylonian problems for non-symmetric trapezoids

The only known OB predecessors to El. II.12 and II.13 (see Fig. 1.8.1)
can be found in VAT 7351, a mathematical cuneiform text from the
ancient city Uruk. That text is extensively discussed in Friberg, UL (2005),
Sec. 3.7 c.12 Here is the text of the last one of the four exercises in that text:

VAT 7531 # 4, literal translation

2 43 30 the long length, 1 56 30 the short length,
1 37 30 the upper (= left) front, 1 30 30 the lower (= right) front.
Its area, how much it is, find out, 
then to 5 brothers equally divide it, and (each) soldier show him his stake.

Properly speaking, VAT 7531 # 4 is an assignment rather than an exer-
cise, since the question is not followed by a solution procedure and an an-
swer. The object considered in the text is a quadrilateral field with the
given lengths 2 43;30 and 1 56;30 (ninda), and the given fronts 1 37;30
and 1 30;30 (ninda). The field is to be divided equally among 5 brothers.

12. See now also the trapezoid diagonal problem in VAT 8393 in Appendix 1 below.
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The form of the given field is not uniquely determined by the four sides.
However, it must have been (silently) understood that the field should have
the form of a trapezoid composed of a central rectangle and two flanking
non-equal triangles (Fig. 1.12.7).

Fig. 1.12.7.  VAT 7531 # 4. A trapezoidal field divided in five equal parts.

If the rectangle is removed, what remains is a non-symmetric (scalene)
triangle with the sides 1 37;30, 1 30;30, and the base 47. Evidently, the OB
author of this text was confident that his students knew how to compute the
height of a non-symmetric (scalene) triangle! The way they would have
done it was probably as follows: Let a, b, c be the sides of the triangle, and
suppose that the height h against the side b dividesb into the segments p
andq, wherep is greater than q. (See above, Fig. 1.8.1, right.) Then, 

p + q = b   and
sq.c – sq. p = sq. a – sq. q  (by the diagonal rule, since both are equal to sq. h).

This leads to a quadratic-linear system of equations for p and q:

p + q = b  and  sq. p – sq. q = sq. c – sq. a.

This quadratic-linear system of equations can be solved by use of metric
algebra. The solution can take several forms, for instance the following:

p = {sq. b + (sq. c – sq. a)}/(2 b), q = {sq. b – (sq. c – sq. a)}/(2 b).

With c, a, b = 1 37;30, 1 30;30, 47, these equations show that 

p = 37;30, q = 9;30. 

It is then easy to compute h = 1 30. The remaining part of the solution pro-
cedure for VAT 7531 # 4 is straightforward.
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 3
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(37;30)(28)(46;45) (28) (28) (32;45)

2 43;30 47

1 30;30

1 30;30
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1 
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;3
0

1 
37

;3
0
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The result above shows that the triangle with the sides 1 37;30, 1 30;30,
47 is composed of two right triangles with the sides 1 37;30, 1 30, 37;30 =
7;30 · (13, 12, 5) and 1 30;30, 1 30, 9;30 = 30 · (3 01, 3 00, 19), glued to-
gether along a common side of length 1 30. This is clearly an OB prede-
cessor to what is commonly known as “Heronic triangles”. (Cf. the
discussion of the pseudo-Heronic Geometrica 12 in Sec. 18.2 below.)

1.13. Late Babylonian Solutions to Metric Algebra Problems

1.13 a. Problems for rectangles and squares

The discussion above of OB forerunners to Elements II will be rounded
off in this section with a discussion of solution procedures for metric
algebra problems in W 23291, a Late Babylonian mathematical recombi-
nation text from Uruk, early in the second half of the first millennium BCE
(Friberg, BaM 28 (1997)). W 23291 and the related text W 23291-x
(Friberg,et al., BaM 21 (1990)) are both concerned with the interesting
topic of a great variety of ways of measuring surface content.

The first paragraph of W 23291 contains what looks like the beginning
of a well organized theme text with metric algebra problems.

W 23291 § 1: Common seed measure and some basic problems in metric algebra

1 a The seed measure of a hundred-cubit-square. Metric squaring
1 b A rectangle of given front and seed measure. Metric division
1 c A square of given seed measure. Metric square side computation
1 d A rectangle of given side-sum and seed measure. Basic problem B1a
1 e A rectangle of given side-difference and seed measure. Basic problem B1b
1 f A square band of given width and seed measure. Basic problem B3b
1 g A circle of given seed measure divided into five circular bands of given width

In § 1 of W 23 291, the surface content of every square, rectangle, or
other plane figure mentioned, is expressed in terms of “seed measure”, by
which is meant a capacity measure proportional, in a certain ratio, to the
area of the figure in question. More precisely, the seed measure applied in
§ 1 is what may be called “common seed measure” (csm), the particular
kind of seed measure characterized by the following igi.gub $e.numun
‘seed constant’:

cs= ‘20’ = ;20 barig (= 1/3 barig) on each square of side 1 00 cubits (= 60 cubits). 
13
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The b a r i g (Akk. parsiktu) was the “basic unit” of Late Babylonian
capacity measure, in the sense that sexagesimal multiples of the barig
were used in computations involving capacity measures and in references
to metrological constants like the seed constant.

In the present text, just as in the related text W 23291-x, a dual ninda-
and-cubit format is used in many of the solution procedures. What this
means is that the solution of a given problem is presented twice, first in a
“ninda section” where the ninda (= 6 m.) is the basic unit of length mea-
sure, then in a parallel “cubit section” where the cubit (= 1/2 m.) is the
basic unit. In the cubit sections, the seed constant for common seed mea-
sure is ‘20’ = 1/3 barig./sq. (60 c.), as explained above. In the ninda sec-
tions it is, equivalently,

cs= ‘48’ = 48 barig on each square of side 1 00 ninda  (= 60 ninda).

The equivalence of the two alternative expressions is obvious, since

1 00 cubits = 5 ninda , so that sq. (60 cubits) = sq. (5 ninda) = 25 sq.ninda .

Therefore,

1/3 barig / sq. (60 cubits) = 1/3 barig / 25 sq.ninda
= 12 · 12 · 1/3 barig / sq. (60ninda) = 48 barig / sq. (60ninda).

The nindasection of a solution procedure is preceded by the phrase

$um-ma 5 am-mat-ka ‘if 5 is your cubit’.

This phrase refers to the circumstance that when the ninda (= 12 cubits)
is chosen as the basic unit of length measure, then 1 cubit is equal to 1/12
= 5/60 = ;05 of that basic unit. For a similar reason, the cubit sections are
preceded by the phrase

$um-ma 1 am-mat-ka ‘if 1 is your cubit’.

The seed measure of a hundred-cubit-square. Metric squaring

W 23291 § 1 a, literal translation explanation

13. Note that the use of zeros and separators in the transliteration of numbers in a mathe-
matical cuneiform text tends to destroy the inherent simplicity of the definitions of various
Babylonian mathematical and metrological “constants”. So, for example, the seed constant
for common seed measure was not understood as ;00 00 20 bar ig/sq.cubit. Nor was it un-
derstood as ;20 bar ig/sq.(60 cubits). Instead it was almost certainly understood as ‘20’
times the area, with the silent understanding that when the sides of a rectangle amount to a
few sixties of cubits, then the seed measure of the rectangle amounts to a few bar ig.
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1 hundred cubits length, 1 hundred cubits front. A square with the side  s = 100 c.
What shall the seed be? C = ?
If 5 is your cubit: If you count with ninda:
8 20 is 1 hundred cubits. s = 100 c. = 100/12 n. = 8;20 n.
8 20 steps of 8 20 go,1 09 26 40. A = sq. 8;20 n. = 1 09;26 40 sq. n.
1 09 26 40 steps of 48 go, C = cs· A = ‘48’ · A
55 33 20, 5 bán 3 1/3 sìla of seed. = ;55 33 20 barig = 5 bán 3 1/3 s.
If 1 is your cubit: If you count with cubits:
1 40 is 100 cubits. s = 100 c. = 1 40 c.
1 40 steps of 1 40 go, 2 46 40. A = sq. 1 40 c. = 2 46 40 sq. c.
2 46 40 steps of 20 go, 55 33 20, C = cs· A = ‘20’ · A = ;55 33 20 barig
5 bán 3 1/3 sìla of seed. = 5 bán 3 1/3 sìla.

The problem stated and solved in § 1 a of W 23291 can be explained as
follows: A square of side 100 cubits may be called a “hundred-cubit-
square”, or simply a “100-c.-square”. As is shown by Late Babylonian
metrological tables, notably BE 20/1, 30 (see Friberg, GMS 3 (1993), 399),
a “hundred-cubit” was occasionally used, in addition to the cubit and the
ninda, as thethird basic unit of Late Babylonian length measure. For this
reason, it would be convenient to have at hand a third value of the seed
constant for common seed measure, in addition to 48 barig./sq. (60 nin-
da) and ;20 barig./sq. (60 c), namely the common seed measure (csm) of
a hundred-cubit-square. In W 23291 § 1 a this value is computed twice. In
the nindasection, it is computed in the following way: 

If, as in the present text, 1 n. = 12 c., then 1 c. = ;05 n. Therefore,

thesideof the 100-cubit-square is s= 100 c. = 100 · ;05 n. = 8;20 n., so that 

thearea of the 100-cubit-square is A = sq. (100 c.) = sq. (8;20 n.) = 1 09;26 40 sq. n. 

Note that all computations are carried out here in the traditional Baby-
lonian way, that is by use of sexagesimal arithmetic. That is so in spite of
the fact that in the statements of the problems in W 23291 § 1 linear
measures are expressed as decimal multiples of the cubit!

Next, an application of the appropriate value of the seed constant
proves that the seed measure of the 100.cubit-square is 

 C = 48 barig · 1 09;26 40 /sq. 1 00 = ;55 33 20 barig.

The final step of the computation is to convert this sexagesimal multi-
ple of the barig into a conventionally expressed capacity number. This
can be done, most conveniently, in the following way. (The computation
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is based on the fact that fractions of the barig when multiplied by a factor
6 yield multiples of the sub-unit bán, and that fractions of the bán when
multiplied by another factor 6 yield multiples of the smaller sub-unit sìla.

C = ;55 33 20 barig = 6 · ;55 33 20 bán =  5;33 20 bán
   = 5 bán + 6 · ;33 20 sìla = 5 bán 3;20 sìla = 5 bán 3 1/3 sìla.

In the cubit section of § 1 a, the computation of the common seed mea-
sure of a hundred-cubit-square proceeds in an entirely parallel way.

Fig. 1.13.1.  W 23291 § 1 a. Metric squaring. The seed measure of a 100-cubit-square.

A rectangle of given front and seed measure. Metric division

W 23291 § 1 b, literal translation explanation

1 hundred cubits front. s = 100 cubits
The length, what shall it be long, u = ?
so that there will be 1 gur of seed? if, in addition, C = 1 gur = 5 barig
Since you do not know: Do it like this:
The opposite of the front of the field raise, Compute the reciprocal of the front
and steps of the opposite of and multiply with the reciprocal
the seed constant you go, of the seed constant
and the seed that was said to you go, and multiply with the seed measure
the length you will see. then you will se the length
If 5 is your cubit: If you count with ninda:
8 20 is 1 hundred cubits. s = 100 cubits = 8; 20 ninda
The opposite of 8 20, 7 12. rec. s= rec. 8 20 = 7 12
7 12 steps of 1 15 go, 9. rec. s · rec. cs= 7 12 · 1 15 = 9
9 steps of 5 go, 45. 45 as much as rec. s · rec. cs· C = 9 · 5 = 45
the length of your field you will set.  u = 45
If 1 is your cubit: If you count with cubits:
1 40 is 1 hundred cubits. s = 1 40 cubits = 100 cubits
The opposite of 1 40, 36. rec. s= rec. 1 40 = 36
36 steps of 3 go, 1 48. rec. s · rec. cs= 36 · 3 = 1 48

s = 8 1/3 ninda s = 100 cubits

C = 
5 bán 3 1/3 sìla

C = 
5 bán 3 1/3 sìla

C = cs · sq. s

cs = 48 cs = 20 
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1 48 steps of 5 go, 9, that <for> 1 40 cubits rec. s · rec. cs· C = 1 48 · 5 = 9
as much as the length you will set. = u, when s = 1 40 cubits

The statement of the problem in the first three lines of § 1 b is followed
by a general computation rule headed by the phrase mu nu zu-ú ‘since
you do not know’. It is easily checked that the two parallel solution proce-
dures in the ninda and cubit sections of the paragraph are two different but
equivalent numerical implementations of this general computation rule.

The computation in each of the two cases is straightforward. The ninda
section, for instance, begins with the computation of the reciprocals of the
given front (100 cubits) and (although not explicitly in the text) of the
reciprocal of the seed constant ‘48’. Note that all computations are carried
out in terms of relative (floating) sexagesimal numbers without any indi-
cation of their absolute size.

The answer is given in relative sexagesimal numbers as 

u = ‘45’ in the ninda  section and u = ‘9’ in the cubit section.

Since the length is always greater than the front in Babylonian mathemat-
ical texts dealing with rectangles, the obvious interpretation of this result
in relative numbers is that the length u is equal to 45 ninda = 9 00 cubits.
It is easy to verify that, with this value for u,

the area A = 45 ninda  · 8;20 ninda  = 6 15 sq. ninda  = ;06 15 · sq. (60 ninda).

Therefore, as required,

the seed measure C = 48 · ;06 15 barig = 5 barig.

The result of the dual computation is summarized in Fig. 1.13.2 below.

Fig. 1.13.2.  W 23291 § 1 b. Metric division.

A square of given seed measure. Metric square side computation

W 23291 § 1 c, literal translation explanation

(u = 45 ninda)

s 
=

 8
;2

0 
ni

nd
a

C = 1 gur = 5 barig

cs = 48 

(u = 9 00 cubits)

s 
=

 1
00

 n
in

da

C = 1 gur = 5 barig

cs = 20 

C = cs · u · s Ç     u = rec. cs · rec. s · C
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The field, what each shall I make equalsided Which are the equal sides (of a square)
so that 1 gur 2 bán will be the seed? with seed measure 1 gur 2 bán?
Since you do not know: Do it like this:
The seed that was said to you, Take the mentioned seed measure
— what was said multiply it with 
steps of the seed constant, the <reciprocal of> the seed constant
you go, the length. compute the square side
If 5 is your cubit: If you count with ninda:
5 20 steps of 1 15 go, 6 40, C · res. cs = 5 20 · 1 15 = 6 40
of which 20 each way take. 6 40 = sq. 20
20 ninda  each way you make equalsided. s= 20 <ninda> is the square side
If 1 is your cubit: If you count with cubits:
5 20 steps of 3 go, 16, C · res. cs = 5 20 · 3 = 16
of which 4 each way take. 16 = sq. 4
2 hundred 40 cubitseach s = 4 00 = 240 <cubits>
you make equalsided. is the square side

This exercise is quite straightforward. The given seed measure is 

1 gur 2 bán = 5 1/3 barig = 5;20 <barig>,

and the computed square side is 

20 ninda  = 20 · 12 cubits = 240 cubits.

It is interesting that the cubits are counted decimally in the answer.

Fig. 1.13.3.  W 23291 § 1 c. Metric square side computation.

A rectangle of given side-sum and seed measure. Basic problem B1a

W 23291 § 1 d, literal translation explanation

A field of 1 bán seed. C = 1 bán (= ;10 barig)
Length and front heap, it is 1 30 cubits. u + s = 1 30 cubits (= 7;30 ninda)
The length, what shall it be, u = ?
and the front what shall it be? s = ?
Since you do not know: Do it like this:

s = 20 ninda

C =
1 gur 2 bán
= 5;20 barig 

s = 240 cubits

C =
1 gur 2 bán
= 5;20 barig 

C = cs · sq. s
Ç

s = sqs. (rec. cs · C)
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1/2 to the heap, 1 30 cubits, raise, 1/2 · the sum 1 30
45 cubits equalsided, = 45 cubits, squared
to the constant of seed [raise] it. times the seed constant cs
1 bán of seed out of it lift, subtract C = 1 bán
the opposite of the constant you raise to it, times rec. cs
<and bring (out)> <Compute the square side>
to 45 cubits add on, the length, add 45 cubits, you get the length
from 45 cubits lift, the front. Subtract 45 cubits, you get the front
If 5 is your cubit: If you count with ninda:
Length and front, 7 30, 1/2 of it, 3 45, take.  (u + s)/2 = p/2 = 7 30/2 = 3 45
3 45 steps of 3 45 you go, 14 03 45 sq. p/2 = sq. 3 45 = 14 03 45
and steps of 48 go, 11 15, cs · sq. p/2 = 48 · 14 03 45 = 11 15
1 07 30 bán-measures. = 1;07 30 bán
1 bán, 10, from 11 15 lift, cs · sq. p/2 – C = 11 15 – 10 
1 15 the remainder. = 1 15 (= cs· (sq. p/2 – A))
1 15 steps of 1 15, times 1 15 (= rec. cs)
1 33 45, of which 1 15 each take. = 1 33 45 = sq. 1 15 (= sq. q/2)
1 15 to 3 45 join, p/2 + q/2 = 3 45 + 1 15 
5 ninda , the length, = 5 = u
1 15 from 3 45 lift,2 30, the front. p/2 – q/2 = 3 45 – 1 15 = 2 30 = s
If 1 is your cubit: If you count with cubits:
1 30 cubits, 1/2 of it, 45, take,  p/2 = 1 30/2 = 45
45, steps of 45 go, 33 45, sq. p/2 = sq. 45 = 33 45
33 45 steps of 20 go, cs · sq. p/2 = 20 · 33 45
the seed, 11 15. = 11 15
1 bán, 10, from 11 15 lift, cs · sq. p/2 – C = 11 15 – 10
1 15 the remainder. = 1 15 (= cs· (sq. p/2 – A))
1 15 steps of 3 go, times 3 (= rec. cs)
3 45, of which 15 each –– take. = 3 45 = sq. 15 (= sq. q/2)
15 to 45 join p/2 + q/2 = 45 + 15 
1-sixty cubits, the length, = 1 · 60 cubits = u
from 45 lift, 30 cubits, the front. p/2 – q/2 = 30 cubits = s

In the present exercise, § 1 d, just as in §§ 1 b and 1 c above, the ques-
tion is followed by a general computation rule headed by the phrase mu
nu zu-ú ‘since you do not know’. It is interesting to note that in § 1 d the
author of the text has not been quite successful in his formulation of a gen-
eral computation rule, since he explicitly mentions the half-sum of the
sides of the rectangle as ‘45 cubits’ instead of just as ‘1/2 the heap’. 

In the cuneiform text, there is no figure accompanying exercise § 1 d.
Yet the wording of the solution procedure is such that there can be no
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doubt whatsoever that the author of the problem had in mind a geometric
interpretation of the given problem and its solution. The most likely can-
didate for such an interpretation is based on a set-up like the one in Fig.
1.13.4 below, nearly identical with the set-up in Fig. 1.4.2 above, left, the
suggested Babylonian style interpretation of the diagram in El. II.5. The
only difference is the use of seed measure instead of area measure.

Fig. 1.13.4.  W 23291 § 1 d. A rectangle of given side-sum and seed measure.

A rectangle of given side-difference and seed measure. Type B1b

The problem stated in W 23291 § 1 e is to find the length u and front s
of a rectangle, if the seed measure of the rectangle is 1 bán 4 sìla, and if
the length exceeds the front by 10 cubits. This is a routine variation of the
problem in § 1 d, and it can be solved by an obvious modification of the
solution procedure in that paragraph. Thus, if the given side-difference is
calledq = 10 cubits, then sq. q/2 = 25 sq. cubits, and cs · sq. q/2 = ;08 20
barig, since cs = ;20 barig/sq. (60 cubits). On the other hand, the given
seed measure of the rectangle is C = 1 bán 4 sìla = ;16 40 barig, since (in
this Late Babylonian text) 1 barig = 6 bán and 1 barig = 6 sìla.There-
fore,C + cs · sq. q/2 = ;16 48 20 barig = cs · sq. p/2. Hence, sq. p/2 = 50 25
sq. cubits, and p/2 = 55 cubits. Thus, finally, u = (55 + 5) cubits = 1 00
cubits = 5 ninda, and s = (55 – 5) cubits = 50 cubits = 4 ninda 2 cubits.

The problem in W 23291 § 1 e is of course, except for the use of seed
measure instead of area measure, a basic rectangular-linear system of
equations of type B1b. It is, therefore, related to El. II.6.

cs · u · s = C
u + s = p, u – s = q 

Given:
p =  1 30 cubits, C = 1 bán = ;10 barig
cs = ;20 barig/ sq. (1 00 cubits)

Computed:
cs · sq. q/2 = cs · sq. p/2 – C = ;01 15 barig
sq.q/2 = 3 45 sq. c. = sq. (15 cubits)
u = p/2 + q/2 = 45 c. + 15 c. = 1 00 c.
s = p/2 – q/2 = 45 c. – 15 c. = 30 c.

In the cubit section:

cs · sq. q/2

u

s

s

C

q/2

s
p/2

p
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A square band of given width and seed measure. Type B3b

The statement of the problem in W 23291 § 1 f and the associated gen-
eral computation rule are both completely lost. Nevertheless, the fortunate
circumstance that almost the whole cubit section of the solution procedure
is preserved allows a reconstruction of most of the problem. 

W 23291 § 1 f, literal translation explanation

·················································· ··················································

If 1 is your cubit: If you count with cubits:
10 is 10 cubits. s = 10 cubits = 10
The opposite of 10 raise, 6. rec. s= rec. 10 = 6
6 steps of 3 you go, 18. rec. s · rec. cs = 6 · 3 = 18
18 steps of 10, 1 bán, raise, 3. rec. s · rec. cs · C = 18 · 10 = 3
3, its 4th raise, 45. rec. s · rec. cs · C/4 = 3/4 = 45 = u
10 from 45 lift, 35 the remainder. u – s = 45 – 10 = 35
35 cubits equalsided. q = 35
[··················································] [q + 2 s = 35 + 20 = 55 = p]

The form of this solution procedure, and the position of W 23291 § 1 f
in the text, between the better preserved § 1 e and § 1 g, makes it fairly cer-
tain that the problem stated in § 1 f was to find the sides of the squares
bounding a square band, when the width (10 cubits) and the seed measure
(1 bán) of the square band are given. The way in which a solution to this
problem could be found is illustrated in Fig. 1.13.5 below.

The problem treated in W 23291 § 1f can be formulated as follows. Let
the square band be interpreted as the difference of two parallel and concen-
tric squares with the sides p and q, respectively. Then p and q can be
computed as the solutions to the following subtractive quadratic-linear
system of equations of type B3b:

cs · (sq. p – sq. q) = C = 1 bán,   (p – q)/2 = s = 10 cubits, p, q = ?

In modern terminology, all that is required to solve a problem of this
type is an application of the algebraic “conjugate rule”

sq. p – sq. q = (p + q) · (p – q),

followed by a straightforward division. A metric counterpart of this
algebraic conjugate rule can be based on the observation that a square band
can be constructed in two ways, either as the space between two parallel
(and, if so desired, concentric) squares with the sides p, q or as a ring of
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four rectangles with the sides u, s. In the present text, where surface con-
tent is measured in terms of seed measure, the resulting “metric conjugate
rule” takes the following form:

C = cs · (sq. p – sq. q) = 4 · cs · u · s= 4 · cs · (p + q)/2 · (p – q)/2.

Accordingly, the recorded solution procedure in W 23291 § 1 f corre-
sponds to the solution formula

u = (p + q)/2 = 1/cs · 1/s · S/4, p = u + s,  q = u – s.

Fig. 1.13.5.  W 23291 § 1 f. A square band of given width and seed measure.

The metric algebra problem in W 23291 § 1 f is obviously closely re-
lated to El. II. 8, which can be seen if, for instance, Fig. 1.13.5 is compared
with Fig. 1.5.2. Note however, that Euclid chose to operate with non-
concentric parallel squares, and that, as a consequence of this choice, in
El II.8 the difference between the two squares takes the form of a square
corner (a gnomon) rather than that of a square band.

1.13 b. Problems for circles

A circle of given seed measure divided into five bands of equal width

W 23291 § 1 g, literal translation explanation

A field of 1 barig seed I curved. A circle of seed measure 1 barig
Steps 4, 1 each, and four inner circles
the decrease came down. with 1 ninda’s distance
What each are the arcs I curved, What are the arcs (circumferences) 
from the outermost arc of all the circles
to the innermost arc? from the first to the last?

p

cs · (sq. p – sq. q) = C
cs · u · s = C/4

Given:
s =  (p – q)/2 = 10 cubits, C = 1 bán = ;10 barig
cs = ;20 barig/sq. (1 00 cubits)

Computed:
1/s · 1/cs· C/4 = 45 cubits = u = (p + q)/2
u – s = 35 cubits = q
( q + 2 s = 55 cubits = p)

In the cubit section.
u s

C/4

s

uq
q
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Since you do not know: Do it like this:
1 steps of 6 go, 6. 1 · 6 = 6
6 from [···]  30 lift, 24 the remainder, 30 – 6 = 24
the second arc. the second arc.
6 from 24 lift, 18 the remainder, 24 – 6 = 18
18, the third arc. the third arc
6 from 18 lift, 12 the remainder 18 – 6 = 12
12, the fourth arc. the fourth arc
6 from 12 lift, 6 the remainder, 12 – 6 = 6
6, the fifth arc. the fifth arc
6 is the innermost arc field 6 is arc of the innermost circle
he will take off. since 6 – 6 = 0

This exercise is only loosely related to the six preceding metric algebra
problems. Note, in particular, that there is no general computation rule, and
no separate ninda and cubit sections. (The basic unit of length measure is
theninda.) It is also likely that essential parts of the problem have been
omitted both at the beginning and at the end of the problem. 

Fig. 1.13.6.  W 23291 § 1 g. A circle of given seed measure. Five circular bands.

Thus, after it has been stated that the seed measure of the given circle
is 1 barig, the arc a and the diameter d of the circle must have been com-
puted, but this is not done explicitly in the text. To find the arc of a circle
when the seed measure of the circle is given is a problem of the same type
as the one in W 23291 § 1 c, to find the side of a square of given seed
measure. The omitted computation should have had the following form:

cs · ;05 · sq. a = C = 1 barig,   cs = 48 barig/ sq. (60 ninda)     (1/4L = appr. ;05)
a = sqs. (1/cs · 12 C) = sqs. (15 00 sq. ninda) = 30 ninda ,

1

30
24
18
12

6

1 1 11

C = cs · ;05 · sq. a, 
cs = 48 barig/sq. (1    00 ninda) 
Ç
a = sqs. (1/cs · 12 · C)
d = ;20 · a

Example:
C = 1 barig
Ç
a = 30 ninda, d = 10 ninda
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d = ;20 · a = 10 ninda    (1/L = appr. ;20)

The preserved part of the solution procedure can be explained as
follows: If the width of each one of the circular bands is 1 ninda, then the
diameter of each band is equal to the diameter of the preceding band minus
2 ninda, and the arc of each band is equal to the arc of the preceding band
minus 6 ninda (counting with L = appr. 3). This gives the arcs listed in the
text, 30, 24, 18, 12, and 6 ninda.

The computation of the seed measure of each one of the five circular
bands has, for some reason, been omitted from the text of § 1g.

In the closely related Late Babylonian mathematical recombination text
W 23291-x (Friberg, et al., BaM 21 (1990)) there are, among other things,
parallels to four of the seven exercises in W 23291 § 1. It is interesting to
compare the parallel exercises with each other, for the reason that the ex-
ercises in W 23291-x resemble OB mathematical exercises more than what
the corresponding exercises in W 23291 do. 

Here is, first, the text of the parallel in W 23291-x to W 23291 § 1 g:

A circle of given circumference divided into five bands of equal width

Fig. 1.13.7.  The diagram associated with W 23291-x § 2.

W 23291-x § 2, literal translation explanation

1 (= the first) arc-field 1(60) ninda  I curved. A circle of arc 1 00 ninda
Steps, 4, 2 ninda  each 4 inner circles with a distance of 

1

481
2

1
62
0

48

36

24

12

2dal4        dal

12 a$a5

36 a$a5
1 a$a5
1 24 a$a5
1 48

xxx

2dal2dal2dal

a1 = 100 ninda

a2 = 48 ninda

a3 = 36 ninda

a4 = 24 ninda

a5 = 12 ninda

A1 = 1 48 $ar

A2 = 1 24 $ar

A3 = 1 00 $ar

A4 = 36 $ar

A5 = 12 $ar

d1 = 20 ninda

d2 = 16 ninda

d3 = 12 ninda

d4 = 8  ninda

d5 = 4 ninda
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as decrease I made come up. 2 ninda  between each pair
What each are the fields? The areas between the circles = ?
     (Fig.)       (Fig.)
54 steps of 2, 1 48, 54 · 2 = 1 48
1(iku) 8 $ar is the outermost decrease. = 1 iku 8 $ar (the area of band 1)
42 steps of 2, 1 24, 42 · 2 = 1 24
1/2(iku) 34 $ar is the 2nd decrease. = 1/2 iku 34 $ar (the area of band 2)
30 steps of 2, 1, 30 · 2 = 1 00
1/2(iku) 10 $ar is the 3rd decrease. = 1/2 iku 10 $ar (the area of band 3)
18 steps of 2, 36, 18 · 2 = 36
36 $ar is the 4th decrease. = 36 $ar (the area of band 4)
12 steps of 12, 2 24, 12 · 12 = 2 24
2 24 steps of 5 go, 12, 2 24 · 5 = 12
12 $ar is the 5th and innermost decrease. = 12 $ar (area of the innermost circle)
Heap them, all of them are 3(iku).  Check: 3 iku = the total area

In this exercise, four circular bands, all of width 2 ninda, are broken
off from a circle of given arc length 1 00 n. The exercise is illustrated by
a diagram, exhibiting the arcs of the five circles bounding the circular
bands, the diameters of those circles, and the area measures of the four
circular bands and the innermost circular core. In the solution procedure,
only the computation of the area measures of the circular bands is express-
ly indicated. The use of traditional area measure as well as the absence of
a general computation rule and of separate ninda and cubit sections are
some conspicuous features of the first three exercises on W 23291-x, in-
cluding this one. It is likely that these initial exercises were copied with
only superficial changes from some OB mathematical text. The parallel
text W 23 291 § 1 g, on the other hand, may be viewed as a Late Babylo-
nianrevised edition of a text like W 23291-x § 2, with the OB area measure
replaced by the Late Babylonian seed measure. 

In this connection it may be noted that it is likely that the purpose of
computations with the ninda as the basic length unit in the ninda sections
of Late Babylonian mathematical exercises was to make students familiar
with the Old Babylonian way of counting, so that they would be able to
understand Old Babylonian mathematical texts. In Late Babylonian non-
mathematical texts, the cubit is always the basic length measure.

The other parallels to W 23291 § 1 in W 23291-x are the exercises in
§ 4 of the latter text. They are reproduced here, in literal translation.
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W 23291-x § 4 a-d

§ 4 a. Rules for the computation of areas of rectangles and square sides

Reeds, such that Reed measure (surface content) when
1-ninda-reed length, 1-ninda-reed front length and front both = 1 ninda
is 1 $ar. makes 1 $ar.
If 5 is your cubit: If you count with ninda:
The line steps of ditto and steps of 1 go. The area of a square = sq. s · 1
Steps of 1, each take. The side of a square is sqs. (1 · A)
If 1 is your cubit: If you count with cubits:
The line steps of ditto and steps of 25 go. The area of a square = sq. s · 25
Steps of 2 24, each take. The side of a square is sqs. (2 24 · A)

§ 4 b. Example of metric squaring

1 %uppªn the length, Length and front both equal to
and 1 %uppªn the front. 1 %uppªn
What are the $ar? What is that in $ar?
If 5 is your cubit: If you count with ninda:
5 is the %uppªn. 5 (ninda) = 1 %uppªn
5 steps of 5 go, 25, 25 $ar. 5 · 5 · 1 = 25 (sq. ninda) = 25 $ar
If 1 is your cubit: If you count with cubits:
1 is the %uppªn. 1 (· 60 cubits) = 1 %uppªn
1 steps of 1 go, 1, 1 · 1 = 1 (· sq. (60 cubits))
1 steps of 25 go, 25, 25 $ar. 1 · 1 · 25 = 25 = 25 $ar

§ 4 c. Example of metric square side computation

[···] of 25 $ar. A square of 25 $ar
The equalside shall be what? What is the square side?
If 5 is your cubit: If you count with ninda:
Each of 25 take. The square side of 25 (sq. ninda)
<a %uppªn is the equalside>. = 5 (ninda) <= 1 %uppªn>
If 1 is your cubit: If you count with cubits:
25 steps of 2 24 go, 25 · 2 24
1, of which each take, = 1 (· sq. (60 cubits)), the square side
a %uppªn is the equalside. = 1 (· 60 cubits) = 1 %uppªn

§ 4 d. Example of metric division

The front is 4 (ninda). s= 4 (ninda).
The length, what shall it be long, u = ?
so that it is 20 $ar? if, in addition, A = u · s = 20 $ar
If 5 is your cubit: If you count with ninda:
The 4th-part, 15, 1/s = 1/4 = ;15
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15 steps of 20 go, 5, 1/s · A = 15 · 20 = 5 (ninda)
a %uppªn, it is long. u = 5 (ninda) = 1 %uppªn
If 1 is your cubit: If you count with cubits:
The 48th-part, 1 15, (s= 48 cubits), 1/s = 1/48 = ;01 15
1 15 steps of 2 24 go, 3. 1 15 · 2 24 = 3
3 steps of 20 go, 1. 3 · 20 = 1 (· 60 cubits)
< a %uppªn, it is long.> <u = 1 (· 60 cubits) = 1 %uppªn>

It is obvious that W 23291-x § 4 is another example of (the beginning
of) a theme text with metric algebra problems, just like W 23291 § 1. The
brief and idiomatic style of the text makes the literal translation quite hard
to read, so that the explanation in the right column is indispensable. 

Anyway, this is what is going on here: In § 4 a, a rule is first formulated
for the computation of areas of rectangles in terms of the unit $ar =
1 square-ninda. When lengths are expressed in terms of ninda, the rule is
simply that A = 1 · u · s. However, when lengths are expressed in terms of
cubits, the rule takes the form A = ;00 25 · u · s, for the reason that

1 sq. cubit = 1 sq. (;05 ninda) = ; 00 25 sq. ninda  = ;00 25 $ar.

In § 4 a, a rule is formulated also for the computation of the “square
side” of a given area. When lengths are expressed in terms of ninda, the
rule is simply that the length of the square side is s = sqs. (1 · A), a length
number such that sq. s = A. However, when lengths are counted in cubits,
the rule is that the square side is s = sqs. (2 24 · A), for the reason that

1 $ar = 1 sq. ninda  = 1 sq. (12 cubits) = 2 24 sq. cubits.

In § 4 b-d, examples of the most basic metric algebra problems are
worked through. The computations are quite simple although they are
somewhat complicated by repeated references to the OB length unit 

1 %uppªn = 5 ninda  = 1 00 cubits.

A Seleucid pole-against-a-wall problem

The OB pole-against-a-wall problem in BM 85196 # 9 (see above, Fig.
1.12.6) has a counterpart in BM 34568 # 12 (Høyrup,LWS (2002), 391 ff),
an isolated exercise in a large mathematical recombination text from the
Seleucid period in Mesopotamia (the last third of the 1st millennium
BCE).

The question in this exercise can be rephrased as:
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A reed of unknown length at first stands upright against a wall of the same height. 
Then it starts sliding so that its upper end moves straight down 3 cubits. 
At the same time, its lower end moves away from the wall 9 cubits. 
What is the length of the reed, how far up the wall does the reed reach?

With the notations in Fig. 1.12.6 above, the question takes the form

s = 3 cubits, b = 9 cubits.    c = ?, a = ?

The obvious way of solving this problem would be to proceed as follows:

sq.c – sq. a = sq. b = sq. 9, c – a = s= 3.

This is a subtractive quadratic-linear system of equations of type B3b. In
BM 34568 # 12, the solution to this problem is given in the form

c = (sq. b + sq. s)/2 · 1/s = (sq. 9 + sq. 3)/2 · 1/3 = 45 · 1/3 = 15,
sq.a = sq. c – sq. b = sq. 15 – sq. 9 = 2 24,a = sqs. 2 24 = 12.

One way in which the solution can have been obtained in this form is illus-
trated in Fig. 1.13.8 below. The problem is then interpreted as a problem
for a “semichord” in a semicircle. If the semichord, of length b, divides the
diameter of the semicircle in two parts of lengths u and s, then 

(u + s)/2 = c (the radius),  (u – s)/2 = a,   and consequently 
u · s = sq. {(u + s)/2) – sq. {(u – s)/2) = sq. b.

(Cf. the proof of El. II.14 and Fig. 1.7.2, right.) It follows that

c ·s= (u + s)/2 ·s = (s · u + sq. s)/2 = (sq. b + sq. s)/2,   so that   c = (sq. b + sq. s)/2 · 1/s.

Fig. 1.13.8.  BM 34568 # 12. A Seleucid pole-against-a-wall exercise.

Note that the same geometric configuration, with various permutations
of the given parameters, is behind the three pole-against-a-wall problems
in BM 34568 # 12 (b and s given) and BM 85196 # 9 (c and s, or c and b
given), as well as behind the proposed forerunners El. II.11* and El. II 14*

s

c

b b

a
c

a

c

u

s

b ands given. 
Findc anda.

c = (u + s)/2

u · s = sq. b

Ç

c · s = (sq. b + sq. s)/2
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to El. II.11 and El. II 14 (b and a, or c and b given; see Fig. 1.7.2).
It is interesting that further examples of the pole-against-a-wall prob-

lem appear in § 8 g-h of P.Cairo J. E. 89127-30, 89137-43, an Egyptian
demotic mathematical text from the third century BCE (Parker, DMP
(1972) ## 30-31; Friberg, UL (2005), Sec. 3.1 b). The solution method is
the same in the demotic text as in BM 34568 # 12.

The problem type reappears in § 1of Liber Mahameleth, a Latin manu-
script based on Islamic sources, compiled in Spain in the 12th century by
a Christian traveller (Sesiano, Cent. 30 (1987)). Here is the first part of the
text of the third exercise in § 1 (my translation):

Another example. If a ladder, I don’t know how long, standing against a wall of the
same height and moved 6 cubits from the foot of the wall descends from the top of
the wall two cubits, then how much is the length?
You do it like this: Multiply 6 with itself, and 2 with itself, and subtract the smaller
product from the larger, and 32 will remain. Of which the half, which is 16, divide
by 2 cubits, and 8 will come out. To which add 2 cubits, and it makes 10, and so
much is the height of the ladder or the wall.

In this exercise, b = 6 cubits, s = 2 cubits, and the solution is given as 

c = (sq. b – sq. s)/ 2s + s = (sq. 6 – sq. 2)/ 2 · 2 + 2 = 8 + 2 = 10.

This is clearly not the same solution method as the one in BM 34568 # 12.
(Cf. also Tropfke, GE 4 (1940), Sec. 4.2.3.1.1.)

Seleucid parallels to El. II.14* (systems of equations of type B1a)

AO 6484 is another large Seleucid mathematical recombination text of
mixed content. In that text, § 7 is a series of four “igi-igi.bi problems”
(Friberg,RC(2007), Appendix 7). The most interesting of those problems
is § 7 a, because of the extreme values of the given data in that exercise. 

AO 6484 § 7 a, literal translation explanation

igi and igi.bi 2 00 00 33 20. igi + igi.bi = p = 2 00 00 33 20
igi and igi.bi how much … igi and igi.bi = ?
· 30 go, then 1 00 00 16 40. p/2 = 1 00 00 16 40
1 00 00 16 40 · 1 00 00 16 40 go, sq.p/2 = sq. 1 00 00 16 40 
then 1 00 00 33 20 04 57 46 40. = 1 00 00 33 20 04 57 46 40
1 from inside (it) remove, sq. p/2 – 1 
then remains 33 <20> 04 37 46 40. = 33 <20> 04 37 46 40
What· what may I go, sqs. 33 <20> 04 37 46 40
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then33 <20> 04 37 46 40?  = ?
44 43 20 · 44 43 20 go, sq. 44 43 20
then 33 <20> 04 37 46 40.  = 33 <20> 04 37 46 40
44 43 20 to 1 00 00 16 40 repeat, 1 00 00 16 40 + 44 43 20
then1 00 45, the igi. = 1 00 45 = igi
44 04 43 20 from 1 00 00 16 40 remove, 1 00 00 16 40 – 44 43 20
then 59 15 33 20, the igi.bi. = 59 15 33 20 = igi.bi

In this exercise, the terms igi and igi.bi denote a “reciprocal pair” of
sexagesimal numbers, by which is meant any pair of (positive) sexagesi-
mal numbers such that their product is equal to ‘1’ (any power of 60).
Therefore, the question in the exercise can be interpreted as a rectangular-
linear system of equations of type B1a of the following special form:

igi · igi.bi = 1,   igi + igi.bi = 2 00 00 33 20.

Presumably the Seleucid mathematicians used some kind of geometric
model to help them find a solution procedure, just like their OB predeces-
sors had done. Two candidates for such a model are shown in Fig. 1.13.9
below. The one to the left is the “square-difference model” related to El.
II.5 (Fig. 1.4.2, left). The one to the right is the “semi-chord model”, relat-
ed to El. II.14* (Fig. 1.7.2, right).

Fig. 1.13.9.  Two possible geometric models for the solution procedure in AO 6484 § 7 a.

Assume that the given number 2 00 00 33 20 in AO 6484 § 7 a (written
with a special sign for internal zeros) can be interpreted as, for instance,
2;00 00 33 20 (2 plus a very small fractional part). Then the successive
steps of the solution procedure in the text can be explained as follows:

p/2 = 2;00 33 20 / 2 = 1;00 16 40

p/2

q/2 p/2

h 
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igi
igi.bi

p/2 q/2
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sq.p/2 = 1;00 00 33 20 04 57 46 40
sq.q/2 = sq. p/2 – 1 = ;00 00 33 20 04 37 46 40
q/2 = ;00 44 43 20
igi  = p/2 + q/2 = 1;00 16 40 + ;00 44 43 20 = 1;00 45 (= 81/80)
igi.bi = p/2 – q/2 = 1;00 16 40 – ;00 44 43 20 =;00 59 15 33 20 (= 80/81)

The curious choice of data is best explained by the semi-chord model. Ap-
parently, the purpose of the exercise was to show that an extremely thin
right triangle can be constructed by letting the sides of the triangle be

c, b, a = p/2, 1, q/2 = (igi  + igi.bi)/2, 1, (igi  – igi.bi)/2,

whereigi and igi.bi are the sides of a nearly square rectangle with the
area 1. (Cf. Friberg, RC (2007), Appendix 8, Fig. A8.5.))

1.14. Old Akkadian Square Expansion and Square Contraction Rules

It is known (see Friberg, CDLJ (2005:2), Figs. 8 and 10) that already
mathematicians in the Old Akkadian period in Mesopotamia (ca. 2340-
2200 BCE) may have been familiar with the “square expansion rule”

sq. (u + s) = sq. u + sq. s + 2 u · s,

and with the closely related “square contraction rule”

sq. (u – s) = sq. u + sq. s – 2 u · s.

These rules are clearly the Old Akkadian forerunners to El. II.4 and
II.7. (Compare Fig. 1.14.1 below with Fig. 1.3.2 above.)

Fig. 1.14.1.  The Old Akkadian square expansion and square contraction rules.

Thus, for instance, in the Old Akkadian mathematical exercise DPA 36
(Friberg,op. cit., Fig. 7), the area is given of a square with the side 

11 ninda  1 1/2 1/4 seed-cubit = 10 ninda  + 1/8 · 10 ninda  + 1/4 seed-cubit.

sq. (u + s) = sq. u + sq. s + 2 u · s sq. (u – s) = sq. u + sq. s – 2 u · s
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(1 n. = 6 seed-cubits.) The area was probably computed by use of a repeat-
ed application of the square expansion rule, as follows:

1.   sq. (10 n.  + 1/8 · 10 n.) = sq. 10 n.  + 2 · 1/8 · sq. 10 n.  + sq. 1/8 · sq. 10 n.
2.   sq. (10 n.  + 1/8 · 10 n.  + 1/4 s.c.) 
        = sq. (10 n.  + 1/8 · 10 n.) + 2 · (10 n.  + 1/8 · 10 n.) · 1/4 s.c. + sq. 1/4 s.c.

For the details of the computation, which is quite complicated because of
the involvement of various Old Akkadian units for length and area mea-
sure, the reader is referred to Friberg, op. cit.

Similarly, in the Old Akkadian mathematical exercise DPA 37, for
instance (Fig. 5.3.2 below), the area is given of a square with the side

1 $ár ninda  5 gé$ ninda  – 1 seed-cubit                   (1 $ár = 60 · 60, 1 gé$  = 60).

The area was probably computed by use of an application of the square ex-
pansion rule, followed by an application of the square contraction rule. For
the complicated details of the computation, see Friberg, op. cit.

It is known through a number of examples that the mentioned rules
were applied in various situations also by OB mathematicians.

1.15. The Long History of Metric Algebra in Mesopotamia

The oldest known examples of metric algebra are applications of a
“field expansion procedure” in proto-cuneiform texts from the end of the
4th millennium BCE (Friberg, AfO 44/45 (1997/98); UL (2005), Fig.
2.1.15.) The aim of the field expansion procedure seems to have been to
find rectangles of given area with the lengths of the sides of the rectangle
in a given ratio.

Next in time, in the small corpus of known mathematical texts from the
Old Akkadian (Sargonic) period, c. 2340-2200 BCE, there are several
known, quite elaborate examples of metric squaring (such as the ones
mentioned in Sec. 1.14 above) and metric division, possibly also an even
more elaborate example of the metric computation of a side of a square
with given area. Moreover, although the known examples of Old Akka-
dian metric squaring and metric division problems are written only one or
two at a time on small clay tablets, they appear to have been excerpted
from systematically arranged theme texts. (Cf. Friberg, CDLJ (2005:2).)

In the large corpus of OB mathematical texts, metric algebra is, as is
well known, one of the most popular subjects. The extensive discussion in



70 Amazing Traces of a Babylonian Origin in Greek Mathematics

Secs. 1.10-1.12 above shows that there are several known examples of well
organized OB theme texts with metric algebra problems, in particular met-
ric algebra problems for one, two, or several squares.

In Sec. 1.13 it was shown that examples exist also of well organized
Late Babylonian/Seleucid theme texts with metric algebra problems,
resembling such OB theme texts. Several features suggest that those Late
Babylonian/Seleucid texts were written in direct imitation of OB models. 

Thus, for instance, the problem for concentric circles in W 23291-x § 2
is indistinguishable, at least in translation, from an OB mathematical text.
It measures length in ninda and surface content in square ninda ($ar),
although in Late Babylonian cuneiform texts lengths are normally mea-
sured in cubits or reeds (= 7 cubits) and surface content in either seed mea-
sure or “reed measure” (the length of a rectangle with the given surface
content and with one side equal to precisely 1 reed). 

Also the fragment of a theme text in W 23291 § 4 measures surface con-
tent in $ar, expressly defined as 1 square ninda. It shows its dependence
on an OB archetype by having a separate ninda section, and in the cubit
section the cubit is 1/12 of a ninda, which implies that the cubit is 1/6 of
a reed, as in OB texts, not 1/7.

The problem for concentric circles in W 23291 § 4 g is more removed
from its OB archetype by measuring surface content in terms of seed mea-
sure, but it still measures lengths in ninda. The metric algebra problems
in W 23291 § 1 b-f also measure surface content in terms of seed measure
and have separate ninda and cubit sections, with the cubit equal to 1/12
ninda in the cubit sections.

Summing up, it is now possible to conclude that metric algebra prob-
lems were studied systematically in Mesopotamian scribe schools during
a time span of at least 2000 years, from the Old Akkadian to the Late Baby-
lonian period. The investigation has also shown that, at least in some
respects,Late Babylonian mathematics was directly influenced by OB
mathematics, actually in the same way that OB mathematics must have
been inspired by Old Akkadian mathematics. This is not an unexpected
conclusion, and it is supported but other facts not mentioned here. Still, it
is remarkable, since the terminology used in Late Babylonian mathemati-
cal texts is in many ways different from the terminology used in corre-
sponding OB mathematical texts.
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Thus, when Elements II, or more likely a lost Greek forerunner to
Elements II was written in imitation of some oriental archetype, it was only
the last link in an extremely long chain of theme texts with metric algebra
problems. The heated debate over the question whether some of the prop-
ositions in Elements II were Greek geometric reformulations of Babylo-
nianalgebra can now be laid to rest. In reality, Elements II appears instead
to have been a direct translation into non-metric and non-numerical
“geometric algebra” of key results from Babylonian metric algebra. It is
noteworthy that, in spite of this translation, Greek geometric algebra still
relied on the same geometric models as Babylonian metric algebra.
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Chapter 2

El. I.47 and the Old Babylonian Diagonal Rule

2.1. Euclid’s Proof of El. I.47

The propositionEl. I.47 begins with the following statement:

In right-angled triangles the square on the side subtending the right angle
is equal to the squares on the sides containing the right angle.

The well known diagram accompanying the proposition (see, for instance,
Heath,ETBE 1 (1956)) is reproduced below:

Fig. 2.1.1.  The diagram accompanying El. I.47.

In spite of the complicated diagram, Euclid’s proof is relatively simple.
It begins with a careful construction of the diagram. The rest of the proof
can, essentially, be divided into the following steps:

1. The triangle ABD is equal to the triangle FBC (El. 1.4)
2. The rectangle BL is equal to twice the triangle ABD (El. I.41)
3. The square GB is equal to twice the triangle FBC (El. I.41)
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4. Therefore, the rectangle BL is equal to the square GB
5. Similarly, the rectangle CL is equal to the square HC
6. Therefore, the whole square BDEC is equal to the two squares GB, HC

Steps 1-3 of Euclid’s proof are separately illustrated below, in a set of
unlettered diagrams

Fig. 2.1.2.  Steps 1-3 of Euclid’s proof of El. I.47

2.2. Pappus’ Proof of a Generalization of El. I.47

An alternative, but closely related proof of El. I.47 was given by Pappus
in Collections IV.1 (see, for instance, Heath, ETBE 1 (1956), 366). Pappus
showed that his proof could be used also for the proof of a generalized
proposition, where the right-angled triangle is replaced by an arbitrary
triangle, and where the given squares on two of the sides of the triangle are
replaced by arbitrary given parallelograms on the two sides. Undoubtedly,
the new proof is more interesting than the generalization of El. I.47.

Pappus’ new proof is illustrated by the following diagram:

1 (El. I.4)

2 
(E

l. 
I.4

1)

3 
(E

l. 
I.4
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Fig. 2.2.1.  The diagram illustrating Pappus’ proof of his generalization of El. I.47.

In Fig. 2.2.2 below, the basic idea in Pappus’ proof is illustrated by a
sequence of diagrams in the most interesting case, that of given squares on
the length and the front of a right triangle. The right triangle is interpreted
here as one half of a rectangle. 

Fig. 2.2.2.  An illustration of the basic idea in Pappus’s proof of El. I.47.
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2.3. The Original Discovery of the OB Diagonal Rule for Rectangles

Euclid’s own proof of El. I.47 is based on two propositions from
Elements I, namely El. I.4 and El. I.41.

El. I.4 is a congruence theorem stating that if two sides and the angle
contained by those two sides in one triangle are equal to two sides and the
angle contained by those two sides in another triangle, then also the
remaining side and the remaining angles in the first triangle are equal to
the remaining side and the remaining two angles in the other triangle, and
the two triangles are ‘equal’, presumably in the sense that they have the
same area. Euclid’s proof of El. I.4 is far from a wonder of lucidity.

El. I.41 is a transformation theorem stating that if a parallelogram and
a triangle have the same base and stay between the same parallels, then the
parallelogram is ‘equal’ to twice the triangle.

Pappus’ proof of El. I.47, which is simpler than Euclid’s proof, is based
on only one proposition from Elements I, namely El. I.36.

El. I.36 is another transformation theorem, stating that if two parallel-
ograms have the same base and stay between the same parallels, then the
two parallelograms are ‘equal’.

It is well known that the “diagonal rule” stated as a proposition in El.
I.47 was an integral part of OB mathematics 1500 years before the time of
Euclid.14 However, Babylonian mathematicians felt no need for formal
statements of theorems and formal proofs. Therefore, it is not known how
they would have formulated a proof of their diagonal rule.15 Nevertheless,
it is clear that they could never have contemplated proofs like the ones for-
mulated by Euclid and Pappus, illustrated in Figs. 2.1-2 and 2.2.1-2 above,
since concepts such as angles and parallelograms were unknown in Baby-
lonian mathematics. Propositions such as El. I.4, El. I.36, and El. I.41 can-
not have had any Babylonian counterparts. 

More interesting than the question of how Babylonian mathematicians
could have formulated a proof of the diagonal rule, if they had had the

14.  A attempted survey of all known Old or Late Babylonian applications of the diagonal
rule can be found in Friberg, RC (2007), Appendix 8, Sec. A8 f.
15.  In an attempted search for the original proof of the rule there would be no shortage of
candidates. Thus, in Loomis, The Pythagorean Proposition (1968), there are listed 109
“algebraic” proofs of the proposition, 225 “geometric” proofs, etc.
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inclination to do so, is the question how they actually can have discovered
the rule in the first place. A step towards a possible answer to this question
is the observation that Pappus’ proofs of El. I.47, in the slightly modified
version of it shown in Fig. 2.2.2, is closely related to the proof “by inspec-
tion” shown in Fig. 2.3.1 below:

Fig. 2.3.1.  A proof by inspection closely related to Pappus’ proof.

The diagram in Fig. 2.3.1, right, may, in its turn, be closely related to
the actual accidental discovery of the diagonal rule, which may have taken
place in the way described below:

OB mathematicians were familiar with the idea of concentric (and par-
allel) squares, and called a square band bounded by two concentric squares
a ‘field between’. Various mathematical exercises for two or three concen-
tric squares are listed in the OB catalog text Bruins and Rutten (1961) TMS
5 (Sec. 1.11 above). In TMS 5 § 9 b-c it is silently assumed that one square
is halfway between two other squares in the sense that the distance from
the outer square to the middle square is equal to the distance from the mid-
dle square to the inner square.

There is, however, another way in which a middle square can be said to
be halfway between two given concentric (and parallel) squares. That is
whenthe area between the outer square and the middle square is equal to
the area between the middle square and the inner square. Suppose that an
OB mathematician tried to figure out how to construct a square halfway,
in this sense, between two given squares. How could he do it? There are
two answers to this question:

1. The square band between the two given concentric squares can be
divided by the diagonals of the outer square into a ring of four trapezoids.
(see Fig. 2.3.2 below, left), The problem is therefore reduced to the prob-
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lem of finding a transversal parallel to the base of a given trapezoid and
dividing the trapezoid into two parts of equal area. This “trapezoid bisec-
tion problem” and its solution were both well known in OB mathematics.
It appears to have been known even by Old Akkadian mathematicians, five
hundred years before the time of the OB mathematicians. (See Sec. 11.3 a
below.)

2. Alternatively, the square band between the two given concentric
squares can be divided into a ring of four rectangles (Fig. 2.3.2 below,
right). Each triangle is divided into two halves of equal area by its diago-
nal. Therefore, the combined area of the inner square plus four half rect-
anglesis halfway between the area of the outer square and the area of the
inner square. Moreover, it is naively obvious from inspection of Fig. 2.3.2,
right, that the combination of the inner square plus the four half rectangles
is an obliquely placed square touching the outer square at four points.
Actually, it is the square on the diagonal of any one of the four rectangles. 

Fig. 2.3.2.  A square halfway in area between two given concentric squares.

Consequently, the area of the square on the diagonal d, expressed in
terms of the pair of square sides p and q is

sq.d = (sq. p + sq. q)/2.

On the other hand, expressed in terms of the “dual pair” of rectangle sides
u and s, the area of the square on the diagonal is 

sq.d = sq. q + 4 · A/2 = {sq. (u + s) + sq. (u – s)}/2 = sq. u + sq. s.

Therefore, the Babylonian diagonal rule may very well have been acciden-
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tally discovered by someone who was actually more interested in finding
a square halfway in area between two given concentric squares! If this was
really the way in which the diagonal rule was discovered, it is also the first
proof the diagonal rule. Note that this putative first proof of the diagonal
rule is in addition an obvious candidate to being a forerunner of the proofs
ascribed to Pappus and Euclid (Figs. 2.1.2 and 2.2.2)!

2.4. Chains of Triangles, Trapezoids, or Rectangles

There is no direct evidence that OB mathematicians found and proved
(to their own satisfaction) the diagonal rule in the way suggested above.
There is, however, plenty of indirect evidence. Take, for instance the fol-
lowing entry in the OB mathematical “table of constants” Bruins and
Rutten,TMS 3 (= BR):

57 36 igi.gub  $à $ár 57 36, the constant of the $ár BR 30

As first shown by Vaiman, VDI 15 (1961), the entry may refer to the area
of a geometric figure in the form of a ring of right triangles, vaguely re-
sembling the cuneiform number sign $ár = 60 · 60 (Fig. 2.4.1, right). In
what probably was a standard example, such a figure could be composed
of four right triangles with the sides 1 00, 48, 36 = 12 · (5, 4, 3). It is shown
in Fig. 2.4.1, left, how the area of the $ár-figure in this standard example
can be computed either as the sum of the areas of the four right triangles,
or as the difference of the areas of an outer square of side 1 00 and an inner
square of side 12. In either case, the area is found to be 57 36.

Fig. 2.4.1.  Left: The $ár-figure. Right: The $ár-sign.

Parenthetically it may be remarked here that the OB mathematicians,
who often used the powerful method of a systematic variation of a basic

1 00

1 00

36

12

48

4 · 1/2 · 36 · 48 
= 4 · 14 24 
= 57 36 (sq. ninda)
or
sq. 1 00 – sq. 12 
= 1 00 00 – 2 24 
= 57 36
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idea, had found an interesting variation also of the idea of a ring of four
right triangles as in Fig. 2.4.1, right, or of four rectangles, as in Fig. 2.3.2,
right. The OB round clay tablet MS 2192 (Friberg, RC(2007), Sec. 8.2 a),
contains a diagram of a triangular band bounded by two equilateral trian-
gles, and divided into a ring of three trapezoids. Apparently, this is an as-
signment, with the student’s task being to compute the area of the
triangular band. A first step towards the solution of the problem has been
taken with the notation ‘35’ near the edge of the clay tablet. It can be in-
terpreted as an indication that the area of the triangular band is 35 times as
large as the area of the inner triangle. Indeed, since the side of the outer
triangle is 6 times larger than the side of the inner triangle, it follows that
the area of the triangular band is 35 = sq. 6 – 1 times larger than the area
of the inner triangle.

Fig. 2.4.2.  MS 2192. An equilateral triangular band divided into three trapezoids.

There are no explicit solution procedures for the problems dealing with
concentric squares stated in §§ 7-9 of TMS 5. However, it is likely that an
OB mathematician would have solved the problem in TMS 5 § 8 b (Sec.
1.11 above), for instance, in the same way that some Late Babylonian
mathematician solved a corresponding problem in W 23291 § 1 f (Sec.
1.13 a). Compare Fig. 2.4.3 below, left, with Fig. 1.13.5 above.

The problem stated without solution in TMS 5 § 7 f (Sec. 1.11) is solved
explicitly in BM 13901 § 2 a (Sec. 1.12 above), apparently by use of a
method illustrated by the diagram in Fig. 2.4.3, right. The first step of that
method is based on the observation that the inner square plus four half rect-
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angles is equal to the square on the diagonal of one of the rectangles, and
that the square on the diagonal plus four more half rectangles is equal to
the outer square. The second step of the solution procedure in BM 13901
§ 2 a makes use of the diagonal rule.

Fig. 2.4.3.  Quadratic-linear systems of equations and square bands as rings of rectangles.

Thus, the square band divided into a ring of four rectangles, which was
assumed above to be a geometric model behind the discovery and first
proof of the diagonal rule, appears to have played a role also in other con-
nections in OB metric algebra. 
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Chapter 3

Lemma El. X.28/29 1a, Plimpton 322,
and Babylonian igi-igi.bi Problems

3.1. Greek Generating Rules for Diagonal Triples of Numbers

Euclid’s Generating Rule in Lemma El. X.28/29 1a

Lemma El. X.28/29 1a poses the following construction problem:

To find two square numbers such that their sum is also a square.

Although what is asked for here is two “numbers” (positive integers),
the ensuing construction is accompanied by a geometric diagram:

Here AB and BC represent two numbers, assumed to be both odd or
both even. In addition, it is assumed that AB and BC are either two square
numbers, or, more generally, similar plane numbers. The latter assumption
means, essentially, that here is some “plane number” t = h · k and some
numbersm and n such that

AB = m h · m k,    BC = n h · n k.

Consequently,

AB = t · sq. m,   BC = t · sq. n.

(It is not clear to me why Euclid prefers to talk about similar plane numbers
instead of numbers proportional to a pair of square numbers.)

Euclid lets AC be bisected at D. In view of the mentioned assumptions,
CD is then a number, and the product of AB, BC is a square number. The
latter fact is proved in El. IX.1. Moreover, in view of El. II.6,

The product of AB, BC together with the square on CD is equal to the square on BD.

A D C B
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Thus, the product of AB and BC, and the square on CD, are, as requested,
two square numbers such that their sum is also a square.

In a rather implicit way, lemma El. X.28/29 1a is a general generating
rule for an infinite number of “diagonal triples” of numbers (positive inte-
gers), corresponding to the three sides of equally many right(-angled) tri-
angles, or to the two sides and the diagonal of equally many rectangles.

The Generating Rules Attributed to Pythagoras and Plato

In HGM II (1981 (1921)), 79-82, Heath gives a brief account of two
related generating rules, one attributed to Pythagoras, the other to Plato,
both described in Proclus’ commentary to Euclid’s Elements I (Friedlein/
Proclus, In Primum Euclidis Elementorum Commentarii (1873)).

According to Heath, the generating rule ascribed to Pythagoras
“amounts to the statement that” 

m2 + (1/2 (m2 – 1))2 = (1/2 (m2 + 1))2,   where m is any odd number.

Heath suggests that Pythagoras found this construction rule by observing
that 2 a + 1 is the “gnomon of dots” put around a2 to make (a + 1)2. There-
fore, if also 2 a + 1 is a square number, say 2 a + 1 = m2, it follows that

a = 1/2 (m2 – 1),   and a + 1 = 1/2 (m2 + 1),

which gives the generating rule in this case.

Similarly, according to Heath, the generating rule ascribed to Plato
amounts to the statement that 

(2 m)2 + (m2 – 1)2 = (m2 + 1)2,   where m is an arbitrary number.

Heath suggests that Plato found this alternative construction by observing
that 4 a is the gnomon of dots put around (a – 1)2 to make (a + 1)2. There-
fore, if also 4 a is a square number, say 4 a = (2 m)2, it follows that

a = m2,   so thata + 1 = m2 + 1,   and a – 1 = m2 – 1,

which gives the generating rule in this second case.

Heath further observes that both these generating rules are special cases
of the generating rule given by Euclid in lemma El. X.28/29 1a,which,
essentially, amounts to the statement that

(t m n)2 + ((t m2 – t n2)/2)2 = ((t m2 + t n2)/2)2,
when t m2, t n2 are both odd or both even.
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Metric Algebra Derivations of the Greek Generating Rules

It is instructive to investigate how the generating rules mentioned
above can be derived by use of geometric diagrams like the ones in El. II
rather than by use of squares and gnomons of dots or pebbles. 

SinceEl. II.6 was used by Euclid for his construction in lemma El.
X.28/29 1a, the obvious choice of such a diagram is the one in Fig. 1.4.1,
right, or its metric algebra counterpart in Fig. 1.4.2, right.

Fig. 3.1.1.  Geometric derivations of the generating rules of Pythagoras and Euclid

The diagram in Fig. 3.1.1, left, is related to the diagram used for the
proof of El. II.6. It shows that the square difference sq. (a + 1) – sq. a is
equal to a square corner (a gnomon) of area (2 a + 1) · 1. Just as in Heath’s
proposed explanation of the generating rule ascribed to Pythagoras, if the
area of the square corner is equal to the area of a square, say sq. m, then

2 a + 1 = sq. m,   so that a = (sq. m – 1)/2   and a + 1 = (sq. m + 1)/2.

Note that this is an analytic argument: The diagram can be drawn only if
it is assumed that the numbers a and a + 1 are already known.

The alternative diagram in Fig. 3.1.1, right, is related to the diagram
used for the constructions in El. II.14 (Fig. 1.7.1, right) and El. II.14* (Fig.
1.7.2, right). The diagram shows that the sides c, b, a of a right triangle can
be explicitly constructed as follows, by use of a completely synthetic argu-
ment: Choose m and n as arbitrary numbers, both odd or both even, and
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draw a semicircle with the diameter sq. m + sq. n. From the point where
the diameter is divided in two parts of lengths sq. m and sq. n, erect a per-
pendicular. The radius of the semicircle ending at the point where the per-
pendicular cuts the circle is then the diagonal (the hypotenuse) of a right
triangle with the sides

c, b, a = (sq. m + sq. n)/2, m · n, (sq. m – sq. n)/2.

Indeed,c is half the diameter, a = c – sq. n, and (cf. the proof of El. II.14)

sq.b = sq. m · sq. n = sq. m · n,   so that b = m · n.

In the special case when n = 1, the construction in Fig. 3.1.1, right, is an
alternative to the construction in Fig. 3.1.1, left. 

Euclid’s slightly more general generating rule in lemma El. X.28/29 1a,
corresponds to the case when in Fig. 3.1.1, right, sq. m and sq. n are mul-
tiplied by a number t. With t = 2, this generalization takes care of the case
when one of m and n is odd, the other even.

It is interesting that Euclid never makes use of the generating rule in
lemmaEl. X.28/29 1a. Actually, the reason for the insertion of the lemma
afterEl. X.28 seems to be the brief remark at the end of the proof of that
lemma, to the effect that if AB and BC (corresponding to the segments
c + a and c – a of the diameter of the semicircle in Fig. 3.1.1, right) are not
similar plane numbers, then the difference of the squares on BD and DC
(corresponding to (c + a) · (c – a) = sq. c – sq. a in Fig. 3.1.1, right) is not
a square number. It is this negative version of the lemma that is used in
El. X.29-30.

3.2. Old Babylonian igi-igi.bi Problems

MS 3971 is an interesting OB mathematical recombination text from
the ancient city Uruk (Friberg, RC (2007), Sec. 10.1). MS 3971 § 2 was
discussed in Sec. 2.4 above. MS 3971 § 3 is a series of five “igi-igi.bi
problems”, clearly related to an OB generating rule for diagonal triples.
An interesting difference between the Greek and the OB generating rules
is that Greek mathematicians were interested only in producing triples of
“numbers” (integers), while OB mathematicians customarily worked with
sexagesimal numbers in relative (floating) place value notation.

Here is the text of one of the problems in MS 3971 § 3:
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MS 3971 § 3 e, literal translation explanation

The 5th. The 5th example.
1 12 the igi , 50 the igi.bi. igi  = 1 12, igi.bi = 50.
1 12 and 50 heap, 2 02. igi  + igi.bi = 2 02.
1/2 of 2 02 break, 1 01. (igi  + igi.bi)/2 = 1 01.
1 01 (make) butt (itself), 1 02 01. sq. (igi  + igi.bi)/2 = 1 02 01.
1 from 1 02 01 tear off, 2 01 it gives. sq. (igi  + igi.bi)/2 – 1 = 2 01
2 01 makes 11 equalsided. = sq. 11.
11, the 5th front. The 5th front (of a right triangle) = 11.

Theigi-igi.bi problems in the OB text MS 3971 § 3 are clearly related
to the igi-igi.bi problems in the Seleucid text AO 6484 § 7 (Sec. 1.13
above, Fig. 1.13.9). However, in MS 3971 § 3 the values of igi and igi.bi
are given and the half-difference (igi – igi.bi)/2 is computed, while in AO
6484 § 7 the sum igi + igi.bi is given, and the values of igi and igi.bi
are computed. In spite of the different goals for the computations in the
two cases, the two possible geometric models remain the same (Fig. 3.2.1).

Fig. 3.2.1.  Two possible geometric models for the solution procedure in MS 3971 § 3.

The five examples in MS 3971 § 3 demonstrate how every given pair
igi, igi.bi of reciprocal sexagesimal numbers can be used for the con-
struction of a right triangle, corresponding to the generating rule

c, b, a = (igi  + igi.bi)/2, 1, (igi  – igi.bi)/2.

Note that in these examples, the value of a is not computed directly by use
of this generating rule, but via an application of the diagonal rule. How-
ever, in this way the need for a verification of the result is avoided.

The diagonal triples constructed by use of the OB generating rule dis-
played above are “normalized” in the sense that the middle term is 1.

c, b, a = (igi + igi.bi)/2, 1, (igi – igi.bi)/2

c + a = igi, c – a = igi.bi,   sq. c – sq. a = igi · igi.bi = 1

igi.bi

c

ac c – a

b 
=

  1

igi

ca

a

c

a

ig
i.b

i
a

igi

A =  1
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3.3. Plimpton 322: A Table of Parameters for igi-igi.bi Problems

Plimpton 322 is the name of a famous OB mathematical table text from
the ancient Mesopotamian city Larsa. It is a large fragment, probably the
right half or two-thirds of a clay tablet of a very unusual format, much
more broad than it is tall. There are four columns of numbers on the pre-
served part of the clay tablet, each with its own heading.

Fig. 3.3.1.  Plimpton 322. A large fragment of an Old Babylonian mathematical table text.

The meaning of the headings is far from obvious. Nevertheless they
can, at least tentatively, be translated as follows:

The square of the holder for the diagonal (from) which 1 is subtracted, 
then <the square of the holder for > the front comes up.
The square side of <the square of the holder for > the front.
The square side of <the square of the holder for > the diagonal.
Its line number.

A detailed analysis and explanation of the text can be found in Friberg,
RC(2007), Appendix 7. There it is shown that the whole table text is a sys-
tematically arranged list of numerical parameters for fifteen igi-igi.bi
problems of the same kind as either the five igi-igi.bi problems in MS
3971 § 3 or the four related problems in AO 6484 § 7 (Sec. 1.13 above).

As will be explained below, the mysterious term “holder” can be inter-
preted as a name for an intermediate result in the solution of a rectangular-
linear system of equations. Thus, what the heading above the first pre-

5 1˚9
1   5
3 3˚14˚9
11˚64˚1
 5˚6   7
1 5˚9 2 4˚9

31˚2  1
15˚   4˚9
 5    9    1
1 3˚7
 8   1
 5˚9   1
 2˚   4˚9
 1˚24˚9
 2 1˚6  1
 11˚5
 4˚84˚9
 4 4˚9
 5˚34˚9
 5˚3 12˚31˚34˚6 4˚

mu.bi.imíb.si8 %i-li-ip-tim
                   in-na-as-sà-‹u-ú-ma sag i-il-lu-ú

          x-ki-il-   ti  %i- li-  ip-          tim íb.si8              sag

 12˚54˚8  5˚13˚5     6  4˚
 12˚7         3 4˚5
 12˚9 2˚1 5˚4      21˚5
  13˚3 4˚5
 13˚51˚  2 2˚8 2˚7 2˚42˚6 4˚

  13˚8 3˚3 3˚3 3˚6
  14˚13˚35˚9      3 4˚5
  14˚31˚15˚62˚82˚6 4˚
  14˚7          6 4˚14˚
  14˚8 5˚4        14˚
  15˚31˚  2˚9 3˚2 5˚2 1˚6
  15˚5     74˚11˚53˚34˚5 
  1 5˚6 5˚6 5˚8  1˚4 5˚61˚5 
  1  5˚9           1˚5 ki      1

ki      2
ki      3
ki      4v
ki      5
ki      6
ki      7v
ki      8v
ki      9
ki      1˚
ki     1˚1
ki     1˚2
ki     1˚3
ki     1˚4
ki     1˚5

3˚81˚1
1˚31˚9
  9   1
12˚24˚1
4˚5
2˚75˚9
71˚2  1
2˚9 3˚1
5˚6
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served column tries to say, in a rather awkward way, is that the numbers in
that column are the values of sq. (igi + igi.bi)/2 = sq. c, where c is the
diagonal, and that if 1 is subtracted from sq. (igi + igi.bi)/2, then the result
is sq. (igi – igi.bi)/2 = sq. a. (Cf. the geometric model in Fig. 3.2.1.)

The preserved columns on Plimpton 322 are reproduced below in trans-
literation, with the errors in the text corrected.

Here follows, in addition, a tentative reconstruction of the columns
from the missing left half or third of the clay tablet.

[a.$à tak‰]lti %iliptim
$a 1 inassa‹uma sag  illû

íb.si8
sag

íb.si8
%iliptim

mu.
bi. im

1 59 00 15
1 56 56 58 14 50 06 15
1 55 07 41 15 33 45
1 53 10 29 32 52 16
1 48 54 01 40
1 47 06 41 40
1 43 11 56 28 26 40
1 41 33 45 14 03 45
1 38 33 36 36
1 35 10 02 28 27 24 26 40
1 33 45
1 29 21 54 02 15
1 27 00 03 45
1 25 48 51 35 06 40
1 23 13 46 40

1 59
56 07
1 16 41
3 31 49
1 05
5 19
38 11
13 19
8 01
1 22 41
45
27 59
2 41
29 31
56

2 49
3 13
1 50 49
5 09 01
1 37
8 01
59 01
20 49
12 49
2 16 01
1 15
48 49
4 49
53 59
53

ki.1
ki.2
ki.3
ki.4
ki.5
ki.6
ki.7
ki.8
ki.9

ki.10
ki.11
ki.12
ki.13
ki.14
ki.15

igi igi.bi tak‰lti 
%iliptim

tak‰lti 
sag

2 24
2 22 13 20
2 20 37 30
2 18 53 20
2 15
2 13 20
2 09 36
2 08
2 05
2 01 30
2
1 55 12
1 52 30
1 51 06 40
1 48

25
25 18 45
25 36
25 55 12
26 40
27
27 46 40
28 07 30
28 48
29 37 46 40
30
31 15
32
32 24
33 20

1 24 30
1 23 46 02 30
1 23 06 45
1 22 24 16
1 20 50
1 20 10
1 18 41 20
1 18 03 45
1 16 54
1 15 33 53 20
1 15
1 13 13 30
1 12 15
1 11 45 20
1 10 40

59 30
58 27 17 30
57 30 45
56 29 04
54 10
53 10
50 54 40
49 56 15
48 06
45 56 06 40
45
41 58 30
40 15
39 21 30
37 20
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Presumably, each line of the table text contains all the numerical
parameters for an igi-igi.bi problem. In the example of line 1, for exam-
ple, the listed parameters can be used to set up the following exercise:

Chosen parameters:   igi  = 2 24, igi.bi  = 25
Equations: igi  + igi.bi = 2 49, igi  · igi.bi = 1
Solution procedure: c = (igi  + igi.bi)/2 = 1 24;30

sq.c = sq. 1 24;30 = 1 59 00;15
sq.a = sq. c – 1 = 59 00;15
a = sqs. 59 00;15 = 59;30

Check: igi  = c + a = 1 24;30 + 59;30 = 2 24
igi.bi  = c – a = 1 24;30 – 59;30 = 25

Note that the value 1 24;30 for the diagonal c = (igi + igi.bi)/2 appears
repeatedly in this solution procedure. First it is squared, then it is commit-
ted to memory to be used again in the final pair of operations. It is probably
this being committed to memory that gave it its name tak‰lti %iliptim ‘the
holder for the diagonal’, since a Babylonian phrase for ‘commit it to mem-
ory’ was, literally, ‘let it hold your head’.

The values 2 24, 25, 1 24;30, and 59;30 appearing in the solution pro-
cedure above correspond to the numbers 2 24, 25, 1 24 30, and 59 30 in
line 1 of the four lost columns on Plimpton 322. The value 1 50 00;15
corresponds to the number 1 50 00 15 in line 1 of the first preserved
column, and the value 50 00;15 is obtained by subtraction of 1, as
instructed in the heading over that column.

Thus, it remains to explain only what the purpose was of the numbers
in line 1 of columns 2 and 3 of the preserved part of the clay tablet. An
interesting answer to this question is that they probably played an impor-
tant role in the computation of the square sides of 50 00;15 and 1 50 00;15.
Indeed, it is known (see the explicit examples in Friberg, RC (2007),
Appendix 8, Sec. A8 a) that OB mathematicians had invented a clever fac-
torization method as a convenient shortcut in computations of square sides.
To find the square side of 50 00;15, they could operate as follows:

Since   59 00 15 = 15 · 4 · 59 00 15 = 15 · 3 54 01,
it follows that   sqs. 59 00 15 = sqs. 15 · sqs. 3 54 01.

Here, sqs. 15 (00) = 30, and sqs. 3 54 01 could be computed as follows (see
Sec. 16.7 below):

sqs. 3 54 01 = appr. 2 (00) – 4 / 2 · 2 = 2 (00) – 1 = 1 59,   and   sq. 1 59 = 3 54 01.
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Putting the two results together, one finds that

sqs. 59 00 15 = sqs. 15 · sqs. 3 54 01 = 30 · 1 59 = 59 30.

Similarly,

Since   1 59 00 15 = 15 · 4 · 1 59 00 15 = 15 · 7 54 01,
it follows that   sqs. 1 59 00 15 = sqs. 15 · sqs. 7 54 01,
where   sqs. 7 54 01 = appr. 3 (00) – 1 06 / 2 · 3 = 3 (00) – 11 = 2 49,   sq. 2 49 = 7 54 01.
Therefore,   sqs. 1 59 00 15 = 30 · 2 49 = 1 24 30.

The trick was apparently to first remove obvious square factors from the
given number and then compute the square side of the remaining “factor-
reduced” number. That square side can be called the “factor-reduced core”
of the square side of the given number. Thus, in line 1 of Plimpton 322, the
numbers 1 59 and 2 49 in columns 2 and 3 of the preserved part of the clay
tablet can be interpreted as the factor-reduced cores of the square sides of
59 00 15 and 1 59 00 15, respectively.

It is clear that knowing in advance such factor-reduced cores would
greatly simplify the computations necessary in each case for the solution
of the igi-igi.bi problems with the data given in, for instance, (the lost)
column 3 on Plimpton 322. This is certainly true in the case of the igi-
igi.bi problem associated with line 10 of Plimpton 322, where the need
arises to compute the square sides of the “many-place” sexagesimal num-
bers 35 10 02 28 27 24 26 40 and 1 35 10 02 28 27 24 26 40.

Another interesting question is how the 15 examples of parameters for
igi-igi.bi problems listed on Plimpton 322 were chosen. More precisely,
which is the origin of the 15 pairs of reciprocal sexagesimal numbers in
(the lost but reconstructed) columns 1-2 on the clay tablet? There is an
astonishingly simple answer to this question. (Cf. Friberg, HMath 8
(1981),RC (2007), Appendix 7.) Take, for instance, 2 24, the first igi
value in Plimpton 322 (the first number in the reconstructed column 1).
Since

2 24 · 5 = 10 (00) + 2 (00) = 12 (00).

2 24 can be written (in relative sexagesimal place value notation) as

2 24 = 12 · igi  5 (= 12 / 5).

Similarly, in the case of 2 22 13 20, the second igi value in column 1,

2 22 13 20 · 3 = 7 06 40,   7 06 40 · 3 = 21 20,   21 20 · 3 = 1 04.
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Therefore,

2 22 13 20 = 1 04 · igi  27 (= 1 04 / 27).

And so on. Summing up the results, one finds that

2 24 = 12 · igi    5 2 22 13 20 = 1 04 · igi  27 2 20 37 30 = 1 15 · igi  32
2 18 53 20 =  2 05 · igi  54 2 15 =  9 · igi    4 2 13 20 = 20 · igi    9

2 09 36 = 54 · igi  25 2 08 = 32 · igi  15 2 05 =  25 · igi  12
2 01 30 = 1 21 · igi  40 2 =  2 · igi    1 1 55 12 = 48 · igi  25 
1 52 30 = 15 · igi    8 1 51 06 40 = 50 · igi  27 1 48 = 9 · igi    5 

Therefore, all the igi values appearing in (the reconstructed) column 1 of
Plimpton 322 can be written in the form igi = m · igi n (= m/n), where n
varies between 1 and 54, while m varies between 2 and 2 05. The obvious
conclusion is that the author of Plimpton 322 decided to use only those
valuesigi n from the OB table of reciprocals for which 1 F n < 1 00 (= 60).
(As is well known, if igi n appears in the OB table of reciprocals, then n
must be a regular sexagesimal number, that is a sexagesimal integer with
no other factors than powers of 2, 3, and 5.)

A continued analysis shows (cf. Friberg, HMath 8 (1981); RC (2007),
Appendix 8) that the list of igi values in (the reconstructed) column 1 of
Plimpton 322 consists of all numbers of the form igi = m · igi n (= m / n),
where

n and m are regular sexagesimal numbers, with
1 F n < 1 00, and 1 48 Fm · igi n F sqs.2 + 1 = appr. 2 24.

The condition that m · igi nF 2 24 ensures that in Fig. 3.2.1, right, the side
a, the front of the right triangle, will always be shorter than the side b = 1,
thelength of the right triangle. This is in agreement with a well known con-
vention in all mathematical cuneiform texts. The fact that 1 48 Fm · igi n
is simply a consequence of the circumstance that the table on Plimpton 322
ends at the lower edge of the clay tablet, just when the descending series
of igi values in column 1 has happened to reach the value 1 48.

The brief discussion above has demonstrated that the table of parame-
ters for 15 igi-igi.bi problems on Plimpton 322 was based on a cleverly
and systematically arranged series of applications of the Old Babylonian
generating rule

c, b, a = (igi  + igi.bi)/2, 1, (igi  – igi.bi)/2.

This generating rule, by the way, fails to be completely general only be-
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cause, in agreement with Babylonian conventions, the front a is supposed
to be shorter than the length b, and the values of c and a are supposed to be
regular sexagesimal numbers.

In a similar way, of course, Euclid’s generating rule

c, b, a = t · {(sq. m + sq. n)/2, m · n, (sq. m – sq. n)/2},   where t = 1 or 2.

fails to be general only because, in agreement with Greek conventions, the
values of c, b, and a are supposed to be (positive) integers.

There is a simple connection between the OB and the Greek generating
rules. Indeed, since in the Babylonian generating rule igi is supposed to be
of the form m · igi n, it follows that (in modern notations)

(igi  + igi.bi)/2, 1, (igi  – igi.bi)/2 = 
(m/n + n/m)/2, 1, (m/n – n/m)/2 =
t · {(sq. m + sq. n)/2, m · n, (sq. m – sq. n)/2},
where t = 1/(m · n).

In this connection, it is important to point out that OB mathematicians
were well aware of the fact that if c, b, a are the diagonal and the sides of
a rectangle or a right triangle, a diagonal triple, then also all (positive)
multiplest · (c, b, a) are diagonal triples. This fact is demonstrated by the
OB exercise MS 3971 § 4 (Friberg, RC (2007), Sec. 10.1 d), which is a
scaling problem for diagonal triples.

MS 3971 § 4, literal translation explanation

7, the diagonal (%iliptum). The diagonal c = 7 (00)
The length and the front are what? The length b and the front a = ?
5, 4, 3, the square sides (íb.si8). Let, for instance, c*, b*, a* = 5, 4, 3
5 release, 12 it gives. igi  5 = 12
12 to 4 lift, 48 it gives.  igi  5 · (5, 4, 3)
12 to 3 lift, 36 it gives. = 1 (00), 48, 36
48 to 7 lift, 5 36, the length. 7 · 1 (00), 48, 36
36 to 7 lift, 4 12, the front. = 7 (00), 5 36, 4 12

In this exercise, the briefly stated problem is, apparently, to find a
rectangle with the diagonal ‘7’. The solution is given in three steps. In the
first step, an arbitrary diagonal triple c*, b*, a* is chosen, namely the well
known triple 5, 4, 3. It is interesting to note that the three numbers 5, 4, 3
are referred to as íb.si8 ‘square sides’. It is tempting to try to explain this
surprising designation as a reference to a construction like the one in Fig.
2.1.1, where the diagonal and the sides of a right triangle are all adorned
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with squares!
In the second step of the solution procedure, the diagonal triple 5, 4, 3

is scaled up by the factor igi 5 = 12. The result is the triple 1 00, 48, 36. 
Finally, in the last step of the solution procedure, this diagonal triple, in

its turn, is scaled up by the factor 7. The result is, of course, the diagonal
triple 7 00, 5 36, 4 12 (since 7 · 48 = 336 = 5 36 and 7 · 36 = 252 = 4 12).
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Chapter 4

The Lemma El. X.32/33 and
an OB Geometric Progression

4.1. Division of a right triangle into a pair of right sub-triangles

The lemma El. X.32/33begins with the following statement:

Let ABC be a right-angled triangle having the angle A right, 
and let the perpendicular AD be drawn. Then
  the rectangle CB, BD is equal to the square on BA,
  the rectangle BC, CD is equal to the square on CA,
  the rectangle BD, DC is equal to the square on AD,
  the rectangle BC, AD is equal to the rectangle BA, AC.

Fig. 4.1.1.  The diagram illustrating the lemma El. X. 32/33.

The proof proceeds, essentially, as follows:

1) The triangle ABD is similar to the triangle ABC El. VI.8
     CB : BA = BA : BD El. VI.4
     CB · BD = sq. BA El. VI.17
2) The triangle ADC is similar to the triangle ABC El. VI.8
     BC : CA = CA : CD El. VI.4
     BC · CD = sq. CA El. VI.17
3) AD is the mean proportional between BD and DC El. VI.8, Por.
     BD : DA = AD : DC
     BD · DC = sq. AD El. VI.17

A

DB C

1) CB · BD = sq. BA
2) BC · CD = sq. CA
3) BD · DC = sq. AD
4) BC · AD = BA · AC 
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4) The triangle ABD is similar to the triangle ABC El. VI.8
     BC : CA = BA : AD El. VI.4
     BC · AD = BA · AC El. VI.16

4.2. A Metric Algebra Proof of the Lemma El. X.32/33

As indicated above, Euclid’s proof of the lemma El. X.32/33 is based
on Propositions El. VI.4, 8, 16, and 17, which in their turn are based on the
theory of proportions in Elements V. In particular, the first step of the proof
is the observation that “the triangles ABD, ADC are similar both to the
whole ABC and to each other” (El. VI.8).

An Old Babylonian mathematician can easily have found results
closely related to the four equations in Fig. 4.1.1 above by a simple use of
metric algebra arguments, for instance as follows. He would naturally
interpret a given right triangle with the sides c, b, a as one half of a rectan-
gle with the sides b, a and the diagonal c, as in Fig. 4.2.1 below. 

Fig. 4.2.1.  A metric algebra proof of the lemma El. X.32/33 .

Suppose that he wanted to compute the height h against the diagonal,
as well as the segments u, s into which the diagonal is cut by the height h.
Sinceh is then the upright in a right triangle with the base (u – s)/2 and the
diagonal (u + s)/2, he could proceed in the following way, using nothing
but the Old Babylonian diagonal rule:

1)  sq. h = sq. (u + s)/2 – sq. (u – s)/2 = u · s (as in Fig. 1.1.2 or El. II.14)
2)  sq. b = sq. u + sq. h = sq.u + u · s = u · c,   hence u = sq. b / c
3)  sq. a = sq. h + sq. s = u · s + sq. s = s · c,    hence s = sq. a / c

These results corresponds to the first three of the four equations in the
lemmaEl. X.32/33. The fourth equation can be proved quite simply by
observing that if A is the area of the triangle, then

4) b · a = 2 A = h · c

a

s

h u

(u – s)/2
(u + s)/

2

b

1)  sq. h = sq. (u + s)/2 – sq. (u – s)/2 = u · s

2)  sq. b = sq. u + sq. h = sq. u + u · s = u · c

3)  sq. a = sq. h + sq. s = u · s + sq. s = s · c

4) b · a = c · h (= half the area) 

(u + s)/2
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Instead of using the prior knowledge that the height against the diago-
nal divides the given right triangles into two right triangles similar to each
other and to the whole (El. VI.8), in order to prove the four equations in
the lemma El. X.32/33, as Euclid did, an Old Babylonian mathematician
can have proceeded in the opposite direction, using equations 2)-4) above
to prove the mentioned similarity relations. Indeed, 

2) Ç b/c · b = sq. b / c = u
3) Ç a/c · a = sq. a / c = s
4) Ç a/c · b = (a · b) / c = (h · c) /c = h and     b/c · a = (b · a) / c = (h · c) / c = h

Therefore,

a, h, s = a/c · (c, b, a)   and b, u, h = b/c · (c, b, a)

This means that a given right triangle is divided by the height against
the diagonal into two right sub-triangles similar to itself but scaled down
with the scale factors b/c and a/c, respectively. 

This “height-against-the-diagonal rule” was known in Old Babylonian
mathematics, as shown by the discussion of IM 55357 in Sec. 4.3 below.
The rule can have been found by use of metric algebra in the way sug-
gested above, but that is, for the moment, only a reasonable conjecture.

4.3. An Old Babylonian Chain of Right Sub-Triangles

IM 55357 (Baqir, Sumer 6 (1950), Høyrup, LWS (2002), 231) is a
mathematical single problem text from the site Tell Harmal, near Baghdad.
It is one of the oldest known OB mathematical cuneiform texts. 

IM 55357, literal translation explanation

A peg-head. A (right) triangle with the sides c, b, a.
1 the length, 1 15 the long length, b = 1 (00), c = 1 15
45 the upper front, 22 30 the complete field, a = 45, A = a · b /2 = 22 30

1

3 
19

 0
3 

56
 0

9 
36

5 53 53 39 50 24

1 1545

8
 0

6

5
 1

1
 0

2
 2

4
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From 22 30 the complete field, Divide A into
8 06 the upper field, B = 8 06 (see Fig. 4.3.1 below)
5 11 02 24 the next field, C = 5 11:02 24
3 19 03 56 09 36 the 3rd field, D = 3 19;03 56 09 36
5 53 53 39 50 24 the lower field. E = 5 53;53 39 50 24
The upper length, the middle length, What are then 
the lower length, and the descendant are what? the sides of the sub-triangles?
You, to know the doing, Do it like this:
the opposite of 1, the length, resolve, 1/b = 1/1(00)
to 45 raise it, 45 you see. a/b = 45/1 (00) = ;45
45 to 2 raise, 1 30 you see. 2 a/b = 1;30
To 8 06, the upper field, raise it, 12 09 you see. 2 a/b · B = 1;30 · 8 06 = 12 09
12 09, what is it equalsided? sqs. 12 09 = ?
27 is the equalside. 27 is the front. sqs. 12 09 = 27 = s1
27 break, 13 30 you see. s1/2 = 27/2 = 13;30
The opposite of 13 30 resolve,  B / (s1/2)
to 8 06, the upper field, raise it, 36 you see, = 8 06 / 13;30 
the length next to the length 45, the front. = 36 = h1
Turn around. The next part of the computation:
The length 27 of the upper peg-head c – s1 =
from 1 15 tear out, 48 it leaves. 1 15 – 27 = 48
The opposite of 48 resolve, 1 15 you see. h1 / (c – s1) = h1 / u1
1 15 to 36 raise, 45 you see. = 36/48 = ;45
To 2 raise, 1 30 you see. 2 h1 / u1 = 1;30
1 30 to 5 11 02 24 raise, 2 h1 / u1 · C =
7 46 33 36 you see. 1;30 · 5 11;02 24 = 7 46;33 36
7 46 33 36, what is it equalsided? sqs. 7 46;33 36 = ?
21 36 it is equalsided. sqs. 7 46;33 36 
21 36 is the front of the 2nd peg-head. = 21 36 = s2
The halfpart of 21 36 break, 10 48 you see. s2/2 = 21 36 / 2 = 10 48
the opposite of 10 48 resolve, to  ··· ··· ·· C / (s2/2) =  (28;48)

As so often in OB mathematical problem texts, the question in this
exercise is very vaguely stated. Luckily, the situation is clearly described
by a diagram accompanying the text. The diagram is explained in Fig.
4.3.1 below. Given are the diagonal and sides of a right triangle, c, b, a =
1 15, 1 00, 45, and the areas of four right sub-triangles, B, C, D, E = 8 06,
5 11;02 24, 3 19;03 56 09 36, 5 53;53 39 50 24. Apparently, the goal of the
text was the computation of the heights h1, h2, h3, and of the segments
s1, s2, s3 and u1, u2.
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Fig. 4.3.1.  Explanation of the solution procedure in IM 55357.

It is many times a good idea to try to find out how the author of an OB
mathematical text conceivably constructed the data appearing in the
question of the text. In the case of IM 55357, the diagonal triple c, b, a =
1 15, 1 00, 45 = 15 · (5, 4, 3) is the OB standard example of such a triple,
but where do the complicated values of B, C, D, E come from? The obvi-
ous answer to that question is that OB mathematicians knew that in Fig.
4.2.1 above, according to the mentioned height-against-the-diagonal rule,

a, h, s = a/c · (c, b, a)    and b, u, h = b/c · (c, b, a).

Indeed, consider again Fig. 4.3.1, and let A be the area of the whole
right triangle. According to the height-against-the-diagonal rule

a, h1, s1 = a/c · (c, b, a),.

Therefore, the area B of the first right sub-triangle is

B = sq. a/c · A = sq.(45 / 1 15) · 45 00 / 2 = sq. ;36 · 22 30 = ;36 · 13 30 = 8 06.

The area of the remaining part of the whole triangle is

A – B = sq. b/c · A = sq. ;48 · 22 30 = ;48 · 18 00 = 14 24.

A new application of the height-against-the diagonal rule shows that

C = sq. a/c · (A – B) = sq. ;36 · 14 24 = ;36 · 8 33;24 = 5 11;02 24.

Consequently,
A – B – C = sq.b/c · (A – B) = sq. ;48 · 14 24 = ;48 · 11 31;12 = 9 12;57 36.

In the third step of the computation,

D = sq. a/c · (A – B – C) = sq. ;36 · 9 12;57 36 = 3 19;03 56 09 36.

u 1

cB

C

D

E

a

s 1

s 3

u 3

s2 u2

h 1

h2 h 3

b b = the ‘length’
c = the ‘long length’
a = the ‘upper front’
B + C + D + E = the ‘complete field’
B = the ‘upper field’, the ‘upper peghead’
C = the ‘next field’, the ‘2nd peghead’ 
D = the ‘3rd field’ 
E = the ‘lower field’ 
h1 = the ‘upper length’
h2 = the ‘middle length’
h3 = the ‘lower length’ 
u2 = the ‘descendant’
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Then, finally,
A – B – C – D = sq.b/c · (A – B – C) = sq. ;48 · 9 12;57 36 = 5 53;53 39 50 24.

These numbers were computed correctly. The algorithm could have
been continued indefinitely, but the procedure was halted when there was
no more space in the diagram to write additional sexagesimal numbers.

Note that B, C, D are the three first terms of a geometric progression of
sexagesimal numbers with the common ration sq. b/c · sq. a/c. Actually,
the three right sub-triangles with the areas B, C, D can be interpreted as the
three first terms of a geometric progression in the literal sense!

Now to the actually recorded solution procedure for the stated problem
in IM 55357. It begins with the computation of s1 and h1, evidently as the
solutions to the following simple rectangular-linear system of equations:

h1 · s1 / 2 = B (an area equation)
s1 = a/b · h1 (a similarity equation).

The solution follows immediately:

sq.s1 = 2 a/b · B,    so that

s1 = sqs. (2 a/b · B) = 27,   and h1 = B / (s1 / 2) = 36.

The next step of the algorithm proceeds similarly. Therefore,

sq.s2 = 2 h1 / u1 · B,    so that

s2 = sqs. (2 h1 / u1 · C) = 21;36,   andh2 = C / (s2 / 2) = 28;48.

There was no more space on the clay tablet for further computations.

Geometrically, the first step of the solution procedure can be explained
as in Fig.4.3.2 below.

Fig. 4.3.2.  IM 55357. Geometric interpretation of the solution procedure.

2 B

h1 s1

a/b · 2 Bs1 s1

h1  · s1/2 = B , s1 = a/b · h1 sq. s1 = a/b · 2 B
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Chapter 5

Elements X and Babylonian Metric Algebra

5.1. The Pivotal Propositions and Lemmas in Elements X

Book X of Euclid’s Elements is notoriously difficult, partly because the
presentation of the results is purely synthetic, with no preceding analysis.
That is why in Taisbak’s Coloured Quadrangles (1982), for instance, a rel-
atively reader-friendly version of El. X is achieved only through a com-
plete reorganization of the order of appearance of the various definitions
and propositions. Another very valuable introduction to El. X, with a sim-
ilar reorganization of the material, is Knorr’s brief paper BAMS 9 (1983). 

Below, only those aspects of El. X will be dwelt upon which are in some
way related to metric algebra of the Babylonian type. As it turns out, all
the pivotal propositions and lemmas in El. X are of that kind. Two of the
lemmas, by the way, have already been discussed above, lemma El. X.28/
29 1a in Chapter 3, and lemma El. X.32/33 in Chapter 4.

In order to facilitate for the readers the understanding of the discussion
below, a concise introductory outline of the contents of El. X is first pre-
sented here. In this outline the embarrassing repetitiveness of El. X in its
original form is deliberately suppressed by grouping together propositions
for “binomials” (sums of pairs of expressible straight lines, commensura-
ble in square only) with parallel propositions for “apotomes” (differences
of such pairs of straight lines). In addition, in several places in this outline,
separate but parallel propositions for each one of six distinct classes of
inexpressible sums or differences of straight lines are grouped together.

The following convenient abbreviations will be used here:

a com b and a inc b mean a is commensurable (or incommensurable) with b.
a · b means, as usual,  (the area of) the rectangle with the sides a and b, and
sq.a   means (the area of) the square on a and sqs.A means the square side of A.
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A Concise Outline of the Contents of Elements X

Def. X.I.1 Commensurable magnitudes.

Def. X.I.2 Straight lines commensurable in square (only).

Defs. X.I.3-4 Expressible rectangles and straight lines relative to an assigned straight line. 

X.1 The exhaustion principle.

X.2-13 About commensurable or incommensurable magnitudes.

X.13/14 Geometric construction of the square difference  sq. u – sq. v.

X.15-16 About sums of commensurable or incommensurable magnitudes.

X.16/17 If   a + b = c, a · b = A,   then c · b – sq. b = A.

X.17-18 If a + b = u, a · b = sq. v/2, a > b, then a com b
if and  only if u comw, where w = sqs. (sq. u– sq. v).

X.19-20 Rectangles with sides that are expressible and commensurable.

X.21 Rectangles with sides that are expressible and commensurable in square
only (medial rectangles), and their square sides (medial straight lines).

X.21/22 a : b = sq. a : a · b. (Cf. El. II.3, Fig. 1.2.1, right.)

X.22-28 About medial rectangles and medial straight lines.

X.28/29 1a Construction of diagonal triples of “numbers”. (Cf. Fig. 3.1.1, right.)

X.28/29 1b Construction of pairs of numbers such that the difference of their squares is
(or is not) a square number. (Used in X.29.)

X.28/29 2 Construction of pairs of numbers such that the sum of their squares 
is not a square number. (Used in X.30.)

X.29 Construction of expressible straight lines a, b commensurable in square,
a > b, such that c = sqs. (sq. a – sq. b) com a. (Used in X.31-32.)

X.30 Construction of expressible straight lines a, b commensurable in square,
a > b, such that c = sqs. (sq. a – sq. b) inc a. (Used in X.33.)

X.31 Construction of medial straight lines c, d commensurable in square, c > d,
 c · d expressible, such that v = sqs. (sq. c – sq. d) com c. (Used in X.34.)

X.32 Construction of medial straight lines c, d commensurable in square,
c > d, c · d medial, such that v = sqs. (sq. c – sq. d) com c. (Used in X.35.)

X.32/33 If the height h against the diagonal of a right triangle with the sides 
c, b, a, with b > a, cuts c into the segments u and s, with u > s, then
c · s = sq. a, c · u = sq. b, u · s = sq. h, and c · h = a · b. (Used in X.33.)
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X.33-35 Construction of pairs of straight lines (used in X.39-41).

X.36-41 Sums of class 1-6 (not defined until here) are inexpressible.
 X. 73-78    Differences of class 1-6 (not defined until here) are inexpressible.

X.41/42 If u + s = u´  + ś ,u > s, u´  > ś ,u > u´ , then sq. u + sq. s > sq. u´ + sq. ś .

X.42-47 Sums of class 1-6 are uniquely split into their terms.
 X. 79-84    Differences of class 1-6 are uniquely split into their terms.

Defs. X.II.1-6 1st to 6th binomials.
 Defs. X.III.1-6   1st to 6th apotomes.

X.48-53 Construction of examples of 1st to 6th binomials.
 X. 85-90    Construction of examples of 1st to 6th apotomes.

X.53/54 sq. u + sq. s + 2 u · s = sq. (u + s), and
u · s is the mean proportional to sq. u and sq.s. (Used in X.33.)

X.54-59 Sqs. {(1st to 6th binomial) · expressible line} = sum of class 1-6.
  X.91-96    Sqs. {(1st to 6th apotome) · expressible line} = difference of class 1-6.

X.60-65 {Sq. (sum of class 1-6)} / expressible line = 1st to 6th binomial.
  X.97-102    {Sq. (difference of class 1-6)} / expressible line = 1st to 6th apotome.

X.66-70 Sum commensurable with sum of class 1-6 is of the same class.
  X.103-107    Difference commens. with difference of class 1-6 is of the same class.

X.71 Sqs. (expressible area + medial area) = sum of class 1-2 or 4-5.
 X.108    Sqs. (expressible area – medial area) = difference of class 1 or 4.

X.72 Sqs. (sum of two incommensurable medial areas) = sum of class 3 or 6.
  X.109    Sqs. (medial area – expressible area) = difference of class 2 or 5.
  X. 110    Sqs. (medial area – medial area) = difference of class 3 or 6.

X.72b Binomials and apotomes are distinct kinds of inexpressible straight lines.
  X.111a,b    Similarly, medial straight lines, sums of class 1-6, and differences of 

   class  1-6 are 13 distinct kinds of inexpressible straight lines.

X.112-113 An expressible area / a 1st to 6th binomial = a cognate 1st to 6th apotome.
An expressible area / a 1st to 6th apotome = a cognate 1st to 6th binomial.

X.114 A binomial · a cognate apotome = an expressible rectangle.

X.115 Generalizations: Medials of medials and so on.

5.2. Binomials and Apotomes, Majors and Minors

Of the thirteen kinds of inexpressible straight lines considered in
Elements X, only four kinds actually appear as straight lines in known
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geometric figures, namely binomials and apotomes, “majors” and
“minors”. In this section, a condensed version of Elements X, rephrased in
terms of metric algebra, will be concerned only with propositions and lem-
mas having to do with binomials and majors. The closely parallel propo-
sitions related to apotomes and minors will not be mentioned.

The most convenient starting point for a discussion of Elements X is El.
X.17-18. The following definitions and propositions (slightly rephrased
here) are assumed to be known in that proposition and its proof:

El. X.Def. I 1. Two straight lines or two areas are called commensurable if they both 
   are (integral) multiples of some straight line or area.

El. X.Def. I 2. Two straight lines are called commensurable in square only if they 
   are  incommensurable but their squares are commensurable.

El. X.Defs. I 3-4. Let an arbitrarily chosen straight line e* be called expressible. Then 
   an area is called an expressible area if it is commensurable with sq. e*, and a line
   segment is called an expressible straight line if its square is an expressible area.

El. X.5-8. Two magnitudes are commensurable if and only if they have to each other
the  ratio that a number (a positive integer) has to a number.

El. X.17-18(rephrased in terms of metric algebra)

If a + b = u, a · b = (sq. v)/4,  with a > b, u > v, then a com b if and  only if u comw,
      wherew = sqs. (sq. u – sq. v).

Fig. 5.2.1.  Left: The figure in El. X.17. Right: An explanation, in terms of metric algebra.

In a metric algebra interpretation of the proof of El. X.17, let the given
straight lines A and BC in Fig. 5.2.1, left, be called v and u, respectively.
Also, let the sides BD and DC of the rectangle with the area equal to “the
fourth part of the square on the less” (sq. v/2) be called a and b. Then

a + b = u, a · b = sq. v/2.

The proof proceeds in analogy with the proof of El. II.5 (see Fig. 1.4.2,

A

B F E D C
a

bw/2u/2
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left). The result of the procedure, in terms of metric algebra, is that

a = u/2 + w/2, b = u/2 – w/2,   where   sq. w/2 = sq. u/2 – sq. v/2
and, consequently,   sq. w = 4 sq. u/2 – 4 sq. v/2 = sq. u – sq. v.

See Fig. 5.2.1, right. It is clear that w can be identified with FD in Euclid’s
diagram. In view of this result, it follows that

a com b   if and only if u/2 + w/2 com u/2 – w/2, that is, if and only if u com w.

After El. X.17-18 follows a series of simple propositions:

El. X.19. If p, q is a pair of expressible straight lines, with p com q, then the rectangle
p · q    is expressible. 

The proof is based on the observation thatp : q = sq. p : p · q.

El. X. 20. Conversely, if an expressible area is “applied to” an expressible straight line,
   then the resulting width is expressible and commensurable with the first straight line. 

In terms of metric algebra: If the area p · q and the length p of a rectangle
are expressible, then also the width q is expressible, and p com q.

The proof is, again, based on the observation that p : q = sq. p : p · q.

The next few propositions consider the case when p and q are incommen-
surable.

El. X.21. If p, q is a pair of expressible straight lines, with p inc q, then the rectangle
p · q    is inexpressible. Therefore, also the side s of a square equal (in area) to the rect-
angle    p · q is inexpressible. Let p · q and s be called a medial area and a medial
straight line, respectively.

The proof is similar to the proof of El. X. 19.

El. X. 22. Conversely, if a medial area is applied to an expressible straight line, then the
   resulting width is expressible and incommensurable with the first straight line. 

The construction in El. X. 30 is an auxiliary result preparing for the ex-
plicit construction, in El. X. 33 below, of the terms of a major straight line:

El. X.30 (rephrased in terms of metric algebra)

How to find two expressible straight lines u and v, with u > v, such thatu inc v  and
       sq. u – sq. v = sq. w,  wherew inc u.

In the proof, it is assumed that sq. m and sq. n are two square numbers
(integers) such that their sum is not a square number. Such square numbers
are constructed in the lemma El. X.28/29 2. However, see the critical re-
mark in Knorr, BAMS 9 (1983), 58. Evidently it is enough to observe that,
for instance, 4 + 16 = 20, where 4 and 16, but not 20, are square numbers.
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Now, let u and v be two straight lines with 

u expressible,   u > v,   and   sq. u : sq. v = (sq. m + sq. n) : sq. m.

Then u and v are both expressible, but commensurable in square only,
since the squares of commensurable straight lines are to each other as two
square numbers (El. X.9).

A third straight line w such that sq. w = sq. u – sq. v is then constructed
as the third side of a right triangle inscribed in a semicircle with diameter u
(lemmaEl. X.13/14). It is observed that then

sq.u : sq. w = (sq. m + sq. n) : sq. n.

Therefore,u and w are incommensurable.

The next step, in El. X.33, of the explicit construction of a major
straight line is preceded by the lemma El. X.32/33 (already discussed in
Chapter 4 above).

El. X.33 (rephrased in terms of metric algebra)

How to find two straight lines p, q incommensurable in square and such that 
the sum  sq. p + sq. p. is expressible but the rectanglep · q medial.

Fig. 5.2.2.  The diagram in El. X.33, explained in terms of metric algebra.

The proof starts with two expressible straight lines u and v, with u > v,
such that u inc v and sq. u – sq. v = sq. w, where w inc u (El. X.30).

Next, a related pair of straight lines a, b is constructed as the solutions
to the rectangular-linear system of equations

a + b = u, a · b = sq. v/2   (a > b).

See Fig. 5.2.2 above, and compare with El. II.14* (Fig. 1.7.2, right.) Note
that here, according to El. X.17-18,a inc b, since by assumption w inc u.

Then follows the crucial step of implying the lemma El. X.32/33 (see
Fig. 4.1.1 above), according to which 

u · a = sq. p, u · b = sq. q,   and u · v/2 = p · q,   with p and q as in Fig. 5.2.2.

v/2

a + b = u
a · b = sq. v/2p

a
u

b

q
sq.p = u · a
sq.q = u · b
p · q = u · v/2
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The pair of straight lines p, q constructed in this way enjoys the following
series of properties:

sq.p : sq. q = u · a : u · b = a : b,   so that   sq. p inc sq. q,   since a inc b,
sq.p + sq. q = sq. u   is expressible, since u is assumed to be expressible,
p · q = u · v/2   is a medial rectangle, since u, v are expressible, u inc v.

Therefore, the desired construction is accomplished.

Now, at last, the main actors in this play are formally introduced:

El. X.36. The sum of two expressible straight lines p, qcommensurable in square only is 
    inexpressible. Let it be called a binomial.
El. X.39. The sum of two straight lines p, q incommensurable in square, and with sq. p
+ sq. q expressible but p · q medial, is inexpressible. Let it be called a major.

(Correspondingly,

El. X.73.The difference of two expressible straight lines p, q commensurable in square
only is inexpressible.. Let it be called an apotome.
El. X.76. The difference of two straight lines p, q incommensurable in square, and with
sq.p + sq. q expressible but p · q medial, is inexpressible. Let it be called a minor.)

The following lemma is interesting.
Lemma El. X.41/42(rephrased in terms of metric algebra)

Let a straight line be divided into two parts in two different ways, so that it is equal to
 either  p + q  or  p' + q', and suppose that  p > p'. Then also  sq. p + sq. q  >  sq. p' + sq. q'.

The diagram accompanying the proof of this lemma is unhelpful. The
proof can be explained more easily by reference to the more informative
diagram in Fig. 5.2.3 below.

Fig. 5.2.3.  Explanation of the proof of El. X.41/41 .

p' q'qp

d

d'

A

A/2 A'/2A'

(p – q)/2 (p' – q')/2

p + q = p'  + q' ,   p > p' Ç (p – q)/2 > (p' – q')/2 Ç  A < A' Ç sq. d > sq. d'
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Expressed in terms of metric algebra, the proof proceeds as follows:

If p + q = p' + q', and p > p', then q < q'.
Consequently, (p – q)/2 > (p' – q')/2, and sq. (p – q)/2 > sq. (p' – q')/2.
Then also A = p · q < A' = p' · q', and it follows that
sq.p + sq. q = sq. d = sq. (p – q) – 2 A > sq. (p' – q') – 2 A' = sq. d' = sq. p' + sq. q'.

This lemma is used in the proof of 

El. X.42. The termsp, q of a binomial straight line are uniquely determined.

Namely, if the binomial can be expressed in two different ways, as p + q =
p' + q', then also sq. (p + q) = sq. (p' + q'), and it follows that 

(sq.p + sq. q) – (sq. p' + sq. q') = 2 p' · q' – 2 p · q.

In this equation, the left side is an expressible area, while the right side is
the difference between two medial areas. This is impossible (El. X.26), un-
less both sides of the equation are equal to zero. However, that cannot hap-
pen in view of the lemma.

A corresponding uniqueness theorem for major straight lines, with a
similar proof, is

El. X.45. The termsp, q of a major straight line are uniquely determined.

Now it is revealed that there are, actually, six mutually exclusive types
of binomials. Of those, only two are of interest here:

El. X.Def. II 1. Given an expressible straight line e, a binomial u + v, u > v, is called a
first binomial (with respect to e) if u com e, and if sq.u – sq. v = sq. w, where w com e.

El. X.Def. II 4. Given an expressible straight line e, a binomial u + v, u > v, is called a
fourth binomial (with respect to e) if u com e, and if sq. u – sq. v = sq. w, where w inc e.

Constructions of explicit examples of first and fourth binomials are
demonstrated in El. X.48 and El. X.51.

After these lengthy preparations, the main results of Elements X are
finally presented in a double series of propositions, in El. X.54-59 and El.
X. 60-65. Of interest here are only El. X.54, 57 and El. X.60, 63.

El. X.54 (rephrased in terms of metric algebra)

A rectangle formed as the product of a given expressible straight line e and a first
binomial (with respect to e) is equal (in area) to the square of a binomial.

If u + v is a first binomial, the proposition says that there exists a
binomialp + q which is the “square side” of (u +v) · e in the sense that 

(u + v) · e = sq. (p + q).
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The proof starts by recalling that when u + v, u > v, is a first binomial
(with respect to e), then

u com v in square only, u com e, and sq. u – sq. v = sq. w, where w com u.

The proof continues by letting a, b be solutions to the following
rectangular-linear system of equations of type B1a:

a · b = sq. (v/2), a + b = u.

Then it can be shown, as in Sec. 1.4 (cf. also Fig. 5.2.1 above), that

(a – b)/2 = sqs. (sq. u/2 – sq. v/2) = sqs. (sq. u – sq. v) /2 = w/2.

Since by assumption w com u, it follows that also (a – b) com u = a + b.
Therefore, obviously, as in El. X.17,

a com b.

Now, as in El. II.14, it is possible to find straight lines p, q such that 

a · e = sq. p,    and b · e = sq. q.

On the other hand, since a · b = sq. (v/2) it is clear that v/2 is a mean pro-
portional between a and b (a : v/2 = v/2 : b). Then also v/2 · e is a mean
proportional between a · e and b · e (a · e : v/2 · e = v/2 · e : b · e). Since
a · e = sq. p, and b · e = sq. q, this means that v/2 · e is a mean proportional
between sq. p and sq. q. Consequently (as shown in lemma El. X.53/54)

v/2 · e = p · q.

Fig. 5.2.4.  The diagrams in El. X.54, in the style of metric algebra. u, v, e are given.

Therefore, as in Fig. 5.2.4 above, the square with the side p + q can be
divided into two unequal squares and two equal rectangles with the areas
a · e, b · e, and v/2 · e, respectively. Consequently, as desired,

sq. (p + q) = (a + b + 2 · v/2) · e = (u +v) · e.

v/2a

a · e

v/2 · e

v/2 · e

p q

b · e

p

q
u v

esq.p sq.q p · q p · q

b v/2
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It remains to be shown that the constructed square side p + q is a
binomial, namely that 

p and q are expressible straight lines, commensurable in square only.

This is done in the following way:

1. a com b   and u = a + b com e Ç a and b com u com e Ç a and b expr.

2. a com b, both expr.Ç a · e com b · e, both exprÇ  sq. p com sq. q, both expr.

3. u com e, sq. u com sq. v Ç v expr., but 
    a com u and u inc v Ç a inc v/2Ç a · e inc v/2 · e Ç  sq. p inc p · q Ç p inc q.

El. X.57 (rephrased in terms of metric algebra)

A rectangle formed as the product of a given expressible straight line e and a fourth
binomial (with respect to e) is equal (in area) to the square of a major.

This time, Euclid starts by recalling that when u + v, u > v, is a fourth
binomial (with respect to e), then

u com v in square only, u com e, and sq. u – sq. v = sq. w, where w inc u.

He continues as in El. X.54, finding a solution p, q to the equation
sq. (p + q) = (a + b + 2 · v/2) · e = (u +v) · e.

Also, since by assumption w inc u, it follows that (a – b) com u = a + b.
Therefore, as in El. X.18,a inc b.

It remains to be shown that the constructed square side p + q is a major,
namely that p and q are expressible straight lines, incommensurable in
square, with sq. p + sq. q expressible but p · q medial. This is done in the
following way:

1. a inc b Ç a · e inc b · e Ç  sq. p inc  sq. q Ç p, q incommensurable in square.
2. u = a + b com e Ç  (a + b) · e expressible.Ç  sq. p +  sq. q  expressible.
3. v inc u Ç v inc e Ç v/2 inc e Ç v/2 · e medialÇ p · q medial.

Note that now, in the light of El. X.57, the seemingly unmotivated
construction in El. X.33 can be understood as the construction of a major
as the square side of the product of an expressible straight line e and a
fourth binomial (with respect to e) u + v in the special case when e = u.

El. X.60,El. X.63 are the converses to El. X.54,El. X.57:

El. X.60 (rephrased in terms of metric algebra)

The square on a binomial p + q
applied to an arbitrarily given expressible straight line e
is equal to a first binomial u + v (with respect to e).
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If p + q is a binomial, with p > q as usual, then p, q are expressible
straight lines commensurable in square only. Now, for an arbitrarily cho-
sen expressible straight line e, it is possible to construct a rectangle with e
as one side and with the area a · e = sq. p. In the language of El. I.44, a
rectangle with given area sq. p can be applied to the given straight line e.
Similarly, sq. q and p · q (twice) can be applied to straight lines parallel
with e, so that a diagram such as the one in Fig. 5.2.5 below is formed.

Fig. 5.2.5.  The figure in El. X.60, presented in the style of metric algebra. p, q, e are given.

From here on, the proof is straightforward. First, since p, q are express-
ible, sq. p and sq. q are expressible and commensurable, so that the sum
sq.p + sq. q is expressible. Since also e is expressible, it follows that the
sideu = a + b is expressible and commensurable with e (El. X.20). Next,
sincep, q are commensurable in square only, the rectangles p · q and 2 p ·
q are medial (El. X.21). Therefore, v is expressible and incommensurable
with e (El. X.22). Consequently, u, v are expressible and commensurable
in square only. It follows that u + v is a binomial.

It remains to be shown that u + v is a first binomial. Now, it has already
been shown that u com e. In addition,

sq.p : p · q = p · q : sq. q   (Lemma El. X.53/54) Ç a · e : v/2 · e = v/2 · e : b · e
Ç a : v/2 = v/2 : b Ç a · b = sq. v/2.

Also,

sq.p com sq. q Ç a · e com b · e Ç a com b,

and

sq.p + sq. q > 2 p · q Ç u > v.

All that now is needed in order to complete the proof of El. X.60 is an ap-
plication of El. X.17, which shows that if w = sqs. (sq. u – sq. v), then 

v/2a

p q

u v

e sq.p sq.q p · q p · q

b v/2
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w comu, where u com e, so that also w com e.

El. X.63 (rephrased in terms of metric algebra)

The square on a major p + q
applied to an arbitrarily given expressible straight line e
is equal to a fourth binomial u + v.

There is no need to give here the details of the proof of El. X.63, which is
closely parallel to the proof of El. X.60.

The logical end of the investigation comes in El. X.72b/El. X.111, with
the observation that an apotome cannot be equal to a binomial, that a bino-
mial cannot be equal to a major, etc. Therefore, the various classes of in-
expressible sums and differences discussed in Elements X are non-
overlapping. The proofs are simple and straightforward.

Two further propositions deserve to be mentioned here:

El. X.112 (rephrased in terms of metric algebra)

If a rectangle with expressible area is applied to a binomial,
then the other side is a cognate apotome with 
a com c, b com d, and a : b = c : d.

El. X.114 (rephrased in terms of metric algebra)

A rectangle formed as the product of a binomial a + b and cognate apotome c – d
with a com c, b com d, and a : b = c : d has an expressible area.

In Knorr, BAMS 9 (1983), 55, the proofs of these two propositions are
deservedly called “monstrously complicated”. (Actually, only the proof of
El. X.112 is quite complicated, while the proof of El. X.114 is based on the
result in El. X.112.) Knorr shows that it is easy to find much simpler
proofs. In the case of El. X.114, for instance, it is clear that the condition
thata : b = c : d implies that a · d = b · c. Therefore,

(a + b) · (c – d) = a · c + b · c – a · d – b · d = a · c – b · d.

Sincea, b, c, d are expressible and a com c, b com d, the products a · c and
b · d are expressible areas. Therefore, also the product (a + b) · (c – d) is
expressible, and the proof of El. X.114 is complete.

Knorr (op. cit.) further makes the remark that El. X.112-114 are not
formulated generally for all classes of inexpressible sums and differences
of straight lines discussed in Elements X. This is because there is no clear
cut generalization of this kind. Thus, for instance, the area of a rectangle
formed as the product of a major and a minor is medial, not expressible.
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5.3. Euclid’s Application of Areas and Babylonian Metric Division

Three elementary geometric operations that play important roles in
Elements X are 1) the “binomial rule” which says that a square can be split
into two unequal squares and two equal rectangles (as in El. II.4 and El.
LemmaEl. X.53/54 2) the construction of a square “equal” (in area) to a
given rectilineal figure, and 3) the “application” of a figure (of given area)
to a given straight line. 

Thus, for instance, in El. El. X.54 it is said “let the square SN be con-
structed equal to the parallelogram AH, and the square NQ equal to GK”.
In the language of metric algebra this corresponds to constructing two
squares sq. p and sq. q equal in area to the rectangles a · e and b · e, as illus-
trated in Fig. 5.2.4. That an operation of this kind is possible is guaranteed
by El. II.14. See Sec. 1.7 above.

An example of the third kind of elementary geometric operation is
El. X.60, which begins with the statement that “The square on a binomial
straight line applied to an expressible straight line produces as width a first
binomial”. See Fig. 5.2.5 above. Another example is El. X.20, which
begins with the statement: “If an expressible area is applied to a given
expressible straight line, it produces as width an expressible straight line
commensurable with the given straight line”. That an operation of this sec-
ond kind is possible is guaranteed by the following pair of propositions:

El. I.43

In any parallelogram the complements of the parallelograms about the diagonal are
equal to one another.

El. I.44

To a given straight line to apply, in a given rectilineal angle, a parallelogram equal to a
given triangle.

The two proposition are formulated in meaningless generality, mentioning
parallelograms, instead of simply rectangles. At the same time I.44 is un-
necessarily restricted, mentioning (the area of) a triangle, instead of an
arbitrary area. Essentially, what is meant is

I.43. In any rectangle the complements of two rectangles about the diagonal are equal.

I.44. To apply a rectangle of given area to a straight line of given length.

I.43 is illustrated by a diagram which, in metric algebra notations, cor-
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responds to the rectangle with a diagonal in Fig. 5.3.1, left. The ‘rectangles
about the diagonal’ are A' + B' and A" + B", and the ‘complements’ of those
rectangles are A and B. The proof of the proposition is simple: Since A' =
B', A" = B", and A + A' + A" = B + B' + B", it follows that also A = B.

The requested construction in I.44 is accomplished, essentially, in the
following way: In Fig. 5.3.1, right, A = a · b is the given rectangle, and a'
the given straight line. The first step of the construction is to complete the
small rectangle with the sides a and a'. Then the diagonal of this small rect-
angle is extended until it intersects an extension of the right side of the
given rectangle A. It is then easy to complete the rectangle with the sides
b and b', and after that the rectangle B with the sides a' and b'. In view of
I.43,B has the same area as A. Therefore, the construction is finished.

Fig. 5.3.1.  The diagrams in El. I.43 and I.44, presented in the style of metric algebra.

The Babylonian counterpart to El. I.43 is the frequently used “OB
similarity rule”, which says that (in Fig. 5.3.1, left)

s" = f · u",   where f = s'/u'   (f is called the ‘feed’ of the triangle A').

The Babylonian counterpart to the construction in El. II.14 of “a square
equal to a given figure” is the computation of the square side of a square
of given area, also appearing frequently in OB mathematical texts. 

Finally, the Babylonian counterpart to the “application of area” in I.44
is Babylonian metric division, the computation of the length of the second
side of a rectangle when the area and the length of one side are given.

It is interesting in this connection that among the oldest known Meso-
potamian texts with mathematical exercises is a group of small clay tablets
from the Sargonic or Old Akkadian period in Mesopotamia (2340-2200
BCE). See the discussions in Friberg, CDLJ 2005:2 and RC (2007),

A'
B' s'

B
A"

B"

A

a'

u'

u"

s" b'B

b

a A
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Appendix 6. The topics of this group of exercises are 1) metric division
(Friberg, CDLJ 2005:2, §§ 2-3, Figs. 1-4), 2) computations, by use of the
binomial rule, of the areas of squares with given sides (op. cit. § 4.3-4,
Figs. 7-12), and 3) computation of the side of a square with given area (op.
cit. § 4.7, Fig. 13). In several cases, the computations are complicated, due
to an intentionally nasty choice of numerical data. 

Evidently, the purpose of the exercises was to train the computational
skills of the students and to increase their ability to deal with the compli-
cated Mesopotamian systems of measures for lengths and areas. Two
examples of such Old Akkadian mathematical exercises are shown below.

Fig. 5.3.2.  Two Old Akkadian mathematical exercises.

In TMH 5, 65, Fig. 5.3.2, left, a rectangle has the given length 1 · 60 +
7 1/2 ninda, and the given area 1 · 60 + 40 (= 100) square ninda. The
width of the rectangle has been computed (metric division). The result,
which is quite complicated, is recorded in the last two lines of the text. In
DPA 37, Fig. 5.3.2, right, a square has the given side length 1 · 60 · 60 + 5
· 60 – 1/6 ninda. The area of the square has been computed. The result,
again quite complicated, is recorded in three lines of the text. 

The examples highlight an important and all pervasive difference
between Sumerian/Old Akkadian/Babylonian mathematics and the kind of
mathematics that one meets in Euclid’s Elements: Mesopotamian mathe-
matics abounds with examples of meticulous computations with compli-
cated numbers, while no numbers other than small integers are allowed in
the deliberately non-numerical argumentation in the Elements.

TMH 5, 65 DPA 37
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5.4. Quadratic-Rectangular Systems of Equations of Type B5

The key result in Elements X is the proof in El. X.54 and El. X.57 of
the two related statements that if e is a given expressible straight line, and
if u + v is a first or fourth binomial (with respect to e), then there exists a
binomial or major p + q, respectively, which is the “square side” of (u +v)
· e in the sense that 

(u + v) · e = sq. (p + q).

The central part of the proof is the solution of the following “quadratic-
rectangular” system of equations:

sq.p + sq. q = u · e,   2 p · q = v · e,   where u, v, and e are given straight lines.

The solution method is based on the observation that if one sets

sq.p = a · e,   and    sq. q = b · e,

as in Fig. 5.2.4, right, then the pair a, b must be the solution to the follow-
ing rectangular-linear system of equations of type B1a:

a · b = sq. (v/2), a + b = u,   where u and v are given straight lines.

Therefore, the solution to the original system of equations is

p = sqs. (a · e), q =sqs. (b · e),   where   a, b = u/2 ± sqs. (sq. u – sq. v) /2.

In El. X.33, an example of a major p + q is constructed. The essential
part of the construction is the solution of the quadratic-rectangular system

sq.p + sq. q = sq. u,   2 p · q = v · u,   where u, and v are given straight lines.

This is a special case of the quadratic-rectangular system in El. X.54 and
El. X.57. The solution method, however, is quite different. See Fig. 5.2.2.

Quadratic-rectangular systems of equations of the same kind as in
El. X.54, etc., appear also in four OB mathematical exercises. They will be
discussed individually below.

BM 13901(Neugebauer, MKT 3 (1935), 1 ff.) is an important mathe-
matical recombination text with 24 problems for one, two, or several
squares. The problem in BM 13901 # 12 (Høyrup, LWS (2002),71) is a
quadratic-rectangular system of equations for two unknowns, solved in a
surprising way by use of metric algebra.

BM 13901 # 12, literal translation explanation

The fields of my two equalsides Two squares with the sides p and q



5.4.  Quadratic-Rectangular Systems of Equations of Type B5 117

I heaped, 21 40. sq. p + sq. q = S = 21 40
My equalsides I made eat each other, 10. p · q = P = 10 (00)
The halfpart of 21 40 you break. S/2 = 21 40 / 2 = 10 50
10 50 and 10 50 you make eat each other, sq. S/2 = sq. 10 50
1 57 46 40. (error!) = 1 57 21! 40
10 and 10 you make eat each other, 1 40. sq. P = sq. 10 (00) = 1 40 (00 00)
Inside 1 57 46 40 you tear (it) out. sq. S/2 – sq. P = 17 21! 40
17 46 40 makes 4 10 equalsided. sqs. 17 21! 40 = 4 10
4 10 to one 10 50 you add. 10 50 + 4 10 = 15 (00)
15 makes 30 equalsided. sqs. 15 (00) 
30 is the first equalside. = 30 = p
4 10 inside the second 10 50 you tear out. 10 50 – 4 10 = 6 40
6 40 makes 20 equalsided. sqs. 6 40 
20 is the second equalside. = 20 = q

The quadratic-rectangular system of equations here is of the type

B5: sq. p + sq. q = S, p · q = P.

It can be understood as an additional OB basic metric algebra problem,
beyond the ones discussed in Sec. 1.1 above.

Apparently, the first step of the solution procedure is to (silently) set

sq.p = a,    sq. q = b.

Then the original quadratic-rectangular system of equations for p and q is
replaced by the following basic rectangular-linearsystem for a and b:

a · b = sq. P, a + b = S.

This is a system of equations of type B1a. Therefore, in the usual way,

sq. (a – b)/2 = sq. (a + b)/2 – a · b = sq. S/2 – sq. P,   and 

a, b = (a + b)/2 ± (a – b)/2 = S/2 ± sqs. (sq. S/2 – sq. P).

Since sq.p = a and sq. q = b, the result of the solution procedure in BM
13901 # 12 can be expressed in quasi-modern notations as follows:

p, q = sqs. a, sqs. b = sqs. {S/2 ± sqs. (sq. S/2 – sq. P)}.

With S = 21 40 and P = 10 00, the corresponding numerical answer is

p, q = sqs. {10 50 ± sqs. (sq. 10 50 – sq. 10 00)} = sqs. (10 50 ± 4 10) = 30, 20.

Thatp = 30, q = 20 is, actually, the known standard answer for most OB
metric algebra problems for two squares. Apparently that is why the author
of this exercise managed to find the correct answer, in spite of having
calculated sq. 10 50 incorrectly as 1 57 46 40 instead of 1 57 21 40!
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The same problem appears as MS 5112 § 2, an exercise in a large OB
mathematical recombination text with metric algebra problems for squares
and rectangles (Friberg, RC(2007), Sec. 11.2 e). Interestingly, the solution
method is not the same as in BM 13901 # 12:

MS 5112 § 2 c, literal translation explanation

The fields of 2 samesides (I) heaped, 21 40. sq. p + sq. q = S = 21 40
Sameside with sameside (I made) eat, 10. p · q = P = 10 (00)
The samesides are what? p, q = ?
You with your doing: Do it like this:
10 that sameside with sameside P = 10
(were made) eat to 2 repeat, 20. 2 P = 20 (00)
From 2140 the fields of the samesides S – 2 P =
tear off, 1 40 is the remainder. 1 40
The equalside of 1 40 resolve, 10. sqs. (S – 2 P) = sqs. 1 40 = 10 = p – q
Its 1/2 crush, 5. (p – q)/2 = 5
Steps of 5 (make) eat, 25. sq. (p – q)/2 = 25
To 10, that sameside with sameside P = 10
were made eat, add, 10 25. P + sq. (p – q)/2 = 10 25
What is it equalsided? sqs. {P + sq. (p – q)/2} =
25 each way it is equalsided. 25 = (p + q)/2
25 to 2 inscribe. Write it down twice
To the 1st 25, 5 that (was made) eat add, 30. (p + q)/2 + (p – q)/2 = 30
30 ninda each way, the 1st. p = 30 ninda
From the 2nd 25, 5 tear off, 20. (p + q)/2 – (p – q)/2 = 20
20 ninda each way, the 2nd. q = 20 ninda

This is again a quadratic-rectangular system of equations of the type

B5: sq. p + sq. q = S, u · s = P.

A possible geometric interpretation of the solution procedure is illustrated
in the last but one diagram in Fig. 5.4.1 below. In a square with the side
p + q, two squares with the sides p and q are inscribed, in opposite corners.
The combined area of two rectangles, both with the sides p, q is subtracted.
What remains is then a square with the side p – q and the area 

sq. (p – q) = sq. p + sq. q – 2 p · q = S – 2 P.

This square is then quartered, and a square corner with the area P = p · q is
added to the quartered square. The result is another quartered square, with
the side (p + q)/2. Since now both the half-sum and the half-difference of
p and q are known, p and q can be computed in the usual way.
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The result of the solution procedure in MS 5112 § 2 can be expressed
as follows, in quasi-modern notations:

p, q = sqs. {(S + 2 P)/4} ± sqs. {(S – 2 P)/4}.

With S = 21 40 and P = 10 00, the corresponding numerical answer is

p, q = sqs. 10 25 ± sqs. 25 = 25 ± 5 = 30, 20.

In El. X.54, El. X.57, BM 13901 # 12 (see Fig. 5.4.1 B and C below),
and MS 5112 § 2 c (Fig. 5.4.2 D), a quadratic-rectangular system of equa-
tions of type B5 is connected with various problems for two squares. The
same kind of quadratic-rectangular system of equations is connected with
various problems for the diagonal and the area of a rectangle or a right
triangle. Thus, in El. X.33 (Fig. 5.4.1 A), the diagonal u and area A = v/2 ·
u/2 of a right triangle are known, with v/2 denoting the height of the right
triangle against the diagonal. The situation is described by the equations

sq.p + sq. q = sq. u, p · q = 2 A = v/2 · u.

Two OB clay tablets with closely related quadratic-rectangular systems
of equations of type B5 for rectangles or right triangles are known, namely
IM 67118, also known as Db2-146, and MS 3971 § 2 (Friberg, RC(2007),
Sec. 10.1 b). The text of MS 3971 § 2 is reproduced below. (See also the
illustrating diagram in Fig. 5.4.1 E.)

MS 3971 § 2, literal translation explanation

1 15 the cross-over, d, the diagonal (of a rectangle), = 1 15
45 the field. A, the area, = 45 (00)
The length and the front are what? The length u and the front s = ?
1 15 (make) butt (itself) 1 33 45 it gives. sq. d = sq. 1 15 = 1 33 45
45, the field, to 2 you repeat, 1 30. 2 A = 1 30 (00)
1 30 to a 33 45 join, 3 03 45. sq. d + 2 A = 3 03 45
3 03 45 makes 1 45 equalsided. sqs. (sq. d + 2 A) = 1 45 = p
1/2 of 1 45 break, 52 30 it gives. p/2 = 52;30
52 30 (make) butt (itself), 45 56 15 it gives. sq. p/2 = 45 56;15
45, the field, from 45 56 15 tear off, sq. p/2 – A = 45 56;15 – 45 (00)
56 15 it gives. = 56;15 = sq. q/2
56 15 <makes> 7 30 equalsided. sqs. 56;15 = 7;30 = q/2
7 30 to 52 30 join, 1, the length, it gives. p/2 + q/2 = 52;30 + 7; 30 = 1 (00) = u
from 52 30 tear off, 45, the front, it gives. p/2 – q/2 = 52;30 – 7; 30 = 45 = s
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Fig. 5.4.1.  Three ways of solving a quadratic-rectangular system of equations of type B5.

v/2a

u v

esq.p sq.q p · q p · q

b v/2

C.  BM 13901 # 12:

A quadratic-rectangular system of equations:

sq.p + sq. q = S, p · q = P   

Solution:

sq.p = a, sq.q = b Ç

a + b = S, a · b = sq. P   Ç

p, q = sqs. {S/2 ± sqs. (sq. S/2 – sq. P)}

B.   El. X.54, X.57:

A quadratic-rectangular system of equations:

sq.p + sq. q = u · e, p · q = v/2 · e

Solution:

sq.p = a · e, sq.q = b · e   Ç

a + b = u, a · b = sq. v/2 Ç

p, q = sqs. ({u/2 ± sqs. (sq. u/2 – sq. v/2)} · e)

A.    El. X.33:

A quadratic-rectangular system of equations:

sq.p + sq. q = sq. u, p · q = v/2 · u

Solution:

sq.p = a · u, sq.q = b · u   Ç

a + b = u, a · b = sq. v/2 Ç

p, q = sqs. ({u/2 ± sqs. (sq. u/2 – sq. v/2)} · u)

       =  sqs. ({u/2 ± w/2} · u)

Geometric interpretation: 

As in B, but with e = 1 ?

a · e

v/2 · e

v/2 · e

p q

b · e
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Fig. 5.4.2.  Two more ways of solving a quadratic-rectangular system of equations.

(The diagram in Fig. 5.4.2 E illustrates the text IM 67118, which differs
from MS 3971 § 2 only in that the first step in IM 67118 is to compute
sq.d – 2 A, rather than sq. d + 2 A, as in MS 3971 § 2.)
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p

q

q (p + q)/2

D.  MS 5112 § 2 c:

A quadratic-rectangular system of equations:

sq.p + sq. q = S, p · q = P

Solution:

sq. (p – q) = S – 2 P, sq. {(p + q)/2} = P + sq. (p – q)/2 Ç

p, q = sqs. {(S/2 + P)/2} ± sqs. {(S/2 – P)/2}
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E.  IM 67118 & MS 3971 § 2:

A quadratic-rectangular system of equations:
sq.u + sq. s = sq. d, u · s = A

Solution:

sq. (u – s) = sq. d – 2 A, sq. {(u + s)/2} = sq. (u – s)/2 + A   Ç

u, s = sqs. {(sq. d/2 + A)/2} ± sqs. {(sq. d/2 – A)/2}   
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The form of the solution in MS 3971 § 2 is of the same form as the so-
lution in MS 5112 § 2 c (see above):

u, s = {sqs. (sq. d + 2 A)}/2 ± {sqs. (sq. d – 2 A)}/2.

With d = 1 15 and A = 45 00, the corresponding numerical answer is

u, s = sqs. (3 03 45) /2 ± sqs. (3 45) 2 = 52;30 ± 7;30 = 1 00, 45.

It is clear that the solution procedures for the quadratic-rectangular
systems of equations of type B5 in the four examples El. X.33, El. X.54,
El. X.57, and BM 13901 # 12, exhibited in Fig. 5.4.1 A-C, are closely
related to each other. Similarly, the solution procedures for the quadratic-
rectangular systems of equations of type B5 in the three examples MS
5112 § 2 c, IM 67118, and MS 3971 § 2, exhibited in Fig. 5.4.2 D-E are
closely related to each other. Yet the solution procedures in the former cas-
es are completely different from those in the latter cases. On the other
hand, when the data are the same, the solutions ought to be the same, too,
in all the considered cases. Now, the system of equations 

sq.p + sq. q = S, p · q = P

has the solution 

p, q = sqs. {S/2 ± sqs. (sq. S/2 – sq. P)}

in the text BM 13901 # 12, but the solution

p, q = sqs. {(S/2 + P)/2} ± sqs. {(S/2 – P)/2}

in the text MS 5112 § 2 c. Therefore, the obvious conclusion is that

sqs. {S/2 ± sqs. (sq. S/2 – sq. P)} = sqs. {(S/2 + P)/2} ± sqs. {(S/2 – P)/2}.
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Chapter 6

Elements IV and Old Babylonian 
Figures Within Figures

6.1.Elements IV, a Well Organized Geometric Theme Text

Book IV of Euclid’s Elements is quite brief, with only 16 propositions,
all concerned with figures within figures.

An Outline of the Contents of Elements IV

1 To inscribe a given straight line, not greater than the diameter, in a given circle.

2 To inscribe a triangle of given form in a given circle.
3 To circumscribe a triangle of given form around a given circle.
4 To inscribe a circle in a given triangle.
5 To circumscribe a circle around a given triangle.

6 To inscribe a square in a given circle.
7 To circumscribe a square around a given circle.
8 To inscribe a circle in a given square.
9 To circumscribe a circle around a given square.

10 To construct a triangle with each of the angles at the base double the remaining angle.
11 To inscribe a regular pentagon in a given circle.
12 To circumscribe a regular pentagon around a given circle.
13 To inscribe a circle in a given regular pentagon.
14 To circumscribe a circle around a given regular pentagon.

15 To inscribe a regular hexagon in a given circle.

16 To inscribe a regular 15-gon in a given circle.

Most of these propositions are simple constructions. Only IV.10-11 are
more interesting, in particular IV.10, which is a quite ingenious construc-
tion of a special triangle needed for the subsequent construction in IV.11. 
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In terms of metric algebra, the construction in El. IV.10 begins with a
straight line d cut in two parts in the way described in El. II.11 (Sec. 1.7
above), so that the rectangle contained by the whole and the smaller seg-
ment is equal to the square on the greater segment. If the two segments are
calleds and d' (for reasons that will become clear later), with s > d', then
s and d' satisfy the equation 

(s + d') · d' = sq. s.

A circle is drawn with the divided straight line d as a radius, and so that
the larger segment s emanates from the center of the circle (Fig. 6.1.1, left).
Next, an isosceles triangle is constructed, with the divided straight line as
one of its legs, and with a chord of the circle, of length s, as its base. From
the endpoint of the chord, a straight line is drawn to the point where the
original straight line is cut in two parts. A circle is circumscribed around a
second triangle formed by this straight line, the segment s, and the second
straight line of length d [IV.5]. It is observed that, in view of III.37, the
bases of the first triangle is a tangent to the circumscribed circle. And so
on, with reference to, among other things, I.32 and III.32. The result of the
complicated construction is the desired triangle with the two angles at its
base each twice as large as the remaining angle

Fig. 6.1.1.  Euclid’s method for the inscription of a regular pentagon in a circle.

In El. IV.11, a regular pentagon inscribed in a given circle is construct-
ed in the following way. First, a triangle of the same form as the triangle
constructed in IV. 10 is inscribed in the circle [IV.2]. Then. two chords in
the circle are drawn, bisecting the two equal angles at the base of the trian-

To inscribe a regular pentagon 
in a given circle

El. IV.10 El. IV.11
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gle (Fig. 6.1.1, right). The three vertices of the triangle and the endpoints
of the two chords then determine the positions of the five vertices of the
regular pentagon. End of the construction

As mentioned, figures within figures play a dominant role in Elements
IV. In IV.2-5, for instance, it is required that a triangle of given form shall
be inscribed in or circumscribed around a given circle, alternatively that
a circle shall be inscribed in or circumscribed around a given triangle. In
IV.6-9, the same four types of constructions are repeated, with the triangle
replaced by a square. In IV.10-14, the square is replaced by a regular
pentagon. In IV.15-16, finally a regular hexagon and a regular 15-gon are
inscribed in circles. From the point of view of Babylonian mathematics,
Elements IV is a typical “theme text”. There are several known OB theme
texts of various kinds, some of them discussed in Secs. 1.10-1.12 above.
There are reasons to believe that well organized theme texts were the
“original” OB mathematical texts, while other types of OB mathematical
texts contain more or less extensive excerpts from such theme texts.

Note that an important difference between Elements IV and an OB
theme text is that all the propositions in Elements IV are non-numerical
construction problems, while all exercises in OB geometric texts are com-
putational with emphasis on metric relationships.

Figures within figures play a dominant role also in Elements XIII. (See
Chapter 7 below.) However, Elements XIII is a less clear cut case than
Elements IV. The propositions in Elements XIII have a double purpose. On
one hand, Elements XIII.13-17 is a continuation of Elements IV, with elab-
orateconstructions of the five regular polyhedrons inscribed in a given
sphere. On the other hand, just as important is that Elements XIII contains
a number of results showing how to express the length of the side of an
inscribed regular polygon (a pentagon or equilateral triangle) or the edge
of an inscribed regular polyhedron in terms of the radius or diameter of the
given circle or sphere.

6.2. Figures Within Figures in Mesopotamian Mathematics

Geometric objects (other than triangles, squares, rectangles, and trape-
zoids) occur relatively infrequently in Babylonian mathematics. More-
over, in many cases, clay tablets with drawings of geometric figures appear
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to have been hastily written on roughly shaped “hand tablets” either by
young and inexperienced students, or by students listening inattentively to
their teachers’ explanations and making careless notes of what they saw
and heard. For these reasons, it is difficult to get a clear picture of how
much Babylonian mathematicians really knew about geometry.

Nevertheless, it is clear that figures within figures was one of the favor-
ite geometric themes in Babylonian mathematics. This will be shown
below by means of a number of examples.

Fig. 6.2.1.  A diagram on a Mesopotamian clay tablet from the Early Dynastic IIIa period.

The oldest known example of a geometric diagram on a Mesopotamian
clay tablet is TSS 77 (Jestin 1937). It is a fragment of a round hand tablet,
from the ancient site Shuruppak, dateable to the Early Dynastic IIIa period
(c. 2600-2500 BCE). It shows four circles inscribed in a square.

The same figure reappears in the exercise BM 15285 # 36 (Neuge-
bauer,MKT 1 (1935), 137-142; Robson, MMTC (1999), Appendix 2), two
large fragments of a famous OB geometric theme text with originally 41
briefly formulated problems, all illustrated by diagrams of squares divided
into smaller pieces. The purpose of the problems is, in each case, to com-
pute the areas of all the pieces.

In the outlines of obverse and reverse of BM 15285 in Figs. 6.2.2-3
below, the text belonging to each exercise is shown only as a gray rectan-
gle, because the copy of the clay tablet is scaled down so much that the text
would be unreadable, anyway. 

Instead, the texts belonging to the exercises are given below in literal
translation, in the cases when they are sufficiently well preserved.
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Fig. 6.2.2.  The obverse of BM 15285, an Old Babylonian geometric theme text.

Col. i 
## 1–4

Col. ii 
## 5–8

Col. iii 
## 9–12

Col. iv 
## 13–16

Col. v 
##17–20

# 15

# 16

# 19

# 20
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Fig. 6.2.3.  The reverse of BM 15285. (The order of the columns is reversed here.)

Col. x
## 38–41

Col. ix 
## 34–37

Col. viii 
## 30–33

Col. vii 
## 26–29

Col. vi 
## 21–25

# 41

# 26

# 27

# 21

# 22

1 gà n. ud.  dà.

# 37
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BM 15285, literal translation explanation
··· ········· ·········

2. 1 u$ the equalside. Given a square with the side 1 00 (ninda).
A bit(?) I pushed inwards, then A certain distance(?) inwards (from the sides 
a second equalside I drew. of the square) a second square is drawn.
Inside the equalside, an arc I drew. A circle is drawn inside the (second) square.
Their areas are what? Compute the areas of the pieces.

3. 1 [u$ the equalside.] Given a square with the side 1 00 (ninda).
A bit I pushed inwards, then A certain distance inwards (from the sides
an arc I drew. of the square) a circle is drawn.
Their areas are what? Compute the areas of the pieces.

4. 1 u$ the equalside. Given a square with the side 1 00 (ninda).
Inside the equalside Inside it
an arc I drew. a circle is drawn.
The arc that I drew touches The circle is inscribed in
an equalside. a (second) square.
Their areas are what? Compute the areas of the pieces.

5. [1 u$ the equalside.] Given a square with the side 1 00 (ninda).
[Inside it] a second [equalside.] A second square is drawn inside it.
[Inside the second equalside] Inside the second square
4 peg-heads, 1 arc I drew. are drawn 4 triangles and 1 circle.
Their areas are what? Compute the areas of the pieces.

6. [1 u$ the equalside.] Given a square with the side 1 00 (ninda).
[Inside it a second equalside.] A second square (is drawn) inside it).
[Inside it the second equalside] Inside the second square
[4 equalsides (and) 1 arc I drew.] are drawn 4 triangles and 1 circle.
Their areas are what? Compute the areas of the pieces.

7. 1 u$ the equalside. Given a square with the side 1 00 (ninda).
Inside it a second equalside I drew. A second square is drawn inside it.
The equalside that I drew The second square 
touches the outer equalside. is inscribed (obliquely) in the given square.
Their areas are what? Compute the areas of the pieces.

8. 1 u$ the equalside. Given a square with the side 1 00 (ninda).
Inside it 4 peg-heads, 1 equalside. Inside it 4 triangles and 1 square (are drawn).
The equalside that I drew The (second) square 
touches the second equalside. is inscribed (obliquely) in the given square.
Their areas are what? Compute the areas of the pieces.

9. 1 u$ the equalside. Given a square with the side 1 00 (ninda).
Inside it an equalside I drew. Inside it a square (is drawn).
[The equalside] that I drew The (second) square 
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touches the equalside. is inscribed (obliquely) in the given square.
Inside the second equalside Inside the second square
a third equalside I drew. is drawn a third square.
(The equalside) that I drew The (third) square
touches the equalside. is inscribed (obliquely) in the (second) square.
Their areas are what? Compute the areas of the pieces.

10. 1 u$ the equalside. Given a square with the side 1 00 (ninda).
Inside it 8 peg-heads I drew. Inside it 8 triangles (are drawn).
Their areas are what? Compute the areas of the pieces.

11. 1 u$ the equalside. Given a square with the side 1 00 (ninda).
Inside it an equalside I drew. Inside it a second square is drawn.
The equalside that I drew The (second) square
touches the equalside. is inscribed (obliquely) in the (given) square.
Inside the equalside Inside the (second) square 
4 peg-heads I drew. are drawn 4 triangles.

12. 1 u$ the equalside. Given a square with the side 1 00 (ninda).
Inside it 16 [peg-heads I drew]. Inside it 16 triangles are drawn.
Their areas are what? Compute the areas of the pieces.

13. 1 u$ the equalside. Inside it Given a square with the side 1 00 (ninda).
4 ox-heads, 2 peg-heads I drew. Inside it 4 trapezoids, 2 triangles are drawn.
Their areas are what? Compute the areas of the pieces.

14. 1 u$ the equalside. Given a square with the side 1 00 (ninda).
Half I pushed inwards,  Halfway in (?) (from the sides of the given
then an equalside I drew.  square) another square is drawn.
Inside the second equalside Inside the second square
a third equalside I drew. a third square is drawn (obliquely).
Their areas are what? Compute the areas of the pieces.

··· ········· ·········

17. 1 u$ the equalside. Given a square with the side 1 00 (ninda).
12 peg-heads 4 equalsides I drew. (Inside it) 12 triangles, 4 squares are drawn.
Their areas are what? Compute the areas of the pieces.

18. 1 u$ the equalside. Given a square with the side 1 00 (ninda).
Inside 4 peg-heads I drew. Inside it 4 triangles are drawn.
Their areas are what? Compute the areas of the pieces.

··· ········· ·········

23. 1 u$ the equalside. Given a square with the side 1 00 (ninda).
Inside it 4 equalsides, Inside it 4 squares,
4 diagonals, 4 peg-heads. 4 rectangles and 4 triangles are drawn.
Their areas are what? Compute the areas of the pieces.
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24. [1 u$] the equalside. Given a square with the side 1 00 (ninda).
Inside it 16 equalsides I drew. Inside it 16 squares are drawn.
Their areas are what? Compute the areas of the pieces.

25. A crescent. A semicircle.
········· ·········

··· ········· ·········

28. 1 [u$ the equalside.] Given a square with the side 1 00 (ninda).
A bit I pushed inwards, then A certain distance inwards
an equalside I drew. (from the given square) a square is drawn.
Inside the equalside that I drew Inside that square
1 lyre-window. there is 1 concave square.
Their areas are what? Compute the areas of the pieces.

··· ········· ·········

30. 1 u$ the equalside. Given a square with the side 1 00 (ninda).
A bit I pushed inwards, then A certain distance inwards (from the given
a lyre field(?) I drew. square) a concave rectangle(?) is drawn.
Their areas are what? Compute the areas of the pieces.

31. 1 [u$] the equalside. Given a square with the side 1 00 (ninda).
[Inside it] 2 crescents, 1 peg-head,Inside it there are 2 semicircles, 1 triangle,
1 peg-crescent(?), 1 diagonal, 1 circle segment(?), 1 rectangle,
4 equalsides. and 4 squares.
Their areas are what? Compute the areas of the pieces.

32. [1] u$ the equalside. Given a square with the side 1 00 (ninda).
Inside it 2 diagonals, 1 ··· field, Inside it there are 2 rectangles, 1 ···-figure,
4 equalsides. and 4 squares.
Their areas are what? Compute the areas of the pieces.

··· ········· ·········

34. 1 u$ the equalside. Given a square with the side 1 00 (ninda).
Inside it 3 bow fields, Inside it there are 3 bow figures.
1 diagonal. and1 rectangle.
Their areas are what? Compute the areas of the pieces.

35. 1 u$ the equalside. Given a square with the side 1 00 (ninda).
Inside it 2 bow fields, Inside it there are 2 bow figures,
1 ···-field, 4ox-heads ··· . 1 ···-figure, 4 trapezoids (sic!) ··· .
Their areas are what? Compute the areas of the pieces.

··· ········· ·········

38. 1 u$ the equalside. Given a square with the side 1 00 (ninda).
Inside it 1 arc, 6 crescents. Inside it there are 1 circle and 6 semicircles.
Their areas are what? Compute the areas of the pieces.
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39. 1 u$ the equalside. Given a square with the side 1 00 (ninda).
2 circles, 2 crescents, 4 [equalsides]. (Inside it) 2 circles, 2 semicircles, 4 squares.
Their areas [are what]? Compute the areas of the pieces.

40. [1 u$ the equalside.] Given a square with the side 1 00 (ninda).
Inside it 4 peg-heads, Inside it there are 4 (concave) triangles, 
[16] boat fields, [5] lyre-windows. 16 boat-figures, and 5 concave squares.
Their areas are what? Compute the areas of the pieces.

As a geometric theme text, BM 15285 is not particularly well orga-
nized, and the exercises are in general exceedingly simple. Yet the text is
interesting for several reasons, not least because it quite explicitly gives
the names (mostly Sumerian) of a number of geometric figures. A few of
those figures will be discussed below (Fig. 6.2.6 and Chapter 12).

Some of the diagrams illustrating the exercises occur more than once.
Thus the diagrams for problems ## 2 and 4 are identical, and so are the dia-
grams for ## 7-8, and for ## 10-11. The reason is probably that the author
of the text wanted to teach his students that the same diagram can be inter-
preted in more than one way. Note by the way, how much the situation in
## 7-8, 10-11, and 18, resembles the famous geometric passage in Plato’s
Meno, 82 B - 85 B (see Heath, HGM 1 (1981), 297), where Socrates tries
to get a slave boy to figure out on his own how a square can be constructed
that is twice as large as a given square.

Particularly interesting are BM 15285 ## 36 and 40. The text under the
diagram for # 36 is lost, but presumably it was of the following form:

Given a square with the side 1 00 (ninda). Inside it there are 8 (concave) triangles,
4 circles, and 1 concave square. Compute the areas of the pieces.

As a help for the drawing of the diagram, and also for the computation of
the areas of the pieces, there are weakly drawn guide lines in the diagrams
for ## 36 and 40, dividing the given squares into 16 smaller squares. 

An OB school boy could find the solution to problem # 36 in the
following way, for instance: The guide lines show that each one of the four
circles is contained in a square with the side 30. Therefore, the diameter of
each circle is also 30, and the arc (the circumference) is, approximately, 3
· 30 = 1 30. Hence, the area of each circle is, approximately, 1/12 · sq. 1 30
= ;05 · 2 15 (00) = 11 15. On the other hand, the area of one of the circum-
scribed squares is sq. 30 = 15 (00), which is 3 45 more than the area of the
circle inside it. This means that the area of each one of the four “concave



6.2. Figures Within Figures in Mesopotamian Mathematics 133

triangles” in the corners of one of the small squares, outside the circle, is
3 45 / 4 = 56;15. Thus, the area 1 (00 00) of the given square with the side
1 (00) is the sum of the following sub-areas:

the total area of four small circles = appr. 4 · 11 15 = 45 (00),
the area of the central “concave square” (lyre-window) = appr. 4 · 56;15 = 3 45,
the total area of four “double concave triangles” = appr. 4 · 2 · 56;15 = 7 30,
the total area of four “single concave triangles” = appr. 4 · 56;15 = 3 45.

A similar computation in the case of problem # 40 would yield the re-
sult that the area of the given square is the sum of the following sub-areas:

the total area of five concave squares = appr. 5 · 3 45 = 18 45,
the total area of four double concave triangles = appr. 4 · 2 · 56;15 = 7 30,
the total area of four single concave triangles = appr. 4 · 56;15 = 3 45,
the total area of 16 boat-figures = appr. 16 · 1 52;30 = 30.

Note that the area of any one of the boat-figures can be computed as 1/4 of
the difference between the area of a circle and the area of a concave square
inscribed in the circle, that is, as appr. (11 15 – 3 45)/4 = 7 30/4 = 1 52;30.
Note also that, for some reason, the four single concave squares are not
mentioned in the text of problem 40. 

Indirectly related to the geometric theme text BM 15285 is a quite well
known sequence of entries in the OB mathematical “table of constants”
BR = Bruins and Rutten, TMS 3 (1961):

5 igi.gub  $à gúr 5, constant of the arc BR   2
20 dal  $à gúr 20, transversal of the arc BR   3
10 pi-ir-ku $à gúr 10, crossline of the arc BR   4

15 igi.gub  $à ús-ka4-ri 15, constant of the crescent BR   7
40 dal  $à ús-ka4-ri 40, transversal of the crescent BR   8
20 pi-ir-ku $à ús-ka4-ri 20, crossline of the crescent BR   9

6 33 45 igi.gub  $à pa-na-ak-ki 6 33 45, constant of the bow BR 10
52 30 dal  $à pa-na-ak-ki 52 30, transversal of the bow BR 11
15 pi-ir-ku $à pa-na-ak-ki 15, crossline of the bow BR 12

13 07 30 igi.gub  $à gán gi$.má 13 07 30, constant of the boat field BR 13
52 30 dal  $à gán gi$.má 52 30, transversal of the boat field BR 14
30 pi-ir-ku $à gán gi$.má 30, crossline of the boat field BR 15

13 20 igi.gub  $à a.$à $e 13 20, constant of the barleycorn field BR 16
56 40 dal  $à a.$à $e 56 40, transversal of the barleycorn fieldBR 17
23 20 pi-ir-ku $à a.$à $e 23 20, crossline of the barleycorn field BR 18

16 52 30 igi.gub  $à igi.gu4 16 52 30, constant of the ox-eye BR 19
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52 30 dal  $à igi.gu4 52 30, transversal of the ox-eye BR 20
30 pi-ir-ku $à igi.gu4 30, crossline of the ox-eye BR 21

26 40 igi.gub  $à a-pu-sà-am-mi-ki 26 40, constant of the lyre-window BR 22
1 20 dal  $à a-pu-sà-mi-ki 1 20, transversal of the lyre-window BR 23
33 20 pi-ir-ku $à a-pu-sà-mi-ki 33 20, crossline of the lyre-window BR 24

15 a-pu-sà-mi-ik-ki $à 3 15, the lyre-window of 3 BR 25

In this systematically organized sequence of entries, three numerical
parameters are given for each one of seven geometric figures, namely, in
this order, the ‘arc’ (circle), the ‘crescent’ (semicircle), the ‘bow’, the ‘bow
field’, the ‘barleycorn field’, the ‘ox-eye’, and the ‘lyre-window’ (concave
square).

The first three entries, those for the circle, can be explained as follows:
For a circle with given arc a, the remaining three parameters, namely the
areaA, the diameter d, and the radius r, can be computed as follows:

A = (1/4L · sq. a =) appr. 1/12 · sq. a = ;05 · sq. a BR 2
d = (1/L · a =) appr. 1/3 · a = ;20 · a BR 3
r = (1/2L · a =) appr. 1/6 · a = ;10 · a BR 4

For a semicircle with the arc a, the area A, the diameter d, and the radius r,
the four parameters are connected through the following equations:

A = 1/4 · a · d = ;15 · a · d BR 7
d = (2/L · a =) appr. 2/3 · a = ;40 · a BR 8
r = (1/L · a =) appr. 1/3 · a = ;20 · a BR 9

And so on. See Robson, MMTC (1999), Chapter 3, for details. Note that
the ‘bow’ in BR 10-12 is not identical with the ‘bow field’ mentioned in
BM 15285 ## 34-35!

An OB mathematical problem mentioning the ‘lyre-window’ (BR 22-
24) will be discussed below (Fig. 6.2.6). The ‘barleycorn field’ and the
‘ox-eye’ (BR 16-18, 19-21) will play prominent roles in Chapter 12 below.

Now, consider again the OB geometric theme text BM 15285. Its con-
nection with the theme of Elements IV is particularly obvious in the two
exercises # 2 and # 4, illustrated by identical diagrams. The text in # 2 says
‘Inside the equalside, an arc I drew’, while the text in # 4 says ‘The arc that
I drew touches an equalside’. In other words, the difference between # 2
and # 4 is that in the former exercise a circle is inscribed in a square, while
in the latter exercise a square is circumscribed around a circle! 
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MS 3050 and MS 3051 are two OB hand tablets published in Friberg,
RC (2007), Figs. 8.2.2 and 8.1.1. Both are inscribed with geometric dia-
grams and scribbled numbers (see Figs. 6.2.4-5 below). 

Fig. 6.2.4.  MS 3050. A square with diagonals inscribed in a circle (Old Babylonian).

Fig. 6.2.5.  MS 3051. An equilateral triangle inscribed in a circle (Old Babylonian).

The diagram in MS 3050 shows a square with diagonals, inscribed in a
circle, while the diagram in MS 3051 shows an equilateral triangle in-
scribed in a circle. In agreement with an OB convention, the ‘fronts’ of the
inscribed square and the inscribed equilateral triangle both face to the left.
(In a Late Babylonian diagram showing an equilateral triangle, the triangle
would have been shown standing on its base.)

It is not easy to make sense of the all scribbled numbers on MS 3050,
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even if some of them seem to suggest that the diameter of the circle (= the
diagonal of the square) was assumed to have the length 1 (00).

The diagram on MS 3051 is amazingly exact. The sides of the triangle
are nearly equal. The circle passes through two of the three vertices of the
triangle and passes close by the third vertex. It is clear that a compass must
have been used in the construction of the figure, although there are no
remaining traces of the point of the compass. It is also clear that the accu-
rate construction of a figure of this kind would be difficult without a good
understanding of basic geometric principles (cf. El. IV.2 and IV.5).

The equilateral triangle divides the circumference of the circle in three
equal parts. In the diagram on MS 3051, they are all marked with the num-
ber ‘20’. That means that the whole circumference of the circle is 1 (00).

Presumably, the students who drew the diagrams on MS 3050 and
MS 3051 were supposed to compute the areas of the inscribed square and
the equilateral triangle, as well as the areas of the four circle segments out-
side the square, and of the three circle segments outside the triangle.
Unfortunately, no Babylonian mathematical text are known that contain
the details of such computations. 

On the other hand, in the Egyptian demotic text P. Cairo (the 3rd c.
BCE), which is strongly influenced by Babylonian mathematics (see Frib-
erg,UL (2005), Sec. 3.1), there are two exercises with precisely that kind
of computations. Thus, inP.Cair o § 12 (op. cit., Sec. 3.1 k), a square is in-
scribed in a circle with given diameter d = 30 cubits and given area A = 675
square cubits (= 3/4 · sq. 30). In the exercise, very good approximations of
the areas of the inscribed square and of the four circle segments are com-
puted, and it is shown that the sum of these sub-areas is almost precisely
equal to the area of the circle. In the first step of the computation, for in-
stance, the area of the inscribed square is computed as half the square on
the diagonal of the square, equal to the diameter of the circle.

In P.Cair o § 11 (op. cit., Sec. 3.1 j), an equilateral triangle of side s = 12
(divine) cubits is inscribed in a circle. In a number of steps, the following
numerical parameters are computed: 1) the height of the equilateral trian-
gle, 2) the area of the equilateral triangle, 3) the height of a circle segment,
4) the area of a circle segment, 5) the sum of the sub-areas, 6) the diameter
of the circle, 7) the circumference of the circle, 8) the area of the circle, 9)
the (small) difference between the results in 5) and 8).
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It is likely that an Old (or Late) Babylonian school boy would have
performed the computations in the same way, provided that he had reached
a sufficiently advanced stage of his education in mathematics.

Another category of OB mathematical problems for figures within
figures are related to diagrams like ## 1-6 and 28-29 in the geometric
theme text BM 15285 (see Figs. 6.2.2-3 above) In this category of
problems, a figure is inscribed in the middle of another figure, a given
distance away from the sides of that figure. 

The best example of a problem of this kind is TMS 21 (Bruins and
Rutten (1961); Friberg, RC(2007), Sec. 8.2), a difficult problem text only
recently explained by Muroi in Sciamvs 1 (2000). In TMS 21 a, a concave
square is inscribed in the middle of a square, at a distance of 5 nindafrom
all the four sides of the square. The a.$à dal.ba.na, the ‘field between’,
bounded on one side by the square and on the other side by the concave
square, is given as 35 (00 sq. ninda). What is then the side of the square?

Fig. 6.2.6.TMS 21a. A concave square in the middle of a square (Old Babylonian).

The problem is solved in the following way: According to ## 22-23 in
the table of constants BR (see above), the diagonal and the area of a con-
cave square are ‘1 20’ and ‘26 40’ times a certain length, actually the
lengtha of one of the circular arcs bounding the concave square. There-
fore, the diagonal and the area are d = 1;20 · a and A = ;26 40 · sq. a. At the
same time, the side of the square is s = d + 2 · 5 (ninda). Consequently,

sq. (1;20 · a + 2 · 5 n.) = ;26 40 · sq. a + 35 (00) sq. n.

d = 1;20 a

A = ;26 40 sq. a, 

B = 35 00 sq. ninda

Equation:

sq. (d + 2 · 5 ninda) = A + B

Solution:

a = 30 ninda,

d = 40 ninda,

s = 50 ninda.

BB

BB

A

5 n.5 n. d

B

a

A

5 n.

5 n.

ds
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This is a quadratic equation for the unknown a, which is shown in the text
to have the solution a = 30 ninda. Hence, the diagonal d = 40 ninda, and
the side of the square is s = 40 ninda + 2 · 5 ninda = 50 ninda.

In the problem text TMS 21, there is no diagram illustrating the exer-
cise. At the other end of the scale, there are examples of exercises of the
same kind (figures inscribed in the middle of figures) in the form of hand
tablets with diagrams but no text other than some numbers. One such text
is YBC 7359 (Friberg, RC(2007), Fig. 2.8.9).

Fig. 6.2.7.  YBC 7359. A square in the middle of a square (Old Babylonian).

The diagram on the obverse of this clay tablet is clearly a teacher’s neat
model, while the diagram on the reverse is a student’s awkward copy. 

Apparently, the diagrams were meant to illustrate a metric alge-
bra problem of the following form: 

The area B between two (concentric and parallel) squares is 1 31. 
The distance d between the squares is 3;30. Find the sides p and q of the squares.

It is easy to find the solution, p = 10, q = 3.

Another text of the same kind is MS 2985 (Friberg,op. cit., Fig. 8.1.1)
shown in Fig. 6.2.8 below, both in a cuneiform hand copy and in a “con-
form” transliteration. In that text, a circle is inscribed in the middle of a
square. Some scribbled numbers appear to indicate that the circle is in-
scribed a distance b = 15 ninda from all the sides of the square. The value
B of the area between the circle and the square is not indicated. Anyway,
if the diagram on MS 2985 illustrates a problem of the same kind as the

1    4˚

obv. rev.

6    3˚
3   3˚

1 3˚1 13˚19
3

9

7

3    3˚

3    3˚ 2˚2  4˚ 5

6    3˚
1      4˚

1˚ 3  3˚
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problem in TMS 21, then that problem can be reduced to a quadratic equa-
tion of the form

sq. (;20 · a + 2 · b) – ;05 · sq. a = B,   where a is the circumference of the circle.

Fig. 6.2.8.  MS 2985. A circle in the middle of a square (Old Babylonian).

Yet another example of a problem of the same kind may be given by
MS 1938/2 (Friberg, op. cit., Fig. 8.2.14), a fragment of a clay tablet with
a diagram showing what appears to be a circle inscribed in the middle of a
regular hexagon.

Fig. 6.2.9.  MS 1938/2. A circle in the middle of a regular hexagon (Old Babylonian).

The examples mentioned above suggest that there once may have exist-
ed two OB geometric theme texts, one with problems for figures inscribed
in figures, and another with problems for figures in the middle of figures.

2  1˚6   4˚5
2  1˚3   4˚5
4˚5 5˚6 1˚53˚

3 2˚

5˚2 3˚2   5 

3˚1˚5 1˚5 1˚5

rev.

on the obverse:
a 6-striped trapezoid 
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If such theme texts really existed, they were Old Babylonian precursors to
the theme text Elements IV.
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Chapter 7

El. VI.30, XIII.1-12, and 
Regular Polygons in Babylonian Mathematics

7.1.El. VI.30: Cutting a Straight Line in Extreme and Mean Ratio

The special division of a given straight line which appeared first in El.
II.11 (Fig. 1.7.1), and then again in El.IV.10 (Fig. 6.1.1), is belatedly given
its rather peculiar name at the beginning of Elements VI:

El. VI Def. 3A given straight line is cut in extreme and mean ratio when the whole 
straight line is to the greater part as the greater part is to the smaller.

In all of Elements VI, a straight line cut in this way appears only in

El. VI.30 To cut a given straight line in extreme and mean ratio.

The construction in El. VI.30 is quite indirect. It can be explained as
follows, in terms of metric algebra: 

Fig. 7.1.1.  Explanation of the argumentation in El. VI.30, in terms of metric algebra.

d d · s d · d'

s sq.s

sq
.d

/2

sq
.d

s d'

d

s

s

sq.s + d · s = sq. d Ç
sq.s =  sq. d – d · s = d · d'
Ç d : s = s : d'

d/2 d/2

sq.s + d · s = sq. d Ç
sq. (s + d/2) = sq. d + sq. d/2
                    = 5 sq. d/2
(another proof is given in XIII.1)
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Given is a straight line d, and it is required to cut it in two parts in
extreme and mean ratio. If the two parts are called s and d', then according
to the procedure in El. VI.30, s can be found “through the application to a
straight line of length d of a rectangle equal to sq. d and exceeding by a
square”. This is a way of describing a quadratic equation, which was in-
troduced in the preceding proposition, El. VI.29. What it means is that 

sq.s + d · s = sq. d.

It is shown geometrically (see Fig. 7.1.1 above, left) that if s satisfies this
equation, then also sq. s = d · d', so that d : s = s : d', as required.

The solution to the mentioned quadratic equation is not explicitly given
in El. VI.30, so the construction of a straight line divided in extreme and
mean ratio remains incomplete. However, a procedure for the geometric
solution of a quadratic equation of type B4a: sq. s + d · s = P is demon-
strated in El. VI.29. (See Sec. 10.3.) When P = sq. d, as in El. VI.30, the
geometric solution as in El. VI.29 (Fig. 7.1.2, right) can be interpreted as
follows:

sq.s + d · s = sq.d Ç sq. (s + d/2) = sq. d + sq. d/2 Ç sq. (s + d/2) = 5 · sq. d/2.

(Cf.El.XIII.1.) More concisely, with a modern standard notation,

s = ̄ · d,   where, ¯ = (P 5 – 1)/2.

7.2. Regular Pentagons and Equilateral Triangles in Elements XIII

Book XIII of Euclid’s Elements contains 18 propositions, concerned
with straight lines cut in extreme and mean ratio (XIII.1-6), with regular
polygons inscribed in circles (XIII.7-12), and with regular polyhedrons
inscribed in spheres (XIII.13-18).

An Outline of the Contents of El. XIII.1-12

1 If d = s + d' is cut in extreme and mean ratio, s > d', then sq. (s + d/2) = 5 sq. d/2.
2 Conversely, if  sq. (s + d/2) = 5 sq. d/2, and if d is cut in extreme and mean ratio,

thens is the greater of the parts into which d is cut.
3 If   d = s + d' is cut in extreme and mean ratio, s > d', then.sq. (d' + s/2) = 5 sq. s/2.
4 If   d = s + d' is cut in extreme and mean ratio, s > d', then sq. d + sq. d' = 3 sq. s.
5 If   d = s + d' is cut in extreme and mean ratio, s > d', then d + s is also cut in extreme

and mean ratio, with d being the greater of the two parts of d + s.
6 If   d = s + d' is cut in extreme and mean ratio, and if d is expressible, then the two

partss and d' into which d is cut are apotomes.
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7 If three angles of an equilateral pentagon are equal, then all the five angles are equal.
8 Consecutive diagonals in a (regular) pentagon cut each other in extreme and mean 

ratio. The greater of the two parts of each is equal to the side of the pentagon.
9 The sum of the sides of a hexagon and a decagon inscribed in the same circle is a 

straight line cut in extreme and mean ratio. The greater part is the side of the hexagon.
10 If a pentagon, a hexagon, and a decagon are inscribed in the same circle, the square 

on the side of the pentagon is equal to the sum of the squares on the sides of the 
hexagon and the decagon.

11 The side of a pentagon inscribed in a circle with expressible diameter is a minor.

12 If an equilateral triangle is inscribed in a circle, the square on the side of the triangle
is three times the square on the radius of the circle.

The geometric proofs ofEl. XIII.1-5  are given in terms of rectangles
and squares. More conveniently, El. XIII.1, for instance, can be proved by
use of the diagonal rule applied as in El. II.11 (see Fig. 1.7.1 above). El.
XIII.1 is also an immediate consequence of El. VI.30 (see Fig. 7.1.1).

In El. XIII.6  it is stated that if d = s + d' is an expressible straight line
cut in extreme and mean ratio, then the two parts s and d' are apotomes in
the sense of Elements X. For the proof, it is noted that sq. (s + d/2) = 5 sq.
d/2 [El. XIII.1]. Therefore, d/2 and s + d/2 are expressible straight lines,
commensurable in square only. Since s = (s + d/2) – d/2, it follows that s
is an apotome. Moreover, sq. s = d · d', where d is expressible and s an apo-
tome. Therefore, d' is a first apotome (with respect to d) [El. X.97].

The important connection between the regular pentagon and straight
lines cut in extreme and mean ratio is demonstrated in El. XIII.8 . See the
diagram in Fig. 7.2.1 top, left. There two diagonals, obviously both of the
same length d, cut each other. Let the two parts of each diagonal be called
a and b, with a > b. It is claimed in the proposition that d is cut in extreme
and mean ratio, and that a = s. In the proof, it is observed that the angle w'
is twice the angle v [El. I.32]. At the same time, the angle w is twice the
anglev [El. III.28, El. VI.33]. Hence, w = w', and the triangle a, s, b is isos-
celes, so that a = s. Furthermore, the triangle with the sides b, b, s is similar
to the triangle with the sides a + b, s, s. Therefore, (a + b) : s = s : b. This
means that d = a + b is cut in extreme and mean ratio, so that the proof is
complete. Since it was shown that a = s, b may now be called d'. Then the
result can be stated in the form

d = s + d' ,   s > d' , and d : s = s : d'.
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Note the reappearance in the proof of El. XIII.8 of the special triangle
which played a crucial role in El. IV.10-11 (Fig. 6.1.1). The same special
triangle appears again in the proof of El. XIII.9  (Fig. 7.2.1), which says
that the sum r + s10, where r is the radius of a circle, s10 the side of the in-
scribed regular decagon, is divided in extreme and mean ratio, with r as the
greater of the two parts. The result is used in the proof of El. XIII.16.

Fig. 7.2.1.  Metric algebra versions of Euclid’s diagrams in El. XIII.8-11.

In El. XIII.10  (see again Fig. 7.2.1), it is proved that the sum of the
square on the radius r of a circle and the square on the side s10 of the
inscribed decagon is equal to the square of the side of the inscribed penta-
gon. The complicated proof again makes extensive use of angles in various
triangles. The result of El. XIII.10 is used repeatedly in El. XIII.16, the

El. XIII.8

w = 2 v, a + b = d Ç
a = s, d : a = a : b

b

b

a

ss

El. XIII.9

(r + s10) : r = r : s10

s
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r r

r

s
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a b s/2

r

sq. r = s · (s/2 + b)
sq.s10 = s · (s/2 – b) = s · a
Ç sq. r + sq. s10 = sq. s

r

s10El. XIII.10 El. XIII.11
p' : r = s/2 : d Ç p' : r/2 = s : d
Ç  sq. (p' + r/4) = 5 sq. r/4

Ç h' = 5 r/4 – (p' + r/4) is a fourth apotome (re
sq. s = h' · 2 r Ç s is a minor (rel. to
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construction of an icosahedron inscribed in a given sphere.
The last of the propositions concerned with regular pentagons is

El. XIII.11 . The proof of El. XIII.11 starts with the observation that if h is
the height of the pentagon, then the triangle with the sides d, h, s/2 is sim-
ilar to the triangle with he sides r, d/2,p' (see the last diagram in Fig. 7.2.1).
Therefore,p' : r = s/2 : d, so that p' : r/2 = s : d. Hence, in view of El. XIII.8
andEl. XIII.1, p' + r/2 is cut in extreme and mean ratio, and 

sq. (p' + r/4) = 5 sq. r/4.

Now, let the diameter 2 r of the circle be an assigned expressible
straight line in the sense of Elements X. Then also r + r/4 = 5 r/4 is an ex-
pressible straight line. On the other hand, 

sq. (5 r/4) = 25 sq. r/4 = 5 sq. (p' + r/4).

Therefore, 5 r/4 and p' + r/4 are both expressible, but commensurable in
square only. Now, consider the height h' against the base of the isosceles
triangle with the sides d, s, s (Fig. 7.2.1 bottom, right). It is clear that

h' = r – p = 5 r/4 – (p' + r/4).

Consequently,h' is an apotome in the sense of Elements X, with respect to
the radius r. More precisely, h' is a fourth apotome in the sense of the fol-
lowing definition

El. X.Def. III 4. Given an expressible straight line e, an apotome u – v, u > v, is called
afourth apotome (with respect to e) if u com e, and if sq. u – sq. v = sq. w, where w inc e.

Indeed, with e = 2 r, u = 5 r/4, v = p' + r/4, it is clear that u com e, and that

sq.u – sq. v = sq. (5 r/4) – sq. (p' + r/4) = (25 – 5) · sq. r/4 = 20 · sq. r/4.

Clearly, sq. (5 r/4) : sq. (p' + r/4) = 25 : 20 = 5 : 4 is not the ratio of a square
number to a square number. Therefore, w = sqs. (sq. u – sq. v) and 5 r/4 are
incommensurable, as required [El. X.9].

The last step of the proof of El. XIII.11 makes use of the observation
that the height against the diagonal in the right triangle with the diagonal
2 r and the short side s cuts off a right triangle with the sides s, d/2, and h'.
Therefore, it follows from the lemma El. X.32/33 (see Chapter 4 above)
that

sq.s = h' · 2 r,   where   2 r is expressible and h' is a fourth apotome.

Hence, in view of El. X.94, the side s of a regular pentagon inscribed in a
given circle is a minor, with respect to r, the radius of the circle.
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In El. XIII.12  it is shown that the square of the side of an equilateral
triangle inscribed in a circle is 3 times the square on the radius of the circle.
Therefore, if the diameter of the circle is expressible, then also the side of
the inscribed equilateral triangle is expressible. This consequence of the
result in El. XIII.12 is, apparently, so obvious that it is not explicitly stated
in the text. The simple proof of XIII.12 is demonstrated in Fig. 7.2.2, left.

Fig. 7.2.2.  The equilateral triangle in El. XIII.12 (left) and in a Babylonian exercise (right).

The way in which equilateral triangles were treated in Babylonian
mathematics (Fig. 7.2.2, right) will be discussed in Sec. 7.7 below.

7.3. An Extension of the Result in El. XIII.11

A quite big apparatus appears to be needed for what may be called the
“metric analysis” (in disguise) of the regular pentagon in El. XIII.8-11
(Fig. 7.2.1). The appearance is deceptive, for the truth is that El. XIII.8-10
are needed only for the construction and metric analysis in El. XIII.16 of
an icosahedron inscribed in a given sphere. For the study of the pentagon
alone is needed only El. XIII.11, with its relatively uncomplicated proof.

Also El. XIII.11 seems to be included in El. XIII principally because it
will be needed in El. XIII.16. It is probably for this reason that the metric
analysis of the pentagon in El. XIII.11 is only half-finished. Indeed, the
detailed computation of an expression for the side of a regular pentagon
inscribed in a circle of given radius is not followed by a similar computa-

El. XIII.12

sq. h = sq. s – sq. s/2 = 3/4 sq. s
h = sqs. 3 · s/2,  r = 2/3 · h = sqs. 3 · s/3

A = (sqs. 3)/4 · sq. s

sq. s = sq. 2 r – sq. r = 3 sq. r

s s

r r

r

2
r

h

s/2

r/
2
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tion of the diagonal, which would have been easy to provide, using a rather
obvious variation of the method in El. XIII.11. (Cf. Knorr, BAMS 9 (1983),
48.)

The diagram in Fig. 7.3.1 below is a further development of the last
diagram in Fig. 7.2.1 above, the metric algebra counterpart to Euclid’s own
diagram in El. XIII.11. The new notations that are introduced in Fig. 7.3.1,
in addition to the notations used in Fig. 7.2.1, are h for the height of the
pentagon, and p for h – r. The observation in El. XIII.11 that the two trian-
gles with the sides r, d/2, p' and d, h, s/2 are similar is echoed here by the
new observation that the triangles with the sides r, s/2, p and s, h', d/2 are
similar.

Fig. 7.3.1.  Metric analysis of the pentagon, in terms of the radius.

From the similarity of the two pairs of triangles it follows that
p' : r = s/2 : d,   and p : r = d/2 : s,   respectively.

In view of XIII.8, d = s + d' is cut in extreme and mean ratio with s as the
greater part. Therefore, d · d' = sq. s, where d' = d – s. Hence, 

p' : r/2 = s : d = ¯  and  (p – r/2) : r/2 = (d – s) : s= s : d = ¯.

Consequently, in view of XIII.1,
sq. (p' + r/4) = 5 sq. r/4,   and   sq. (p – r/4) = sq. {(p – r/2) + r/4} = 5 sq. r/4.

On the other hand,
h' = r – p' = 5 r/4 – (p' + r/4),   and h = r + p = 5 r/4 + (p – r/4).

Therefore, as shown in XIII.11, h' is a fourth apotome (with respect to r).
The same kind of arguments show that h is a fourth binomial (with respect
to r). This qualitative result can be replaced by the explicit result that

h' = (5 – sqs. 5) · r/4,   and h = (5 + sqs. 5) · r/4.

r

s

s/2

d

d/2

p

p'

h'

r

p' : r = s/2 : d Ç p' : r/2 = s : d 
p : r = d/2 : s Ç (p – r/2) : r/2 =  (d – s) : s = s : d
Ç p – r/2 = p'
p = r/2  + p' is cut in extreme and mean ratio,
Ç sq. (p' + r/4) = sq. (p – r/4) = 5 sq. r/4

h' = r – p' = 5 r/4 – (p' + r/4) is a fourth apotome
h = r + p = 5 r/4 + (p – r/4) is a fourth binomial

sq. s = h' · 2 r,   s = sqs. (5 – sqs. 5)/2 · r is a minor
sq. d = h · 2 r,   d = sqs. (5 +sqs. 5)/2 · r is a major



148 Amazing Traces of a Babylonian Origin in Greek Mathematics

Now, in the diagram in Fig. 7.3.1, s is the short side in a right triangle
with the diagonal 2 r and the height d/2 against the diagonal, and d is the
long side in a right triangle with the diagonal 2 r and the height s/2 against
the diagonal. Therefore, in view of lemma El. X.32/33 (Chapter 4 above),

sq.s = h' · 2 r = (5 r/4 – (p' + r/4)) · 2 r,   where    sq. (p' + r/4) = 5 sq. r/4,

and
sq.d = h · 2 r = (5 r/4 + (p – r/4)) · 2 r,   where    sq. (p – r/4) = 5 sq. r/4.

Consequently,s is a minor (with respect to r), as stated in El. XIII.11, and
d is a major (with respect to r). This qualitative result, too, can be replaced
by a corresponding explicit result. Indeed, if for the sake of increased clar-
ity the side and diagonal of the pentagon are called s5 and d5, then

s5 = sqs. {(5 – sqs. 5)/2 · r}   and d5 = sqs. {(5 + sqs. 5)/2 · r}.

Incidentally, the diagram in Fig. 7.3.1 and the sub-diagrams in Fig.
7.3.2 below show that if s10 and d10 are the side and the “third” diagonal
of the regular decagon inscribed in the same circle as the pentagon, then

sq.s10 = (r – p) · 2 r,   and   sq. d10 = (r + p') · 2 r.

Fig. 7.3.2.  Two characteristic right triangles in the preceding diagram.

Here,r – p is a first apotome, in the sense of the following definition

El. X.Def. III 1. Given an expressible straight line e, an apotome u – v, u > v, is called
a first apotome (with respect to e) if u com e, and if sq. u – sq. v = sq. w, where w com e.

Indeed,
r – p = 3 r/4 – (p – r/4),   where
sq. (p – r/4) = 5 sq. r/4,   sq. 3 > 5,   and   sq. 3 r/4 – sq. (p – r/4) = sq. r/2.

In view of El. X.91 (a parallel to El. X.54; see Fig. 5.2.4), s10 is then an

pr

r

r

r

p'
2 r

h'
2 r

h r – p

sq.d + sq.s10 = sq. (2 r)
d · s10 = s · r  

sq.d = (r + p) · 2 r,   
sq.s10 = (r – p) · 2 r     

sq.s + sq.d10 = sq. (2 r)
s · d10 = d · r   

s10
sd d10d/2s/2

sq.s = (r – p') · 2 r
sq.d10 = (r + p') · 2 r
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apotome, say s10= u – v, with

sq. (u – v) = sq. s10 = {3 r/4 – (p – r/4)} · 2 r,

and consequently

sq.u = a · r   and sq.v = b · r,

where

a + b = 3 r/2   and a · b = sq. (p – r/4) = 5 sq. r/4.

These equations for a and b are easy to solve, and the result is that

a = 5 · r/4, b = r/4,   so that   sq. u = 5/4 sq. r, v = 1/4 sq. r.

Consequently, the explicit form of the apotome s10 is

s10 = (sqs. 5 – 1)/2 · r.

Similarly, the explicit form of the binomial d10 is

d10= (sqs. 5 + 1)/2 · r.

7.4. An Alternative Proof of the Crucial Proposition El. XIII.8

It is an interesting question whether any of the properties of a regular
pentagon mentioned in Elements XIII can have been known by (Old)
Babylonian mathematicians. In this connection, it is important to observe
that the proof of the crucial proposition El. XIII.8, which says that two in-
tersecting diagonals in a pentagon cut each other in extreme and mean ra-
tio, with the greater part equal to the side of the pentagon, makes essential
use of El. VI.33, a proposition stating that “In equal circles angles have the
same ratio as the circumferences on which thy stand”. This proposition
cannot have been known to Babylonian mathematicians, who apparently
were totally ignorant of the concept of angles based on circular arcs. Ac-
tually, by the way, El. VI.33 is strangely isolated from the rest of Elements
VI. It is much closer associated with Elements III, which in its entirety is
outside the scope of Babylonian mathematics.

On the other hand, an OB mould shows the image of a pentagram of
entangled wild men (see Fig. 7.9.7 below), and an entry in an OB table of
constants mentions an approximation to the area of a normalized regular
pentagon (Sec. 7.8). These two facts together make it clear that OB
mathematicians knew at least about the existence of pentagrams and regu-
lar pentagons. In view of this circumstance, anyone familiar with the gen-
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eral character of OB mathematics, in particular its extreme readiness to
considerall imaginable aspects of a given mathematical situation, is forced
to draw the conclusion that OB mathematicians must have tried to compute
the lengths of the diagonals in a regular pentagon, and the lengths of their
segments, using methods available to them. Although nothing is known
about how they did that, the discussion below aims to show which methods
they conceivably may have used.

Fig. 7.4.1.  A hypothetical Babylonian alternative to the procedure in El. XIII.8.

Consider a regular pentagon with its diagonals, as in Fig. 7.4.1, left.
The diagonals form a pentagram with a central body in the form of a small-
er regular pentagon, and with five arms in the form of symmetric (isosce-
les) triangles. Let u be the angle between two diagonals meeting at a vertex
of the pentagon, and let v be the angle between a diagonal and a side. (Al-
though the Babylonians were not familiar with the general concept of an-
gles, they were in a certain way familiar with angles in right triangles and
with angles in symmetric triangles, probably understood as double right
triangles.) Also, let w be the smaller of the two angles between intersecting
diagonals. Then it is clear that w = u + v, because the right triangle indicat-
ed in the right half of the pentagon with one angle equal to w is similar to
the right triangle indicated in the left half of the pentagon with one angle
equal to u + v. In addition, u = v, because the angle v between a side and a
diagonal in the inner pentagon is clearly equal to the angle u between two
diagonals meeting at a vertex of the outer polygon. Indeed, v and u are an-
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gles at the bases of two similar symmetric triangles. Since at the same time
u = v and w = u + v, it follows that u = v = w/2.

Now, let the sides and diagonals of the larger pentagon be called s and
d, and the sides and diagonals of the smaller pentagon s' and d', as in Fig.
7.4.1, right. Also, let t denote the side of an arm of the pentagram which is
formed by the diagonals. Then it is clear that 

t = d',   becauseu = v,   and that t + s' = s,   becauseu + v = w.

Therefore also

s = d' + s' and d = 2 d' + s' = s + d'.

In addition, the three symmetric triangles with the sides (d, d, s), (s, s, d'),
and (d', d', s') are similar because w = u + v. Therefore,

d : s = s : d' = d' : s'.

This means that both d = s + d' ands = d' + s' are cut in what Euclid calls
“extreme and mean ratio”. 

The observation that the diagonal d of a pentagon can be cut in three
pieces as d = d' + s' + d', with two extreme pieces of length d' and one
middlepiece of length s' , at the same time as s = d' + s' is cut in “extreme
and mean ratio”, provides a previously lacking explanation of this curious
expression. Indeed, the observation shows that a more appropriate transla-
tion of the obscure Greek phrase (ἄκροσ κα‹ µ°σοσ λÒγοσ) may be
“extreme and middle ratio”! 

It must be understood that one never meets terms like “angles” or “ra-
tios” in Babylonian mathematical texts. Instead, the Babylonians preferred
to think in terms of the “feed” of a right or symmetric triangle, meaning the
“front” divided by the “length” (alternatively, the height). Thus, for in-
stance, the fact that the diagonal of a regular pentagon is cut in extreme and
mean ratio with the side as the greater part would have been expressed by
a Babylonian mathematician, essentially, in the following way:

d = s + d', d' = f · s,   where the feedf = s/d.

(In modern terminology, this particular ratio is usually called ¯.)

7.5. Metric Analysis of the Regular Pentagon in Terms of its Side

In the OB mathematical table of constants BR mentioned in Sec. 7.8 be-
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low, an approximation for the area of the pentagon is given, in the case
when the side of the pentagon is equal to 1 (00). This is in agreement with
the Babylonian convention that constants for geometric figures should be
given for the special case when a prominent side of the figure is normal-
ized to the value ‘ 1’. With this convention in mind, it is natural to assume
that a Babylonian mathematician wanting to compute the lengths of vari-
ous segments in a regular pentagon would do that in the special case when
theside s = ‘1’. In the terminology of Elements X, for a Babylonian math-
ematician it would be natural to choose the side of the pentagon, not the
radius of the circumscribed circle, as the assigned expressible straight line.

For this reason, it may be worthwhile to investigate what the result will
be of a metric analysis of the regular pentagon with respect to the side s.

Fig. 7.5.1.  Metric analysis of the pentagon, in terms of the side of the pentagon.

As shown in Fig. 7.5.1, it follows from three straightforward applica-
tions of the diagonal rule that, with the notations in that figure,

sq.h = sq. d – sq. s/2,
sq. k = sq. s – sq. d' /2,
sq.h' = sq. s – sq. d/2.

The way to proceed from here in the style of El. XIII.11 (Sec. 7.2 above)
will be discussed below. However, in terms of quasi-modern notations,

sq.h = {sq. (sqs. 5 + 1) – 1} · sq. s/2 = (5 + 2 sqs. 5) · sq. s/2,
sq. k = {4 – sq. (sqs. 5 – 1)/2} · sq. s/2 = (5 + sqs. 5)/2 · sq. s/2,
sq.h' = {4 – sq. (sqs. 5 + 1)/2} · sq. s/2 = (5 – sqs. 5)/2 · sq. s/2.
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Here, it is easy to check that both (5 + 2 sqs. 5) and (5 + sqs. 5)/2 are fourth
binomials, and that (5 – sqs. 5)/2 · s is a fourth apotome. Therefore,

h = sqs. {(5 + 2 sqs. 5) · s/2}   is a maj or   (with respect to s),
k = sqs. {(5 + sqs. 5)/2 · s/2}   is a maj or   (with respect to s),
h' = sqs. {(5 – sqs. 5)/2 · s/2}   is a minor   (with respect to s).

It is interesting that it follows directly from the geometric situation that

h = k + h'.

Therefore,

sqs. (5 + 2 sqs. 5) · s/2 = sqs. (5 + sqs. 5)/2 · s/ + sqs. (5 – sqs. 5)/2 · s/2.

This is a surprising geometric demonstration of the way in which the major
h = sqs. (5 + 2 sqs. 5) · s/2 can be split into a sum of two inexpressible parts,
one a major, the other a minor. Note, that thereby h = k + h' is cut in ex-
treme and mean ratio, just like the diagonal d. Note also that the major k
and the minor h'  (with respect to s) are the greater and smaller parts,
respectively, of h. This may be a previously unobserved explanation of the
curious terms “major” and “minor”! (Compare with Knorr’s explanation
in BAMS 9 (1983), 49, that the origin of the term is that d + s is cut in ex-
treme and mean ratio with the major d and the minor s (with respect to r)
as the greater and smaller parts, respectively.)

It is now easy to compute also the area of the regular pentagon:

A = h · s/2 + 2 h' · d/2 = h · s/2 + 2 k · s/2
    = {sqs. (5 + 2 sqs. 5) + sqs. (5 + sqs. 5)/2} · sq. s/2.

Finally, the radius r can be computed, by use of the equation

r = sq. d / 2 h = {(3 + sqs. 5)/2 · sq. s} / {sqs. (5 + 2 sqs. 5)} · s} .

The situation described by this equation is not covered by El. X.112, a
proposition dealing only with the case of an expressible area applied to a
binomial straight line. Yet, it is clear that, in modern notations, 

sq.s / P (5 + 2 P 5) · s = {P (5 – 2 P 5) / P (25 – 20)} · s = P (5 – 2 P 5) / P 5 · s.

Therefore,

r = {(3 + P 5)/2 · P (5 – 2 P 5) / P 5} · s = P {(7+ 3 P 5)/2 · (5 – 2 P 5)/5} · s.

It follows that

r = sqs. {(5 + sqs. 5)/10· s}.

(Cf. the previous result in Fig. 7.3.1 thats = sqs.{(5 – sqs.5)/2} · r.)
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An alternative, and simpler way to compute r in terms of s is to start by
showing, by use of the diagram in Fig. 7.5.2, left, that

sq. 2 r – sq. s10 = sq. d,   with s10 = f · r,   f = s/d.

The details of the computation are left to the reader.

The computations above of d, h, k, h', and r in terms of smake use only
of metric algebra operations familiar to OB mathematicians (a quadratic
equation to compute f = (sqs.5 – 1)/2, the diagonal rule to compute h, k, h',
and a metric division to compute r). Therefore, all the mentioned straight
lines in the regular pentagon, as well as the area of the pentagon, could be
(and maybe were) computed by Babylonian mathematicians, although
probably only with suitable approximations for the square sides.

All the results obtained above can be found equally well by use of
methods more close to the methods used in the proof of El. XIII.11 The key
observation is that when s is the assigned expressible straight line, then the
straight line 

dm = d – s/2 = d' + s/2

plays the same role as the one played by the straight line 

pm = p – r/4 = p' + r/4

in the case when r is the assigned expressible straight line (Fig. 7.3.1).
Indeed, since d = s + d' is cut in extreme and mean ratio, it follows that (as
in El. XIII.1)

sq.dm = sq. (d – s/2) = sq. (d' + s/2) = 5 sq. s/2.

Therefore,

sq.d = sq. (dm + s/2) = 6 sq. s/2 + dm · s = (6 s/2 + 2 dm) · s/2,   and
sq.d' = sq. (dm – s/2) = 6 sq. s/2 – dm · s = (6 s/2 – 2 dm) · s/2.

Consequently (cf. Fig. 7.5.1),

sq.h = sq. d – sq. s/2 = (5 s/2 + 2 dm) · s/2,
sq.k = sq. s – sq. d'/2 = (5 s/2 + dm)/2 · s/2,
sq.h' = sq. s – sq. d/2 = (5 s/2 – dm)/2 · s/2.

Here it is easy to check that 5 s/2 + 2 dm and 5 s/2 + dmare fourth binomials
while 5 s/2 – dm is a fourth apotome. Therefore, it follows, again, that h
andk are majors, while h' is a minor, with respect to s.

Furthermore, since p = r/2 + p' is cut in extreme and mean ratio (see Fig.
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7.5.1), and since k = p + p' (see again Fig. 7.5.1), it follows that

k = 2 p – r/2 = 2 (p – r/4) = 2 pm.

Moreover,

sq.pm = sq. (p – r/4) = 5 sq. r/2   (Fig. 7.3.1).

Therefore,

sq.k = 4 sq. pm = 5 sq. r/2.

Now, since both h = k + h' andp = r/2 + p' are cut in extreme and mean
ratio, the triples h, k, h' andp, r/2, p' are proportional. Therefore,

sq.p = 1/5 sq. h = (5 s/2 + 2 dm)/5 · s/2‚
sq.r/2 = 1/5 sq. k = (5 s/2 + dm)/10 · s/2‚
sq.p' = 1/5 sq. h' = (5 s/2 – dm)/10 · s/2.

Consequently,p and r are majors, and p' aminor, with respect to s.

Easy alternative proofs of El. XIII.9-10 follow from the results ob-
tained above. Indeed, as shown by the triangle in Fig. 7.3.2, left, 

s10 : 2 r = s/2 : d,   so that s10 : r = s : d.

Therefore, as in El. XIII.9, the sum r + s10 is cut in extreme and mean ratio,
obviously with r as the greater part. Moreover,

sq.s10 + sq. d = sq. 2 r.

Therefore, as in El. XIII.10,

sq.r + sq. s10 = 5 sq. r – sq. d = (10 s/2 + 2 dm) · s/2 – (6 s/2 + 2 dm) · s/2 = sq. s.

7.6. Metric Analysis of the Regular Octagon

It is demonstrated by the existence of a clay tablet with a drawing of an
octagram with its diagonals (Fig. 7.8.2 below) that the Babylonians were
familiar with octagrams, and therefore probably also with octagons.
Hence, it may be of interest to make a metric analysis of the regular octa-
gon, in imitation of the metric analysis above of the regular pentagon.16

In the diagram in Fig. 7.6.1 below, s is the side of the octagon, e the

16. Note that also Vitrac, with a completely different approach to Elements X in his EA 3
(1998), suggests (op. cit., 73-86) that a study of straight lines in the regular octagon may
have played an important role in the prehistory of the Greek classification of inexpressible
straight lines.
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“first diagonal”, d the “second diagonal”, a the side of the arm of the in-
scribed octagram formed by all second diagonals, and r the radius of the
circumscribed circle. There is also an “inner octagon” circumscribed by all
the second diagonals in the given octagon, which together form an in-
scribed regular octagram. The straight lines in the inner octagon corre-
sponding to s, e, d, a, r are called s', e', d', a', r' .

It is easy to see in Fig. 7.6.1 that the side a of a arm of the octagram is
also the side of a (half) square with the diagonal s. Therefore,

sq.s = 2 sq. a,   sq. (2 a) = 2 sq. s.

The second diagonal d can be expressed in terms of the sides s and a:

d = 2 a + s so that d = (sqs. 2 + 1) · s.

It is easy to see in Fig. 7.6.1 also that s = a + a', and that a = s' + a'. There-
fore, the pair s', a' depends linearly on the pair s, a:

s' = 2 a – s , a' = s – a so that s' = (sqs. 2 – 1) · s, a'= (2 – sqs. 2)/2 · s.

Henced is a binomial, and s' anda' apotomes, with respect to s.
Conversely, the pair s, a depends linearly on the pair s', a':

s = 2 a' + s', a = s' + a' so that s = (sqs. 2 + 1) · s' ,  a = (2 + sqs. 2)/2 · s'.

Fig. 7.6.1.  Straight lines in the regular octagon.

Evidently, all straight lines in the octagon parallel to one of the sides of
the octagon (in particular, all segments of the second diagonals) can be ex-
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pressed as linear combinations of s and a. This means that they can be
computed as sums or differences of (integral) multiples ofs and a.

In contrast to this, segments of the diameters or first diagonals of the
regular octagon depend in a more complicated way on s and a. Consider,
for instance, the radius r of the given octagon, and the radius r' of the inner
octagon. The characteristic right triangle in Fig. 7.6.2. left has these
segments as orthogonal sides and the segments 2 a and s/2 as the diagonal
and the altitude against the diagonal, respectively. (Cf. Fig. 7.3.2.)

Fig. 7.6.2.  A quadratic-rectangular system of equations for r and r’ in terms of s and a.

From this observation it follows at once that 

sq.r + sq.r'  = sq. (2 a) = 2 sq. s (by the diagonal rule),

r · r'  = a · s (both rectangles equal to twice the area of the triangle).

Therefore,r and r' are solutions to a “quadratic–rectangular” system of
equations of type B5, with data depending on s and a. Cf. Sec. 5.4 above,
and in particular, the first diagram in Fig. 5.4.1, which is the metric algebra
equivalent of the diagram in El. X.33. The solutions can be obtained direct-
ly from the diagram, in view of the lemma El. X.32/33:

sq.r = (a + s/2) · 2 a = (s + a) · s,   where s + a   is a fourth binomial w. respect to s,
sq.r' = (a – s/2) · 2 a = (s – a) · s,   where s – a   is a fourth apotome w. respect to s.

In other words, 

r = sqs. {(s + a) · s} = sqs. (2 + sqs. 2)/2 · s,
r' = sqs. {(s – a) · s} = sqs. (2 – sqs. 2)/2 · s,

Obviously, then, r is a major, and r' a minor, with respect to s.

Now, consider instead the first diagonals e and e' in Fig. 7.6.1. Clearly,

sq.e = 2 · sq. r,   and   sq. e' = 2 · sq. r'.
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Therefore,

e = sqs. {(2 s + 2 a) · s} = sqs. (2 + sqs. 2) · s,

e' = sqs. {(2 s – 2 a) · s} = sqs. (2 – sqs. 2)/2 · s.

On the other hand, e = r + r' and e' = r – r'. Therefore, 

sqs. {(2 s + 2 a) · s} = e = r + r' = sqs. {(s + a) · s} + sqs. {(s – a) · s} ,

sqs. {(2 s – 2 a) · s} = e' = r – r' = sqs. {(s + a) · s} – sqs. {(s – a) · s} .

Explicitly,

sqs. (2 + sqs. 2) · s = sqs. (2 + sqs. 2)/2 · s+ sqs. (2 – sqs. 2)/2 · s,

sqs. (2 – sqs. 2) · s = sqs. (2 + sqs. 2)/2 · s – sqs. (2 – sqs. 2)/2 · s.

This means that the major e = sqs. (2 + sqs. 2) · s with respect to s can be
split into a sum of two inexpressible parts r + r', one a major, the other a
minor, in the same way as the height h in the pentagon is a major with re-
spect to s which can be split into a sum of inexpressible parts k + h', one a
major, the other a minor (see Sec. 7.4 above).

Consider now the case when the radius r, rather than the side s, is the
“assigned” straight line in the octagon. Evidently, all straight lines in the
octagon parallel to one of the diameters or one of the first diagonals can
be expressed as linear combinations of e and r. This means that they can
be computed as sums or differences of (integral) multiples ofe and r.

In contrast to this, straight lines in the octagon parallel to the sides of
the octagon depend in a more complicated way on e and r. Consider, in
particular, the second diagonal d and the side s of the octagon. The char-
acteristic triangle for d and s (Fig. 7.6.2, right) has these segments as
orthogonal sides and the segments 2 r and e/2 as the diagonal and the alti-
tude against the diagonal, respectively. From this observation it follows at
once that 

sq.d + sq.s = sq. (2 r), d · s = e · r

The situation in Fig. 7.6.2, right, is clearly a perfect parallel to the
situation in Fig. 7.6.2, left. Therefore, the same arguments as above, with
obvious modifications, can be used to show that, for instance,

d = sqs.{(2 r + e) · r},     s = sqs. {(2 r – e) · s},   and so on.

Evidently, the metric analysis above of the octagon is to a large part
parallel to the corresponding metric analysis of the pentagon, only consid-
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erably simpler. It is also clear that a metric analysis of this kind, possibly
for the pentagon, but more obviously for the octagon, would have been
well within the competence of OB mathematicians!

7.7. Equilateral Triangles in Babylonian Mathematics

In El. XIII.12, the side of an equilateral triangle is expressed in terms
of the radius of the circumscribed circle as follows (see Fig. 7.2.2, left):

sq.s = sq. 2 r – sq. r = 3 sq. r.

In Babylonian mathematics, on the other hand, the side s was the main
parameter of an equilateral triangle. Other parameters were expressed in
terms of the side. Thus, Babylonian mathematicians computed the height
h and the area A of an equilateral triangle as follows (see Fig. 7.2.2, right):

sq.h = sq. s– sq. s/2 = 3 sq. s/2, h = sqs. 3 · s/2,
A = h · s/2 = sqs. 3 · sq. s/2 = (sqs. 3)/4 · sq. s.

No Babylonian mathematical text is known where the radius r of the cir-
cumscribed circle is computed in terms of the side, but clearly

r = 2/3 · h = (sqs. 3)/3 · s.

A curious name for an equilateral triangle appears in the OB table of
constantsG = IM 52916 (Goetze, Sumer 7 (1951)):

sag.kak-kum A peghead (triangle), 

$a sa-am-na-[tu na]-ás-‹a the one with an eighth torn out,

26 15  [i-gi-gu-bu-$u] 26 15 its constant. G rev. 7’

The curious name refers to the fact that the height h of an equilateral
triangle with the side s can be given in the form

h = sqs. 3 · s/2 = (appr.) 7/4 · s/2 = 1;45 · s/2 = ;52 30 · s = (1 – ;07 30) · s = s – 1/8 · s.

Correspondingly, the area A of an equilateral triangle with the side s is 

A = h · s/2 = (appr.) ;52 30 · s/2 = ;26 15 (7/16) · sq. s.

It is interesting that the same way of computing the height of an equi-
lateral triangle is employed also in the Kassite (post-Old-Babylonian)
mathematical text MS 3876 (Sec. 8.3 below). Even more interesting is that
the method was still known in the Late Babylonian period, somewhat after
the middle of the 1st millennium BCE. This is shown by a passage in the
Late Babylonian mathematical text W 23291 (Friberg, BaM 28 (1997)):
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W 23291 § 4 b

1 gán.sag.kak ur.a 1 peghead-field, equilateral, 
$a 8-$ú na-as-‹u the one with an 8th torn out.
mi-‹i-il-tú a.rá ki.2 ù Stroke steps of ditto, and 
a.rá 2[6 1]5 du steps of 26 15 go.

1 u$ a.an ur.a 1 length each way, equilateral,
‹é en a$a5.ki.‹á What shall the field be?
1 a.[rá 1 1] 1 steps of 1 (is) 1.
[1] a.[rá] [2]6 15 du-ma 26 15 1 steps of 26 15 go, then 26 15
2è$e 3iku a$a5 2' iku a$a5 25 $ar 2 è$e  3 1/2 iku 25 $ar.

This text begins with a general method for the computation of the area
of an equilateral triangle. (Such explicit statements of a general method are
exceedingly rare in mathematical texts from the OB period.) Then follows
anexplicit example, preceded by an illustrating diagram. Essentially, the
method is identical with the one given in the OB table of constants G, rev.
7´ . Note, however, the introduction of the new term ‘stroke’, possibly
meaning ‘straight line’! Thus, ‘stroke steps of ditto’ means ‘the straight
line times itself’, which here apparently stands for sq. S. (In the preceding
exercise § 4 a, ‘where the area of a symmetric triangle is computed, the
similar phrase ‘stroke steps of stroke’ stands for the height times the front’,
that is for h · s.) There is also here a new term for the height, which is called
u$bùr, literally ‘the length of the depth’.

In the explicit example, the side of the equilateral triangle is ‘1 length’
= 1 00 ninda. The area is then computed as

1 (00) · 1 (00) ·;26 15 = 26 15 (sq. ninda)  = 2 è$e 3 1/2 iku 25 $ar.

Note that here the numerical result, 26 15 sq. ninda, is converted to the
otherwise abandoned Old Babylonian area measure, with 1 è$e = 6 iku,
1 iku = 100 $ar, and 1 $ar = 1 square ninda. This is one of several indi-
cations that Late Babylonian mathematicians attempted to continue the
traditions of Old Babylonian mathematics!
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7.8. Regular Polygons in Babylonian Mathematics

The following three entries in the OB table of constantsTMS 3 = BR,
Bruins and Rutten (1961), demonstrate that OB mathematicians were
familiar with regular polygons and possessed methods for the (approxi-
mate) computation of the area of such polygons:

1 40 igi.gub $à sag.5 1 40 the constant of a 5-front BR 26
2 37 30 igi.gub $à sag.6 2 37 30 the constant of a 6-front BR 27
3 41 igi.gub $à sag.7 3 41 the constant of a 7-front BR 28

The area of, for instance, a regular hexagon (a “6-front”), normalized
so that the length of each side is equal to ‘1’ (= 60), is here computed as
the sum of the areas of six equilateral triangles with the side ‘1’. Explicitly,

A6 = appr. 6 · ;26 15 · sq. 1 00 = 6 · 26 15 = 2 37 30,

where the following relatively good approximation is used:

sqs. 3 /4 = appr. {2 – 1/(2 · 2)} · 1/4 = 7/4 · 1/4 = 1;45 ·1/4 = ;26 15.

The value in this OB table of constants for the area of a normalized
regular pentagon was, apparently, obtained as follows. If the side of the
pentagon is ‘1’, then the circumference of the circumscribed circle is
approximately equal to 5 · 1 00 = 5 00. Consequently, the diameter of the
circle is approximately equal to ;20 · 5 00 = 1 40. The area of the regular
pentagon can therefore be computed as the sum of the areas of five
symmetric triangles with the base 100 and the side approximately equal to
1 40 · 1/2 = 50 (the radius of the circumscribed circle). The height in each
triangle is easily computed by use of the diagonal rule and is equal to 40.
Hence, the area of a normalized regular pentagon is:

A5 = appr. 5 · 30 · 40 = 5 · 20 00 = 1 40 00.

This result is recorded in the entry BR 26 as ‘1 40’.
Similarly, in the case of a normalized regular heptagon, the circumfer-

ence of the circumscribed circle is approximately equal to 7 00. The diam-
eter is then approximately equal to ;20 · 7 00 = 2 20, so that the radius will
be approximately equal to 1 10. The height can then be computed as 

h7 = sqs. (sq. 1 10 – sq. 30) = sqs. 1 06 40 = appr. 1 00 + 6 40/2 00 = 1 03;20. 

Hence, the area of a normalized heptagon is:

A7 = appr. 7 · 30 · 1 03;20 = 7 · 31;40 = 3 41;40 = appr. 3 41.
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TMS 2 (Bruins and Rutten (1961); Fig. 7.4.1 below) is a square clay
tablet with diagrams showing a 6-front on the obverse and a 7-front on the
reverse. Circumscribed circles appear to have been drawn by use of a com-
pass as an aid for the construction, then erased when they were no longer
needed. Only vague traces of the circles are now remaining.

Apparently, when the area of a normalized geometric figure was given
as an entry in an OB table of constants, it was silently understood that the
areas of similar geometric figures are proportional to the squares of their
basic lengths. In particular, in the case of an n-front with n = 3 (an equilat-
eral triangle), 4 (a square) 5, 6, or 7, the basic length clearly was the left-
most, or “upper”, side of the n-front. Now, on the obverse of TMS2, it is
indicated that the upper side of the figure is 30. The side of a normalized
6-front is 1 00, twice as much. Therefore, the area of the 6-front in the dia-
gram is only one fourth of the area of a normalized 6-front. Also, the area
of the “upper” equilateral triangle in the 6-front is one fourth of the area of
a normalized equilateral triangle, so that

A(triangle) = appr. 1/4 · 26 15 = 6 33;45.

This value is recorded inside the upper equilateral triangle. A third record-
ed number in the same diagram is 30 for the length of a radius. It is possible
that the area of the equilateral triangle was recorded on the broken off
piece of the clay tablet.

Fig. 7.8.1.  A '6-front' and a '7-front', with methods for the computation of their areas.

The length of the upper front of the 7-front on the reverse of TMS2 was
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also set equal to 30, although the number, probably inscribed close to the
leftmost side, is now lost. As a consequence, the length of the circumfer-
ence of the circumscribed circle was equal to approximately 7 · 30 = 3 30,
so that the diameter was approximately 1 10, and the radius 35. The area
of the 7-front could then be computed as the sum of the areas of 7 symmet-
ric triangles with the front 30 and the “length” 35. The notation 35 u$ ‘35,
the length’ is still readable close to one side of the upper triangle. 

The next step was to compute the approximate height of the upper
triangle as h7 = appr. ;30 · 1 02;30 = 31;40. (Why is explained below.) A
notation under the height of the upper triangle in the diagram, 

[31 40 d]al ‘31;40, the transversal’, 

is almost completely lost. Only the last half of the sign dal is preserved.
One would now expect to find the total area of the upper triangle or of

the whole 7-front recorded in the diagram. That is not the case. Instead one
finds a somewhat cryptic inscription, interpreted as follows by Robson in
MMTC (1999), 49:

[ nígin sag $à] The square of the front (the side) of

sag.7 a.na 4 te-%i-ip-ma the 7-front by 4 you repeat, then

$i-in-$é-ra-ti the twelfth 

ta-na-as-sà-a‹-ma you tear out, then 

a.$à the field (the area).

What this means is that the area of a 7-front (heptagon) can be computed as

A7 = appr.  4 · sq. s– 1/12 of 4 · sq. s = 4 · sq. s– ;20 · sq. s= 3;40 ·sq. s.

In other word, you get the area of the 7-front if you first multiply the square
of the front by 4, then reduce the result by a twelfth of its value. This com-
putation rule is a handy variant of the more formal computation rule

A7 = sq. s · 3;40.

(Compare with the entry ‘3 41 the constant of a 7-front’ in BR 28).

Another indication that OB mathematicians were interested in regular
polygons is a drawing on the roughly shaped hand tablet IM 51979 (Fig.
7.8.2 below; published here by courtesy of F. Al-Rawi).

The drawing shows an octagram, formed by all the “second diagonals”
of a regular octagon (cf. Fig. 7.6.1 above). Included in the drawing are also
all the diameters of the octagram, which are also diameters of the regular
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octagon. Note that the whole octagram can be drawn with a continuous
movement of the stylus, just like a pentagram (Fig. 7.4.1 above).17

Fig. 7.8.2.  IM 51979. An Old Babylonian drawing of an octagram with its diagonals.

7.9. Geometric Constructions in Mesopotamian Decorative Art

Interest in complicated geometric configurations arose early. It is, for
instance, well known that there are many examples of appealing geometric
patterns in decorative art from various periods in the history of Meso-
potamia. A few particularly intriguing examples will be shown below.

The seven drawings in Figs.7.3.1-2 below, all reproduced from
Legrain,UE 3 (1936), are copies of seal imprints on various objects of clay
from the ancient city Ur, excavated from layers below the famous royal
cemetery at Ur, and dated by Legrain to the proto-Sumerian Jemdet Nasr
period in Mesopotamia, around the beginning of the 3rd millennium BCE.

The first of the drawings,UE 3, 78, is a picture of conjugate pairs of
hyperbolas, complete with asymptotes and diameters. No attempt will be
made here to explain the presence of this design in an archaic seal imprint.

Less surprising are the examples of drawings of pentagrams in UE 3,
105, 227, 398. The eight-petalled rosette or eight-pointed star, as in UE 3,
286 and UE 3, 393, can be found as one of the details in many of the seal
imprints copied in UE 3.

17. An unpublished OB hand tablet from Haddad is inscribed with an octagram formed by
all the “first diagonals” of a regular octagon, and its four diameters (Farouk Al-Rawi,
personal communication). The octagram is depicted in Appendix 2 below, Fig. 1 g,6.

3 cm
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Fig. 7.9.1.  Copies of seal imprints from layers below the royal cemetery at Ur.

UE 3, 78

UE 3, 284 UE 3, 227

UE 3, 274

UE 3, 105
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Fig. 7.9.2.  Additional copies of seal imprints from layers below the royal cemetery at Ur.

UE 3, 393

UE 3, 398

UE 3, 286
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Snakes in various configurations was another common motive. In
UE 3, 284, the geometric design behind the snake motive may have been
a rectangle with its diagonals.

Similarly, the geometric design behind the figure of two entangled
acrobats in UE 3, 274 and UE 3, 286 may have been a concave square
such as the one depicted in Fig. 6.2.6 above. See the attempted explanation
in Fig. 7.9.3 below.

Fig. 7.9.3.UE 3, 274, 286. Attempted explanation of the figure of two entangled acrobats.

The central motive in UE 3, 393 is four entangled acrobats. The geo-
metric design behind this motive may have been a ring of four right trian-
gles, like the one depicted in Fig. 2.4.1, left, above. See Fig. 7.9.4 below.

Fig. 7.9.4.UE 3,393. Attempted explanation of the figure of four entangled acrobats.

UE 3, 398 (Fig. 7.9.2, bottom) is a seal imprint with a very complex
design, maybe an imprint of a royal seal. The design is a mix of several
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proto-cuneiform signs (among them a pentagram), probably spelling the
names of several important cities, and three “wind-mills” of the same type
as the four entangled acrobats in UE 3, 393 (Fig. 7.9.4 above). One of the
wind-mills is composed of two human heads and two ox heads. The second
wind-mill seems to be composed of four human legs, and the last wind-
mill (which also appears in several other seal imprints published in UE 3)
seems to be composed of two tools of some kind and two animal legs.

The seal imprint UE 3 , 518 (Fig. 7.9.5 below), contains a brief cunei-
form inscription, mentioning the name of Mesannepada, a king of the First
Dynasty of Ur. (This seal imprint is from a layer immediately above the
royal cemetery at Ur (c. 2600 BCE).) 

Fig. 7.9.5.UE 3, 518. An imprint of the royal seal of Mesannepada.

Below the cuneiform inscription on UE 3, 518, there is a wind-mill
design in the form of 4 entangled men armed with knives. The underlying
geometric design may be a concave square with its diagonals and its cir-
cumscribed square, as shown in Fig. 7.9.6 below.

Another example, in Fig. 7.9.7 below, is not a seal imprint but a a small
marble plaque (apparently a mold) from Old Babylonian Babylon adorned
with five intricately entangled bearded men (VA 5953; Andrae, BPK 58
(1937)). The underlying mathematical design is clearly a pentagram
enclosing a central regular pentagon.

The twelve-pointed star shown in Fig. 7.9.8, finally, is a copy of a draw-
ing in the Seleucid astrological text O 176 (Thureau-Dangin, TCL 6
(1922), text 13; see the commentary in Rochberg-Halton, ZA 77 (1987)).
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Fig. 7.9.6.  Attempted explanation of the figure of four entangled armed men.

Fig. 7.9.7.  VA 5953. An Old Babylonian mold showing a pentagram of bearded men.



Fig. 7.9.8.  O 176. A twelve-pointed star with inscribed and circumscribed circles, month 
names and planet (or god) names. The astrological meaning of this diagram is unknown.
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Chapter 8

El. XIII.13-18 and Regular
Polyhedrons in Babylonian Mathematics

8.1. Regular Polyhedrons in Elements XIII

Four of the five regular polyhedrons are defined in El. XI.Defs. 25-28:

25 A cube is a solid figure bounded by six equal squares.

26 An octahedron is a solid figure bounded by eight equal and equilateral triangles.

27 An icosahedron is a solid figure bounded by twenty equal and equilateral triangles.

28 A dodecahedronis a solid figure bounded by twelve equal, equilateral, and equi-
angular pentagons.

To these definitions should be added the omitted definition

··· A tetrahedronis a solid figure bounded by four equal and equilateral triangles.

There is no further mention of polyhedrons (other than the cube) in El. XI.
Book XIII of Euclid’s Elements, however, contains 6 propositions con-
cerned with regular polyhedrons inscribed in spheres (XIII.13-18).

An Outline of the Contents of El. XIII.13-18

13 To construct a tetrahedron (a ‘pyramid’) inscribed in a given sphere, and to prove that
the square on the diameter of the sphere is one and a half times the square on the edge
of the tetrahedron.

14 To construct an octahedron inscribed in a given sphere, and to prove that the square
on the diameter of the sphere is two times the square on the edge of the octahedron.

15 To construct a cube inscribed in a given sphere, and to prove that the square on the
diameter of the sphere is three times the square on the edge of the cube.

16 To construct an icosahedroninscribed in a given sphere, and to prove that the edge 
of the icosahedron is a minor.
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17 To construct a dodecahedroninscribed in a given sphere, and to prove that the edge
of the dodecahedron is an apotome.

18 To set out the edges of the five regular polyhedrons, and to compare them with each
other.

There is also a postscript to El.XIII.18  saying that 
No other figure, besides the mentioned five figures, can be constructed which is
bounded by equilateral and equiangular figures equal to one another.

Fig. 8.1.1.  The five regular polyhedrons.

Note: In El.XIII.13-15, the diameters of the spheres circumscribed around
a regular tetrahedron, octahedron, or cube (hexahedron) are shown to be
expressiblein terms of the edges of the figures. In El.XIII.16 -17, on the
other hand, the edges of a regular icosahedron and dodecahedron are
shown to be inexpressible in terms of the diameters of the circumscribed
spheres. A possible explanation for this lack of consistency may be that in
a now lost precursor to Euclid’s Elements the diameters of the circum-
scribed spheres for all the five regular polyhedrons had been expressed in
terms of the edges of the figures, following the Babylonian tradition!

In El. XIII.12  it is shown (see Fig. 7.2.2 above) that the square of the
side of an equilateral triangle inscribed in a circle is 3 times the square on
the radius of the circle. Therefore, if the diameter of the circle is express-
ible, then also the side of the inscribed equilateral triangle is expressible.
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This result is used in El. XIII.13 to show a result which (silently) implies
that if the diameter of a given sphere is expressible, then also the edge of
an inscribed ‘pyramid’, meaning a regular tetrahedron, is expressible. 

The proof of El.XIII.13 is purely synthetic, as are also the proofs of
El.XIII.14-17. The proof begins with the ‘setting out’ of the diameter AB
of the given sphere (Fig. 8.1.2, left), cut at the point C so that AC = 2 BC.
In the circle with AB as diameter, the perpendicular CD is erected, and the
straight line DA is drawn. 

Fig. 8.1.2.El. XIII.13. Construction of a regular tetrahedron inscribed in a given sphere.

Next a circle with the radius CD is drawn, and an equilateral triangle
EFG is inscribed in the circle (Fig. 8.1.2, right). From the centre H of the
circle, a perpendicular HK equal to AC is erected, and the straight lines
KE, KF, KG are drawn, clearly all equal to DA.

Now, since AC = 2 BC, it follows that AB = 3 BC, and therefore 

sq. AD : sq. DC = AB · AC : AC · BC = AB : BC = 3 : 1,   so that   sq. AD = 3 · sq. DC.

This follows easily from, for instance, Lemma El.X.32/33 (Sec. 4.1
above). Since also sq. FE = 3 · sq. EH, according to XIII.12 (Fig. 7.2.2),
and EH = DC, it follows that EF = AD, and then also FG = AD, and GE =
AD. Hence, a regular tetrahedron has been constructed with the side AD.

The next step of the proof is to continue KH with a straight line HL
equal to CB. It is then easy to show that a semicircle with the diameter KL
passes through E. When this semicircle is rotated around its diameter, it
generates a sphere passing through all the vertices of the tetrahedron. 

The diameter KL of the sphere is equal to AB, and BA : AC = 3 : 2.

F G
L

H

EK

A C B

D AB = D
AC = 2 CB
Ç sq. AD = 3 sq. DC
EH, etc. = r = DC
HK = h = AC
KE, etc. = AD
Ç EF, etc. = KE = s
KL = AB = D
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Therefore,

sq. BA : sq. AD = BA : AC = 3 : 2.

Since BA is the diameter of the sphere and AD is the edge of the inscribed
tetrahedron, it follows that the diameter of the given sphere is one and a
half times the edge of the inscribed regular tetrahedron.

The straightforward analysis which must have preceded the synthetic
construction of a regular tetrahedron in El.XIII.13 is presented in Fig. 8.1.3
below, in metric algebra notations.

Fig. 8.1.3.  The missing analysis in El. XIII.13.

The synthetic proof of El. XIII.14  begins with the ‘setting out’ of the
diameter AB of the given sphere (Fig. 8.1.4, left), cut at the point C so that
AC = BC. In the circle with AB as diameter, the perpendicular CD is erect-
ed, and the straight line DB is drawn. 

Next, a square EFGH is drawn with the side s = DB. The center K of
the square is constructed as the point common to the diagonals of the
square, and two perpendiculars KM, KL, both equal to EK are drawn.
Joining M and L to the four vertices of the square EFGH completes the
construction of the octahedron.

Clearly, LM = AB = D. Hence, LM is equal to the diameter of the given
sphere, the constructed octahedron is inscribed in the given sphere, and
sq.D = 2 sq. s. Therefore, if the diameter of a sphere is expressible, then
also the edge of an inscribed regular octahedron is expressible.

ss
r r
s

h

k

D

h

sq.r = 1/3 sq. s
sq.h = sq. s  – 1/3 sq. s = 2/3 sq. s
D : h = h · D : sq. h = sq. s : sq. h = 3/2
h = 2/3 · D, k = 1/3 · D, sq. D = sq. (3/2 · h) = 3/2 · sq.
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The analysis that must have preceded this synthetic construction is
simple and obvious, and will not be repeated here.

Fig. 8.1.4.El. XIII.14. Construction of a regular octahedron inscribed in a given sphere.

The synthetic proof ofEl. XIII.15  begins with the ‘setting out’ of the
diameter AB of the given sphere (Fig. 8.1.5, left), cut at the point C so that
AC = 2 BC. In the circle with AB as diameter, the perpendicular CD is
erected, and the straight line DB is drawn. 

Fig. 8.1.5.El. XIII.15. Construction of a cube inscribed in a given sphere.

A cube FN is constructed with the side s = DB (Fig. 8.1.5, right), and
the diagonals EG, KG are drawn. It is shown that a sphere with the diam-
eter KG will pass through all the vertices of the cube. On the other hand, 

sq. EG = sq. GF + sq. FE = 2 sq. EF = 2 sq. s,   and
sq. KG = sq. GE + sq. EK = 3 sq. EF = 3 sq. s= 3 sq. DB = sq. AB = sq. D.

Therefore, KG = D, so that the cube is inscribed in the given sphere, and
sq.D = 3 sq. s. Therefore, if the diameter of a sphere is expressible, then
also the edge of an inscribed cube is expressible.

The analysis that must have preceded this synthetic construction is
again simple and obvious, and will not be repeated here.

A BC

D E

F G
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AB = D
AC = CB
Ç sq. AB = 2 sq. BD
EF, etc. = s = BD
KM, KL = EK
Ç LE, etc. = EF = s
LM = AB = D

A BC

E H
NK

L M
GF

D

AB = D
AC = 2 CB
Ç sq. AB = 3 sq. BD
EF, FG, etc. = s = BD
EK, HN, etc. = EF = s
Ç sq. EG = 2 sq. s
Ç sq. KG = 3 sq. s = 3 sq. BD
Ç KG = AB = D



176 Amazing Traces of a Babylonian Origin in Greek Mathematics

In El. XIII.16 , the synthetic construction of a regular icosahedron in-
scribed in a given sphere begins with the ‘setting out’ of the diameter AB
of the given sphere (Fig. 8.1.6, right), cut at the point C so that AC = 4 CB.
It is shown that the square on the diameter of the sphere is five times the
square on the radius of the circle circumscribed around the pentagonal base
of the top pyramid. Therefore it follows from XIII.11 that the edge of an
icosahedron inscribed in a sphere is a minor, if the diameter of the sphere
is an expressible straight line.

Fig. 8.1.6.El. XIII.16. Construction of an icosahedron inscribed in a given sphere.

The complicated details of the synthetic construction in El.XIII.16 will
not be discussed here. Instead, the form of the analysis that must have pre-
ceded the synthesis will be demonstrated. This analysis makes use of nota-
tions in the style of metric algebra, with reference to a simpler diagram
(Fig. 8.1.7), based on the diagram in Heath, ETBE 3 (1956), 487.

The analysis starts with the “top” of the icosahedron, a pyramid with a
regular pentagon as base, and with five equilateral triangles as inclined
faces. Let s be the edge of a face of the icosahedron, which is also the side
of one of the equilateral triangular faces and the side of the pentagon, let
r5 be the radius of a circle circumscribed around the pentagon, and let h be
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the height of the pentagonal pyramid. Then 

sq.h = sq. s – sq. r5 = sq. s10,   so that h = s10 [XIII.10]

Fig. 8.1.7.  The missing analysis in El. XIII.16.

According to the diagram in Fig. 8.1.7, the “bottom” of the icosahedron
is an inverted pentagonal pyramid, with its pentagonal base a certain dis-
tancek directly under the pentagonal base of the top pyramid, but rotated
a tenth of a full circle. Therefore, the vertical projections of the vertices of
the upper pentagonal base onto the plane of the lower pentagonal base can
be identified with the five vertices of a decagon, situated halfway between
the vertices of the lower pentagon. It follows that 

sq.k = sq. s – sq. s10, = sq. r5,   so that k = r5 [El. XIII.10]

Consequently, the sphere circumscribed around the icosahedron has the
diameter

D = k + 2 h = r5 + 2 s10.

It is clear from a look at the characteristic triangle for a pentagon in Fig.
7.3.2, left, that s10/(2 r) = (s5/2)/d5 = ¯/2. Therefore [XIII.9], the sum k + h
= r5 + s10 is cut in extreme and mean ratio, with k = r5 as the greater part.
Consequently,

sq.D/2 = sq. (k/2 + h) = 5 sq. k/2 = 5 sq. r5/2,   so that   sq. D = 5 sq. r5 [El. XIII.3]

The precise relationship between the edge s of the icosahedron and the

r

sq.h = sq. s5 – sq. r5
Ç [XIII.10]
h = s10

sq.k = sq. s5 – sq. s10
Ç [XIII.10]
k = r5

k + h = r5 + s10
Ç [XIII.9]
k + h cut in extreme and mean ratio
Ç [XIII.3]
sq.D/2 = q. (k/2 + h) = 5 sq. k/2 = 5 sq. r5/2
Ç
sq.D = 5 sq. r5, D = k + 2 h = r5 + 2 s10
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diameterD of the circumscribed sphere is described by the equations

s = sqs. (5 – sqs. 5)/2 · D / sqs. 5 = sqs. (5 – sqs. 5)/10 · D (cf. Fig. 7.3.1)

(showing that s is a minor with respect to D), and

D = sqs. (5 + sqs. 5)/10 · s · sqs. 5 = sqs. (5+ sqs. 5)/2 · s (cf. Fig. 7.5.1)

In El. XIII.17 , finally, is constructed a regular dodecahedron inscribed
in a given sphere. The basic idea of the construction is the observation that
suitably selected diagonals of the 12 pentagonal faces of an dodecahedron
can be identified with the 12 edges of an inscribed cube (Fig. 8.1.8). It is
shown that the cube and the icosahedron can be inscribed in the same
sphere. Therefore, since the edge of the cube is expressible with respect to
the diameter of the circumscribed sphere [El. XIII.15], it follows that also
the diagonal of the pentagonal face is expressible. Now, the diagonal of a
pentagon is cut in extreme and mean ratio, with the greater of the two parts
equal to the side of the pentagon [El. XIII.9]. Moreover, the greater part of
a straight line cut in extreme and mean ratio is an apotome with respect to
the whole straight line [El. XIII.6]. It follows from a combination of these
results that the edge of a dodecahedron inscribed in a given sphere is an
apotome with respect to the diameter of the sphere.

The complicated details of the synthetic construction in El. XIII.17 will
be discussed later. First, the form of the analysis that must have preceded
the synthesis will be demonstrated here. This analysis makes use of nota-
tions in the style of metric algebra, with reference to a simpler diagram
(Fig. 8.1.8), based on the diagram in Heath, ETBE 3 (1956), 499.

In the diagram in Fig. 8.1.8, one of the diagonals of a pentagonal face
of a dodecahedron is shown to coincide with one of the edges of an in-
scribed cube. Three orthogonal planes divide the cube into eight smaller
cubes, all with the edge d/2, where d is the length of a diagonal in the pen-
tagon. Now, it is easy to see that all those vertices of a pentagonal face of
the dodecahedron, which are not simultaneously vertices of the inscribed
cube, have the same distance to the nearest face of the cube. Let that com-
mon distance be called a. The size of a can be computed as follows,
through an application of the diagonal rule in three dimensions:

sq.s = sq. a + sq. d'/2 + sq. d/2 Ç [El. XIII.4]    sq. s = sq. a + 3 sq. s/2
Ç sq.a = sq. s/2 Ç a = s/2.
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Fig. 8.1.8.  The missing analysis in El. XIII.17.

Next, the distance R from the centre of the inscribed cube to one of the
vertices of the icosahedron which are not also a vertex of the cube can be
computed as follows:

sq.R = sq. s/2 + sq. (s + d)/2 Ç [El. XIII.4]    sq. R = 3 sq. d/2.

(Indeed, if s and d are the side and the diagonal of a regular pentagon, then
the sum s + d is cut in extreme and mean ratio, with d as the greater part.)
On the other hand, another application of the diagonal rule in three dimen-
sions shows that if D/2 is half the interior diagonal of the cube, then

sq.D/2 = sq. d/2 + sq. d/2 + sq. d/2 = 3 sq. d/2 (cf. El.XIII. 15)

Therefore,R = D/ 2. Consequently, D/2 is the distance from the centre of
the inscribed cube to all vertices of the dodecahedron, whether they coin-
cide with a vertex of the cube or not. This means that the cube and the
dodecahedron are inscribed in the same sphere, and that if D is the diame-
ter of the sphere and d the diagonal of a pentagonal face of the dodecahe-
dron, then sq. D = 3 sq. d. Consequently, if D is expressible then d is also
expressible. On the other hand, if the diagonal d is expressible, then the
sides of the pentagon is an apotome [El. XIII.6]. Since the side of a penta-
gonal face of the dodecahedron is also an edge of the dodecahedron, it
follows that each edge of a dodecahedron is an apotome with respect to the
diameter of the circumscribed sphere.

d'/2

s/2

d/2

sq.s = sq. a + sq. d'/2 + sq. d/2
Ç [XIII.4]
sq.s = sq. a + 3 sq. s/2
sq.a = sq. s/2 
a = s/2

sq.R = sq. s/2 + sq. (s + d)/2
Ç [XIII.4]
sq.R = 3 sq. d/2 = D/2
sq. 2 R = 3 sq. d = sq. D

d/2

s a

R

D/2

d/2
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Explicitly,

s = (sqs. 5 – 1)/2 · D / sqs. 3 = (sqs. 15 – sqs. 3)/6 · D

and

D = (sqs. 5 + 1)/2 · s · sqs. 3 = (sqs. 15 + sqs. 3)/2 · s.

Fig. 8.1.9.El. XIII.17. Construction of a dodecahedron inscribed in a given sphere.

In the synthetic proof of El. XIII.17, it is notable that Euclid makes a
somewhat uncongenial use of the two propositions El. VI.32 and El.
XIII.7. The first of these propositions is used to prove that after the explicit
construction of an equilateral pentagon as in Fig. 8.1.9 below, the penta-
gon is in one plane. However,El. VI.32 is more general than what is need-
ed for the purpose. Since the triangles XPH and HTW are right triangles
all that is needed to show that XHW are in a right line (and that therefore
the pentagon is in one plane) is the observation that s/2 : d/2 = d'/2 : s/2.
This relation, follows from the fact that the sum d = s +d' is cut in extreme
and mean ratio, with s as the greater part.

El. XIII.7 says that “If three angles of an equilateral pentagon are equal,
then the pentagon is equiangular”. Euclid starts by showing, by use of an
application of the diagonal rule in three dimensions, that BV = BC (see
again Fig. 8.1.9), and that therefore the angle BUV is equal to the angle
BWC. Then also the angle CVU must be equal to the angle CWB. Next,
he makes use of El. XIII.7 to show that all five angles in the pentagon are
equal. However, he could equally well have shown, by another use of the

XHW is a straight line segment because 
XP : PH = s/2 : d/2 = d'/2 : s/2 = HT : TW. 

sq. BV = sq. s/2 + sq. (s + d)/2 + sq. d/2
Ç [XIII.4]
sq. BV = 4 sq. d/2 = sq. d, BV = d.

sq. UW = sq. s/2 + sq. d/2 + sq. (s + d)/2
Ç [XIII.4]
sq. UW = 4 sq. d/2 = sq. d, UW = d.
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diagonal rule in three dimensions, that UW = BC, from which it follows
that the angle UBW is equal to the angle CWB. And so on.

Conclusion

In the detailed investigation above of Elements XIII.13-17, Euclid’s
synthetic constructions are complemented by analytic procedures
expressed in the style of metric algebra. The unexpected result of the in-
vestigation is that all the procedures needed for the computation of various
crucial parameters of the five regular polyhedrons probably was within the
competence of Old (and Late?) Babylonian mathematicians, with the
possible exception of the drawing of accurate diagrams, such as the ones
in Figs. 8.1.6-9. (Known OB drawings of three-dimensional objects are of
notoriously poor quality. However, nothing is known about the quality of
corresponding drawings presumably made by Late Babylonian mathema-
ticians.) Only the completely superfluous use of El. VI.32 and El. XIII.7 in
the proof of El. XIII.17 is beyond the horizon of Babylonian mathematics!

Note that it is now known that the kind of application of the diagonal
rule in three dimensions which plays such a prominent role in the construc-
tion of a dodecahedron in El. XIII.17 is documented in a mathematical
cuneiform text. That text is the object of discussion in Sec. 8.2 below.

8.2. MS 3049 § 5. The Inner Diagonal of a Gate

MS 3049 (Friberg, RC(2007), Sec. 11.1) is a small fragment of a large
cuneiform mathematical recombination text. It is either late OB or post-
Old-Babylonian (Kassite). According to a post-script, which luckily is
preserved on what remains of the reverse of the clay tablet, the text origi-
nally contained 6 problems for circles (of which one is preserved on the
obverse of the fragment), 5 problems for squares, 1 for a triangle(?), 3 for
‘brick molds’, and 1 for an ‘inner diagonal of a gate’ ( preserved on the re-
verse of the fragment). Here is a translation of the text of the preserved last
problem:

MS 3049 § 5, literal translation explanation

If the inner cross-over (diagonal) Compute the inner diagonal of a gate
of a gate he shall do, Its height is
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5 cubits, 25, and 10 fingers, 1 40, 5 cubits = ;25 ninda  and
the height of the gate. 10 fingers = ;01 40 ninda
x   x   x   x   x the table, According to the x x x table
to this one 20 and x   x   x   x enter, and x x x x x it follows that
then this 26 40, 8 53 20 the width, and when ;26 40 n. is the height, then
6 40, the thickness of the wall, you see. ;08 53 20 n. is the width, and
26 40, the height of the wall, let eat itself, ;06 40 n. the thickness of the wall
then 11 51 06 40 you see. sq. ;26 40 = ;11 51 06 40
8 53 20, the width of the gate, let eat itself, sq. ;08 53 20 
then 1 19 … 44 26 40 you see. = ;01 19 00 44 26 40
6 40, the thickness of the wall, let eat itself, sq. ;06 40 
then 44 26 40 you see. = ;00 44 26 40
Heap them, 13 54 34 14 26 40 you see. The sum of the squares is 
Its likeside let come up, ;13 54 34 14 26 40
then 28 53 20 you see The square side is ;28 53 20 
(for) the gate of height 26 40. (the diagonal) for a gate of height 26 40
So you do it. Compute like this

Note that the problem text is not accompanied by any illustrating diagram.
Anyway, the statement of the problem is clear: 

What is the ‘inner diagonal’ of a ‘gate’ with the height ;26 40 ninda?

Fig. 8.2.1.  MS 3049 § 5. Computation of the inner diagonal of a gate.

The solution procedure begins with the consultation of some mysteri-
ous mathematical table, according to which a gate with the height h = ;26

w

(a = ;02 13 20 n. = 1/27  n.)

t  = 3 a  = ;06 40 n.
w =  4 a  =  ;08 53 20 n.
d =   5 a       (the bottom diagonal) 
h = 12 a  = ;26 40 n.
D = 13 a  = ;28 53 20 n.

t

h

d

sq.t + sq. w  = sq. d
sq.d + sq. h = sq. D
Ç
sq.t + sq. w + sq. h = sq. D

D
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40 n. (= 5 cubits 10 fingers) has the width w = ;08 53 20 n. (= 1 cubit 23 1/
3 finger), and the ‘thickness’ (which is also the thickness of the wall in
which the gate is situated) t = ;06 40 n. (= 1 cubit 10 fingers). Unfortunate-
ly, the text is broken just where it presumably describes what kind of math-
ematical table is meant here and how it is used. 

It is clear, anyway, that the inner diagonal D of the gate is computed
through an application of the diagonal rule in three dimensions:

sq.D = sq. h + sq. w + sq. t = ;11 51 06 40 + ;01 19 00 44 26 40 + ;00 44 26 40 
         = ;13 54 34 14 26 40 (sq. n.) = sq. (;28 53 20 n.).

The counting with cubits and fingers and “many-place” sexagesimal
numbers as in this text is typical for many Babylonian mathematical texts,
and reveals that the primary purpose of Babylonian education in mathe-
matics was to teach the students to master the complexities of counting
with sexagesimal numbers and with various traditional measures.

Actually, in the present case, the appearance of many-place sexagesi-
mal numbers is an example of a deliberately introduced difficulty hiding
the underlying simplicity of the data. Indeed, it is easy to check that

t = ;06 40 n. =   3 · ;02 13 20 n. where    ;02 13 20 = 1/27
w = ;08 53 20 n. =   4 · ;02 13 20 n.
h = ;26 40 n. = 12 · ;02 13 20 n.
D = ;28 53 20 n. = 13 · ;02 13 20 n.

The number quartet 3, 4, 12, 13 has the interesting property that

sq. 3 + sq. 4 + sq. 12 = sq. 13.

This “diagonal quartet” is constructed through composition of the two sim-
ple “diagonal triples” 3, 4, 5 and 5, 12, 13, in the following way:

sq. 3 + sq. 4 = sq. 5,   and   sq. 5 + sq. 12 = sq. 13Ç   sq. 3 + sq. 4 + sq. 12 = sq. 13.

In geometric terms, the computation in MS 3049 § 5 can be explained
as follows (see Fig. 8.2.1): First the square of the “bottom diagonal” d of
the gate is computed by use of the diagonal rule in two dimensions, as 

sq.d = sq. t + sq. w.

Then the square of the inner diagonal of the gate is computed through a
second application of the diagonal rule in two dimensions, as sq. 

D = sq. d + sq. h.

It still remains to explain how the square side of the many-place sexages-
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imal number sq. D = ;13 54 34 14 26 40 was computed. An answer to this
interesting question will be suggested in Sec. 16.7 below.

8.3. The Weight of an Old Babylonian Colossal Copper Icosahedron

MS 3876 (Friberg, RC (2007), Sec. 11.3) is a mathematical problem
text written with very small cuneiform signs on a clay tablet of a most un-
usual format. Also some of the mathematical terminology in this text is un-
usual and quite difficult to interpret. It is likely that the text is Kassite,
meaning post-Old-Babylonian, from the last half of the second millennium
BC. This makes the text unique of its kind. Also the mathematical content
of the text is highly unusual, as will be shown below.

Here is a tentative translation of the most important part of the text,
written on the lower half of the obverse of the clay tablet (Fig. 8.3.1):

MS 3876 # 3, literal translation explanation

x x x x the city wall x, a horn-figure, ?    An icosahedron
copper behind. made of copper(?)
x the copper x (is) what? Compute the weight of the copper
At the rim (periphery?) an arc (a ball?) A ball(?)
of gaming-piece-fields you see, then of equilateral triangles.
what xx you take, then Take one of them (?)
your ground (area) you see. and compute its area
Heap them, then that ground Add the areas
for 1 horn-figure, the copper behind (it), x, and compute the weight of the copper
So you do (it). Do it like this:
The reciprocal of 6, the constant, Compute the reciprocal of the
resolve, then 10. constant 6, it is 10
Steps of 1 30, the front of the city wall, 15. 1/6 of 1 30, the circumference (?) = 15
3 cubits each (the sides of) s = ;15 ninda  = 3 cubits is each side of 
one gaming-piece are equal. each equilateral triangle
If 3 cubits each (the sides of) a gaming-piece If 3 cubits is the side of each 
are equal, the volume (is) what? equilateral triangle, what is the volume?
Half (of) 15, the front, break, then 7 30. s/2 = ;15/2 = ;07 30
7 30 steps of 15, the second front, s · s/2 = ;07 30 n. · ;15 n. 
1 52 30, the halved. = ;01 52 30 sq. n. = (sq. s)/2
14 03 45, its eighth tear off, then 1/8 · (sq. s)/2 = ;00 14 03 45
1 38 26 15 (is) the ground (of) (1 – 1/8) (sq. s)/2 = ;01 38 26 15 =
one gaming-piece-field that you see. A (the area of one equilateral triangle)
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The gaming-piece-fields how many? How many equilateral triangles?
From 6, the constant, 1 tear off, The constant 6, minus 1
then 5 (is) the remainder. = 5
To 4 repeat (it), then 20. (6 – 1) · 4 = 5 · 4 = 20
20 gaming-piece-fields. There are 20 equilateral triangles
1 38 26 15 to 20 repeat, then 32 48 45, 20 A = 20 · ;01 38 26 15 sq. n.
1/2 $ar 2 2/3 gín 26 1/4 barleycorns. = ;32 48 45 sq. n. = ··· 
For 1 metal-covered horn-figure, How much copper in 1 
what is its copper? icosahedral shell?
32 48 45 times 2 (is) 1 05 37 30, V = 20 A · (1 finger) 
1 gín 16 1/2 1/4 barleycorns = ;32 48 45 sq. n. · ;02 cubit
and half 1/4 barleycorns (is) its volume. = ;01 05 37 30 sq. n. · c. = ··· 
1 05 37 30, its volume, V · 1 12 00 talents / sq. n. · c,
steps of 1 12, the constant of the copper, (is) the density of copper
1 18 45, the copper. = 1 18;45 talents of copper
Instead of its volume, Instead of counting with volume
1 cubit each the square side x x measure: The [weight of a sheet of]
for 1 metal-covered horn-figure, 1 sq. cubit [· 1 finger] of copper
1 talent, the copper in x x x x x x x x x, is 1 talent
in this copper x x x x x x x x x.

The exercise begins with the statement of the problem, which is quite
obscure due to damage to the text and the use of the previously unknown
terms ‘city wall’(?) and ‘horn figure’(?). Then follows a brief description
of the solution procedure to be used, namely to consider a ‘ball(?) of
‘gaming-piece fields’(?), to compute the area of each such field, to sum the
individual areas, and finally to compute the weight of the copper needed.

The solution procedure itself begins with the multiplication of the
length(?) 1 30 of the ‘city wall’(?) with the reciprocal 1/6 = ;10 of the con-
stant. The result is ‘15’, which is immediately explained as ;15 ninda =
3 cubits. (Remember that 1 ninda = 12 cubits = appr. 6 meters.) 

In the next step of the solution procedure, the area A of a ‘gaming-piece
figure’ with each side equal to 3 cubits is computed as

A = (1 – 1/8) · s · s/2 = (;01 52 30 – ;00 14 03 45) sq. n. = ;01 38 26 15 sq. n.

Evidently, therefore, gán.za.na ‘gaming-piece field’ is a Sumerian name
for ‘equilateral triangle’ (cf. Sec. 7.7 above), possibly because the profile
of some kind of gaming-piece may look like an equilateral triangle.
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Fig. 8.3.1.  MS 3876. Computation of the weight of a huge copper icosahedron.

The number N of such gaming-piece fields is computed as

N = (6 – 1) · 4,   where   6   is the ‘constant’ mentioned before.

The total area of N gaming-piece fields is then 

N · A = 20 · ;01 38 26 15 sq. n. = ;32 48 45 sq. n.

In Old Babylonian area measure notations, this total area is equal to

1/2 $ar 2 2/3 gín 26 1/4 barleycorn,   where   1 $ar = 1 sq. n., 1 gí n = 1/60 $ar, etc.

The last part of the computation begins by repeating the question 

‘How much copper is needed to cover 1 ‘horn figure’?

The computation begins by computing a volume V:

V = ‘32 48 45’ · ‘2’ = ‘1 05 37 30’ = 1 gín 16 1/2 1/4 1/2 · 1/4 barleycorns.

Now, in Old Babylonian volume measure notations,

1 $ar = 1 sq. n. · 1 cubit, 1 gín = 1/60 $ar, 1 barleycorn = 1/180 gín.
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Therefore, the computed volume must be equal to 

V = 1 gín 16 1/2 1/4 1/8 barley corns = ;01 05 37 30 sq. n. · 1 cubit.

SinceA = ;32 48 45 sq. n., it follows that 

‘2’ = ;02 cubit = 1/30 cubit = 1 finger (= appr. 1 2/3 cm).

In other words, V is computed as the total area 20 · A times 1 finger.

In the last step of the computation, a new constant is mentioned:

‘1 12’ the constant of copper.

Apparently, this constant is explained as follows in the badly damaged last
few lines of the text:

1 talent (= 60 minas = appr. 30 kilograms) is the weight of 
a square sheet of copper measuring 1 sq. cubit · 1 finger.

Therefore,

The weight of 1 volume-$ar = 1 sq. n. · 1 cubit of copper is 
12 · 12 · 30 talents = 1 12 00 talents.

Consequently, the weight W of all the copper covering the ‘horn-figure’ is

W = V · 1 12 00 talents / volume-$ar = ;01 05 37 30 · 1 12 00 talents = 1 18;45 talents.

All the steps of the complicated “metro-mathematical” computation in
MS 3876 # 3 have now been explained. It still remains to be explained
what is meant by the Sumerian term gán.si ‘horn-figure’. The horn-figure
in the text appears to be covered by a ‘ball’(?) of (6 – 1) · 4 equilateral
triangles made of copper, each with the side 3 cubits (1 1/2 meters), and
1 finger (1 2/3 cm) thick, together weighing 1 18;45 talents (2,350 kg.).

A reasonable conjecture is that the ‘horn-figure’ is an icosahedron, a
regular polyhedron with 20 equilateral faces. The strange computation of
20 as (6 – 1) · 4 can then be explained as follows (Fig. 8.3.2, left):

The OB construction of an icosahedron in MS 3876 # 3 begins with a
regular hexagon bounded by a ‘city wall’ of length 1;30 ninda (9 meters).
The hexagon is divided into 6 equilateral triangles, each with the side ;15
ninda = 3 cubits. One of the triangles is removed, so that 6 – 1 = 5 equi-
lateral triangles remain. Then 3 equilateral triangles is added to each one
of the 5 equilateral triangles, so that 6 – 1 = 5 chains are formed, each
chain composed of 4 equal equilateral triangles. The 5 chains together
contain (6 – 1) · 4 = 20 equilateral triangles, and when the chains are folded
in the appropriate way, an icosahedron is formed (Fig. 8.3.2, right).
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Fig. 8.3.2.  Construction of an icosahedron by folding 5 chains of 4 equilateral triangles.

The discussion above of MS 3876 # 3 suggests that Babylonian
mathematicians knew how to compute the area of (the outer shell of) an
icosahedron. In view of the OB mathematicians’ well known habit of com-
puting the volumes of all kinds of solid figures (cf. Chapter 9 below), it is
therefore also extremely likely that they tried to compute the volume of an
icosahedron. That they may have been successful if they ever tried to do
that was mentioned above, in the Conclusion to Sec. 8.1.
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Chapter 9

Elements XII and Pyramids and
Cones in Babylonian Mathematics

9.1. Circles, Pyramids, Cones, and Spheres in Elements XII

Areas and volumes are never explicitly mentioned in Elements XII, or
anywhere else in the Elements. Yet, the main feature of Elements XII is the
use of the method of exhaustion, based on El. X.1, in order to prove that

Circles are to one another as the squares on the diameters El. XII.2
Pyramids which are of the same height and have triangular bases 
are to one another as the bases  El. XII.5
Any (circular) cone is a third part of the (circular) cylinder which has the same 
base with it and equal height El. XII.10
Spheres are to one another in the triplicate ratio of their respective diameters El. XII.18

Of particular interest in the present connection (comparison with Babylo-
nian mathematics) are the propositions El. XII.3-7, all dealing with
triangular pyramids. Their contents will be outlined briefly below, in
intentionally modernized form: 

El. XII.3. A dissection of a triangular pyramid by planes through
the midpoints of its edges

Everytriangular pyramid can be cut (by three planes through the midpoints of the six 
edges) into two pyramids of equal volumes, similar to the whole pyramid, and two
wedges (triangular prisms) of equal volumes (but not similar to each other). 
The combined volume of the two wedges is greater than half the volume of the whole 
pyramid.

The way in which a given triangular pyramid is dissected, according to
El. XII.3, is shown in Fig. 9.1.1 below. Let the lengths of the edges of the
given pyramid be a, b, c, d, e, f. Then the lengths of the edges of the two
sub-pyramids cut off by two of the planes through five mid-points of the
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edges of the given pyramid are, in each case, a/2, b/2, c/2, d/2, e/2, f/2.
Clearly, the two sub-pyramids have all edges equal and parallel. There-
fore, they are similar and “equal”. (Actually, they are congruent and so,
with any reasonable definition of volume, have the same volume.)

Fig. 9.1.1.  A triangular pyramid dissected as in El. XII.3.

The two wedges (triangular prisms) remaining after the removal of the
two sub-pyramids from the given pyramid are both equal to one half of a
parallelepipedal solid with edges of lengths a/2, e/2, f/2, parallel to the
edges with those lengths of the sub-pyramids. One of the wedges is formed
by cutting the parallelepipedal solid with a plane through the two edges of
lengtha/2 (see again Fig. 9.1.1), while the other wedge is formed by cut-
ting a similar and equal parallelepipedal solid with a plane through the two
edges of length f/2. Therefore, the two wedges have the same volume but
are not similar. (Euclid proves that the two wedges are “equal” by refer-
ence to the strangely formulated ad hoc propositionEl. XI.39.)

Finally, since each one of the two wedges is greater (in volume) than
each one of the two pyramids, it follows that the two wedges together are
greater (in volume) than half the original pyramid.

El.. XII.4. Corresponding dissections of two triangular pyramids of
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the same height. 
Let two triangular pyramids of the same height both be cut into two pyramids and
two wedges as in El. XII.3. Then the combined volumes of the two wedges in each
pyramid separately are proportional to the areas of the bases of the pyramids.

El.. XII.5. The volumes of triangular pyramids of the same height
are proportional to the areas of their bases.

This proposition is proved by means of the exhaustion method of
Eudoxus. Suppose that the two sub-pyramids produced by the dissection
described in El. XII.3 are in their turn dissected in the same way. The result
is two new, smaller wedges and two new, smaller sub-pyramids. The pro-
cess can be repeated until the combined volumes of all the sub-pyramids
becomes arbitrarily small. If there are two pyramids of the same height,
and if the successive regular dissections are carried out in tandem, then, as
in El. XII.4, after each step of the algorithm the combined volumes of all
the produced wedges in each pyramid separately are proportional to the
areas of the bases. Therefore, it can be shown, by an ingenious argument,
that the ratio between the volumes of the pyramids can be neither greater
nor smaller than the ratio between the areas of their bases.

El.. XII.6. The volumes of polyg onal pyramids of the same height
are proportional to the areas of their bases.

El.. XII.7. Every triangular prism can be cut (by two planes
through four of the six vertices) into three triangular pyramids (not
similar to each other). The three sub-pyramids have, two by two,
equal heights, and bases of equal areas. Therefore, the volume of each
one of them is one third of the volume of the triangular prism.

A triangular prism is a solid figure bounded by two parallel and con-
gruent triangles and three parallelograms (El. XI.Def.13). In Fig. 9.1.2 be-
low, the two bounding triangles both have sides of lengths a, b, c and the
three parallelograms have sides of lengths 1) a, d, 2) b, d, 3) c, d. Let the
prism be cut by a plane through one of the sides of length a and through
the opposite vertex of the prism. The plane cuts two of the bounding par-
allelograms along their diagonals, and it divides the prism into two pyra-
mids, one with the same triangular base as the prism, the other with the
parallelogram with sides of lengths a, d as a base. Let the second pyramid,
in its turn, be cut by a plane through the diagonal of its base and through
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the opposite vertex of the pyramid. As a result, this second pyramid is di-
vided into two triangular pyramids. These two pyramids (the one to the left
and the one in the middle in Fig. 9.1.2) have bases of the same area (half
the area of the parallelogram with sides of lengths a, d), and the same
height. Therefore, they have the equal volumes [El. XII.6]. On the other
hand, in Fig. 9.1.2, the triangular pyramids in the middle and the one to the
right also have bases of the same area (half the area of the parallelogram
with sides of lengths c, d) and the same height. therefore, they too have
equal volumes. This observation concludes the proof of the proposition.

Fig. 9.1.2.  A triangular prism dissected as in El. XII.7.

9.2. Pre-literate Plain Number Tokens from the Middle East in the 
Form of Circular Lenses, Pyramids, Cylinders, Cones, and Spheres

The basic object of Elements XII is (from a modern point of view) the
computation of the area of a circle and the volumes of (triangular)
pyramids, of (circular) cylinders or cones, and of spheres. It is interesting
to note that it is well documented that circles, pyramids, cylinders, cones,
and spheres were well known long before the time of the Greeks, although
in a completely different setting. The arguments below supporting this
proposition are borrowed from extensive accounts of related matters in
Friberg, OLZ 89 (1994) and RC(2007), Appendix 4, Sec. A4 i.

In Bef or e Wr iting , Vol. 1 (1992), Schmandt-Besserat gave a detailed
account of her revolutionary theory about the crucial role played by small
clay-figures, so called “tokens”, in the prehistory of writing. According to
this theory, there were seven essential steps in the early development of
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writing as a tool for accounting and communication: 1) the appearance in
various parts of the Middle East around 8000 BCE, that is at the time of
the agricultural revolution, of six types of “plain tokens”, small geometric
objects in baked clay (circular disks, tetrahedrons, cylinders, cones,
spheres, and ovoids), probably used as counters; 2) in the late fifth and
early fourth millennia, the gradual introduction of additional types and
subtypes of tokens, so called “complex tokens”; also the occasional use of
perforations, allowing groups of tokens to be strung together; 3) around the
middle of the fourth millennium, at the time of the first cities and begin-
ning state formation, an explosive proliferation of the repertory of complex
tokens at a limited number of sites (mainly Susa in Iran, Uruk in Iraq, and
Habuba Kabira in Syria), probably in order to represent many new kinds
of products from the city workshops; 4) the invention of “spherical enve-
lopes”, containing (mostly) plain tokens and often impressed with cylinder
seals, sometimes for good measure also marked on the outside with more
or less schematic representations of the tokens inside; 5) for a short while,
around 3300 BCE, the use of “impressed tablets”, instead of, or together
with, spherical envelopes and yielding the same kind of information, the
number signs on these first clay tablets being imitations of the previously
used tokens; 6) the invention of writing on clay tablets, with a large inven-
tory of sometimes pictographic but most often abstract signs, of which, ap-
parently, the latter in some cases were two-dimensional representations of
the complex tokens they replaced; 7) the complete disappearance of tokens
from (almost) all excavated sites after the invention of writing.

For the history of number notations, the spherical envelopes are partic-
ularly important. Their importance derives from two hypothetical situa-
tions: Either the content of an envelope constitutes an account of a single
disbursement or delivery, in which case the enclosed tokens record a num-
ber in a single system of number tokens. Or else, the content of an envelope
constitutes a record of a single transaction, in which case the enclosed
tokens record two numbers in two separate systems of number tokens, and
there exists some simple mathematical relation between the two numbers.

There is no reason to doubt that the (mostly) plain tokens enclosed in
spherical envelopes belonged to a small number of pre-literate systems of
number tokens, very much similar to the now well known proto-literate
systems of number notations impressed on clay tablets. The following
(extremely) tentative and partial interpretation of the numerical meaning
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of plain tokens in spherical envelopes was suggested in Friberg, op. cit.:

Fig. 9.2.1.  Factor diagrams for parallel(?) pre- and proto-literate systems of numbers.

In the first of the three registers above, for instance, the factor diagram
for the proto-literate system of sexagesimal counting numbers (used on
clay tablets in Iran and Iraq near the end of the third millennium BCE)
shows that units were written with small oblong punch signs (c), while tens
were written with small circular punch signs (d), sixties with large oblong
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punch signs (C), and ten-times-sixties with large oblong punch signs with
a small circular punch sign inside it (Cd). The corresponding pre-literate
number signs seems to have been a “rod” (cylinder), a “lens” (circle), a
small cone, and a large cone with a punch mark, respectively.

Here is an example of the kind of arguments that can be used in an
effort to explain the numerical values of the plain tokens. The spherical
envelopeMS 4632 (Friberg, RC (2007), Sec. A4 i) has turned out to
contain 5 cones, 1 large and 8 small balls, and 3 non-plain tokens:

Fig. 9.2.2.  The contents of the spherical envelope MS 4632 (courtesy P. Damerow).

With the interpretations of the numerical meaning of the plain tokens
suggested above, the contents of MS 4632 seems to be a record of 18 d =
108 c of barley being paid out to 5 · 60 = 300 workers. The corresponding
daily wage rate, close to 2/5 c of barley per person, agrees well with what
is known about pay rates mentioned in proto-literate cuneiform texts.

Note that the use of plain tokens in the form of cones, pyramids (tetra-
hedrons), balls (spheres), etc., does not mean that people in the Middle
East long before the invention of writing were interested in solid geometry.
The simple explanation is instead that cones, tetrahedrons, balls, etc.are
very easy to fabricate out of lumps of clay by rolling and squeezing.

9.3. Pyramids and Cones in OB Mathematical Cuneiform Texts

An extensive discussion of occurrences of pyramids and cones in an-
cient Babylonian, Egyptian, Greek, Chinese, and Indian mathematical
texts can be found in Friberg, PCHM 6 (1998), and UL (2005), Sec.4.8 g.

Persons:
5 C = 5 · 60 

Wages in barley:
1 D 8 d = 18 d = 18 · 6 c = 18 · 30 M

Pay rate (per day):
(1 – 1/10) · 2 M / person

Three tokens of unknown significance:
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Selected passages from that discussion are reproduced below.

The volume and grain measure of a ridge pyramid

TMS 14 (Friberg, UL (2005), Sec. 1.5 f) is an OB mathematical cunei-
form text from Susa (western Iran), which remained a mystery for more
than 60 years after it was excavated (1933). The reason why it was not un-
derstood is that it starts by mentioning the object it is concerned with, a
‘granary’. It was assumed that the shape of a granary would be a cylinder
with a domed top, as in a well known depiction of a granary on a seal im-
print from an archaic layer in Susa. The data given in the text of TMS 14
clearly did not fit this description of a granary. A renewed analysis of the
text revealed that the form of the granary is instead a “ridge pyramid” of
the type shown in Fig. 9.3.1 below, formed like a roof sloping uniformly
from a ridge towards the ground at the sides and at the ends. 

Fig. 9.3.1.TMS 14. An Old Babylonian problem for a ridge pyramid.

TMS 14, literal translation explanation

A granary, as much as 14 24 is the volume. A granary. V = 14 24 volume-$ar
3, reeds, is the height. h = 3 ninda    [f = 1 cubit / 1 cubit]
As much as 14 24 being the volume,
length, front and ridge what do I set? l, s, r = ?
You: The opposite of 12 of the depth, 1 ninda  = 12 cubits

release, 5 you see, Ç 1 cubit = ;05 ninda
5 to 14 24, the volume, 14 24 volume-$ar (sq. ninda  · cubit)
raise, then 1 12 you see. = 1 12 cubic ninda  = V*
3, reeds, the upper length, square, 9 you see. sq. h = sq. 3 ninda = 9 sq. ninda

r s/2 = hs/2 = h
u = r + s

s = 2 h

r

h

f = 1 c./c. Ç s = 2 h   and V = r · sq. h + 2 · (1 – 1/3) · h · sq. h



9.3. Pyramids and Cones in OB Mathematical Cuneiform Texts 197

The 9 to 3 of the height return, 27 you see.h · sq.h = 27 cubic ninda
From 1, the normal step,
20 of volume, a third of 1 – 1/3
what <to>? the normal volume,
you added, tear off, 40 you see. = 1 – ;20 = ;40
The 40, since 2 fronts of the granary, There are 2 ends of the ridge pyramid
to 2 repeat, then 1! 20 you see. 2 · (1 – 1/3) = 2 · ;20 = ;40
The 1 20 to 27 raise, then 36 you see. 2 · (1 – 1/3) · h · sq.h = 36 cubic ninda
The 36 from 1 12 tear off, 36 you see. V* – 36 cubic ninda = 36 cubic ninda
Return.
3, the height, square, 9 you see. sq. h = sq. 3 ninda = 9 sq. ninda
The opposite of 9 break off, 6 40 you see. 1/9 = ;06 40
6 40 to 36 raise, 4 you see. 36 cubic ninda / 9 sq. ninda  = 4 ninda
4 is the ridge. r = 4 ninda
3, the height, since h = 3 ninda , and
in a cubit a cubit, f = 1 cubit / 1 cubit
3 double, 6 you see. 6 is the front. Ç s = 2 h = 6 ninda
The 6 to 4, the ridge, heap, 10 you see. r + s= 6 ninda + 4 ninda = 10 ninda
10 is the length. l = 10 ninda
[… … …] [( l + r/2)/3 = 6 ninda]
12 to 3, the height, raise, then 36 you see.h = 3 ninda  = 36 cubits.
36 to 24 raise, then (l + r/2)/3 · h = 36 cubits · 24 ninda
14 24 you see, the volume. = 14 24 volume-$ar = V
14 24, the volume, to 
8, the storing number of the granary, V · 8 00 00 sìla /  volume-$ar
raise, then 1 55 12 you see.  = 1 55 12 00 00 sìla
23 gur7(?) 2 24 gur of barley … … = 23 02 24 gur of barley …

Briefly, what this text means is the following: Consider a ridge pyramid
like the one in Fig. 9.3.1. Suppose it is known that its volume V is 14 24
volume-$ar (sq. ninda · 1 cubit), and that its height is 3 ninda. Suppose
also that the uniform slope of the roof is 1:1. What are then the long and
short sides of the base (u and s), and what is the length of the ridge (r)?

The first step of the solution procedure is to divide the volume 14 24
sq.ninda · 1 cubit by 12 (cubits per ninda), expressing it in the new form
1 12 sq. ninda · ninda (cubic nindas). Next, the cube of height h is
computed; it is sq.h · h = 27 cubic nindas. The awkwardly worded
passage of the text which then follows can be interpreted as describing the
computation of the volume 2 · (1–1/3) · sq.h · h = 36 sq. cubicnindas.
What this means is that the volumes of the rectangular pyramids at the two
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ends of the ridge pyramid (see again Fig. 9.3.1) are computed as two thirds
of the volumes of the two wedges (triangular prisms) containing them. In-
deed, since the uniform slope of the roof of the ridge pyramid is 1:1, each
end pyramid has the height h and the sides h and 2h. Therefore, the volume
of each containing wedge is equal to sq.h · h, and the combined volume
of the two end pyramids is indeed equal to 2 · (1–1/3) · sq.h · h.

In the next step of the procedure, the volume of the central wedge is
computed as the given volume of the whole ridge pyramid, diminished by
the volumes of the two end pyramids, that is as (1 12 – 36) sq.ninda·
ninda = 36 sq. ninda· ninda. On the other hand, the volume of this cen-
tral wedge is equal tos · r · h/2 = r · sq. h, since s = 2h. Therefore, the
ridge r is equal to the volume of the central wedge divided by sq.h. In
other words, r = (36 sq.ninda·ninda.)/(9 sq.ninda) = 4 ninda. In addi-
tion, s = 2 h = 6 ninda andl = r + s = 10 ninda.

In the second part of the text, the obtained result is verified, in that the
given value of h and the computed values of l, r, s are used to compute the
volumeV, which, of course, again is equal to 14 24 volume-$ar. This value
for the volume is then multiplied by the “storing number” 

c = 8 00 00 sìla/volume-$ar,    with 1 sì la = somewhat less than 1 liter.

The final result is the “grain measure” of the granary:

C = c · V = 1 55 12 00 00 sìla.

BM 96954+BM 102366+SÉ 93 (Friberg, PCHM 6 (1996), Robson,
MMTC (1999), Appendix 3; Friberg, UL (2005), Sec. 4.8 g) is a text com-
posed of three fragments of a large clay tablet. As shown by the outline be-
low of the clay tablet and its table of contents, it is a recombination text
which has “whole or truncated pyramids and cones” as its dominating top-
ic.

§ 1 of the recombination text may have consisted originally of 13
mathematical exercises, all dealing with a certain ridge pyramid, similar to
the one treated in TMS 14 (Fig. 9.3.1 above). § 3 consists of 3 exercises
dealing with various kinds of prisms. The content of each solid appearing
in §§ 1 and 3 is expressed, not in terms of its volume V, but in terms of its
“grain measure” C = c · V, where c is the new storing number

c = 1 30 gur/$ar = 7 30 00 sìla/volume-$ar.
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The equation used in § 1 for the volume of a ridge pyramid is

V = (l + r/2) · s · h/3,   with l, s, r, h   as in Fig. 9.3.1.

Fig. 9.3.2.  BM 96954+. An OB recombination text dealing with pyramids and cones.

It is likely that the lost exercises in the first column of BM 96954+ were
all concerned with the same ridge pyramid as the one in §§ 1 g - 1 m. If this
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conjecture is correct, the following series of simple questions may have
been asked there:

§ 1 a: l, s, r, h given C = ?
§ 1 b: s, r, h, C given l = ?
§ 1 c: l, r, h, C given s = ?
§ 1 d: l, s, h, C given r = ?
§ 1 e: l, s, r, C given h = ?

The remaining exercises in § 1, except § 1 f, deal with linear or
rectangular-linear systems of equations for the parameters of the ridge
pyramid. Being a recombination text, BM 96954 is somewhat chaotically
organized, so that § 1 f deals instead with a truncated ridge pyramid: 

The grain measure of a ridge pyramid truncated at mid-height

Fig. 9.3.3.  BM 96954 § 1 f. A ridge pyramid truncated at mid-height.

In BM 96954+ § 1 f, the ridge pyramid common to all the other exer-
cises in § 1 is truncated at mid-height (Fig. 9.3.3). Here is the text of § 1 f,
of which only the first part is preserved:

BM 96954+ § 1 f, literal translation explanation

A granary. A granary
10 the length, 6 the front, 4 the ridge, l = 10 ninda , s= 6 ninda , r = 4 ninda
28 48 <gur of barley>, Grain measure C = 28 48 00 gur
48 the height, 24 I went down. h = 48 cubits, h – h' = 24 cubits
The transversal(s) and the barley are what?l', s', C' = ?
You: The opposite of 48 the height release, 1/48 

r

l
s

h
s'

l' h'

l = 10 ninda,s = 6 ninda, r = 4 ninda
h = 48 cubits,h – h' = 24 cubits
V = 19 12 $ar,   c = 1 30 gur/$ar
C = 28 48 00 gur

l' = 7 ninda,s' = 3 ninda,
h' = 24 cubits
V' = 15 36 $ar
C' = 23 24 00 gur 



9.3. Pyramids and Cones in OB Mathematical Cuneiform Texts 201

1 15 you see. = ;01 15
1 15 to 6, what the length is more than l – r = 6 ninda
the ridge, raise, 7 30 you see. f = (l – r)/h = ;07 30 (1/8) ninda /cubit
7 30 to 24 raise, 3 you see. f · (h – h') = 3 cubits
3 from 10 the length tear off, 7 you see, l – f · (h – h') = 7 cubits
7 the transversal. = l'
3 from 6 the front tear off, 3 you see, the  ··· s– f · (h – h') = 3 cubits [= s']
···   ···   ···   ···  raise, 1 you see.  ···   ···   ··· [l · s] = 1 00 sq. ninda . ···   ···   ··· 

Although only the first part of the text of § 1 f is preserved, it is clear
that the equation for the volume of the truncated ridge pyramid must have
been expressed in terms of its linear parameters, the length l and front s at
the base, the “upper length” l' and “the upper front” s' at mid-height, and
the lower height h'. (Unless, of course, the volume of the truncated ridge
pyramid was computed as the volume of the whole ridge pyramid minus
the volume of the small upper ridge pyramid.) The volume V of the trun-
cated ridge pyramid is easily seen to be equal to the volume Vc of a central
rectangular prism, plus the volumes 2 · Vl and 2 · Vs of four wedges along
the sides, and the volumes 4 · Vp of four square pyramids in the corners:17

V = Vc + 2 · Vl + 2 · Vs + 4 · Vp
    = l'  · s'  · h + l' · (s – s´ ) · h/2 + s' · (l  – l ') · h/2 + (l  – l ´ ) · (s – s') · h/3
    = {(l · s + l' · s') + (l · s' + l' · s)/2} · h/3.

Fig. 9.3.4.  Dissection of a truncated ridge pyramid.

However, before this equation can be used to compute the volume of

17. In the case when l' = r and s' = 0, that is in the case of a whole ridge pyramid, this
equation is reduced to V = {( l + r /2) · s · h/3. In the case when l = s and l'= s' = t, that is in
the case of an ordinary truncated square pyramid, the equation is reduced to the well known
equationV = (sq. s + s · t + sq. t) · h/3. Cf. the discussion of the Egyptian hieratic mathe-
matical exercise P.Moscow # 14 in Friberg, UL (2005), Sec. 2.2 d.

l

s

s'l'

h
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the truncated ridge pyramid, the values of u´  and ś  must be known. As a
matter of fact, the preserved first part of BM 96954 § 1 f is devoted to the
computation of these values. The first step of the computation is to find the
combined feed for the two ends of the ridge pyramid:

2 · f = (l – r)/h = (10 – 4) ninda · 1/(48 cubits) = 6 · ;01 15 n./c. = ;07 30 n./c.

The double feed is multiplied by the height of the truncated ridge pyramid:

2 · f · h´  = ;07 30 n./c. · 24 c. = 3 n.

So much smaller are the upper length and the upper front than the lower
length and the lower front, respectively. Therefore,

l´  = l – 3 n. = 10 n. – 3 n. = 7 ninda , ś  = s – 3 n. = 6 n. – 3 n. = 3 ninda .

Inserting these computed values into the equation for the volume of the
truncated ridge pyramid, one obtains the following result (unfortunately
not present in the preserved part of the text):

V = {(10 · 6 + 7 · 3) + (10 · 3 + 7 · 6)/2} sq.ninda  · 24 cubits /3 
     = 1 57 sq. ninda  · 8 cubits = 15 36 $ar,
C = c · V = 1 30 gur/$ar · 15 36 $ar = 23 24 00 gur

Note that the first step in this computation of the volume V would be to
compute the product of l and s as 10 · 6 = 1 (00). This proposed first step
of the computation agrees well with the only preserved part of the calcula-
tion of V, which is ‘[···] times [···] = 1’ in the last preserved line of § 1 f.

Problems for cones and truncated cones

Various problems for cones and truncated cones are the object of BM
96954 +, § 4. A quite surprising method is used to solve some of those
problems. For details, the reader is referred to the discussion in Friberg, UL
(2005), Sec. 4.8 g. No other examples are known of Babylonian mathemat-
ical texts dealing with cones.

9.4. Pyramids and Cones in Ancient Chinese Mathematical Texts

The fifth chapter in J iu Z hang  Suan Shu

The famous J iu Z hang  Suan Shu, ‘ Nine Chapters on the Mathematical
Art’ (Vogel, NBAT (1968); Shen, Crossley, and Lun, NCMA (1999)) is one
of the oldest, and probably the most important, Chinese mathematical
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classic to have survived to the present day. It was assembled into one book
not later than in the middle of the Eastern Han Dynasty (25–220 A.D.).
The fifth chapter of Jiu Zhang Suan Shu has the misleading title ‘Construc-
tion Consultations’. It is ostensibly devoted to the discussion of the amount
of manpower needed, under various enumerated circumstances, for the
excavation or building of various constructions in the form of more or less
familiar types of (mostly) rectilinear solids. In this respect it calls to mind
similarly dressed problems in a number of OB mathematical exercises.
Nevertheless, it is obvious that the main emphasis is laid on the computa-
tion of the volumes of various kinds of pyramids and cones, or related
types of solids. The text of the chapter is organized in a strikingly system-
atic way. The brief survey below of the contents of the chapter will make
this fact clear. 

In the first six problems, V.2-7, the object considered is a trapezoidal
prism, which trivially has a known volume, since it is composed of one
rectangular block and two wedges. In the next six exercises, V.8-13, are
computed the volumes of cubes and cylinders, of truncated pyramids and
cones, and of full pyramids and cones. Then, in V.14-16, the volumes are
computed of the solids that result when a rectangular block is cut into two
wedges, and each wedge into two pyramids.

V. 2-4. A wall, a dike.
V. 5-7. A trench, a moat, a canal

V = (s+ t)/2 · h · l

V. 8. A square fort
V = sq. s · h

V. 9. A round fort
V = sq. a · h/12   (L R 3)

V. 10. A square pavilion
V = (sq. s+ s · t + sq. t) · h/3

V. 11. A round pavilion
V = (sq. a + a · b + sq. b) · h/36

V. 12. A square needle
 V = sq. s · h/3

V. 13. A round needle
V = sq. a · h/36

lh
t

s s

t
l

h

s
s a

h

h

s
s a

t t b

h

h

s
s a

h



204 Amazing Traces of a Babylonian Origin in Greek Mathematics

Fig. 9.4.1.  Volumes of solid figures computed in Jiu Zhang Suan Shu, V.2-16.

More complicated types of solids are considered in V.17-20, a trapezoi-
dal wedge in V.17, a ridge pyramid in V.18, and a truncated ridge pyramid
in V.19. In V.20, the lining of a tapering well is considered as an astonish-
ing example of a curved truncated pyramid, which can be treated in the
same way as the non-curved variant.

In V.23-25, finally, the expressions for the volumes of a cone, a half-
cone, and a quarter-cone, all in terms of the circumference of the base, are
contrasted with each other.

Fig. 9.4.2.  Volumes of solid figures computed in Jiu Zhang Suan Shu, V.17-25.

V. 14. A moat-wall, qian du
V = l · s · h/2

V. 15. A male horse, yang ma
V = l · s · h/3

V. 16. A turtle’s bone, bie nao
V = l · s · h/6

V. 17. A drain
V = (a + b + c) · l · h/6

V. 18. A cut grass ridge
V = (2 l + r) · s · h/6

V. 19. A cut grass overhang
V = {(2l + l´) · s + (2 l´ + l) · s }́ · h/6

V. 20. A bent moat
V = {(2a + a )́ · t + (2a´ + a) · t´} · h/6
a, a  ́= lower, upper middle arcs
t, t  ́= lower, upper widths 

V. 23. Cereal piled on the floor
V = sq. a · h/36

V. 24. Cereal piled against a wall
V = sq. a · h/18

V. 25. Cereal piled in a corner
V = sq. a · h/9
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All the rules in Jiu Zhang Suan Shu V.2-25 for the computation of the
volume of pyramids, cones, and related objects are correct.

The reason why Jiu Zhang Suan Shu, Chapter V is mentioned here is its
obvious close relationship with OB mathematics. There are OB counter-
parts to the exercises Jiu Zhang Suan Shu V.2-15 and V.17-19 in the math-
ematical recombination texts BM 96954+BM 102366+SÉ 93 (Fig. 9.3.2
above), BM 85194, BM 85196, and BM 96957+VAT 6598, all from the
ancient Mesopotamian city Sippar (see Friberg, PCHM 6 (1996) § 1.5).18

In addition, the juxtaposition of the qian du, the yang ma and the bie nao
in Jiu Zhang Suan Shu V.14-16 (Fig. 9.4.1) is reminiscent of the computa-
tion of the volume of the end pyramids in TMS 14 (Fig. 9.3.1 above), and
the computation of the ‘bent moat’ in Jiu Zhang Suan Shu V.20 (fig. 9.4.2)
has an (imperfect) parallel in the computation of the volume of a ring-wall
in BM 85194 # 3. It is also worth noting that the computations of the vol-
umes of a circular cylinder, a truncated circular cone, and a full circular
cone in Jiu Zhang Suan Shu V.9, 11, 13 are all based on the OB form of
the rule for the computation of the area of a circle, A = sq. a /12, where a
is the circumference of the circle.

Thus, if there ever existed an OB well organized theme text with com-
putations of volumes of pyramids, cones, and related objects, as it main
topic (and there almost certainly did), it is reasonable to suspect that it was
organized very much like the fifth chapter of Jiu Zhang Suan Shu.

Even older than Jiu Zhang Suan Shu is the recently published work
Suan Shu Shu (written on 190 bamboo strips dated to the second century
BCE; see Cullen, SSS (2004)). It is interesting that the section ‘Shapes and
Volumes’ (group 12) of Suan Shu Shu contains the following exercises:
parallels to Jiu Zhang Suan Shu V. 17-19 in Suan Shu Shu ## 55-57, and
parallels to Jiu Zhang Suan Shu V.13, 11, 9 in Suan Shu Shu ## 58-60.

For the reasons mentioned above, it seems to be justified to draw the
conclusion that the rules for the computation of volumes of pyramids,
cones, and related objects, which had been discovered by OB mathemati-
cians, became part of a common mathematical tradition in large parts of
the ancient world, a tradition which ultimately spread all the way to China

18. Some of the mentioned recombination texts are somewhat chaotically organized, and
some of the computations of volumes of solid objects are only rough approximations.



206 Amazing Traces of a Babylonian Origin in Greek Mathematics

and was still alive in the second century BCE.19 20 21

Liu Hui’s commentary to  J iu Z hang  Suan Shu, Chapter V.

The expressions given in Jiu Zhang Suan Shu, Chapter V, for the vol-
umes of various kinds of pyramids and cones or related solids are all cor-
rect. However, as far as is known, justifications for these expressions, in
the form of careful derivations from supposedly known facts were first
given in the commentary to Jiu Zhang Suan Shu written by Liu Hui (the
third century A.D.). In Wagner’s article HM 6 (1979), which is a continu-
ation of his unpublished master’s thesis (1975), are discussed in full detail
Liu Hui’s correct derivations of the expressions for the volumes of the fang
ting (a truncated pyramid) and of the pyramids yang ma and bie nao.

In this connection, Wagner mentions that the solution to Hilbert’s Third
Problem (Dehn (1900), Jessen (1939)) confirms that it is not possible gen-
erally, and particularly not in the case of a regular tetrahedron, to compute
the area of a pyramid by means of a finite number of dissections and
rearrangements, that is without the use of infinitesimal calculus.

Liu Hui’s derivation of the correct expressions for the volumes of the
square pyramid yang ma and of the triangular pyramid bie nao is closely
related to the method used in ElementsXII.3-9 (in the case of an arbitrary
triangular pyramid). Thus, Liu Hui starts his derivation by considering two
pyramids, one yang ma and one bie nao, which can be fitted together to
form one qian du (a triangular wedge; see Fig. 9.4.1 above). He wants to
show that the volume of the yang ma is twice the volume of the bie nao,
because if that is so, then the volumes of the yang ma and the bie nao must
be 2/3 and 1/3, respectively, of the known volume of the wedge they form

19.Cf. the discussion of rules for the computation of volumes of pyramids and cones in
Heron’s work Metr ica I I(Heath, HGM 2 (1981), 331 ff.), and in the Greek-Egyptian math-
ematical papyrus P.Vindobonensis G. 1 9 9 6, 1st century? (Friberg, UL (2005), Sec. 4.8).

20.Cf. also the discussion in Friberg, PCHM 6 (1996) § 1.4, of similar rules in the Indian
mathematical work Brªhmasphu#asiddhªnta by Brahmagupta (628).

21. It is particularly interesting that in Brªhmasphu#asiddhªnta VIII.50-51  there are
rules for the computation of the volumes of conical piles of grain resting on the floor,
against the side of a wall, in a corner, or on the outside of a corner, all in terms of the height
and the circumference a of the base: V = h · sq. (a/6), V = h · sq. (a/6) · 2, V = h · sq. (a/6)
· 4, V = h · sq. (a/6) · 4/3. These rules are parallels to JZSS V.23-25 (Fig. 9.4.2).
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together. He imagines that, in a first step, the two pyramids are cut by
planes through the midpoints of their edges, one into five smaller pieces,
the other into four, as shown in Fig. 9.4.3 below. 

Liu Hui suggests that the once dissected pyramids should be thought of
as composed of half-size wooden building blocks, two small wedgesand
two small bie naos, all colored red, in the case of the bie nao, and one small
cube, two small wedges and two small yang mas, all colored black, in the
case of the yang ma. Since the combined volume of the small black cube
and the small black wedges is known and is twice the combined volume of
the small red wedges, it remains to be shown that the volume of the two
half-sizeyang mas is twice the volume of the two half-size bie naos. In a
second step of the algorithm, these half-size pyramids, in their turn, are
dissected, and new red and black cubes and wedges of known volumes are
removed, and so on. At each step of the algorithm, the volume of the
remaining pyramids is less than the volume of the pieces just removed.
Ultimately, the volume of the remaining pyramids will be negligible, and
the stated goal will be reached.

Fig. 9.4.3.  Liu Hui’s dissection of a yang ma and a bie nao.

9.5. A Possible Babylonian Derivation of the Volume of a Pyramid

As shown above, in Sec. 9.3, the first ones to seriously consider non-
trivial solid figures like pyramids, cones, and related objects were the Old
Babylonian mathematicians (or possibly their Sumerian predecessors).
Moreover,correct expressions for volumes of such solid figures were
known to the Babylonians. Even the fundamental and non-trivial idea of
cutting a triangular prism by a plane into a triangular and a square pyra-
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mid seems to have been their invention. (See Fig. 9.3.1.)
It remains to find out how it was possible for Babylonian mathemati-

cians to find the correct expressions for the volumes of whole and trun-
cated pyramids and to prove, to their own satisfaction, that the expressions
are correct. Simple answers to these questions will be suggested below:

1) The idea to consider pyramids and cones must have come naturally
to a people that constantly dug ditches, canals, and water reservoirs, built
temple platforms and step pyramids, and heaped up grain in their grana-
ries. Besides, easily fabricated small pyramids, cylinders, cones, and
spheres of clay were in constant use as tokens for counting in Mesopota-
mia and surrounding regions for several millennia before the invention of
writing (Sec. 9.2 above), which shows that pyramids and cones were
familiar objects even long before the time of the Babylonians.

2) It is clear from the form of many geometrical entries in Old Babylo-
nian “tables of constants” and from the solution procedures in many math-
ematical cuneiform problem texts that Babylonian mathematicians
intuitively knew and routinely exploited the “scaling rule for plane fig-
ures” that the areas of similar plane figures are proportional to the
squares of their sides. It is also clear that Babylonian mathematicians in a
similar way intuitively knew and routinely exploited the “scaling rule for
solid figures” that the volumes of similar solid figures are proportional to
the cubes of their edges. This three-dimensional scaling rule must have
been obvious to a people that used bricks as its most important building
material.

Now consider the dissection of a triangular prism used by Liu Hui (Sec.
9.4 above) for his derivation of the volumes of the yang ma and the bie
nao, by a method which is very close to the method used in Elements
XII.3-5 and 7 (Sec. 9.1 above). Thus, consider, as in Fig. 9.4.3, a prism
which has a cross-section in the form of a right triangle. (This is one half
of a rectangular wedge such as the one at both ends of the ridge pyramid
in Fig. 9.3.1). Let W be the volume of the wedge. Imagine that the wedge
is dissected by means of three mutually orthogonal planes through the mid-
points of its edges, two vertical and one horizontal (Fig. 9.5.1 below).
Then, according to the scaling rule for solid figures, the wedge is divided
into 4 wedges similar to itself, each with the volume W/8, and two rectan-
gular blocks, each with the volume W/4.
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Dissect the wedge further by a slanting plane through the upper left ver-
tex and the lower right edge. The result is that the original triangular prism
is divided into two pyramids, one rectangular (cf. the yang ma), the other
triangular (cf. the bie nao). Let their unknown volumes be called R and T,
respectively. The rectangular pyramid, in its turn, is divided by the men-
tioned orthogonal planes into two small rectangular pyramids similar to
itself, two wedges, and one rectangular block. According to the scaling
rule for solid figures, each one of the small rectangular pyramids has the
volumeR/8, each one of the two wedges has the volume W/8, and the rect-
angular block has the volume W/4. Similarly, the triangular pyramid is
divided by the orthogonal planes into two triangular pyramids similar to it,
each with the volume T/8, and two wedges, each with the volume W/8.
Therefore, the unknown volumes R and T satisfy the equations

R = 2·R/8 + 2·W/8 + 1·W/4 = R/4 + W/2,
T = 2·T/8 + 2·W/8 = T/4 + W/4.

To find this out would be well within the competence of a Babylonian
mathematician, who would also be able to solve the linear equations for R
andT, finding immediately that

R = 4/3 · W/2 = 2/3 · W,   and T = 4/3 · W/4 = 1/3 · W.

Fig. 9.5.1.  Possibly the way in which the Babylonians found the volume of a pyramid.

The conjecture that Babylonian mathematicians found the volume of a
pyramid in the way suggested above (Fig. 9.5.1) is supported by two
circumstances: 1) the fact that in TMS 14 (Fig. 9.3.1) the volumes of the
end pyramids of a ridge pyramid are computed as 1 – 1/3 of the volume of

W = 
4 · W/8 + 2 · W/4

R = 
2 · R/8 + 2 · W/8 + 1 · W/4

Ç  R = 2/3 · W

T = 
2 · T/8 + 2 · W/8
Ç  T = 1/3 · W

= +
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a wedge, and 2) the fact that in BM 96954+ § 1 f the volume is computed
of a ridge pyramid truncated at mid-height, while in BM 96954+ § 4 e the
volume is computed of a circular cone truncated at mid-height. (It was
probably intuitively clear that the ratio between the volume of a circular
cone and the volume of a circumscribed square pyramid is equal to the
ratio between the area of a circle and the area of a circumscribed square.)

Consequently, it is likely that Old Babylonian mathematicians did in-
deed both find and prove, according to their own standards, and without
any kind of infinitesimal calculus, correct expressions for the volumes of a
large variety of pyramids, cones, and related solids! Thus, of the various
solid figures appearing in Elements XII, only the sphere seems to have
been totally outside the scope of Babylonian mathematics.
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Chapter 10

El. I.43-44, El. VI.24-29, Data 57-59, 84-86,
and Metric Algebra

The most recent edition of Euclid’s Data (in the sense of Givens) is
Taisbak (2003), complete with the Greek text, an English translation, and
extensive commentaries, based on geometric interpretations. 

In his Preface, Taisbak explains why he felt he had to write the book:

“After reading it (a modern translation of the Data) one is left in the same bewilderment
as that already expressed by the ancient commentators Pappus and Marinus: What is all
this really about?”

“The most recent commentary is by Clemens Thaer (Data 1962), a very brief and
succinct interpretation in modern algebraic jargon ··· . Needless to say (at least after you
have read even part of my tale) I disagree with him at almost all points, so much so that
one would think we were reading completely different texts.”

In the Introduction, the nature of the Data is explained as follows:

“In the Data, Euclid proves deductively that if some items are given, some other items
are also given, into the bargain so to speak.”
“··· an essential feature of the Data: the Givens hang together in chains, the purpose of
any proposition being to produce more links to them.”

Taisbak also cites Wilbur Knorr’s description of the Data (ATGP 1986):

“The Data is a complement to the Elements, recast in a form more serviceable for the
analysis of problems. ··· the subject matter overlaps that of the Elements ··· Indeed, only
in rare instances does the Data present a result without a parallel in the Elements.”

The 15 definitions and 94 propositions in the Data are divided by Tais-
bak into 14 chapters, of which the following ones are particularly interest-
ing from the point of view of Babylonian mathematics (metric algebra):

Chapter 8. Application of areas I Data 57-61
Chapter 12. Application of areas II Data 84-85
Chapter 13. Intersecting hyperbolas. Zeuthen’s conjecture Data 86
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10.1.El. I.43-44 & Data 57: Parabolic Applications of Parallelograms

Three of the propositions in Elements I have close associations with
Babylonian metric algebra. One of them, I.47 (the diagonal rule) was dis-
cussed in Chapter 2 above. The other two are El. I. 43-44:

El. I.43

In any parallelogram the complements of the parallelograms about the diagonal are
equal to one another.

El. I.44

To a given straight line to apply, in a given rectilineal angle, a parallelogram equal to a
given triangle.

Fig. 10.1.1.El. I.43. Complements about the diagonal are equal (in area).

The proof of El. I.43 is simple. Let a parallelogram ABCD be divided
by a diagonal and two lines parallel to the sides of the parallelogram and
intersecting in a point K on the diagonal, as in Fig. 10.1.1, left. Then 

ABC = ACD,   AEK = AHK,   and    KFC = KGC.

Subtracting AEK and KFC from ABC or AHK and KGC from ACD, one
finds, as wanted, that what remains is the same in both cases:

BGKE = DHKF.

Parallelograms were never considered in Babylonian mathematics, so
the (hypothetical) Babylonian counterpart to the diagram in El. I. 43 would
be the divided rectangle in Fig. 10.1.1, right, divided by the diagonal into
two right triangles. Now, one of the basic tools of Babylonian geometry
was the intuitively obvious “right sub-triangle rule”, according to which
every line parallel to one of the sides of a right triangle cuts off a right sub-
trianglewith the same ratio between the sides as that in the whole triangle.
(This is, of course, the Babylonian counterpart toEl. VI.24.) In the case of
the divided rectangle in Fig. 10.1.1, right, this means that, for instance, by

A u1

s1

s2

u2

E FK

H D

B G C

B

A
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the rule of three,

s2 = u2 · s1 / u1.

Therefore, clearly,
u1 · s2 = u2 · s1,

which means that the areas A, B of the opposite sub-rectangles in
Fig. 10.1.1, right, must be equal. (This kind of manipulation with equa-
tions was done routinely by Babylonian mathematicians.)

The idea behind the proof of El. I.44 is to first construct a parallelo-
gram, say DHKF in Fig. 10.1.1, left, in the given angle, equal (in area) to
the given triangle, and such that one of its sides, say FK, is in a straight line
with KE, the given straight line.22 Next, the point A is constructed as the
intersection of a continuation of DH with a line through E parallel to FD,
the point C as the intersection of a continuation of AK with a continuation
of DF, the point B as the intersection of a continuation of AE with a line
through C parallel to DH, and the point G as the intersection of a continu-
ation of HK with BC. Then it follows from El. I.43 that BGKE is equal (in
area) to DHKF, etc.

From the point of view of metric algebra, the proof of El. I.44 can be
explained as follows: Let A be the given area, let u be the given length, and
sets = A/u. Then 

u · s = u · A/u = B.

In this way, the complicated geometric proof23 of El. I.44 is replaced by a
trivial metric algebra proof (still essentially geometric).

Actually, the problem to find the length of the second side of a rectangle
when the area of the rectangle and the length of one side are known was
considered by Mesopotamian mathematicians long before the time of the
Greeks. See the discussion of “metric division exercises” from the Old
Akkadian (or Sargonic) period in Mesopotamia (ca. 2340-2200 BCE) in
Friberg,CDLJ (2005-2) §§ 2-3; RC (2007), Appendix 6, Sec. A6 c. One
such exercise is DPA 39 (Fig. 10.1.2 below). The brief text of that exer-
cise, or rather assignment, since no answer is given, states that the length

22. For some obscure reason, the diagram in I.44 is not identical with the diagram in I.43.
23. Taisbak (op. cit., 152), cites Heath’s opinion (ETBE 1, 342) that “This proposition will
always remain one of the most impressive in all geometry ···”.
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(of a rectangle) is 4(60) 3 ninda (a common length unit), and the area is 1
iku (a common area unit) = 100 square ninda. What is then the front (the
short side of the rectangle)?

Fig. 10.1.2.DPA 39. An Old Akkadian metric division exercise.

In the Old Akkadian period in Mesopotamia, the area of a rectangle was
computed as the length times the front. Therefore the problem stated in
DPA 39 can be expressed as the rectangular-linear system of equations

u · s= A = 1(60) 40 square ninda (= 100 square ninda),   u = 4(60) 3 ninda (= 243 ninda).

An Old Babylonian school boy 500 years later would have known the
numerical answer to this problem right away, namely that 

s = A/u =1 40 · 

 

igi  4 03,
where   

 

igi  4 03   is a sexagesimal number such that   4 03 · 

 

igi  4 03 = some power of 60.

Here 4 03 = 4(60) 3 = 243 is a so called “regular sexagesimal number”, by
which it is meant that it is a sexagesimal number with no other prime
factors than 2, 3, and 5. Because 2, 3, and 5 are also the only prime factors
in the sexagesimal base 60, a given sexagesimal number is a factor in some
power of 60 if and only if it is a regular sexagesimal number. Consequent-
ly, if n is a given sexagesimal number, then there exists as a finite sexa-
gesimal number igi n (the reciprocal of n) such that n · igi n = some power
of 60 if and only if n is a regular sexagesimal number.

Now, look at the particular case when n = 4 03 = 243. Since 243 = 35,
the number 4 03 is a regular sexagesimal number, and (in floating sexage-
simal numbers)

igi  4 03 = igi 35 = (igi 3)5 = 205 = 14 48 53 20.

Therefore, the OB school boy would have found the answer

s = A/u =1 40 · 14 48 53 20 = 24 41 28 53 20. 

If he was able to make a correct estimate of how big the answer reasonably

obv. rev.

4(60) 3 the length.
(What is) the front
(if) the area is 1 (iku)?
Its front is ····
to be found.
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ought to be, he could then interpret this floating sexagesimal number as

s= approximately ;24 40 ninda = 4 2/3 cubits 8 fingers.

(Indeed, 1 cubit = 1/12 ninda = ;05 ninda, and 1 finger = 1/30 cubit.)

An Old Akkadian school boy, on the other hand, would have had to
solve the problem in DPA 39 in some other way, since sexagesimal num-
bers in place value notation and, in particular, sexagesimal fractions had
not yet been invented in the Old Akkadian period. He could, conceivably,
proceed as follows: Knowing that 1 ninda = 12 cubits, 1 cubit = 30 fingers,
and 1 finger = 6 barleycorns, he would have

A = 1 iku = 1 ninda · 100 ninda 
   = 3 ninda · 33 ninda 4 cubits 
   = 9 ninda · 11 ninda 1 cubit 10 fingers 
   = 27 ninda · 3 ninda 8 cubits 13 fingers 2 barleycorns
   = 1(60) 21 ninda · 1 ninda 2 cubits 24 fingers 2 2/3 barleycorns
   = 4(60) 3 ninda · 4 2/3 cubits 8 fingers 2/3 and 1/3 of 2/3 barleycorns.

Therefore, the answer is that if a rectangle has the area 1 iku and length of
the long side is 4(60) 3 ninda, then the length of the short side is 4 2/3
cubits 8 fingers 2/3 and 1/3 of 2/3 barleycorns.

The example shows that metric division is in principle much simpler
but in actual practice sometimes much more complicated than the purely
geometric procedure in El. I.44!

Interestingly, Euclid offers an alternative to El. I.44 in his Data 57,
illustrated by the diagram in Fig. 10.1.3, left, below. Fig. 10.1.3, right,
illustrates an interpretation of Data 57 in terms of metric algebra.

Fig. 10.1.3.Data 57. Application of a given parallelogram to a given straight line.

BA

ZE

QC HD

u

A

sq.uu

s h

sq.u : A = sq. u : u · h = u : h

s : u = (s : h) · (h : u)

s =  (s : h) · (A : sq. u) · u
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Data 57 explanation
 If a given (parallelogram) is applied 
to a given (straight line) in a given angle, 
the width of the applied (parallelogram) is given.

For let the given (parallelogram) AH The area AH = A (given).
have been applied to a given (straight line) BA The length BA = u (given).
in the given angle CAB. The angle CAB is given.
I say that CA is given. Then the length CA = s is given.

For let the square EB have been described on AB. Construct the square EB on AB.
Then EB is given. Then the area of EB = sq. u is given.
And let EA, ZB, CH have been produced to D, Q. Draw ED, ZQ, CQ.
And since each of EB and AH is given, 
therefore the ratio EB : AH is given. EB : AH = sq. u : A = r1.
And HA is equal to AQ. The area HA = the area AQ.
Hence the ratio EB : AQ is given, EB : AQ = EB : AH = r1.
so that the ratio EA : AD is given. EA : AD = EB : AQ = r1.
And EA = AB. Hence the ratio EA = AB.
BA : AD is given. u : h = AB : AD = EA : AD = r1.
And since angle CDA is given‚ Angle CDA is given, and
of which angle DAB is given, angle DAB is right. Therefore,
the remaining angle CAD is given. angle CAD = CDA – DAB is given.
And angle CDA is also given, for it is right. Angle CDA is right. Therefore,
Hence triangle ACD is given in form. the form of triangle ACD is given.
Therefore the ratio CA : AD is given. CA : AD = s : h = r2 is given.
And the ratio DA : AB is given. DA : AB = h : u = 1/r1 = r3.
Hence the ratio CA : AB is also given. CA : AB = s : u = r2 ·1/r1 = r4.
And BA is given. Therefore
AC is also given, and it is the width s = (s : u) · u = r4 · u.
of the applied (figure).

From the point of view of metric algebra, the idea behind the proof in
Data 57 is the following (see again Fig. 10.1.4, right): The area A of a par-
allelogram is known, as well as the length u of one side, and the angle of
one vertex of the parallelogram. That one of the angles of the parallelo-
gram is known means, essentially that the ratio s/h is known, where s is
(length of) the unknown side of the parallelogram and h the (length of) the
unknown height. Therefore, the following values can be computed:

1) sq. u,   2) u/h = sq. u /A,   3) s/u = (s/h) / (u/h),   4) s = (s/l) · u.

A Babylonian mathematician would, of course, have computed h directly
asA/l, but for a Greek mathematician it was more correct to begin by ex-
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pressing sq. u : A as the ratio between two magnitudes of the same kind.
In the explanation above, the successive “givens” are interpreted as a

sequence of computed values or ratios between values, where the latter are
arbitrarily called r1, r2, ··· . A parallel phenomenon is a well known trick
in modern mathematics, where one conveniently calls all “constants” that
appear in the course of a computation algorithm C1, C2, ··· , sometimes
even just C, instead of bothering to keep track of their actual values.

10.2.El. VI. 28 & Data 58. Elliptic Applications of Parallelograms

El. VI.28

To a given straight line to apply a parallelogram equal to a given rectilineal figure and
deficient by a parallelogrammic figure similar to a given one; thus the given rectilineal
figure must not be greater than the parallelogram described on the half of the straight
line and similar to the defect.

Fig. 10.2.1.El. VI.28. Elliptic application of a parallelogram of given area.

In the diagram associated with El. VI.28, AB is the given straight line,
C the given rectilineal figure, and D the given parallelogrammic figure. It
is required to construct a parallelogram ST (or SQTA) along a part AS of
AB, such that the area of ST is equal to the given area of C, and such that
the ‘defect’ BRQS is similar to the given parallelogram D. The given area
of C is not allowed to be greater than the area of the parallelogram EF,
which is similar to D and constructed on EB, the half of AB. 

The procedure begins with the construction of EF along EB and the
similar parallelogram AG along AE, the other half of AB. Then, if AG
equals C (in area), AG is the wanted parallelogram. If not, then BG = AG
is greater than C (in area). In that case, let the parallelogram KM (KLMN)
be constructed so that it is similar to D and equal (in area) to the excess by
which BG is greater than C. This is possible according to El. VI.25 (below,
Sec. 10.4), which teaches how to construct a figure similar to one given
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rectilineal figure and equal (in area) to another given rectilineal figure.
Next, GQ (GOQP), a copy of KM, is placed in the upper left corner of

the similar parallelogram BG, and the “figure” (schema) is described, by
which is meant that the lines PS, OR, and GB are drawn. Obviously then,
the “gnomon” which is the difference between BG and GQ is equal (in
area) to D. On the other hand, the gnomon is equal in area to the parallel-
ogram TS, because PR is equal to OS (in view of El. I.44) and OS + QB is
equal to TE. Therefore, TS is the wanted parallelogram.

Data 58
If a given (parallelogram) is applied to a given (straight line) deficient by a form given

in form, the widths of the defect are given.

Fig. 10.2.2.Data 58. The widths of the defect are given.

The proof of Data 58 begins with the assumption that a parallelogram
AC of given area has already been applied to a straight line AB of given
length in such a way that it is deficient by a parallelogram DC of given
form. This can have been done by use of El. VI.28.

The construction that was used for the proof of El. VI.28 is then
repeated, up to the point where the ‘figure’ is described. It is noted that the
parallelogram EZ is given both ‘in form’, since it is similar to DC, and ‘in
magnitude’, since, in addition, the side ED is half of the given straight line
AD. On the other hand, according to El. VI.28, EZ = AC + KQ, and AC is
given. Therefore, KQ is also given, at least in magnitude, but it is also
given in form since it is similar to DC, according to El. VI.24, Euclid’s
counterpart to the Babylonian “right sub-triangle rule”.

Since the parallelogram KQ is now given in both form and in magni-
tude, its sides are also given (Data 55, below, Sec. 10.4). Therefore, KC is
given, and so is EB = KC. Since ED is given, BD is also given, and since
DC is given in form, BC is given. Consequently, the sides of the defect are
given, as claimed in the proposition.
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From the point of view of metric algebra, the construction problem
posed in El. VI.28 is a Babylonian basic quadratic equation of type B4c:

p · s – sq. s = R.

(See Sec. 1.1 above.) Indeed, in Fig. 10.2.1, let 

(the lengths of) AB = a p, SB = a s, BR = b s, and (the area of) ASQT = A.
and let h be the height of the parallelogram ABRT.

Then

a p · b s – a s · b s = A / r,   where r = h / a b s.

This equation can immediately be reduced to 

p · s – sq. s = R,   where   R = A / a b r.

(Cf. Taisbak SC 16 (2003).) From this point of view, the appearance of a
parallelogrammic defect in El. VI.28 instead of simply a square defect is a
meaningless complication of the situation.

In El. VI.28, it is shown that there is a geometric solution to every
elliptic application problem corresponding to a quadratic equation of type
B4 c (under the obvious assumption that the given area of the applied par-
allelogram is not too big). The method used is synthetic and constructive.
In the closely related proposition Data 58, on the other hand, it is shown
by use of an analytic method, that once a solution to the elliptic application
problem has been found, the sides of the defect can be computed. 24

Essentially, what is shown in Data 58 is that the solution to the basic
quadratic equation of type B4c is of the form

s= p/2 – sqs. (sq. p/2 – R),   with the silent assumption thatRF sq. p/2.

10.3.El. VI. 29 & Data 59. Hyperbolic Applications of Parallelograms

El. VI.29

To a given straight line to apply a parallelogram equal to a given rectilineal figure and

exceeding by a parallelogrammic figure similar to a given one.

24.Cf. the following remark in Taisbak ED (2003), 155: “··· some of us would think that
the ‘unknowns’ to be proved given (in Data 58) were the sides of the applied parallelogram,
and not those of that phantom, the deficient parallelogram. However, the givenness of the
sides (of the applied parallelogram) is postponed till Dt 85 ···”. It is clear that the persons
referred to as “some of us” have not fully appreciated why Data 58-59 and Data 84-85 are
two separate pairs of propositions. See the continued discussion of the matter in Sec. 10.4. 



220 Amazing Traces of a Babylonian Origin in Greek Mathematics

Data 59

If a given (parallelogram) is applied to a given (straight line) exceeding by a figure giv-
en in form, the widths of the excess are given

It is obvious that El. VI.29 and Data 59 are direct counterparts to El.
VI.28 and Data 58, only with excesses instead of defects in the applica-
tions of parallelograms. From the point of view of metric algebra, El VI.29
andData 59 can be explained as being concerned with geometric solutions
to quadratic equations of the basic type B4a:

sq.s + q · s = P.

(See again Sec. 1.1 above.) The proofs of El. VI.29 and Data 59 are, with
the necessary modifications, repetitions of the proofs of El. VI.28 and
Data 58. See Fig. 10.3.1 below, where the first diagram shows the metric
algebra interpretation of the proof of Data 59, while the third diagram
shows the metric algebra interpretation of the proof of Data 58.

The diagram in the middle in Fig. 10.3.2 shows how a quadratic equa-
tion of type B4b can be reduced to an equation of type B4a through what
is essentially a simple change of variable. Therefore, this case, too, can be
taken care of by the procedure in Data 59.

Fig. 10.3.1.  Metric algebra interpretations of the proofs of El. VI.28-29 and Data 58-59.

10.4.El. VI.25 and Data 55

A crucial part of the arguments in El. VI.28-29 and Data 58-59 is the
application ofEl. VI.25, or Data 55, for the construction of a parallelo-
gram of given form and magnitude (for instance KM or OP in Fig. 10.2.1).

q q
u

u
q

El. VI.29 & Data59

B4a : sq. s + q · s = P

sq. (s + q/2) = sq. q/2 + P sq. (u – q/2) = sq. q/2 + Q sq. (p/2 – s) = sq. p/2 – R

(El. VI.29 & Data59)

B4b : sq. u – q · u = Q

El. VI.28 & Data58

B4c : p · s – sq. s = R

s s

s s

p

P Q R
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El. VI.25

To construct one and the same figure similar to a given rectilineal figure and equal to

another rectilineal figure.

In the proof it is assumed that the given form is, for instance, a triangle
ABC. (See Fig. 10.4.1 below.) A parallelogram BE equal to ABC is then
applied to BC, and a parallelogram CM of the given magnitude is applied
to CE [El. I.44-45]. Next, GH is constructed as a mean proportional to BC
[El. VI.13 or II.14] and CF, and KGH is constructed on GH similar and
similarly situated to ABC [El. VI.18].

Then it follows that as BC is to CF, that is, as the parallelogram BE to
the parallelogram EF, so is the triangle ABC to the triangle KGH [El.
VI.19, Por., see below]. Therefore, since BE = ABC and EF = D, it follows
that KGH = D, so that KGH has the desired properties.

Fig. 10.4.1.El. VI.25. Construction of a figure of given form and magnitude.

El. VI.19, Por. which plays a crucial role in the construction in El. VI
25 is a corollary to El. VI.19:

El. VI.19

Similar triangles are to one another in the duplicate ratio of the corresponding sides.

Fig. 10.4.2.El. VI.19. Similar triangles are in the duplicate ratio of corresponding sides.

The proof of El. VI.19 begins (see Fig. 10.4.2) by constructing BG as
the third proportional to BC and EF, so that as BC is to EF, so is EF to BG.
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Then, if ABC and DEF are similar, as AB is to DE, so is BC to EF, and EF
to BG. Therefore, in the triangles ABG and DEF, the sides about the equal
angles are reciprocally proportional, and it follows that ABG = DEF
[El. VI.15].

Consequently, ABC is to DEF as ABC is to ABG, that is, as BC is to
BG. Since BG is the third proportional to BC and CF, BC is to BG in the
duplicate ratio of what BC is to EF. Which was to be proved.

The mentioned corollary to El. VI.19 says that

If three straight lines are proportional, then, as the first is to the third, so is the figure
described on the first to that which is similar and similarly described on the second.

In Euclid’s Data, the two propositions Data 54-55 are closely related
toEl. VI.19 and El. VI.25. As pointed out by Taisbak, ED (2003), 116-118.
143, Data 55 “will play a dominant role in the theory of ‘application of ar-
eas’ (Dt 58 and 59) by way of Elements VI.25, which according to Dt 55
has a ‘given’ solution.”

Data 54

If two forms given in form have a given ratio to one another, I say that their sides will
also have a given ratio to one another.

Data 55

If a figure is given in form and in magnitude, its sides will also be given in magnitude.

The metric algebra counterpart to the statement in El. VI.19 that
“similar triangles are to one another in the duplicate ratio of the corre-
sponding sides”, and to the related statement in Data 54, is that the areas
of similar triangles are proportional to the squares of (the lengths of) cor-
responding sides. This is a special case of the following more general “OB
quadratic similarity rule”: 

The areas of similar figures bounded by straight lines and/or circular arcs are propor-
tional to the squares of (the lengths of) corresponding sides or arcs in the figures.

This intuitively understood rule is frequently applied in OB mathemat-
ical texts, and is the explanation for some of the items in the well known
OB mathematical “tables of constants”. Take, for instance, the following
items from the OB table of constants TMS 3 (= BR), mentioned in Sec. 6.2
above:

5 igi.gub  $à gúr 5, constant of the arc BR   2
26 40 igi.gub  $à a-pu-sà-am-mi-ki 26 40, constant of the lyre-window BR 22
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The first of these items means that the area of a circle is equal to ;05 (1/12)
times the square of the whole arc (circumference) of the circle. The second
item means that the area of a concave square is equal to ;26 40 (4/9) times
the square of the length of any one of the circular arcs bounding the figure.
(See, for instance, Fig. 6.2.6 above.)

Note that the complicated proof of El. VI.19 can be replaced by the fol-
lowing more straightforward argument in the style of metric algebra:

The quadratic similarity rule is trivially true for a right triangle with the base b, the
heighth and the area A, since A = b/2 · h = (b/h)/2 · sq. h. Consequently, it is also true
for an arbitrary triangle, since any triangle can be understood as either the sum or the
difference of two right triangles, glued together along a common height.

The metric algebra counterpart to the statement in Data 55: “If a (rec-
tilineal) figure is given in form and in magnitude, its sides will also be giv-
en in magnitude” is the understanding that if the area and the “constant”
of a figure are known, then the sides of the figure can be computed. In par-
ticular, if A = c sq. s, where A and c are known, then s can be computed as
the square side of 1/c · A.

An explicit solution to a “form and magnitude problem” by use of met-
ric algebra is given in P.Moscow # 17 (Friberg, UL (2003), Sec. 2.2 c), a
metric algebra exercise in an Egyptian hieratic mathematical text:

P.Moscow # 17

Method of calculating a triangle. If it is said to you: 
A triangle of 20s in field, and as for what you set as length you have 3' 15 as width.
You double the 20s, it makes 40. You count with 3' 15 to find 1. It makes 2 2' times.
You count 40 times 2 2', it makes 100. You count the corner (square side), it makes 10.
Look, this 10 is the length.
You count 3' 15 of 10, it makes 4. Look, this 4 is the width.
You have found correctly.

What this means is that if l is the length, w the width and A the area of a
triangle, and f = w/l the ratio between the sides of the triangle, then

A = l · w/2 = f/2 · sq. l.

In the given example, when A = 20 setat (with 1 setat = 1 sq. khet, and 1
khet = 100 cubits), and f = 3' 15 (= 2/5), it follows from this equation that

sq.l = 1/f · 2 A = 1 / 3' 15 · 40 = 2 2' · 40 = 100 (setat),   so that

l = 10 (khet), and w = 3' 15 · 10 = 4 (khet).

The steps of the computation are repeated in a diagram in P.Moscow # 17.
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An OB explicit solution to a form and magnitude problem is
IM 121613 # 1 (Friberg,op. cit.), an exercise in a large theme text.

IM 121613 # 1

2/3 of the length (is) the front. 1 è$e (is) a field I built.
Length and front (are) what? You:
1, the length, (and) 40, its 2/3, let eat each other, then 40, the false field, you see.
The opposite of 40, the false field, resolve, to 10, the true field, raise, then 15 you see.
The equalside of 15 let come up, 30 you see.
30 to 1 and 40, your numbers, always raise, then 30, the length, 20, the front, you see.
Such is your doing.

In this exercise, the given ratio between the front and the length of a
rectangle is f = 2/3, and the given area is A = 1 è$e (= 10 00 sq. ninda).
The solution procedure is an example of the application of the OB “rule of
false value” (see Friberg, RlA 7 (1990), Sec. 5.7 d).

First, it is assumed that a tentative ‘false’ length is u' = 1 00. The cor-
responding ‘false’ front is s' = f · u' = 40, and the corresponding ‘false’ area 

A' = f · sq. u' = 2/3 · 1 00 00 = 40 00. 

The ratio between the ‘true’ and the ‘false’ area is the “quadratic correction
factor”

sq.u / sq. u' = A / A' = 10 00 (sq. ninda) / 40 00 = 1/4 (sq. ninda) = ;15 (sq. ninda).

This is the square of the “linear correction factor” 

u / u' = sqs. (A / A') = 1/2 (ninda) = ;30 (ninda).

Therefore, the true length and the true front are

u = 1 00 · ;30 (ninda) = 30 (ninda),   and s= 40 · ;30 (ninda) = 20 (ninda).

It is interesting to compare this solution to the form and magnitude
problem in IM 121613 # 1 by use of the OB rule of false value with
Euclid’s proof of the form and magnitude proposition Data 55:

Data 55, proof

Let the (rectilineal) figure A be given in form and magnitude; 
I say that its sides are given in magnitude.
Let the straight line BC have been set out given in position and in magnitude, 
and on BC let D have been described similar and similarly situated to A. 
Then D is given in form.
And since on the straight line BC given in magnitude 
the given form D has been described, therefore D is given in magnitude.
And A is given; therefore the ratio A : D is given. And A is similar to D; 
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therefore the ratio EZ : BC is given [Data 54 or El. VI.19].
And BC is given; therefore EZ is given. 
And the ratio ZE : EH is given; therefore EH is given.
For the same reason each of the other sides is also given in magnitude.

Fig. 10.4.3.Data 55. A form and magnitude proposition.

It is easy to see that Euclid’s proof of the form and magnitude proposi-
tion Data 55 step by step corresponds to the solution of the form and mag-
nitude problem IM 121613 #1 by an application of the rule of false value!

10.5.Data 84-85. Rectangular-Linear Systems of Equations

In Sec. 1.2 above, it was suggested that the purpose of the two proposi-
tionsEl. II.2-3, never adequately explained before, may have been to show
that basic quadratic equations of the Babylonian types B4a-c can be
replaced by equivalent basic rectangular-linear systems of equations of
the Babylonian types B1a-b (described in Sec. 1.1), which then in their
turn can be solved by use of El. II.5-6.

This hypothesis is strongly supported by the evidence of a lemma in
Elements X preceding the crucial propositions El. X.17-18 and of a pair of
propositions in Euclid’s Data. All three are accompanied by diagrams
resembling the diagram illustrating El. II. 3 (Fig. 1.2.3 above).

Lemma El. X. 16/17

If to any straight line there be applied a parallelogram deficient by a square figure, the
applied parallelogram is equal to the rectangle contained by the segments of the straight
line resulting from the application.

Data 84

If two straight lines contain a given figure in a given angle, and one of them is greater
than the other by a given (straight line), each of them will be given, too.
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Data 85

If two straight lines contain a given figure in a given angle, and their sum is given, each
of them will be given.

The lemma says, essentially, quite explicitly, that a basic quadratic
equation of type B4c can be replaced by an equivalent basic rectangular-
linear system of equations of type B1a. The proof is straightforward. 

The pair of propositions Data 84 and Data 85 assert, essentially, that
there exist unique solutions to every given basic rectangular-linear system
of equations of type B1b or B1a, respectively.

The proof of Data 85, for instance, goes as follows:

Data 85, proof

Fig. 10.5.1.Data 85. Existence of a solution to a rectangular-linear system of equations.

For let two straight lines AB, BC contain the given area AC in the given angle ABC,
and let the sum ABC be given. I say that each of AB, BC is given.
For, let CB have been produced to D, and let BD have been laid out equal to AB, 
and through D let DE be drawn parallel to BA, and let AD have been completed.
And, since DB is equal to BA, and the angle ABD is given, 
because its adjacent angle is given, too, EB is given in form.
And since the sum ABC is given, and AB is equal to B, DC is given, then, 
since the given AC has been applied to the given DC deficient by the given form EB,
the widths of the defect are given [Data 58]. 
Therefore AB and BD are given; but the sum ABC is also given; 
therefore the remainder BC is also given; therefore each of AB, BC is given.

In terms of metric algebra, Data 85 states that if there exists a solution
u, s to a basic rectangular-linear system of type B1a:

u · s= A, u + s = p,

then the solution is uniquely determined.
The proof of the proposition begins by explicitly showing that if there

A

u A

s
p

u

E

D B C
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exists a solution u, s to a given system of equations of type B1a, then u is
also a solution to a corresponding basic quadratic equation of type B4c:

p · u – sq. u = A.

In view of El. VI. 28 and Data 58 (see Sec. 10.2 above), there exists a
unique solution u to every such equation, provided that A F sq. p/2. Then
alsos = p – u is uniquely determined. 

With only small modifications, the arguments in the proof of Data 85
can be used to prove also the existence of a solution to every rectangular-
linear system of equations of type B1a (when AF sq. m/2). It is likely, how-
ever, that the purpose of the propositions Data 85 and Data 58 together
was not theoretical but practical, namely to indicate the essential steps in
an actual computation of a solution to a system of type B1a.

10.6.Data 86. A Quadratic-Rectangular System of Equations 

A particularly intriguing proposition in Euclid’s Data is Data 86, ex-
tensively discussed in Taisbak, ED (2003), Chapter 13:

Data 86

Fig. 10.6.1.Data 86. A quadratic-rectangular system of equations.

If two straight (lines) contain a given field in a given angle and if in power one is by 
a given greater than the other, in ratio, also each of them will be given.

Neither the diagram accompanying the proposition (Fig. 10.6.1, left),
nor the wording of the statement itself, is very helpful. Nevertheless, it is
clear from the proof what the statement means. In the terminology of
metric algebra, the proposition states that if the sides u ands of a parallel-
ogram satisfy a system of equations of the following type

s : h = r1, u · h = A,   (sq. u – B) : sq. s = r2,

h

u
p

A

B D C
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whereA and B are given areas, and r1, r2 given ratios, then u and s will be
uniquely determined. Here the equation s : h = r1 is a way of expressing
the condition that the parallelogram with the sides u, s and the height h
againstu is contained in a given angle (see Fig. 10.6.2 below), although the
diagram in the text shows only a rectangle.

The mentioned system of equations can be rewritten in the form

s = r1 · h, u · h = A,   sq. u – r2 · sq.s = B.

Consequently, the given system of equations for u, s can be replaced by a
quadratic-rectangular system of equations of the following type for u, h:

sq.u – r3 · sq.h = B, u · h = A ,

wherer3 is a new given ratio. Now, recall that in Sec. 5.4 above, a system
of equations of the following type

sq.p + sq. q = S, p · q = P

was called a basic quadratic-rectangular system of equations of type B5.
Systems of type B5 appear in Elements X and in OB mathematical cunei-
form texts. Systems of equations of a similar type, only with a minus sign
instead of a plus sign, can be called “basic quadratic-linear systems of
equations of type B6”, although no such systems of equations were previ-
ously known to appear in either Greek or Babylonian mathematics.
Nevertheless, it is still motivated to call the system of equations foru and
h mentioned above, with its arbitrary given ratio r3, a quadratic-rectangu-
lar system of equations of type B6.

Five different ways of solving basic quadratic-rectangular systems of
equations of type B5, documented in Elements X or in OB mathematical
texts, are exhibited in the form of diagrams in Figs. 5.4.1-2 above. Of the
five methods for systems of type B5, only two will work also for a system
of type B6, namely the ones used in El. X.54, 57 and BM 13901 # 12.

Here is how method of El. X.54 would work in the case of a “modified”
system of equations of type B6 like the one in Data 86 (with s = h):

sq.u – r · sq.s= B, u · s = A .

First choose a straight line e and set

sq.u = a · e,   sq. s = b · e, A = v/2 · e, B = w · e.

Thenu, s is a solution to the original system if a, b is a solution to 

a – r · b = w, a · b = sq. v/2.
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This system of equations for a, b can, in its turn, be replaced by a basic
system of equations of type B1b for the modified pair a, r · b:

a – r · b = w, a · (r · b) = r · sq. v/2.

The solution to this system of equations is, of course,

a = sqs. {sq. w/2 + r · sq. v/2} + w/2, b = [sqs. {sq. w/2 + r · sq. v/2} – w/2] / r.

Consequently,

u = a · e= [sqs. {sq. w/2 + r · sq. v/2} + w/2] · e= [sqs. {1 + r · sq. (2 A/B)} + 1] · B/2,

and

s = b · e= [sqs. {1 + r · sq. (2 A/B)} – 1] / r · B/2.

In the proof of Data 86, however, Euclid demonstrates an entirely
different way of solving a (modified) system of equations of type B6. Eu-
clid’s alternative method is illustrated by the diagram in Fig. 10.6.2 below,
essentially identical with Fig. 86.4 in Taisbak, ED (2003):

Fig. 10.6.2.Data 86. The procedure in terms of metric algebra.

In terms of metric algebra, Euclid’s procedure works in the following
way: Consider, in the simple case when h = s, the system of equations 

sq.u – B = r · sq.s, u · s = A.

InterpretB as the (area of) a rectangle with the sides u andp. Then

sq.u – u · p = r · sq.s,  and s / p = u · s / u · p = A/B.

Consequently, the given quadratic-rectangular system of equations for u, s

u

B

A

C

C

CC

s h

p

u – p

u – p

Assume that s : h is g iven,   u · h  = A is g iven

(sq.u – B) : sq. s is g iven

Let B = u · p

Then h : p  is also given

(sq.u – u · p) : sq. p  is also given

sq. (2 u – p) : sq. p is also given

(2 u – p) : p is also given

u : p is also given

SinceB = u · p is given

sq.p is also given

p is also given

u,   h,   s are also given
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can be replaced by the following quadratic equation for u, p:

sq.u – u · p = C,  with C = r' · sq.p,   and r' = r · sq. A/B.

By use of El. II.8, for instance, this equation can be transformed into

sq. (2 u – p) = 4 C + sq. p = (4 r' + 1) · sq. p.

Therefore,

2 u – p = sqs. (4 r' + 1) · p,   so that u = r" · p,   with  r"  = {sqs. (4 r' + 1) + 1}/2.

This means that the original equations for u and p have been reduced to a
rectangular-linear system of equations of the following simple kind:

u · p = B, u = r" · p.

The solution to this system of equations is, of course, that

r" · sq. p =B,   so that p = sqs. (B / r")   and u = r" · p = r" · sqs. (B / r").

Whenp and u have been determined in this way, it is easy to find also the
value ofs = A/B · p.

The more general case when s/h = r1 can be treated similarly.

The proposed explanation above of Euclid’s procedure in the proof of
Data 86 operates somewhat carelessly with ratios. Euclid was, of course,
much more careful, which is evident from the full text below. See Fig.
10.6.1, left, for the meaning of the notations in the left column.

Data 86, proof explanation

For. let the two straight lines AB, BC contain Let AB = s,   BC = u
the given field AC in the given angle ABC, s : h = r1 (given)
and let the square on CB be by a given u · h = A (given)
greater than in ratio to the square on BA. (sq. u – B (given)) : sq. s = r2 (given)
I say that each of AB, BC is also given. Then s and u are also given
—————
For ··· let the given rectangle CBD Set   B = rect. CB, BD = u · p
have been subtracted.
Then the ratio of the remaining rect. DCB Then (sq. u – u · p) : sq. h
to the square on AB is given.    = sq. r1 · r2 = r3
And since rect. ABC is given, and u · h : u · p
rect. CB, BD is also given, therefore = A : B
the ratio rect. AB, BC : rect. CBD is given. = r4
But rect. ABC : rect. CB, BD :: AB : BD. u · h : u · p = h : p
Therefore the ratio AB : BD is also given: Therefore, h : p = r4, and
Hence the ratio sq. AB : sq. BD is also given. sq. h : sq. p = sq. r4 = r5
The ratio sq. AB : rect. BCD is given. sq. h : (sq. u – u · p) = 1/r3 = r6
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Therefore rect. BCD: sq. DB is also given. (sq. u – u · p) : sq. p = r5/r6 = r7
Hence the ratio 4 rect. BCD : sq. BD is given, 4 (sq. u – u · p) : sq. p = 4 r7 = r8
and the ratio {4 (sq. u – u · p) + sq. p}: sq. p
(4 rect. BCD + sq. BD) : sq. BD is given,    = r8 + sq. p : sq. p = r9
But 4 rect. BCD + sq. BD 4 (sq. u – u · p) + sq. p
 = sq. (BC + CD). Hence the ratio    = sq. (2 u – p)
sq. (BC + CD) : sq. BD is given. sq. (2 u –p) : sq. p = r9
And so the ratio (BC + D) : BD is given. (2 u – p) : p = sqs. r9 = r10.
Therefore,synthenti,
the ratio 2 CB : BD is given, so that 2 u : p = r10+ p : p = r11
the ratio of CB alone to BD is given. u : p = r11/2 = r12
But CB : BD :: rect. CBD : sq. BD. u : p = u · p : sq. p
Therefore the ratio rect. CBD : sq. BD is given.u · p : sq. p = r12
Rect. CB, BD is given. u · p = B
Therefore, sq. BD is also given, sq. p = B/r12= c1
and so BD is given, p = sqs. c1 = c2
so that BC, too, is given, u = r12· c2 = c3
because the ratio CB : BD is given. since  u : p = r12
[And the ratio AB : BD is given.] [h : p = r4]
[Therefore AB is given.] [h = r4 · c2 = c4.]
And the parallelogram AC is given, u · h = A (given)
and the angle B is given. s : h = r1 (given)
Therefore AB is also given. s = r1 · c4 = c5
Therefore each of AB and BC is given. s = c5, u = c3

The translation above of the text of Data 86 follows closely the trans-
lation given by Taisbak in ED (2003), with the important exception that the
text has been broken up into sentences or parts of sentences so that each
step of the procedure is written on a separate line of the translation. This
way of representing a difficult ancient mathematical text makes it easy to
follow the course of the arguments and to juxtapose the explanations as in
the right column above. 

Breaking up the text mass in this way also makes the repetitive nature
of the text stand out, with the phrase “is given” finishing each step of the
procedure. It is a striking observation that Babylonian mathematical texts
are often of precisely the same repetitive nature, with each step of a com-
plicated computation finishing with a fixed phrase. See, for instance, IM
121613 (Friberg, UL (2005), 73; Sec. 10.4 above), an OB mathematical
text where the fixed phrase is ‘you see’ (ta-mar). VAT 7532 (op. cit., 118)
is another OB mathematical text with the fixed phrase ‘it gives’ (in.sì),
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and BM 34800 (op. cit., 34), is a Late Babylonian mathematical text with
another fixed phrase meaning ‘it gives’ (ì .mu).

Comparing the repeated use of the intentionally vague phrase ‘is given’
in Data 86 with the difficulty of keeping track of the changing values of
the successive ratios r1, r2, ··· in the explanation, one begins to understand
how ingenious the style of Euclid’s Data really is. The persistent use of the
phrase ‘ is (also) given’ makes it possible to go through all the steps of an
algorithmic computation without being bothered by obscuring details.

10.7. Zeuthen’s Conjecture: Intersecting Hyperbolas

Interpretations of Data 86 as an example of the application of “geo-
metric algebra” was suggested already by Tannery in his paper “De la
solution gé ometrique des problè mes du second degré e avant Euclide”
(1882) (see Saito HS 28 (1985), fn. 27), and by Zeuthen in “Sur la reforme
qu’a subie la mathé matique de Platon à  Euclide, et grâ ce à  laquelle elle est
devenue science raisonné e” (1917) (see Taisbak ED (2003), fn. 153). 

In his paper, Zeuthen also makes the interesting conjecture that 

“The proposition (Data 86) may be said to deal with the givenness of the intersection
of two hyperbolas having the same two given straight lines for conjugate diameters and
asymptotes, respectively” (Taisbak, op. cit., 212, 223-224). 

Apparently without knowing about Zeuthen’s conjecture, Saito (op. cit.,
50-53;CHGM (2004), 160-161) made a similar interpretation of Data 86.
In Saito’s diagram, reproduced in Fig. 10.7.1 below, I and II are the two
hyperbolas, and P their point of intersection.

Fig. 10.7.1.Data 86 interpreted as a proposition concerning intersecting hyperbolas.

A P

E' B D E G

I:  (sq. AP – sq. BE) : sq. PG is given

II:   AP · PG is given

(III:   sq. BE = BG · BD = AP · BD)

Ç

AP and PG are also given

I

III

II
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The diagram shows that Data 86 can be interpreted as saying that if two
given hyperbolas intersect each other in a point P, then also the abscissa
AP and the ordinate PG of P are given, so that P is given in position. In
addition, as observed by Saito, the crucial trick of setting B = u · p can be
explained as simply an application of Appolonius’ Conics I 37 (a), giving
the equation for the position of the point D, the point where the diameter
is intersected by the tangent to hyperbola I at the point P!

10.8. A Kassite Series Text with Modified Systems of Types B5 and B6

YBC 4709 (Neugebauer, MKT 1 (1935), 412-420) is one of several
known medium size clay tablets with mathematical “series texts”. A series
text is an extremely compressed theme text, typically with about 50 closely
related exercises, ending with a colophon (a subscript). According to Neu-
gebauer (QSB 3 (1934-36), 113), the writing style shows that the series
texts are post-Old-Babylonian, possibly Kassite. 

In the case of YBC 4709, the subscript is the following:

55 hand tablets (assignments). 5th clay tablet (in a certain series).

The 55 exercises can be divided into 15 paragraphs. Here are two of them:

YBC 4709 § 1 a-c, literal translation explanation

a The field (is) 1 è$e . A = 1 è$e  = 10 00 sq. ninda
The length times 3 repeat, equalsided. sq. (3 u)
The field of the front add, then 2 21 40.   + sq. s = 2 21 40

b Times 2 repeat, add, then 2 28 20.   + 2 sq. s = 2 28 20

c The field of the front tear off, then 2 08 20.    – sq. s = 2 08 20

YBC 4709 § 15 a-c, literal translation explanation

a The field (is) 1 è$e . A = 1 è$e  = 10 00 sq. ninda
The front times 3 repeat,
as much as the length over the front is beyond
add, then equalsided. sq. {3 s + (u – s)}
The field of the length add, then 1 36 40.   + sq. u = 1 36 40

b Times 2 repeat, add, then 1 51 40.   + 2 sq. u = 1 51 40

c The field of the length (and) the front add then 1 43 20.   + (sq. u + sq. s) = 1 43 20

The question in YBC 4709 § 1 a can be interpreted as a quadratic-
rectangular system of equations of type B5:
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§ 1 a sq. (3 u) + sq. s = 2 21 40, u · s= A = 10 00 (sq. n.)

The question in § 1 b is a slightly modified system of type B5:

§ 1 b sq. (3 u) + 2 sq. s = 2 28 20, u · s= A = 10 00 (sq. n.)

The question in YBC 4709 § 1 c, on the other hand, is a quadratic-
rectangular system of equations of type B6:

§ 1 c sq. (3 u) – sq. s = 2 08 20, u · s = A = 10 00 (sq. n.)

The questions in YBC 4709 § 15 can all be reduced to modified
quadratic-rectangularsystems of equations of type B5:

§ 15 a sq. {3 s + (u – s)}+ sq. u = 1 36 40, u · s= A = 10 00 (sq. n.)
Ç 2 sq. u + 4 sq. s = 1 36 40, u · s = A = 10 00 (sq. n.)

§ 15 b sq. {3 s + (u – s)} + 2 sq. u = 1 51 40, u · s= A = 10 00 (sq. n.)
Ç 3 sq. u + 4 sq. s = 1 51 40, u · s = A = 10 00 (sq. n.)

§ 15 c sq. {3 s + (u – s)} + (sq. u + sq. s = 1 43 20, u · s= A = 10 00 (sq. n.)
Ç 2 sq. u + 5 sq. s = 1 43 20, u · s = A = 10 00 (sq. n.)

It is likely that the author of YBC 4709 intended all the problems in
§§ 1 and 15 to be solved by use of a method closely related to the solution
method for a similar problem in the OB text BM 13901 # 12 (Fig. 5.4.1,
bottom).25 26 In the case of § 15 c, for instance, the trick is to set

2 sq. u = a,    5 sq. s = b.

In this way, the mentioned system of type B5 for the pair u, s is reduced to
a simpler system of type B1a for the pair a, b:

a + b = 1 03 20, a · b = 10 · sq. 10 00 = 16 40 00 00.

The solution to this system of equations can be found in the usual way. It
turns out to be a, b = 30 00, 33 20. Therefore, u, s = 30, 20. This, by the
way, is also the solution to all the other 55 problems in YBC 4709.

25. Compare with the suggested solution procedure for the triangle division problem TMS
18 in Sec. 11.2 e below.
26. Note that of the five methods to solve a quadratic-rectangular system of type B5 shown
in Figs. 5.4.1-2, only the method used in BM 13901 # 12 and the related method used in El.
X. 54, 57 work also in the case of modified systems of type B5, like the ones in YBC 4709
§ 1 b and § 15 a-c. As observed above, it is also only those two methods of the five shown
in Figs. 5,4,1-2 that work in the case of a quadratic-rectangular system of equations of type
B6, like the one in Data 86, modified or not. Reversely, the method used in Data 86 works
also in the case of a modified quadratic-rectangular system of equations of type B5.
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Chapter 11

Euclid’s Lost Book On Divisions and 
Babylonian Striped Figures

The Greek text of Euclid’s book On Divisions is lost. The only Greek
references to it can be found in Proclus’ commentary to Euclid’s Elements.
In 1851, Woepcke published a French translation of an abstract of On
Divisions composed by the 10th-century Persian geometer al-Sijz‰. Al-
Sijz‰ reproduced the statements of all the 36 propositions in On Divisions,
but the solution procedures for only four of them (## 19, 20, 28, 29).

In 1915, Archibald published a reconstruction (in English) of On Divi-
sions, complete with procedures for all the problems, based on Woepcke’s
translation and on possible traces of the work in Leonardo Pisano’s
Practica Geometriae (ed. Boncompagni 1862). Finally, in 1993,
Hogendijk made available the Arabic text translated by Woepcke, now
with an English translation, and a couple of briefer related Arabic manu-
scripts. In the discussion below the numbering and the translations of the
propositions in On Divisions follow Archibald. Also some of the recon-
structed solution procedures are borrowed from Archibald.

The figures divided in various ways in On Divisions are triangles, trap-
ezoids, parallelograms, a circle, and a circle segment attached to the base
of a triangle. The figures are divided in two or several parts, the parts being
either equal or in given ratios. The dividing lines are parallel to a side of
the figure or to each other, or drawn from a vertex, or from a point inside
the figure, outside the figure, or on a side of the figure.

Old Babylonian parallels exist mainly to division problems in On Divi-
sions concerned with triangles or trapezoids divided by lines parallel to
the base. On the other hand, there are quite a few known OB examples of
division problems without counterparts in Euclid’s book. All problems in
On Divisions with OB parallels will be discussed below, plus a few others
of particular interest.
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11.1. Selected Division Problems in On Divisions

OD 1-2, 30-31. To divide a triangle by lines parallel to the base

OD 1

To divide a given triangle into two equal parts by a line parallel to its base.

OD 2

To divide a given triangle into three equal parts by two lines parallel to its base.

OD 30

To divide a given triangle into two parts by a line parallel to its base, such that the ratio
of one of the two parts to the other is equal to a given ratio.

OD 31

To divide a given triangle by lines parallel to its base into parts which have given ratios
to one another.

Fig. 11.1.1.  On Divisions 2. To divide a triangle by two parallels in three equal parts.

Procedure for OD 2 (in Practica Geometriae): In the triangle abg, the
side bg is extended to d and e, with ba = 3 ad and ad = de. The points z and
i are constructed so that az is the mean proportional between ba and ad,
and ia the mean proportional between ba and ae (Fig. 11.1.1), and the par-
allels zt and ik are drawn. Then it follows from El. VI.19: “Similar trian-
gles are to one another in the duplicate ratio of the corresponding sides”
that abg : azt = ba : ad = 3 : 1 and abg : aik = ba : ae = 3 : 2. Hence the
triangle abg has been divided in three equal parts, as required.

e

d

a

z t

i k

b g

ad = 1/3 ba

ba : az = az : ad

⇒   [El. VI.19]

abg : azt 

= sq. ba : sq. az 

= sq. ba : (ba · ad) 

= ba : ad = 3 : 1

⇒   azt = 1/3 abg 

ae = 2/3 ba

ba : ai = ai : ae

⇒   [El. VI.19]

abg : aik 

= sq. ba : sq. ai 

= sq. ba : (ba · ae) 

= ba : ae = 3 : 2

⇒   aik = 2/3 abg
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OD 3. To bisect a triangle by a line through a point on a side

OD 3

To divide a given triangle into two equal parts by a line drawn from a given point
situated on one of the sides of the triangle.

If the given point d is the midpoint on the side bg (see Fig. 11.2.1), then
the line through d and the opposite vertex a solves the problem. If not, and
if d is between b and the midpoint e, first the line da is drawn, then ez par-
allel to da, and zd is joined. The triangle adz is then equal to the triangle
ade, and if abd is added to both, it becomes evident that the quadrilateral
abdz is equal to the triangle abe which is half of abg.

Fig. 11.1.2.  On Divisions 3. To bisect a triangle by a line through a given point on a side.

OD 4-5. To divide a trapezoid by lines parallel to the base

OD 4

To divide a given trapezoid into two equal parts by a line parallel to its base.

OD 5

To divide a given trapezoid into three equal parts by lines parallel to its base.

Fig. 11.1.3.  On Divisions 4. To bisect a trapezoid by a line parallel to its base.
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a
sq. ze = (sq. eb + sq. ea)/2
⇒
2 ezi = ebg + ead,
ezi = zbgi + ead,
azid = zbgi
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If abgd is the given trapezoid (Fig. 11.1.3), the sides gd and bd are ex-
tended until they meet in the point e. The point z is constructed so that 

sq. ze = (sq. eb + sq. ea)/2.

Then 2 sq. ze = sq. cb + sq. ea, and it follows (by El. VI.19 as in the pro-
cedure of OD 2) that 2 times ezi is equal to the sum of ebg and eda. If first
ezi and then eda are subtracted from both sides of this equation, it follows
that azid = zbgi, as required.

In OD 5 it is shown that a similar procedure can be used for the con-
struction of two lines parallel to the base of a trapezoid, cutting the trape-
zoid into three equal parts.

OD 8, 12. To bisect a trapezoid by a line through a point on a side

OD 8

To divide a given trapezoid into two equal parts by a straight line drawn from a given
point situated on the longer of the sides of the trapezoid.

OD 12

To divide a given trapezoid into two equal parts by a straight line drawn from a point
which is not situated on the longer side of the trapezoid.

Fig. 11.1.4.  On Divisions 8. To bisect a trapezoid with a line through a point on a side.

The solution procedure in Leonardo’s Practica Geometriae is divided
into a number of cases. The first step in the procedure (abbreviated here)
is to draw the diagram in Fig. 11.1.4, left, where t and k are the midpoints
of the parallel sides ad and bg of a trapezoid, and m the midpoint of tk. The
simplest case is, of course, when the given point is t or k and the tk the
dividing line. Three other cases are when the given point is 1) on ad or nl,
2) on bn or lg, or 3) on ab or dg.

An example of the first case is shown in Fig. 11.1.5, left, where the
dividing line passes through the given point p and the midpoint m on tk.

a dt

b
k

m

n l
g

f i
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This is a simple generalization of the case when the given point is the mid-
point t on ad. It is clear that pmq is the required dividing line since the tri-
angles ptm and qkm are equal so that the quadrilateral pdgq is equal to the
quadrilateral tdgk, which is one half of the given trapezoid.

An example of the third case is shown in Fig. 11.1.5, right, where zi is
a parallel to the base bisecting the given trapezoid (OD 4). If the given
point k lies on the side ab, then first the line ki is drawn, then the line zh
parallel to ki, and finally the line kh, which is the required dividing line.
This is a simple generalization of the situation in OD 4, since it is clear that
the triangles zhk and zhi are equal, and that consequently the quadrilateral
khgb is equal the sub-trapezoid zigb, half the given trapezoid, plus and
minus two equal triangles.

The third case, when the given point is on bn or lg in Fig. 11.1.4, left,
is a simple generalization of the situation in OD 3 (see above).

Fig. 11.1.5.  On Divisions 8. The solution in two different cases.

In OD 9, the slightly more general case is considered when the dividing
line cuts off a certain fraction of the given trapezoid.

OD 19-20. To divide a triangle by a line through an interior point

OD 19

To divide a given triangle into two equal parts by a line which passes through a point
situated in the interior of the triangle.

OD 20

To cut off a certain part from a given triangle by a line drawn from a given point situated
in the interior of the triangle.

These are two of the four problems provided with explicit solution pro-
cedures in al-Sijz‰’s Arabic manuscript (Hogendijk, VM (1993)). In the ex-
planation below, the notations used are the same as in Fig. 11.1.6, right.
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OD 19, solution explanation

We draw from point D a line parallel to BG, DE = t   is drawn parallel to b

namely DE.

We apply to DE an area equal to half AB · BG. BT = m

let it be TB · ED. m · t = r · a · b      (r = 1/2)

We apply to line TB a parallelogram BH = p,   BE = s

equal to BT · BE, deficient from its Find p a s the solution to the equation

completion by a square area; m · p – sq. p = m · s

let the applied area be BH · HT. or   p · (m – p) = m · s 

We join line DH and we extend it towards Z. Draw the line HDZ

I say that the line DHZ has been drawn such 

as to divide triangle ABG into two equal parts, It is the required dividing line

namely HBZ, HZGA.

Proof of this: Proof:

TB · BE is equal to TH · HB, so the ratio of m · s = (m – p) · p  (by assumption)

BT to TH is equal to the ratio of HB to BE. ⇒   m : (m – p) = p : s

Separando, the ratio of TB to BH is also ⇒   m : p = p : (p – s)

equal to the ratio of BH to HE.

But the ratio of BH to HE is equal to  p : (p – s) = q : t  (similar triangles)

the ratio of BZ to ED.

Thus the ratio of TB to BH is equal to ⇒   m : p = q : t 

the ratio of BZ to ED. 

So TB · ED is equal to BH · BZ. ⇒   m · t = p · q

But TB · ED is equal to half of AB · BG,

and the ratio of BH · BZ to AB · BG is equal to Hence,   m · t = r · a · b      (r = 1/2)    

the ratio triangle HBZ to triangle ABG, ⇒   p · q : a · b =  r

because the angles of point B are common.  ⇒   [by Data 66]

So triangle HBZ is half of triangle ABG. cut off triangle : given triangle 

so triangle ABG has been divided into   =   p · q : a · b =  r   

two equal parts, namely BHZ, AHZG. .

There follows a discussion of the extreme case when the points H and A coincide. 

The preceding problem OD 18 contains an oblique reference to El. VI.28 and a vague

discussion of the condition for the existence of a solution to a quadratic equation of

type B4 c. The solution procedures in OD 19 and OD 20 are essentially the same, but

the one in OD 19 (the case when the ratio r between the cut off triangle and the whole

triangle is equal to 1/2) is more detailed. 
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The wholly synthetic solution arguments in OD 19-20 must have been
preceded by an analysis, which is not provided. It is easy to restore the
missing analysis, for instance as follows:

In Fig. 11.1.6 below, right, a, b are two sides of the given triangle, while
s, t are the ordinate and abscissa of the given point, parallel to a and b. Sup-
pose that a triangle has already been constructed, r times smaller than the
given triangle, with sides of lengths p and q along a and b, respectively,
and with its third side passing through the given point D. 

Then it follows from a similarity argument that

p / (p – s) = q / t,

and since the areas of the two triangle are to each other in the ratio r,

p · q / a · b = r.

(See, for instance, the simple proof of Data 66, which says that 

If a triangle has a given angle, the rectangle contained by the lines that contain the given
angle has a given ratio to the triangle.)

Consequently, the pair p, q must satisfy the equations

p · q = r a · b,     t · p = q · (p – s).

If both sides of the second equation are multiplied by p / t, the result is the
following quadratic equation for p:

sq. p = m · (p – s),    where    m = r a · b / t.

This equation for p is where the synthetic solution procedure begins.

Fig. 11.1.6.  On Divisions 19. To cut off part of a triangle by a line through a given point.
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OD 32. To divide a trapezoid by a parallel in a given ratio

OD 32

To divide a given trapezoid by a line parallel to its base into two parts such that the ratio
of one of these parts to the other is equal to a given ratio.

Fig. 11.1.7.  On Divisions 32. To divide a trapezoid by a parallel in a given ratio.

The solution procedure for this problem in Practica Geometriae begins
by extending the non-parallel sides of the given trapezoid until they meet
in the point t (Fig. 11.1.7, left). The parallel sides are called ad and bg, the
dividing line parallel to ad and bg is called hk, and an auxiliary parallel line
is called lm. The given ratio is called ez : zi. Then, without any preceding
analysis, the solution to the problem is claimed to be given by the follow-
ing equations determining the position of the point h:

sq. tl : sq. at = zi : ez,    and    sq. ht : (sq. bt + sq. tl) = ez : ei.

The proof is rather long-winded and quite difficult to follow. 

A variant of the same proof in metric algebra notations is easier to com-
prehend. As in Fig. 11.1.7, right, let a, d, c, b be the four parallel lines, from
the top down, and let p : q be the given ratio. Then

ta : th : tl : tb = a : d : c : b.

Therefore, the equations for the solution in OD 32 can be reformulated as

sq. c : sq. a = q : p,    and    sq. d : (sq. b + sq. c) = p : (p + q).
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Since a, b, p, and q are given, the first of these equations causes c to be
known, and when c is known, the second equation causes d to be known.

Now, it follows from the first equation (in view of El. V.18) that also

sq. a : (sq. c + sq. a) = p : (p + q).

Combining this result with the second equation, one gets that

sq. d : (sq. b + sq. c) = p : (p + q) = sq. a : (sq. c + sq. a).

Consequently also (in view of El. V.19)

(sq. d – sq. a) : (sq. b – sq. a) = p : (p + q).

Note that now the auxiliary straight line c = lm has been eliminated from
the equation! Finally, also (in view of El. V.17)

(sq. d – sq. a) : (sq. b – sq. d) = p : q.

This is the required result, since (with the notations in Fig. 11.1.7)

P : Q = (sq. d – sq. a) : (sq. b – sq. d)

The mentioned solution procedure in OD 32 is completely synthetic;
the necessary preceding analysis is missing. However, reading the synthet-
ic procedure backwards, one can easily restore the missing analysis. The
obvious point of departure for the analysis is the equation 

P : Q = (sq. d – sq. a) : (sq. b – sq. d) = p : q (*)

In this equation, the unknown (length of the) dividing line d appears in two
places. The equivalent equation (in view of El. V.18)

(sq. d – sq. a) : (sq. b – sq. a) = p : (p + q) 

is simpler in this respect, as the unknown d appears only once. In the next
step, the term sq. d – sq. a is to be replaced by sq. d alone. For this purpose,
the auxiliary length c is introduced, satisfying the equation

sq. c : sq. a = q : p (**)

Then (in view of El. V.18)

(sq. d – sq. a) : (sq. b – sq. a) = p : (p + q) = sq. a : (sq. c + sq. a).

Hence, finally (in view of El. V.19),

sq. d : (sq. b + sq. c) = p : (p + q) (***)

In this way, the relatively complicated equation (*) for the unknown length
d can be replaced the simpler equation (**) for c and the equally simple
equation (***) for d.
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Summary. In the preceding section, the following problems from Euclid’s
On Divisions were discussed:

OD 1-2 To divide a triangle by parallels to the base in 2 or 3 equal parts.
OD 3 To divide a triangle by a line through a point on a side in 2 equal parts.
OD 4-5 To divide a trapezoid by 2 or 3 parallels to the base in equal parts.
OD 8, 12 To divide a trapezoid by a line through a point on a side in 2 equal parts.
OD 19-20 To divide f a triangle by a line through an interior point in 2 (equal) parts.
OD 32 To divide a trapezoid by a parallel to the base in a given ratio.

Of these problems, all the ones where the dividing lines are parallel to a
side have Babylonian parallels (see below). The ones where the dividing
line passes through a given point on a side are simple generalizations of
problems with Babylonian parallels. Only the problems where the dividing
line passes through a given point in the interior of the figure are not closely
related to any Babylonian problems.

Note, by the way, that the notion of an arbitrarily given point seems to
have been completely unknown in Babylonian mathematics.

The problems in On Divisions not discussed in Sec.1 1.1 above are:

OD 6-7 To divide a parallelogram by a line through a point on a side.
OD 9 To divide a trapezoid in a given ratio by a line through a point on a side.
OD 10-13 To divide a parallelogram by a line through an exterior point.
OD 14-17 To divide a quadrilateral in equal parts by a line through a given point.
OD 26-27 To divide a triangle in a given ratio by a line through an exterior point.
OD 28 To divide a figure composed of a triangle and a circle segment.
OD 29 To cut off a third, fourth, fifth, of a circle by two parallel chords.
OD 30-31 To divide a triangle in given ratios by parallels to the base in parts.
OD 33 To divide a trapezoid in given ratios by parallels to the base.
OD 34-36 To divide a quadrilateral in equal ratios by lines through a given point.

Most of these problems are not related to any known Babylonian mathe-
matical problems. In particular, the notion of an arbitrary parallelogram
seems to have been completely unknown in Babylonian mathematics.

11.2. Old Babylonian Problems for Striped Triangles

11.2 a. Str. 364 § 2. A model problem for a 3-striped triangle

Metric algebra problems for triangles or trapezoids divided into two or
several “stripes” by transversals parallel to the front was a quite popular
topic in OB mathematics. An interesting first example of a text with prob-



11.2. Old Babylonian Problems for Striped Triangles 245

lems of this type is the well organized theme text Str. 364, probably from
Uruk in southern Mesopotamia (Neugebauer, MKT 1 (1935), 248; photo
MKT 2 (1935), pl. 11).

Fig. 11.2.1.  Str. 364 obv. Metric algebra problems for 3- and 2-striped triangles.

As shown by the hand copy of the obverse of Str. 364 in Fig. 11.2.1
above, the first problem on the clay tablet is lost. The second problem, Str.
364 § 2, is only partly preserved. Nevertheless, a likely reconstruction of
the text of § 2, as well as of the associated diagram, is presented below. 
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Str. 364 § 2

A peg-head. Field, 47 30. From the upper front I went, a transversal I laid across.
The upper front and the transversal as much as I laid across I do not know,
but as much as I went, 3 ninda  4 cubits. I returned, and an opening I laid across.
3 ninda  4 cubits I went and a dike I installed. From the dike that I installed,
an opening I laid across, but the length as much as I went I do not know.
5 16 40 the next field. Fields, how much did I take and how much did I leave?

The pretense in this unusually explicit problem text is that a triangular field
is divided, for irrigation purposes(?), into three canals(?) separated from
each other by dikes. (There is no other known mathematical cuneiform text
using similar terminology.) The two partial lengths u1 = 3;20, u2 = [3;20],
and the areas A = A1 + A2 + A3 = [47] 30 and A3 = 5 16;40 are known. (See
the notations used in the metric algebra diagram above, to the right.) No
solution procedure is given in the text, but the remaining parameters for the
divided field can be computed easily, one at a time, as below.

First, according to the OB quadratic similarity rule for triangles,
sq. s = A / A3 · sq. d2 = 9 sq. d2   so that   s = 3 d2.

Next, according to the OB area rule for trapezoids,

s + d2 = 2 (A1 + A2) / (u1 + u2) = 2 · (47 30 – 5;16 40) / 6;40 = 12;40.   

Therefore,

4 d2 = 12;40   so that   d2 = 3;10   and   s = 9;30.

Then, according to the OB area rule for triangles,

u3 = 2A3 / d2 = 2 · 5;16 40 / 3;10 = 3;20.

This means that

u1 = u2 = u3 = 3;20.

Therefore, obviously,

d1 = 2 d2 = 6;40   and   A1 = 5 A3 = 26;23 20,   A2 = 3 A3 =15;50. 

Note also that the ‘feed’ f for the triangle can be computed as follows by
use of the OB linear similarity rule for triangles:

f = s / u = s / (u1 + u2 + u3) = 9;30 / 10 = ;57.

A3A2A1 d 1

u1 u2 u3

s d 2

4˚7 3˚ a.$à-$u

3  2˚ 3  2˚
 51˚64˚
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Apparently, § 2 (and the lost § 1) were chosen as easy introductory
problems, illustrating both the area rules and the linear and quadratic
similarity rules. § 2 is also a clear demonstration of what appears to have
been an “OB given parameters rule”:

In a triangle divided into n stripes by transversals parallel to the front, there are n partial
lengths, n partial areas, and n fronts (if the transversals are counted as fronts). These 3 n
parameters are related to each other by n area equations and n – 1 similarity equations.
Therefore, the values for only n + 1 of the 3 n parameter can be given arbitrarily.
In particular, 3 parameters can be given for a triangle divided into 2 stripes (a “2-striped
triangle”), 4 for a triangle divided into 3 stripes (a “3-striped triangle”), and so on.
In Str. 364 § 2, n = 3 and n + 1 = 4.

11.2 b. Str. 364 § 3. A quadratic equation for a 2-striped triangle

An interesting series of intimately connected metric algebra problems
for 2-striped triangles on the obverse of Str. 364 begins with Str. 364 § 3.
All the problems are illustrated by diagrams (see Fig. 11.2.1 above). 

Str. 364 § 3

A peg-head. The length and the upper front I do not know. 1 bùr 2 è$e is the field.
From the upper front 33 20 I went down, then 40 the transversal. 
Length and front are what?

In this example there are n = 2 stripes and n + 1 = 3 given values:

ua = 33;20 (ninda),   d = 40 (ninda),   A = 1 bùr 2 è$e  = 50 00 sq. ninda .

(The bùr  and the è$e  were OB area measures equal to 30 00 and 10 00
square ninda , respectively.).

No explicit solution procedures are given for the exercises in Str. 364.
It is, however, definitely worthwhile to try to reconstruct the intended
Babylonian solution procedures. Only in this way can one truly appreciate
the mathematical sophistication of the OB mathematician who composed
the systematically arranged series of problems in Str. 364 §§ 3-9, and the
deep insight he must have had into the geometric and algebraic aspects of
the problems he devised.

In Str. 364 § 3, an equation for the unknown front s in terms of the given
quantities ua, d, and A can be obtained through a combined application of
the linear and quadratic similarity rules for a striped triangle. Thus, accord-
ing to the quadratic similarity rule,

sq. s = f · 2 A,   where   f = s/u   is the (unknown) ‘feed’ for the triangle.
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According to the linear similarity rule,

 s – d = f · ua.

From these two equations together it follows that

sq. s / 2 A = (s – d)/ua   (= f)

or   

sq. s = 2 r · ( s – d),   where    r = A / ua = 50 00 / 33;20 = 1 30. 

This is a quadratic equation for s, which can be solved in the usual way by
a completion of the square

2 r · s – sq. s = 2 r · d    ⇒   sq. (r – s) = sq. r – 2 r · d.

After a second completion of the square one then finds that27

sq. (r – s) + sq. d = sq. (r – d).   

Therefore,

sq. (1 30 – s) + sq. 40= sq. 50.

Consequently,28

1 30 – s = 30   so that  s = 1 00,   and   u = 2 A / s = 1 40.

Note that the computation above surprisingly showed that r – d, d, r – s is
a diagonal triple. Indeed,

r – d, d, r – s = 50, 40, 30 = 10 · (5, 4, 3).

Fig. 11.2.2.  Str. 364 § 3. The trick of making two completions of squares.

27.Here, the idea of making a second completion of the square in a situation of this kind is
borrowed from the explicit solution procedure in MS 3052 § 1 c, an interesting OB problem
text dealing with a clay wall with a triangular cross section (see Friberg, RC (2007), Sec.
10.2).
28. The alternative s – 1 30 = 30 (see Neugebauer, MKT 1 (1935), 255) must be rejected,
because it leads to the solution s = 2 00, u = 1 40 00 / 2 00 = 50, with u less than s. In
Babylonian mathematical texts, the length u is always greater than the front s.
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s a 
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 0

0)

d    
 4

0

Aa    

uk    (1 06;40)

Ak   

ua  = 33;20

d = 40

A  = 50 00

⇒

A  / ua = 1 30 = r 

sq. (r – s) + sq. d = sq. (r – d)         r – d, d, r – s = 10 · (5, 4, 3)
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The remaining parameters are easily calculated, for instance as follows:

uk = 1 30 – 33;20 = 1 06;40,   f = s/u = 1 00 / 1 40 = 3/5 = ;36,   
ua : uk = 33;20 : 1 06 40 = 1 : 2,   Aa : Ak = (sq. 3 – sq. 2) : sq. 2 = 5 : 4.

11.2 c. Str. 364 §§ 4-7. Quadratic equations for 2-striped triangles

Str. 364 §§ 4-7 is a cleverly organized series of problems for 2-striped
triangles, all leading to quadratic equations. It is easy to reconstruct the
missing solution procedures.

Str. 364 § 4 a

A peg-head. Inside it two canals. 30 the upper front, 4 30 the lower field. 
The lower field is 10 beyond the upper field.

The diagram illustrating this problem shows a 2-striped triangle with the
given values

s = 30,   Ak = 4 30,   uk – ua = 10.

The unknown values are those for the transversal d, the partial lengths ua
and uk, and the upper area Aa. According to the linear similarity rule,

d = f · uk   and   s – d = f · ua.

Subtracting here the terms of the second equation from those of the first
equation one gets the new equation

2 d – s = f · (uk – ua).

In addition, according to the quadratic similarity rule,

sq. d = f · 2 Ak.

A combination of the two equations above shows that

sq. d / 2 Ak = (2 d – s) / (uk – ua)   (= f).

This quadratic equation for the transversal d can be reformulated as

2 r · d – sq. d = r · s,   where   r = 2 Ak / (uk – ua) = 9 00 / 10 = 54.

Hence, after two completions of squares, as in Str. 364 § 3, 

sq. (r – d) + sq. s/2 = sq. (r – s/2)   so that   sq. (r – d) = sq. 39 – sq. 15 = sq. 36.

Therefore, in this case, the triple r – s/2, r – d, s/2 is a diagonal triple, with 

r – s/2, r – d, s/2 = 39, 36, 15 = 3 · (13, 12, 5).

Consequently, the solution to the problem in Str. 364 § 4 a is that 

d = r – 36 = 54 – 36 = 18,   f = sq. d / 2 Ak = ;36 (= 3/5),   uk  = d / f = 30,
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ua = 30 – 10 = 20,   ua : uk  = 2 : 3,   Aa : Ak  = 16 : 9,   Aa = 8 00.

The next problem is a simple variant of § 4 a:

Str. 364 § 4 b

A peg-head. Inside it two canals. 30 the upper front, 8 (00) the upper field. 
The lower field is 10 beyond the upper field. The lengths are what?

This time, the quadratic equation for the transversal d has the form

(sq. s – sq. d) / 2 Aa = (2 d – s) / (uk – ua)   (= f).

The equation can be reformulated as

sq. d + 2 r · d = sq. s + r · s,   where   r = 2 Aa / (uk – ua) = 16 00 / 10 = 1 36.

After a completion of the square, the equation is reduced to

sq. (d + r) = sq. s + r · s + sq. r = 3 36 36 = sq. 1 54.

Therefore, d = 1 54 – 1 36 = 18, etc., as in § 4 a.

Str. 364 § 5 a

A peg-head. Inside it two canals. 30 the upper front, 2 (00) the lower field. 
The upper length is 10 beyond the lower length. The lengths are what?

In this case, the upper length is greater than the lower length. The equation
for d is modified accordingly (compare with the equation in § 4 a):

sq. d / 2 Ak = (s – 2 d) / (ua – uk)   (= f).

Consequently, the quadratic equation for d becomes

sq. d + 2 r · d = r · s,   where   r = 2 Ak / (ua – uk) = 4 00 / 10 = 24.

After two completions of squares, the equation is reduced to the form

sq. (r + d) + sq. s/2 = sq. (r + s/2)   so that   sq. (r + d) = sq. 39 – sq. 15 = sq. 36.

Therefore, in this case, r + s/2, r + d, s/2 is a diagonal triple, with

r + s/2, r + d, s/2 = 39, 36, 15 = 3 · (13, 12, 5).

It follows that 

d = 36 – 24 = 12,   f = sq. d / 2 Ak, = ;36 (= 3/5),   uk  = d / f = 20,
ua = 20 + 10 = 30,   ua : uk  = 3 : 2,   Aa : Ak  = 21 : 4,   Aa = 10 30.

Str. 365 § 5 b has the same relation to § 4 b as § 5 a has to § 4 c.

The text of Str. 364 § 6 a is lost, but the illustrating diagram is perfectly
preserved. The diagram shows a 2-striped triangle in which 

s = 30,   Aa = 8 (00),   uk = 30.

Then
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(s + d) · ua = 2 Aa,   (s – d) / ua = d / uk.

Consequently, d is the solution to the following quadratic equation:

(sq. s – sq. d) = 2 Aa · d / uk.

Equivalently,

sq. d + r · d = sq. s,   where   r = 2 Aa / uk  = 16 00 / 30 = 32.

After a completion of the square, this equation is reduced to

sq. (d + r/2) = sq. s + sq. r/2 = sq. 30 + sq. 16 = sq. 34.

Therefore, in § 6 the triple d + r/2, s, r/2 is a diagonal triple, with

d + r/2, s, r/2 = 34, 30, 16 = 2 · (17, 15, 8).

It follows that d = 18, etc., precisely as in § 4.

Also the text of Str. 364 § 6 b is lost, while the illustrating diagram is
perfectly preserved. The diagram shows a 2-striped triangle in which 

s = 30,   Ak = 4 30,   ua = 20.

Then,

d · uk = 2 Ak,   d / uk = (s – d) / ua.

In this case, the quadratic equation for the transversal d is

sq. d = 2 Ak  · (s – d) / ua.

Equivalently,

sq. d + r · d = r · s,   with   r = 2 Ak / ua  = 9 00 / 20 = 27.

After two completions of squares, this equation becomes

sq. (d + r/2) + sq. s = sq. (s + r/2)   so that   sq. (d + r/2) = sq. 43;30 – sq. 30 = sq. 31;30.

Therefore, in § 7 the triple s + r/2, d + r/2, s is a diagonal triple, with

s + r/2, d + r/2, s = 43;30, 31;30, 30 = 1;30 · (29, 21, 20).

It follows that d = 18, etc., again precisely as in § 4.

The last exercise on the obverse is Str. 364 § 7.

The diagram shows a 2-striped triangle in which 

Aa = 25 18,   Ak = 33 [44],   ua = 4 13.

In spite of the complicated form of the given numbers, the solution proce-
dure is uncomplicated. (Cf. the solution procedure in the case of the related
exercise Str. 364 § 2, above.) Note that

Aa = 25 18 = 6 · 4 13   and   Ak = 33 44 = 8 · 4 13   (where   4 13 = 23 · 11).
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Therefore, according to the OB quadratic similarity rule

sq. s = (Aa + Ak) / Ak · sq. d = (6 + 8) / 8 · sq. d = 7 / 4 · sq. d.

Consequently, 

s = sqs. 7 / 2 · d,   where   sqs. 7 = appr. 8/3 = 2;40.

Also, according to the OB area rule for trapezoids,

s + d = 2 Aa / ua = 12.

Consequently, 

s = 4 (7 – 2 sqs. 7) = appr. 20/3 = 6;40   and   d = 8 (sqs. 7 – 2) = appr. 16/3 = 5;20.

And so on. Note that this exercise has intentionally been made more com-
plicated than necessary, by arbitrarily introducing the scale factor 4 13 =
23 · 11, and by choosing the data so that the numbers in the answer are non-
rational, being expressed in terms of the square side of 7.

11.2 d. Str. 364 § 8. Problems for 5-striped triangles

On the reverse of Str. 364 (Fig. 11.2.3 below) there are the well
preserved texts of three problems, § 8a-c, illustrated by diagrams showing
a triangle divided into 5 stripes. Hence there can be 6 arbitrarily given
values for each such divided triangle. In all three cases, two of the given
values are 

A1 = 18 20 and A2 = 15 (00).

In § 8 a and § 8 c, two further given values are

s1 – s2 = 13;20,   s2 – s3 = 13;20.

In § 8 c, which alone of the three problems on the reverse will be discussed
below, the last two given values are 

A4 = 13;20   and   (s5 + s6)/2 = 26;40.

Str. 364 § 8 c

A peg-head. Inside it 5 canals. The upper field 18 20, the 2nd field 15, the 3rd field I do
not know, the 4th field 13 20, at half 26;40, the 5th field I do not know. The upper front
over the transversal is 13;20 beyond, transversal over transversal is 13;20 beyond. The
fields and the lengths and the transversals are what?

There are 15 parameters for this 5-striped triangle, 5 partial areas, 5 par-
tial lengths, and 5 parallels. Of these 15 parameters, 3 are explicitly given:

A1 = 18 20,   A2 = 15 (00),   and   A4 = 13 20.
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There are also 3 equations that are explicitly given:

s1 – s2 = 13;20,   s2 – s3 = 13;20,  and    (s4 + s5)/2 = 26 40.

In addition to these 6 arbitrarily imposed conditions, there are the usual
5 area equations and 4 similarity equations for a 5-striped triangle. Alto-
gether, there are 12 equations that have to be satisfied simultaneously by
12 unknowns namely 3 partial areas, 4 partial lengths, and 5 parallels. This
looks like quite a formidable system of equations to be solved.

Fig. 11.2.3.  Str. 364 rev. Four metric algebra problems for 5-striped triangles.

Happily, however, the problem was formulated in such a way that it can
be solved recursively in a number of simple steps. Moreover, as shown in
Fig. 11.2.4 below, it can be divided into two simpler sub-problems, one for
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a 2-striped trapezoid, and one for a 3-striped triangle.

Fig. 11.2.4.   Str. 364 § 8 c. A system of simultaneous equations for 12 unknowns.

The first sub-problem is concerned with a 2-striped (parallel) trapezoid,
where the two partial areas and two differences are given:

A1 = 18 20,   A2 = 15 (00),   and   s1 – s2 = 13;20,   s2 – s3 = 13;20.

(Note that since a 2-striped trapezoid can be interpreted as part of a 3-
striped triangle, there can be 3 + 1 = 4 arbitrarily imposed conditions on
the parameters of such a trapezoid.) 

Str. 364 § 8 c, proposed reconstruction of the intended solution procedure, part 1

Step 1: An application of the linear similarity rule for triangles shows that
  u1 / u2 = (s1 – s2)/(s2 – s3) = 13;20 / 13;20 = 1,   so that   u1 = u2.

Step 2: Two applications of the area rule for trapezoids show that
  A1 – A2 = {(s1 + s2) – (s2 + s3)}/2 · u1,   because   u1 = u2.
Then also
  A1 – A2 = {(s1 – s2) + (s2 – s3)}/2 · u1,   so that   3 20 = 13;20 · u1
Consequently,
  u1 = u2 = 3 20 / 13;20 = 15.

Step 3: A renewed application of the area rule for trapezoids shows that
  (s1 + s2)/2 = A1 / u1 = 18 20 / 15 = 1 13;20‚  while   
  (s1 – s2)/2 = 6;40.

Consequently,
  s1 = 1 13;20 + 6;40 = 1 20,   s2 =1 13;20 – 6;40 = 1 06;40,   
and
  s3 = 1 06;40 – 13;20 = 53;20.

Step 4: A renewed application of the linear similarity rule shows that
  f = (s1 – s2) /u1 = 13;20 / 15 = 8/9 = ;53 20.

The second sub-problem is concerned with a 3-striped triangle, for
which the following 4 values are given:

 A4 = 13 20,   (s4 + s5)/2 = 26;40,   
s3 = 53;20 (by step 3),    f = 8/9 = ;53 20 (by step 4).
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Str. 364 § 8 c, proposed reconstruction of the intended solution procedure, part 2

Step 5: An application of the area rule for trapezoids shows that 
  u4 = A4 / (s4 + s5)/2 = 13 20 / 26;40 = 30.

Step 6: An application of the linear similarity rule for triangles shows that
   (s4 – s5)/2 = f · u4 /2 = ;53 20 · 15 = 13;20.
  Consequently,
  s4 = 26;40 + 13;20 = 40,     s5 = 26;40 – 13;20 = 13;20.
Step 7: Two renewed applications of the linear similarity rule show that
   u3 = (s3 – s4) / f = (53;20 – 40) / ;53 20 = 15,    u5 = s5 / f = 13;20 / ;53 20 = 15.
Step 8: Two renewed application of the area rule show that 
   A3 = (53;20 + 40)/2 · 15 = 11 40,    A5 = 13;20 /2 · 15 = 1 40.

Combining all the results in Steps 1-8, one finds that

  the 5 partial lengths are 15, 15, 15, 30, 15, in the ratios 1 : 1 : 1 : 2 : 1.

  the 5 parallels are 1 20, 1 06;40, 53;20, 40, 13;20, in the ratios 6 : 5 : 4 : 3 : 1,

  the 5 partial areas are 18 20, 15, 11 40, 13 20, 1 40, in the ratios 11 : 9 : 7 : 8 : 1

  the whole length of the triangle is 1 30, and the whole area is 1 00 00.

11.2 e. TMS 18. A cleverly designed problem for a 2-striped triangle

In the case of the triangle in Str. 364 §§ 4 and 6, the partial lengths 20,
30 are in the ratio 2 : 3, the partial areas 8 00 and 4 30 are in the ratio 16 : 9,
and the front and the transversal 30 and 18 are in the ratio 5 : 3. This
particular 2-striped triangles occurs also in at least one other OB metric
algebra problem (discussed below). The reason for the apparent popularity
of this 2-striped triangle may have been that not only ua = 30, uk = 20, are
regular sexagesimal numbers, but so are also the difference ua – uk = 10
and the sum ua + uk = 50. Furthermore, there is the fortuitous circumstance
that A : Aa : Ak = 25 : 16 : 9 = sq. 5 : sq. 4 : sq. 3. 

TMS 18 (Bruins and Rutten, TMS (1961)) is a fragment of a small clay
tablet from the ancient city Susa (Western Iran) with a single OB mathe-
matical exercise. It is one of the further texts where the mentioned 2-
striped triangle appears. The statement of the problem in TMS 18 is
preceded by a small drawing of a divided triangle. In Fig. 11.2.5 below,
there is a larger drawing of the divided triangle. The values within brackets
were probably computed in the course of the solution procedure, of which,
however, the larger part is destroyed. Actually, the lower two-thirds, or so,
of the clay tablet are lost
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TMS 18, literal transliteration explanation

The lower length to the upper length frame, 10, uk · ua = 10 (00)
the upper field to the lower field frame, 36, Aa · Ak = 36 (00 00)
the upper front frame, the transversal frame, sq. sa + sq. d
sum 20 24. = 20 24
You: Procedure:
36 that field with field was framed to 4 go, 4 · Aa · Ak 
then 2 24 you see. = 4 · 36 = 2 24
The opposite of 10 that descent with descent 1/ uk · ua = 1/10 
was framed resolve, 6 you see. = ;06
2 24 to 6 raise, then 14 24 you see. 4 · Aa · Ak / uk · ua = 2 24 / 10 = 14 24
14 24 frame, 3 27 21 36 you see. sq. 14 24 = 3 27 21 36
To 2 raise (it), 2 · sq. 14 24 = 
6 54 43 12 you see. 6 54 43 12
Return. 14 24 to 2 raise, 28 48 you see. 2 · 14 24 = 28 48
······ ······ ······ ······ ······ ······ ······ ······ ······ ······ 
1 10 ······ ······ ······ ······ 
······ ······ ······ ······ 30 you see uk = 30
····· to ····· raise, then 20 you see. ua = 20

Only the beginning and the last couple of lines of the solution proce-
dure for TMS 18 are preserved. Luckily, enough of the solution procedure
is preserved to confirm the correctness of the explanation below.29

Given in TMS 18 are the product uk · ua = 10 (00) of the partial lengths,
the product Aa · Ak = 36 (00 00) of the partial areas, and the sum of the
squares of the front and the transversal, sq. sa + sq. d = 20 24.

The partial areas of the divided triangle can be expressed as follows:

Aa = ua · (sa + d)/2,   Ak = uk. · d/2.

Therefore, the division in the first step of the solution procedure in TMS 18
can be explained as the computation of 

4 · Aa · Ak / uk · ua = (sa + d) · d = 14 24.

This equation, together with the third of the three given equations leads to

29. The badly flawed explanation proposed by Bruins and Rutten (TMS (1961)) in the orig-
inal publication of the text was based on an mistaken restoration of a broken part of the
statement and on a lacking understanding of the conventions of OB geometry.
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the following system of equations for the unknowns sa and d:

(sa + d) · d = R = 14 24,   sq. sa + sq. d = S = 20 24.

This system of equations seems to have been reduced in the following way
to a more familiar-looking system of equations:

sq. (sa + d) + 2 sq. d = S + 2 R = 49 12,   (sa + d) · d = R = 14 24.

Fig. 11.2.5.  TMS 18. A cleverly designed metric algebra problem for a divided triangle.

This is a modified quadratic-rectangular system of equations of type B5
for the pair of unknowns sa + d, d. (Cf. Figs. 5.4.1-2 above.) It is not a
“basic” system of this type, since the coefficient for sq. d in the first equa-
tion is 2, not 1. In this respect, the modified system above of type B5 is
similar to the modified system of type B6 with which, apparently, Data 86
is concerned. See Sec. 10.6 above.

It is likely that the OB author of TMS 18 solved the indicated system of
type B5 by use of a method closely related to the better preserved solution
method for a similar problem in the OB text BM 13901 # 12 (Sec. 5.4
above). Thus, he probably set

sq. (sa + d) = a,    2 sq. d = b.

In this way he could reduce the mentioned system of type B5 for the pair
sa + d, d to a simpler system of type B1a for the pair a, b:

a · b = 2 sq. R = 6 54 43 12,    a + b = S + 2 R = 49 12.

(Note that both 2 sq. B and 2 B are computed in the preserved beginning of
the solution procedure in TMS 18!)

The system of equations for a, b can then be solved in the usual way:

(a + b)/2 = 49 12 / 2 = 24 36,   sq. (a + b)/2 = 10 05 09 36,
sq. (a – b)/2 = 10 05 09 36 – 6 54 43 12 = 3 10 26 24,   (a – b)/2 = 13 48,

ua    (20)

s a 
   

(3
0)

d    
 (1

8)

Aa    (8 00)

uk    (30)

Ak    (4 30)

uk · ua  = 10 (00)

Aa · Ak  = 36 (00 00)

sq. sa + sq. d = 20 24 = S

⇒

4 Aa · Ak / uk · ua  = 14 24 = R

sq. (sa + d) + 2 sq. d = S + 2 R,    (sa + d) · d = R
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a = 24 36 + 13 48 = 38 24,   b = 24 36 – 13 48 = 10 48.

Consequently,

sq. (sa + d) = 38 24   and    2 sq. d = 10 48,   so that   
sa + d = 48,   d = 18,   and   s = 30.

Now, when sa and d are known, ua and uk can be computed as follows, by
use of what may be called the “form and magnitude rule”:

uk / ua = d / (sa – d) = 18/12 = 1;30,     uk · ua = 10 00,   hence   
sq. uk = 10 00 · 1;30 = 15 00,  uk = 30‚   ua = 30 / 1;30 = 20.

The final computation of Aa = 8 00 and Ak = 4 30 is then easy.

11.2 f. MLC 1950. An elegant solution procedure

MLC 1950 (Neugebauer and Sachs, MCT (1945) text Ca) is a single
problem text, probably from Uruk. The partial lengths of a 2-striped
triangle are 20, 30 as in the case TMS 18 and Str. 364 §§ 4, 6, but the
triangle is narrower, with a feed f of only ;24 (2/5), instead of ;36 (3/5).

In this problem, the front and the transversal of the divided triangle are
called in Sumerian sag an ‘the upper front’ and sag ki ‘the lower front’.
The solution procedure is short and elegant, making use of a surprising
equation for the half-difference (sa – sk)/2. (Here sa and sk are suitable
notations for sag an  and sag ki .)

MLC 1950, literal translation explanation

A peg-head. A triangle
20 ninda  the upper length, 5 20 its field, ua = 20 n., Aa = 5 20
30 ninda  the  [·····]. uk = 30 n.
The upper front and the lower front are what? sa, sk = ?
You in your doing (it). Procedure:
The opposite of 20 resolve, 3 you see. 1 / ua = 1/20 = ;03
3 to 5 20 raise, then 16. Aa / ua = 5 20 · ;03 = 16
16 to the upper front and  [·····]. ????
30 the length to 2 repeat, 1, 2 · uk  = 2 · 30 = 1 00
and (with) 20 the upper descent sum (it), 1 20. ua + 2 · uk  = 1 20
The opposite of 1 20 is 45, 1 / 1 20 = ;00 45

5 2º

2º
3º
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to 5 20 the field raise it, then 4. Aa / (ua + 2 · uk) = 5 20 / 1 20 = 4
4 to 16 add, from 16 tear off, 16 + 4 (= 20), 16 – 4 (= 12)
20 the upper front, 12 the lower front. sa = 20, sk = 12

In metric algebra notations:

Fig. 11.2.6.  MLC 1950. An elegant solution procedure.

Given are the ‘upper area’ Aa = 5 20, and the two ‘descents’ or ‘lengths’
ua = 20, uk = 30. The first, easy step of the solution procedure is to compute

(sa + sk)/2 = Aa / ua = 5 20 / 20 = 16.

(Here ua and Aa are the known values of the upper length and the upper
area.) The second step is more unexpected, with the computation of 

(sa – sk)/2 = Aa / (ua + 2 uk) = 5 20 / 1 20 = 4.

The latter equation can b explained as follows, for instance: Let f be the
‘feed’ of the divided triangle, the ratio of the front to the length. Then, by
the OB linear similarity rule,

sa = f · (ua + uk),   sk = f · uk   and  sa –  sk = f · ua.

Then also30

sa + sk = f · (ua + 2 uk)   and consequently   (sa –  sk) / (sa + sk) = ua  / (ua + 2 uk). 

Therefore, as in the second part of the solution procedure in MLC 1950,

(sa –  sk)/2 = (sa + sk)/2 · ua  / (ua + 2 uk) = Aa / (ua + 2 uk).

11.2 g. VAT 8512. Another cleverly designed problem

VAT 8512 (Høyrup, LWS (2002), 234-238) is a problem text with a
single exercise closely related to the theme of Str. 364 § 4. In VAT 8512
is considered a striped triangle with a single transversal. With the usual

30. The argumentation here is, of course, related to the manipulation of proportions in
Euclid’s Elements V, for instance in El. V. 19, which says, essentially, that if  a : b = c : d,
where c and d are parts of a and b, then also (a – c) : (b – d) = a : b.

ua = 20

s a
  (

20
)

s k
  (

12
)

Aa = 5 20

uk = 30

Ak  (3 00)
(sa + sk )/2 = Aa / ua = 16

(sa – sk )/2 = Aa / (ua + 2 uk) = 4 
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notations, the given parameters are 

s = 30 n.,   uk – ua = 20   Aa – Ak = 7 (00).

Fig. 11.2.7.  VAT 8512. Another clever metric algebra problem for a 2-striped triangle.

In metric algebra notations, the first step of the explicit solution procedure
is the computation of the transversal, here called pirkum ‘crossline’, as

d = sqs. [{sq. (s + r) + sq. r}/2] – r,   where   r = (Aa – Ak) / (uk – ua) = 7 00 / 20 = 21. 

This solution formula may have been found as follows, by use of the
linear and quadratic similarity rules: If f is the ‘feed’ for the triangle, then 

s – d = f · ua    and   d = f · uk    ⇒   2d –s = f · (uk – ua).

(Cf. the discussion of MLC 1950 in Sec. 11.2 f, in particular footnote 27.)

Similarly,

sq. s – sq. d = f · 2 Aa   and    sq. d = f · 2 Ak   ⇒   sq. s – 2 sq. d = f · 2 (Aa – Ak).

Combining these two results, one finds that

 sq. s – 2 sq. d = 2 r · (2d –s),   where   r = (Aa – Ak) / (uk – ua).

Hence, the value of d can be found as the solution to the quadratic equation

sq. d + 2 r · d = (sq. s + 2 r · s)/2.

After two completions of squares, this equation can be written in the form

sq. (d + r) = {sq. (s + r) + sq. r}/2,   with   r = (Aa – Ak) / (uk – ua).

(More about this below, in Sec. 11.3 b.) With the given numerical values, 
r = 21   and   sq. (d + 21) = (sq. 51 + sq. 21)/2 = (43 21 + 7 21)/2 = 25 21 = sq. 39.

Hence, 

d + 21 = 39   so that   d = 18. 

The remaining unknown values are computed as follows:

ua    (40)

s a 
   

30

d    
 (1

8)

Aa    (16 00)

uk    (1 00)

Ak    (9 00)

s = 30

uk – ua  = 20

Aa – Ak  = 7 (00)

⇒

(Aa – Ak) /(uk – ua) = 21 = r 

sq. (d + r) = {sq. (s + r) + sq. r}/2      s + r, d + r, r = 3 · (17, 13, 7)
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f = (Aa – Ak) / (1/2 · sq. s – sq. d) = 7 00 / 2 06 = 3;20 (= 10/3).

(See the equation above for sq. s – 2 sq. d.) Hence,

ua = f · (s – d) = 3;20 · (30 – 18) = 40,   
Aa = (s + d)/2 · ua = 16‚
uk = ua + (uk – ua) = 40 + 20 = 1 00,   
Ak = d/2 · uk = 9 · 1 00 = 9 00.

Note that the triangle in VAT 85 12 is again, as the triangles in Str. 364 §§
4, 6, and in TMS 18, a 2-striped triangle in which the partial lengths are in
the ratio 2 : 3, and the partial areas in the ratio 16 : 9. 

11.2 h. YBC 4696. A series of problems for a 2-striped triangle

YBC 4696 (Neugebauer, MKT 2 (1935) 60-64, MKT 3 (1937) pl. 4) is
a series text like YBC 4709 (Sec. 10.8 above) with 52 metric algebra
problems for the 2-striped triangle known from Str. 364 §§ 4 and 6.

Fig. 11.2.8.  YBC 4696. A series text with problems for a 2-striped triangle.

YBC 4696, literal translation explanation 

1.1 A peg-head, 50 n. the length, 30 n. the front. u = 50 n., s = 30 n.

Inside it 2 canals. 2 stripes

52 im.$u

1.1 

2.1 a 

2.1 b 

2.1 c 

2.2 d 

2.3 a 

2.3 b 

2.3 c 

2.3 d 

3.1 a 

3.1 b 

3.1 c 

3.1 d 

3.1 e 

3.2 a 

3.2 b 

3.2 c 

3.3 a 

3.3 b 

3.3 c 

3.3 d 

? 
? 

? 
? 

? 

? ? 

2.2 c 

2.2 b 

2.2 a 

obv. rev.

3.4 a 

3.4 b 

3.4 c 

3.4 d 

4.1 a 

4.1 b 

4.1 c 

4.1 d 

5.1  

5.4 b  

5.4 c  

5.5 a  

5.5 b  

5.5 c  

5.2 a  

5.2 b  

5.3 a  

5.3 b  

5.3 c  

5.3 d  

5.4 a  
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20 n. the upper descent, 30 n. the lower descent. ua = 20 n., uk = 30 n.

The fields of the 2 canals are what? Aa and Ak  = ?

8 the upper field, 4 30 the lower field. Aa = 8 (00), Ak  = 4 30

2.1 a A peg-head, 50 n. the length. u = 50 n.

Inside it 2 canals. 2 stripes

20 n. the upper descent, 30 n. the lower descent. ua = 20 n., uk = 30 n.

Front over transversal 12 n. s – d = 12 n.

2.1 b Half the front and 3 n. is the transversal. s/2 + 3 n. = d

2.1 c A 3rd of the front and 8 n. is the transversal. s/3 + 8 n. = d

2.2 a A 3rd of front over transversal to the front add, 34. s + (s – d)/3 = 34

2.2 b Times 2 repeat, (to) the front add, 38. s + 2 (s – d)/3 = 38

2.2 c (From) the front tear off, 26. s – (s – d)/3 = 26

2.2 d Times 2 repeat, (from) the front tear off, 22. s – 2 (s – d)/3 = 22

2.3 a (To) the transversal add, 22. d + (s – d)/3 = 22

2.3 b Times 2 repeat, (to) the transversal add, 26. d + 2 (s – d)/3 = 26

2.3 c (From) the transversal tear off, 14. d – (s – d)/3 = 14

2.3 d To 2 repeat, (from) the transversal tear off, 10. d – 2 (s – d)/3 = 10

3.1 a A peg-head, 50 n. the length. u = 50 n.

  Inside it 2 canals. 2 stripes

  20 n. the upper descent, 30 n. the lower descent. ua = 20 n., uk= 30 n.

  The upper field is 8. The lower field is what? Aa = 8 (00). Ak  = ?

3.1 b The front to the upper field add, 8 30. Aa + s = 8 30

3.1 c Times 2 repeat, add, 9. Aa + 2 s = 9 (00)

3.1 d Tear off, 7 30. Aa – s = 7 30

3.1 e Times 2 repeat, tear off, 7. Aa – 2 s = 7 (00)

3.2 a The field of the front (to) the field of the upper Aa + sq. s = 23 (00)

  canal add, 23.

3.2 b The field of the front times 2 repeat, (to) the Aa + 2 sq. s = 38 (00)

  upper field add, 38.

3.2 c The field of the front beyond the upper field, 7. sq. s – Aa = 7 (00)

3.3 a The front and the field of the front (to) the field Aa + s + sq. s = 23 30

of the upper canal add, 23 30.

3.3 b The front times 2 repeat and the field of the front Aa + 2 s + sq. s = 24 (00)

(to) the field of the upper canal add, 24
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····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ····· 

3.4 a The transversal to the field of the upper canal Aa + d = 8 18

  add, 8 18.

3.4 b The transversal times 2 repeat, add, 8 36. Aa + 2 d = 8 36

3.4 c Tear off, 7 42. Aa – d = 7 42

3.4 d Times 2 repeat, tear off, 7 24. Aa – 2 d = 7 24

4.1 a The field of the transversal (to) the field of Ak + sq. d = 9 54

  the lower! canal add, 9 54.

4.1 b Times 2 repeat, add, 15 18. Ak + 2 sq. d = 9 54

4.1 c The field of the transversal over the lower sq. d – Ak  = 54

  field, 54 beyond.

4.1 d The field of the transversal to 2 repeat, over 2 sq. d – Ak  = 6 18

  the lower field, 6 18 beyond.

5.1 A peg-head, 50 n. the length, 30 n. the front. u = 50 n., s = 30 n.

Inside it 2 canals. 2 stripes

20 n. the upper descent, 30 n. the lower descent. ua = 20 n., uk = 30 n.

The field of the upper canal over the lower field, Aa – Ak  = 3 30

  3 30 beyond.

5.2 a Half the upper field and 30 $ar , the lower field. 1/2 · Aa + 30 = Ak  

5.2 b A 3rd of the upper field and 1 50, the lower field. 1/3 · Aa + 1 50 = Ak  

5.3 a A 7th of the upper field over the field of the lower Aa + 1/7 · (Aa – Ak) = 8 30

  canal beyond (to) the field of the upper canal

  add, 8 30.

5.3 b Times 2 repeat, add, 9. Aa + 2 · 1/7 · (Aa – Ak) = 9

5.3 c Tear off, 7 30. Aa – 1/7 · (Aa – Ak) = 7 30

5.3 d Times 2 repeat, tear off, 7. Aa – 2 · 1/7 · (Aa – Ak) = 7

5.4 a (To) the field of the lower canal add, 5. Ak  + 1/7 · (Aa – Ak) = 5

5.4 b (From) the field of the lower canal tear off, 4. Ak  – 1/7 · (Aa – Ak) = 5

5.4 c Times 2 repeat, tear off, 3 30. Ak  – 2 · 1/7 · (Aa – Ak) = 5

5.5 a A peg-head, 30 n. the front. Inside it 2 canals. s = 30

  Field over field 3 30 beyond. Aa – Ak = 3 30

5.5 b Half the upper field and 30 $ar  the lower field. Aa + 30 $ar = Ak

5.5 c A third of the upper field and 1 50 the lower field. 1/3 · Aa + 1 50 = Ak
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  The fields of the canals are what?

Col. 52 hand tablets. 52 assignments

In all the 52 problems on YBC 4696, the partial heights of the 2-striped
triangle are given, in each case as ua = 20 and uk = 30. A third given value
is specified in each sub-paragraph. 

No solution procedures are given in the text. However, the obvious way
of solving the stated problems is to first find the values of the pair s, d, and
then compute the partial areas Aa and Ak by use of the area rules for trape-
zoids and triangles. 

In view of the linear similarity rule and the assumption that always
ua = 20 and uk = 30, it is clear that

(s – d)/20 = d/30,   so that   3 (s – d) = 2 d,   or simply   3 s = 5 d.

This is a linear equation for s and d common to all the 52 assignments. In
the problems in § 2, the third given condition is another linear equation
for s and d. Therefore, all the problems in § 2 can be interpreted as systems
of linear equations for the two unknowns s and d. In § 2.1 a, for instance,
the equations for s and d are

3 s = 5 d,   s – d = 12,   so that   5 s – 5 d = 5 · 12 = 1 00,   and consequently
2 s = 1 00,   s = 30,   and   d = 18.

In § 3.1, the third condition is an equation for Aa and s. However, since
Aa = (s + d)/2 · ua = (s + d)/2 · 20, all such equations are again linear equa-
tions for s and d. Therefore, also the problems in § 3.1 can be reduced to
systems of linear equations for the two unknowns s and d. 

As a matter of fact, all the problems in YBC 4696 can be reduced to
systems of linear equations, except the problems in §§ 3.2-3 and § 4.1,
which can instead be reduced to quadratic-linear systems for s and d. The
solution is, in all the separate cases, that s, d = 30, 18.

11.2 i. MAH 16055. A table of diagrams for 3-striped triangles

It follows from the quadratic similarity rule that if s, d are the front and
the transversal of a 2-striped triangle, then 

Aa : Ak = (sq. s – sq. d) : sq. d.

Therefore, in particular, 

Aa = Ak    ⇒    sq. s – sq. d = sq. d    ⇒   sq. s = 2 sq. d    ⇒   s = sqs. 2 · d.
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If a triangle divided in this way had appeared in an OB mathematical text,
it is likely that the approximation sqs. 2 = appr. 1;24 (7/5), or the slightly
more accurate approximation sqs. 2 = appr. 1;25 (17/12), would have been
used. However, no such text is known.

On the other hand, two examples are known of OB mathematical texts
where a 3-striped triangle is divided so that the first and the third of the
partial areas are equal. The two texts are MAH 16055 in this section and
IM 43996 in the next section.

If the front and the two transversals of a 3-striped triangle are s, d1, d2,
and if the partial are A1, A2, A3, then clearly

A1 = A3    ⇒     sq. s – sq. d1 = sq. d2. 

A particularly interesting case is, of course, when s, d1, d2 are integers
satisfying the mentioned condition, because that means that they form a
diagonal triple. In the diagram in Fig. 11.2.9 below is shown the simplest
case of this type, the case when 

s : d1 : d2 = 5 : 4 : 3. 

Then the partial lengths are in the ratios 

u1 : u2 : u3 = (5 – 4) : (4 – 3) : 3 = 1 : 1 : 3, 

and the partial areas in the ratios 

A1 : A2 : A3 = (25 – 16) : (16 – 9) : 9 = 9 : 7 : 9. 

If the total length u is “normalized”, in the sense that u = 1 00, then it fol-
lows that the partial lengths are 12, 12, and 36.

Fig. 11.2.9.  MAH 16055. A 3-striped triangle with A1 = A3.

The clay tablet MAH 16055 (Bruins, ND (1961) 11-14) is a “geometric
table text”, with drawings of 5 different 3-striped triangles on the obverse,
and 5 on the reverse. All 10 of the 3-striped triangles are of the type shown
in Fig. 11.2.9 above, with the 3 partial lengths equal to 12, 12, 36.

12 12

A2

A3

A1s d 1 d 2

36

u1 + u2 + u3 = 1 00

u1 : u2 : u3 = 1 : 1 : 3

s : d1 : d2 = 5 : 4 : 3

A1 : A2 : A3 = 9 : 7 : 9
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Fig. 11.2.10.  MAH 16055. A table of 10 diagrams for 3-striped triangles.

The idea behind the construction of the data for the 3-striped triangles
in MAH 16055 (Fig. 11.2.10 above) is simple, namely that

A1 = A3 = n · 5 00,   for   n = 1, 2, ··· , 10,    n being the number of the diagram.

Consequently, the second partial area is 

A2 = 7/9 · A3 = n · 5 00 = n · 3 53;20,   for   n = 1, 2, ··· , 10.

The second transversals are also easily computed:

d2 = 2 A3 / u3 = n · 5 00 · 2/36 = n · 16;40,   for   n = 1, 2, ··· , 10. 

Consequently,

d1 = 4/3 · s3 = n · 22;13 20,    
s = 5/3 · s3 = n · 27;46 40,   for   n = 1, 2, ··· , 10. 
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These are also the values indicated in the 10 diagrams.

11.2 j. IM 43996. A 3-striped triangle divided in given ratios

IM 43996 was published by Bruins in Sumer 9 (1953), with a photo in
Bruins, CCPV 1 (1964), Part 3, pl. 2. It is an OB square hand tablet with a
geometric assignment on the obverse in the form of a diagram, showing a
3-striped triangle with its transversals and some associated numbers.

The given numbers are the three partial areas, the lengths of the two
transversals, and the first partial length:

A1 = 9 22;30,   A2 = 20 37;30,   A3 = 10 00,   d1 = 17;30,   d2 = 10,   u1 = 30.

The two remaining segments of the length were apparently first given, too,
but were then erased by the tip of a finger (the teacher’s?), probably an
indication that the numbers should be found again by the student. (Cf. the
discussion in Friberg, UL (2005), Sec. 2.1 of a similar assignment in the
Egyptian hieratic mathematical text P.Rhind # 53 a.)

Fig. 11.2.11.  IM 43996. A 3-striped triangle with the partial areas in the ratios 1 : 2 : 1.

It is easy to find a solution to the stated (overdetermined) problem. The
first step can be to compute the third partial length and the ‘feed’ of the tri-
angle as follows:

u3 = 2 A3 / d2 = 20 00 / 10 = 2 00,   and   f = d2 / u3 = 10 / 2 00 = 1 / 12 = ;05.

Then it follows that

u2 = (d1 – d2) / f = 7;30 / ;05 = 1 30,   and   s =  d1 + u1 · f = 17;30 + 30 · ;05 = 20.

There is more to say about the actual construction of the problem. The
given first and second partial areas, 9 22;30 and 20 37;30, are relatively
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close to two round area numbers, 10 00 and 20 00. Suppose that some OB
mathematician ad the intention to construct a 3-striped triangle with the
three partial areas in the ratios 1 : 2 : 1. He would then understand that
for this to happen it was necessary to let 

(sq. s – sq. d1) : (sq. d1 – sq. d2) : sq.d2 = 1 : 2 : 1.

Hence,

sq. d1 – sq. d2 = 2 sq. d2   so that   
sq. d1 = 3 sq. d2,   and   sq. s – sq. d1 = sq. d2   

so that    

sq. s = sq. d1 + sq.d2 = 4 sq. d2.

Therefore, it was also necessary to let

s : d1 : d2 = 2 : sqs. 3 : 1.

Now, it is known that the standard OB approximation to sqs. 3 was 1;45
(= 7/4). Therefore, the author of the problem would be led to choose his
given values for the 3-striped triangle so that

s : d1 : d2 = 8 : 7 : 4   and, consequently,   u1 : u2 : u3 = 1 : 3 : 4.

In agreement with these conditions, he chose to set

u1, u2, u3 = 30, 1 30, 2 00,   so that  u = u1 + u2 + u3 = 4 00,   and   s = 20.

(Note the numbers 4 and 20 written close to the upper and left margin of
the clay tablet.) He seems then to have computed the feed f of the triangle
as s/u = 20 · 1/u = 20 · ;00 15 = ;05. (Note the number 15 written near the
number 4 close to the upper margin.) With this value for the feed, he could
rapidly compute also

d2 = f · u3 = ;05 · 2 00 = 10,   and   
d1 = f · (u2 + u3) = ;05 · 3;30 = 17;30.

The corresponding values for the partial areas would then be

A1 = 30 · (20 + 17;30)/2 = 9 22;30,   

A2 = 1 30 · (17;30 + 10)/2 = 20 37;30,   

A3 = 10 · 2 00/2 = 10 00.

Therefore, the construction of all the given values in IM 43996 can be
explained as a consequence of an effort to try to let the three partial areas
of a 3-striped triangle be proportional to 1, 2, 1.
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11.3. Old Babylonian Problems for 2-Striped Trapezoids

11.3 a. IM 58045, an Old Akkadian problem for a bisected trapezoid

IM 58045 (Friberg, RlA 7 (1990), Sec. 5.4 k; Fig. 11.3.1 below) is a
round hand tablet from the Old Akkadian period in Mesopotamia, c. 2340-
2200 BCE. It is by its find site in a collapsed house in the ruins of the an-
cient city Nippur firmly dated to the reign of the king §arkalli$arri. There
is drawn on it a trapezoid with a transversal line parallel to the upper and
lower fronts of the trapezoid. The lengths of all four sides of the trapezoid,
but not the length of the transversal, are indicated in the diagram.

The indicated common length of the two long sides of the trapezoid is
u = 2 ‘reeds’, which is as much as 12 cubits (= 1 ninda) , since 1 reed = 6
cubits. The given lengths of the two parallel fronts are m = 3 reeds – 1
[cubit] = 17 cubits and n = 1 reed 1 cubit = 7 cubits, respectively. It is likely
that the area of the trapezoid was meant to be computed by use of the “false
area rule” as

A = (2 reeds + 2 reeds)/2 · {(3 reeds – 1 cubit) + (1 reed 1 cubit)}/2 
    = 2 reeds · 2 reeds = 1 sq. ninda  = 1 $ar .

The circumstance that the area of the trapezoid, computed in this way, is a
conspicuously area round number suggests that the hand tablet is a math-
ematical assignment, rather than some surveyor’s sketch of a field.

Fig. 11.3.1.  IM 58045. An Old Akkadian hand tablet showing a bisected trapezoid.

Furthermore, it is known that in OB mathematical texts, 17, 13, 7 is the
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most frequently occurring example of a “transversal triple”, with the inter-
esting property that the area of a trapezoid with the fronts 17 and 7 is
“bisected”, that is, divided in two equal parts by a transversal of length 13.
(See Friberg, RlA 7 (1990), Sec. 5.4 k.) Generally, the OB “trapezoid
bisection rule” says that a trapezoid with the fronts sa and sk is divided in
two parts of equal area by a transversal d parallel to the fronts and satisfy-
ing the “trapezoid bisection rule”

sq. d = (sq. sa + sq. sk)/2.

It is likely that the trapezoid bisection rule was known already in the
Old Akkadian period, and that the teacher who handed out IM 58045 as an
assignment had the intention that his students should compute the length d
of the transversal in the trapezoid as follows:

sq. d = (sq. sa + sq. sk)/2 = {sq. (3 reeds – 1 cubit) + sq. (1 reed 1 cubit)}
         = 5 sq. reeds – 2 reeds · cubit + 1 sq. cubit 
         = 4 sq. reeds + 4 reeds · cubit + 1 sq. cubit
         = sq. (2 reeds 1 cubit) = sq. d   so that   d = 2 reeds 1 cubit.

Note that in the diagram on IM 58045 all lengths are given in the form
of traditional length numbers, measured in reeds and cubits. This is in con-
trast to drawings of trapezoids in OB mathematical texts, where lengths
normally are given in the form of abstract (sexagesimal) numbers, always
thought of as multiples of the main length unit, the ninda . An OB school
boy, living 500 years after the Old Akkadian period, would have computed
the transversal of the trapezoid in Fig. 11.3.1 (essentially) as follows:

sa = 1 ninda 5 cubits = 1;25,   sb = 1/2 ninda 1cubit = ;35,

sq. d = (sq. sa + sq. sk)/2 = (sq. 1;25 + sq. ;35)/2 = (2;00 25 + ;20 25)/2 = 1;10 25,   

d = sqs. 1;10 25 = 1;05 = 1 ninda  1 cubit.

It is an interesting question how the trapezoid bisection rule can have
been discovered originally by some mathematician living in Mesopotamia
in the Old Akkadian period or maybe even earlier. The discovery can, of
course, have been made in a number of ways, but one particularly intrigu-
ing possibility is that it happened as follows: 

In decimal numbers, the squares of 7, 13, and 17 are 49, 169, and 289,
which cannot be said to be very interesting. In contrast to this, a Sumerian
or Old Akkadian mathematician constructing a table of areas of squares
with sides measured in ninda  and counting with sexagesimal numbers
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may have made the interesting observation that 31

sq. (7 ninda) = 49 sq. ninda  = 49 $ar,
sq. (13 ninda) = 2(60) 49 sq. ninda  = 2(60) 49 $ar ,
sq. (17 ninda) = 4(60) 49 sq. ninda  = 4(60) 49 $ar.

The observation may have led him to draw a diagram of the following
kind, with three “concentric (and parallel) squares”:

Fig. 11.3.2.  How the transversal triple 17, 13, 7 may have been discovered.

11.3 b. VAT 8512, interpreted as a problem for a bisected trapezoid

The OB problem for a 2-striped triangle in VAT 8512 was discussed
above, in Sec. 11.2 g. The given parameters in that problem are 

s = 30 n.,   uk – ua = 20 n,   Aa – Ak = 7 (00) sq. n.

and the first step of the solution procedure is the following computation:

31. Three Mesopotamian tables of areas of squares are known at present, all from the third
millennium BCE. One of them, OIP 14, 70 (Friberg, CDLJ (2005/2) § 4.9; RC (2007), Fig.
A1.4), is a table of areas of squares with sides measured in cubits. It is a Sumerian table text
from the Early Dynastic period IIIb, which preceded the Old Akkadian period. Another
such table text, VAT 12593 (Nissen/Damerow/Englund, ABK (1993), Fig. 119; Friberg,
RC (2007), Fig. 6.3) is a table of areas of squares with sides measured in tens or sixties of
the ninda . This table text is even older, from the Early Dynastic period IIIa. A third text of
a similar kind is CUNES 50-08-001 (Early Dynastic IIIb), a combined table of areas of
large and small squares (Friberg, op. cit., Figs. A.7.1-2).
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d = sqs. [{sq. (s + r) + sq. r}/2] – r,   where   r = (Aa – Ak) / (uk – ua) = 7 00 / 20 = 21.

The equation shows that the (length of) the transversal d is

d = sqs. {(sq. 51 + sq. 21)/2} – 21 = sqs. (25 21) – 21 = 39 – 21 = 18.

An interesting interpretation was suggested by Gandz (1948) and Huber
(1955). See the references to these authors in Høyrup, LWS (2002), 234-
238. According to Gandz and Huber, the equation for d shows that 

s + r, d + r, r = 51, 39, 21 = 3 · (17, 13, 7)

is a transversal triple. Therefore, the idea behind the solution procedure in
VAT 8512 may have been the following.

The 2-striped triangle with the front s and the transversal r is interpreted
as a part of a bisected trapezoid with the upper front s + r, the transversal
d + r, and the lower front r (see Fig. 11.3.3 below). The condition that the
partial areas of the bisected trapezoid shall be equal determines the value
of the extension r, and when r is known, the condition that s + r, d + r, r
shall be a transversal triple determines the value of d.

Fig. 11.3.3.  VAT 8512. The Gandz/Huber interpretation of the solution procedure.

11.3 c. YBC 4675. A problem for a bisected quadrilateral

As will be shown below, the basic ideas of a bisected trapezoid was
generalized in an amazing number of ways by OB mathematicians. One
interesting example is the problem in YBC 4675 (Høyrup, LWS (2002),
244-249), a single problem text from the ancient Mesopotamian city Larsa,
where the usual bisected trapezoid is replaced by a very long and thin
quadrilateral, and where, consequently, in the solution procedure the
accurate area rule for trapezoids has to be replaced by the more or less
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inaccurate “false area rule” for quadrilaterals. Here is the statement of the
problem in YBC 4675:

YBC 4675, literal translation explanation

If a field of ‘length-eats-length’, A long quadrilateral
the 1st length 5 10, the 2nd length 4 50, u' = 5 10, u" = 4 50
the upper front 17, the lower front 7, sa = 17, sk = 7
its field 2 bùr . A = 2 bùr = 1 00 00 sq. ninda
1 bùr  each, the field in two I divided. Aa = Ak = 1 bùr = 30 00 sq. ninda
The middle transversal, how much? d = ?
The long length and the short length‚ ua', ua", uk', uk" = ?
how much shall I set them,
so that they border 1 bùr?

The successive steps of the solution procedure in YBC 4675 are:

1. u = (u' + u")/2 = (5 10 + 4 50)/2 = 5 00    the average length
2. f = (sa – sk)/u = (17 – 7) / 5 00 = 1/30 = ;02 the ‘feed’
3. 2 f · Aa = 2 · ;02 · 30 00 = 2 00 silently understood
4. sq. d = sq. sa – 2 f · Aa = sq. 17 – 2 00 = 2 49,   d = 13 the transversal
5. ua = Aa / (sa + d)/2 = 30 00 / 15 = 2 00 the average upper length
6. g = (u' – u")/(u' + u") = (5 10 – 4 50)/(510 + 4 50) = ;02 the ‘obliquity factor’
7. ua' = ua + g · ua = 2 04,   ua" = ua – g · ua = 1 56 the upper lengths
8. uk = Ak / (d + sk)/2 = 30 00 / 10 = 3 00 the average lower length
9. uk' = uk + g · uk = 3 06,   uk" = uk – g · uk = 2 54 the lower lengths

Apparently, everything here was assumed to be at least approximately
correct; thus, the upper and lower front were assumed to be approximately
parallel, the average length was assumed to be approximately equal to the
distance between the upper and the lower fronts, etc. (Actually, as was
remarked in the original publication of YBC 4675 by Neugebauer and
Sachs in MCT (1945), text B, the data were poorly chosen, since they
violate the so called triangle inequality, so that there simply does not exist
any quadrilateral with the given fronts and lengths!)
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With these reservations in mind, most of the steps in the solution pro-
cedure make sense. Step 4, for instance, can be explained as follows, in
view of the linear and quadratic similarity rules,

Aa = {(sa – d)/ f} · (sa + d)/2 = (sq. sa – sq. d)/(2 f).

In step 6, the term ‘obliquity factor’ is a conjectured translation of the
word arakarûm in the text. The value of the obliquity factor is actually not
computed in the text; it is introduced without any explanation. Neverthe-
less, its use in this text can reasonably be explained as follows: It was as-
sumed that the ‘longer’ and ‘shorter’ upper lengths, and also the ‘longer’
and ‘shorter’ lower lengths are proportional to the ‘longer’ and ‘shorter’
lengths of the quadrilateral. More precisely, it was assumed that

ua' / u' = ua" / u"   and   uk' / u' = uk" / u".

It follows for the upper lengths, for instance, that

ua' = g · u'   and   ua" = g · u",   for some (unknown) factor g.

Then also

ua' + ua" = g · (u' + u")   and   ua' – ua" = g · (u' – u"),

so that 

g = (ua' – ua") / (ua' + ua") = (u' – u") / (u' + u") = the arakarûm.

Similarly for the lower lengths. (The reasoning is a naive variant of the rea-
soning in the well known proportion theory in Elements V.)

It follows that, for instance, the first part of step 7 of the solution
procedure in YBC 4675 can be explained as follows:

ua + g · ua = (ua' + ua")/2 + (ua' – ua") / (ua' + ua") · (ua' + ua")/2 
        = (ua' + ua")/2 + (ua' – ua")/2 = ua'.

The discussion above shows that YBC 4675 is a splendid example of
the surprising mixture of naive and sophisticated arguments that one can
meet in Babylonian mathematics!

11.3 d. YBC 4608. A 2-striped trapezoid divided in the ratio 1: 3

The quadrilateral in YBC 4675 and the trapezoid in Gandz’ and
Hubert’s explanation of VAT 8512 are both divided in two parts of equal
area by a transversal d, and in both texts the triple sa, d, sk is proportional
to the transversal triple 17, 3, 7, just as in the case of the trapezoid appear-
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ing in the Old Akkadian text IM 58045. As mentioned above, in a trape-
zoid divided in two equal parts by a transversal d parallel to the fronts, the
triple sa, d, sk satisfies the trapezoid bisection equation

sq. sa – sq. d = sq. d – sq. sk   or, equivalently,    sq. sa + sq. sk = 2 sq. d.

In a couple of examples discussed below, however, trapezoids are
divided instead by a transversal parallel to the fronts in two parts in a given
ratio P : Q. The “general trapezoid bisection equation” will then have a
correspondingly modified form, so that

If   Aa : Ak = P : Q,   then   

(sq. sa – sq. d)/P = (sq. d – sq. sk)/Q,   or, equivalently,              

Q · sq. sa + P · sq. sk = (Q + P) · sq. d.

This is an indeterminate quadratic equation for the triple sa, d, sk, very
much like the diagonal equation for the sides of a right triangle. If arbitrary
rational values are prescribed for two of the parameters in the triple, then
in the general case, the third parameter will be a square side. However, as
the next example will show, Old Babylonian mathematicians had found a
way to construct rational triples satisfying the general trapezoid bisection
equation. Cf. the discussion in Sec. 3.3 above of the OB generating rule for
the construction of rational triples satisfying the diagonal equation.

YBC 4608 (Neugebauer and Sachs, MCT (1945), text D) is an OB
single problem text from the ancient Mesopotamian city Uruk. Here is the
statement of the problem in that text:

YBC 4608, literal translation explanation

An ox-face. A trapezoid

The field in two I divided, divided in two parts

42 11 15 the lower canal, Ak = 42 11;15

14 03 45 the upper canal, Aa = 14 03;45

the 5th-part of the lower canal the upper canal, ua = 1/5 · uk 

52 30 its transversal. d = 52;30

The upper front and the lower front are what? sa and sk = ?

Note that here the given partial areas are in the ratio

Aa : Ak = 14 03;45 : 42 11;15 = 1 : 3.

The successive steps of the solution procedure in YBC 4608 are:
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1. ua* = 1 00,   uk* = 5 00 false lengths in the ratio 1 : 5

2. A = Aa + Ak = 14 03;45 + 42 11;15 = 56 15 the total area

3. u = uk* + ua* = 5 00 + 1 00 = 6 00 the false total length

4. sa* + sk* = 2 A / u* = 2 · 56 15 / 6 00 = 18;45 the sum of the false fronts

5. sa* + d* = 2 Aa / ua* = 28;07 30 the sum of the false upper front 

              and the false transversal

6. d* – sk* = (sa* + d*) – (sa* + sk*) the difference between the false 

 = 2 Aa / ua* – 2 A / u*   = 28;07 30 – 18;45 = 9;22 30   transversal and false lower front

7. (d* + sk*)/2 = Ak / uk* = 42 11;15 / 5 00 = 8;26 15 the half-sum of the false trans-

   versal and the false lower front

8. d* = Ak / uk* + (Aa / ua* – A / u*) 

                      = 8;26 15 + 4;41 15 = 13;07 30 the false transversal

9. c = d / d* = 52;30 / 13;07 30 = 4 the correction factor

10. ua = ua* / c = 1 00 / 4 = 15 the upper length

11. uk = uk* / c = 5 00 / 4 = 1 15 the lower length

12. sa + d = 2 Aa / ua = 2 · 14 03;45 / 15 = 1 52;30 the sum of the upper front and 

                            the transversal

13. sa = (sa + d) – d = 1 52;30 – 52;30 = 1 00 the upper front

14. sa + sk = 2 A / u = 1 52 30 / 1 30 = 1 15 the sum of the fronts

15. sk = (sa + sk) – sa = 1 15 – 1 00 = 15 the lower front

(In the text of YBC 4608 all values are in the form of relative sexagesimal numbers in place
value notation without zeros, etc. In the explanation above, the most likely absolute values
of the sexagesimal numbers in the text are indicated, always in accordance with the
observed rule that lengths and fronts regularly are measured in tens or sixties of the ninda.)

Note that the transversal triple in this example is

sa, d, sk = 1 00, 52;30, 15 = 7;30 · (8, 7, 2).

Clearly this triple satisfies the general trapezoid bisection equation

3 · sq. sa + 1 · sq. sk = 4 · sq. d.    Indeed,

3 · sq. 8 + 1 · sq. 2 = 3 · 1 04 + 1 · 4 = 3 12 + 4 = 3 16,   4 · sq. 7 = 4 · 49 = 3 16.

The solution procedure in YBC 4608 is an unusual variant of the OB
rule of false value. The trick here is to choose false values for the partial
lengths in the prescribed ratio 5 : 1 and then compute the corresponding
false value for the transversal. It turns out that the computed false value
for the transversal is 1/4 of the prescribed value. However, since also the
partial areas of the trapezoid have prescribed values, the length of the trap-
ezoid on one hand and the two fronts and the transversal on the other are
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inversely proportional. Therefore, since the computed “correction factor”
for the transversal is 4, the corresponding correction factor for the partial
lengths must be 1/4. This is why the “true” values for the partial lengths
are computed as 1/4 · 1 00 = 15 and 1/4 · 5 00 = 1 15.

An inspection of the solution procedure in YBC 4608 reveals that OB
mathematicians had found the following “generating rule for (rational) so-
lutions to the trapezoid bisection equation”:

Let u, ua, uk and A, Aa, Ak be given (rational) values for the whole or partial lengths and

areas of a  2-striped trapezoid. Then it follows from the area rule for trapezoids that the

triple sa, d, sk satisfies the following system of linear equations:

  (sa + sk)/2 = A / u,   (sa + d)/2 = Aa / ua    (d + sk)/2 = Ak / uk.

Then one finds by subtraction that 

   (sa – d)/2 =A / u – Ak / uk  and   

   (d – sk)/2 = Aa / ua – A / u.

Consequently, 

   sa = Aa / ua + A / u – Ak / uk,

   d  = Ak / uk + Aa / ua – A / u,

   sk = A / u + Ak / uk – Aa / ua.

11.3 e. Str. 367. A 2-striped trapezoid divided in the ratio 29 : 51

Str. 367 (Høyrup, LWS (2002), 239-244) is a single problem text from
Uruk, just like TBC 4608 above. It is another problem for a 2-striped trap-
ezoid. Here is the statement of the problem:

Str. 367, literal translation explanation

An ox-face. Inside it two canals. A 2-striped trapezoid

13 03 the upper field, 22 57 field 2. Aa = 13 03, Ak = 22 57

The 3rd-part of the lower length in the upper length. ua = 1/3 · uk

What the upper front over the transversal is beyond (sa – d) + (d – sk) = 36

and the transversal over the lower front is beyond heap, 

then 36. The lengths, the fronts, and the transversal are what? ua, uk, sa, sk, d = ?

The given values in this problem are:

Aa = 13 03,   Ak = 22 57,   ua = 1/3 · uk,   and   (sa – sk) = (sa – d) + (d – sk) = 36.

The solution procedure is another application of the rule of false value,
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where the trick this time is to choose false values for the partial lengths in
the prescribed ratio 1 : 3 and then compute the corresponding false value
for the feed of the trapezoid in two different ways. A comparison of the two
results will then give the needed correction factor.

Fig. 11.3.4.  Str. 367. A surprising application of the rule of false value.

The false values chosen for the lengths are

ua* = 1 (00),   uk* = 3 (00),   hence   u* = 4 (00).

In the first approach, the corresponding false feed is computed as

f* = (sa – sk) / u* = 36 / 4 (00) = ;09.

Then it follows that
sa – d = f* · ua* = 9,   d – sk = f* · uk* = 27.

In the second approach, another value for the false feed is computed as

f** = (sa* – sk*) / u* = {(sa* + d*)/2 – (d* + sk*)/2} / u*/2 
      = (Aa / ua* – Ak / uk*) / u*/2 = 5;24 / 2 (00) = ;02 42.

The meaning of the next series of computations is less obvious:

f* / f** = ;09 / ;02 42 = 3;20,   1 / 3;20 = ;18,   ;18 · 1 (00) = ua,   ;18 · 3 (00) = uk.

What this means is, presumably, that, as is easy to check,

f = u*/u · f*   but   f = sq. (u*/u) · f**.  

Therefore,

f* / f** = u*/u   so that   1 / (f* / f**) = u/u*,   and   u/u* · ua* = ua,   u/u* ·uk* = uk.

In other words, f**/f* is the “correction factor” for the false values.

Aa = 13 03 (= 27 · 29), 

Ak = 22 57 (= 27 · 51)
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f** = (Aa  / ua* – Ak  / uk* ) / u*/2 = ;02 42

⇒   f = u*/u · f*   and   f = sq. (u*/u) · f**

⇒   u*/u = f** / f* = ;02 42/;09 = ;18 

⇒   ua  = 1 / (u*/u)  · ua* = 18,   etc.
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This far into the solution procedure, it is known that

ua = 18, uk = 54,   hence   u = 18 + 54 = 1 12,  and
Aa = 13 03,   Ak = 22 57,   hence   A = 13 03 + 22 57 = 36 00.

Since the trapezoid can be divided into a triangle of front sa – sk = 36 and
a rectangle of front sk, both with the length u = 1 12, it follows that 

A = 36 00 = 36 / 2 · 1 12 + sk · 1 12   so that   sk = (36 00 – 21 36) / 1 12 = 12.

Therefore

sa = 12 + 36 = 48   and   d = 12 + 27 = 39.

11.3 f. Ist. Si. 269. Five 2-striped trapezoids divided in the ratio 60 : 1

Ist. Si. 269 is a clay tablet from the ancient Mesopotamian city Sippar
with 4 diagrams of 2-striped trapezoids on the obverse and 2 on the
reverse. The hand copy in Fig. 11.3.5 below, with sexagesimal numbers in
transliteration, is based on a hand copy with cuneiform numbers, courte-
ously provided by V. Donbaz. 

Fig. 11.3.5.  Ist. Si. 269. Six 2-striped trapezoids with associated values.

The partial lengths, the two fronts, and the transversals are given for all
the four trapezoids on the obverse and probably also for the first trapezoid
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on the reverse. The text may be either an assignment, where a student was
supposed to compute the partial areas of all those trapezoids, or it may be
the answer to an assignment, where a student has successfully computed
some, or all, of the indicated values.

Already a preliminary analysis of the trapezoids on the obverse reveals
some interesting features. The sum of the partial lengths is in all the four
cases equal to ‘1’:, probably meaning 1 00:

56;15 + 3;45 = 53;20 + 6;40 = 54 + 6 = 55;33 20 + 4;26 40 = 1 00.

Similarly, the sum of the two fronts is in all the four cases equal to 1 01:

54;30 + 6;30 = 59;45 + 1;15 = 58;50 + 2;10 = 56;09 + 4;51 = 1 01.

On the other hand, the four 2-striped trapezoids are not similar figures,
since the upper lengths are various multiples of the lower lengths:

56;15 = 15 · 3;45,  53;20 = 8 · 6;40,   54 = 9 · 6,   55;33 20 = 12;30 · 4;26 40.

Note that the four factors 15, 8, 9, and 12;30 are not arbitrarily chosen
numbers. Instead, they are small numbers n such that both n and n + 1 are
regular sexagesimal numbers (numbers for which there exists a reciprocal
sexagesimal number). Indeed,

15 + 1 = 16,   8 + 1 = 9,   9 + 1 = 10,   and   12;30 + 1 = 13;30.

Here, for instance, 12;30 = 25/2 and 13;30 = 27/2, with the reciprocals 

2 · 12 · 12 = 4 48   and   2 · 20 · 20 · 20 = 4 26 40.

It is likely that in the partial lengths were chosen, in all the four cases, so
that both the partial lengths and the whole length would be regular sexag-
esimal numbers. More specifically, it is easy to see that

56; 15, 3;45 = (15/16, 1/16) · 1 00,
53;20 = (8/9, 1/9) · 1 00,
54, 6 = (9/10, 1/10) · 1 00,
55;33 20, 4;26 40 = (25/27, 2/27) · 1 00.

Another idea behind the construction of the 2-striped trapezoids on the
obverse of Ist. Si. 269 is revealed if the area and the partial areas of one of
the trapezoids are computed. In the case of the first trapezoid, for instance,

Aa =56;15 · (54;30 + 9;30)/2 = 56;15 · 32 = 30 00,
Ak = 3;45 · (9;30 + 6;30)/2 = 3;45 · 8 = 30.

Thus, in this case (and also in the three other cases) the transversal divides
the trapezoid in two parts in the ratio 1 00 : 1 (that is, 60 : 1).
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It is possible, therefore, that the obverse of Ist. Si. 269 is some student’s
answer to an assignment of the following kind:

Construct four 2-striped trapezoids 
with the partial areas always equal to 30 00 and 30, 
and with the total length always equal to 1 00.

Take, for instance, the first example, where the student apparently chose 

ua = 15 · 1 00 / 16 = uk = 56;15,   
uk = 1 00 / 16 = 3;45.

Knowing ua and uk, he could then set up the equations for sa, d, sk:

sa + sk = 2 A / u = 1 01 00 / 1 00 = 1 01,

sa + d = 2 Aa / ua = 1 00 00 / 56;15 = 1 04

d + sk = 2 Ak / uk = 1 00 / 3;45 = 16.

Note that division by u = 1 00, ua = 56;15, and uk = 3;45 is possible (with-
out approximations) precisely because u, ua and uk all are regular.

This system of equations can be solved as follows:

sa + d + sk = A / u + Aa / ua + Ak / uk = (1 01 + 1 04 + 16)/2 = 2 21 / 2 = 1 10;30,

sa = (sa + d + sk) – (d + sk) = 1 10;30 – 16 = 54;30 (= A / u + Aa / ua – Ak / uk),   

d  = (sa + d + sk) – (sa + sk) = 1 10;30 – 1 01 = 9;30 (= Ak / uk – A / u + Aa / ua),      

sk = (sa + d + sk) – (sa + d) = 1 10;30 – 1 04 = 6;30 (= Aa / ua – Ak / uk + A / u).

These are the values actually recorded in and around the first trapezoid.
The values associated with the remaining trapezoids on the obverse can be
computed analogously.

Only three of the five values associated with the first trapezoid on the
reverse are preserved. It is likely, however that these values were comput-
ed with departure from the values for the third trapezoid on the obverse by
scaling the lengths by the scaling factor ;50 = 1 – 1/6 and the fronts and the
transversal by the reciprocal scaling factor 1;12 = 1 + 1/5. Indeed,

5 = (1 – 1/6) · 6,   

[45] = (1 – 1/6) · 54,   

2;36 = (1 + 1/5) · 2;10,  

 9;24 = (1 + 1/5) · 7;50,   

[1 10;36] = (1 + 1/5) · 58;50.

In this way, the first trapezoid on the reverse still has the partial areas
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30 00, 30, and it still has the partial lengths in the ratio 9 : 1, but the total
length is now 50 instead of 1 00 = 60.

The second trapezoid on the reverse of Ist. Si. 269 is inscribed with data
for a new kind of problem. Interestingly, the given partial areas Aa = 8 00,
Ak = 4 30 and the upper front sa = 30 are the same as in the favorite kind
of 2-striped triangle, the one appearing in TMS 18 and in Str. 364 §§ 4, 6.
It is likely that this second problem on Ist. Si. 269, rev. is identical with the
problem in Str. 364 § 4 a (Sec. 11.2 c above and Fig. 11.2.1), even if the
number ‘10’ in the diagram for the former text is a careless notation corre-
sponding to the more correct ‘10 diri’ in the diagram for the latter text!

11.3 g. The Bloom of Thymaridas and its relation to 
            Old Babylonian generating equations for transversal triples

The ‘Bloom’ of Thymaridas, an ancient Pythagorean, not later than
the time of Plato, is mentioned by Iamblichus (the first half of the fourth
century) in his book On Nichomachus’ Introductio Arithmetica (see Heath,
HGM I (1981), 94; Thomas GMW 1 (1980), 139). The ‘Bloom’ is a rule
for solving a certain kind of systems of linear equations. Its name suggests
that the rule was well known and appreciated for its elegance. 

The rule was stated as follows, in general terms, without the use of sym-
bolic notation (here in the translation proposed by Thomas):

“When any determined or undefined quantities amount to a given sum, and the
sum of one of them plus every other is given, the sum of these pairs minus the
first given sum is, if there are three quantities, equal to the quantity which was
added to all the rest; if there are four quantities, one-half is so equal; if there are
five quantities, one-third; if there are six quantities, one-fourth, and so on con-
tinually, there being always a difference of 2 between the number of quantities
to be divided and the denomination of the part.”

In modern notations, this rule says that a system of n + 1 linear equa-
tions of the type

d + s1 + s2 + ··· + sn = c‚   d + s1 = c1‚   d + s2 = c2‚ · · · , d + sn = cn

has the solution 

d = {(c1 + c2 + ··· + cn) – c} / (n – 1).

The proof is easy, since one gets by summation 

(c1 + c2 + ··· + cn) – c = n · d + (s1 + s2 + ··· + sn) – (d + s1 + s2 + ··· + sn) = (n – 1) · d.
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Now, consider again the OB system of equations for the fronts and
transversal of a 2-striped trapezoid, in the simplified form

sa + sk = c,   sa + d = c1,  d + sk = c2,   

where   c = 2 A / u,   c1 = 2 Aa / ua,   c2 = 2 Ak / uk.

Since one gets here by summation 

c + c1 + c2 = 2 · (d + sa + sk),

the mentioned system of equations can be reduced to the equivalent system

d + sa + sk = (c + c1 + c2)/2 ,   d + sa = c1,  d + sk = c2.

In this form, the OB system of equations for the fronts and transversal of a
2-striped trapezoid is clearly identical with the Bloom of Thymaridas in the
case when n = 2. Accordingly, 

d = (c1 + c2) – (c + c1 + c2)/2 = (c1 + c2 – c)/2 = Aa / ua + Ak / uk – A / u.

The obvious conclusion of this brief consideration is that the ‘Bloom of
Thymaridas’ can be interpreted as a generalization to the case of an
arbitrary n of the OB system of generating equations for the fronts and the
transversal of a 2-striped trapezoid, as it appears in YBC 4608 and,
indirectly, in Ist. Si. 269!

11.3 h. Relations between diagonal triples and transversal triples

There is an obvious connection between diagonal triples and transver-
sal triples in the case of a bisected trapezoid (Aa = Ak). This can be shown
either algebraically or geometrically. The algebraic proof is as follows
(Vaiman, SVM (1961), 195):

If   sq. sa + sq. sk = 2 · sq. d,   then   sq. (sa +sk)/2 + sq. (sa – sk)/2 = sq. d,

and conversely

If   sq. u + sq. s = sq. d,   then   sq. (u + s) + sq. (u – s) = 2 · sq. d.

In other words, 

If   sa, d, sk  is a transversal triple, then   d, (sa +sk)/2, (sa – sk)/2 is a diagonal triple,
and if   d, u, s is a diagonal triple, then   u + s, d, u – s   is a transversal triple.

The geometric proof is just as simple. In Fig. 11.3.6 below, left, a
square band viewed as a ring of four equal trapezoids is divided in two
parts of equal area by a concentric square of side d, provided that sa, d,
sk  is a transversal triple. In Fig. 11.3.6, right, the same square band, now
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viewed as a ring of four equal rectangles, is again divided in two parts of
equal area by a oblique square of side d, where d now is the diagonal of
the rectangles. Therefore, in both cases the area of the square of side d is
the half-sum of the areas of the squares bounding the square band. This is
the geometric explanation of the “algebraic” identities mentioned above.

Fig. 11.3.6.  Two ways of constructing a square halfway between two given squares.

Now, since there exists a simple relation between transversal triples and
diagonal triples, it is clear that there must also exist a simple relation be-
tween the generating rule for transversal triples (Sec. 11. 3 d above) and
the generating rule for diagonal triples (Sec. 3.3 above). 

Indeed, consider the generating rule for diagonal triples, in the form

d : u : s = (sq. m + sq. n) : 2 m · n : (sq. m – sq. n),   with   n < m < n · (sqs. 2 + 1).

(The stated restriction for the pair m, n ensures that 0 < s < u.) Then also

u + s : d : u – s  = {2 m · n + (sq. m – sq. n)} : (sq. m + sq. n) : {2 m · n – (sq. m – sq. n)}.

This is a corresponding generating rule for transversal triples. The same
rule can be derived as follows from the equations in Sec. 11.3 d. Set 

Aa = Aa = B,   and   ua = n, uk = m,   where   n < m < n · (sqs. 2 + 1).

Then it follows that

sa : d : sk 

    = {2B/(m + n) – B/m + B/n} : {B/n – 2B/(m + n) + B/m} : {B/m – B/n + 2B/(m + n)}

    = {2 m · n + (sq. m – sq. n)} : (sq. m + sq. n) : {2 m · n – (sq. m – sq. n)}. 

d

sa

sk

d s

u
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11.4. Old Babylonian Problems for 3-and 5-Striped Trapezoids

Two OB hand tablets with metric algebra diagrams of 3-striped trape-
zoids are shown in Fig. 11.4.1 below.

Fig. 11.4.1.  Ash. 1922.168 and MS 3908. Hand tablets with 3-striped trapezoids.

In and around the trapezoid on Ash. 1922.168 (Robson, MMTC (1999),
273) are recorded the following values:

u1, u2, u3 = 1 (00), 2 (00), 3 (00),   
s1, s2, s3, s4 = 15, 13;36 40, 10;50, 6;40,    
A1, A2, A3 = 14 18 20, 24 26 40, 26 15.

Similarly, in and around the trapezoid on MS 3908 (Friberg, RC (2007),
Sec. 8.1) are recorded the values

u1, u2, u3 = 10, 20, 30,   
s1, s2, s3, s4 = [10;50], 9 10, 5;50, ;50,
A1, A2, A3 = [1] 40, 2 30, 1 40.

It is likely that both texts are answers to assignments, and that in each case
the simplest of the recorded values are the ones that were given initially,
while the more complicated values are the ones that were computed by the
student. In Ash. 1922.168, the given values may have been

u1, u2, u3 = 10, 20, 30,   A1 = A3 = 1 40.

In MS 3908, on the other hand, the given values were probably instead

u1, u2, u3 = 1 (00), 2 (00), 3 (00),   s1, s4 = 15, 6;40.
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In both cases, the partial lengths are to each other in the ratios 1 : 2 : 3, and
there are altogether 5 given values, which is precisely what is needed to
make a 3-striped trapezoid fully determined. 

With the mentioned given values, the problem in Ash. 1922.168 is quite
simple, since it is clear that the ‘feed’ of the trapezoid is 

f = (15 – 6:40) / (10 + 20 + 30) = 8;20 / 1 00 = ;08 20.

Therefore, three applications of the linear similarity rule will show that

s2 = 15 – ;08 20 · 10 = 15 – 1;23 20 = 13;36 40,   and so on.

In MS 3809, the following system of linear equations results from two
applications of the area rule and two applications of the similarity rule:

s1 + s2 = 2 · 1 40 /10 = 20,   
s3 + s4 = 2 · 1 40 / 30 = 6;40,
s3 = s1 – 3 (s1 – s2) = 3 s2 – 2 s1,   
s4 = s1 – 6 (s1 – s2) = 6 s2 – 5 s1.

This system of linear equations can easily  be shown to have the solution

s1, s2, s3, s4 = 10;50, 9;10, 5;50, ;50 = ;50 · (13,11, 7, 1).

These are the values recorded on the hand tablet.

A diagram showing a 5-striped trapezoid precedes the problem text (of
which most is lost) on the clay tablet IM 31248 (Bruins, Sumer 9 (1953)).
It is likely that here the given values were, just as in the case of Ash.
1922.168, the partial lengths, 3 (00), 1 (00), 3 (00), 1(00), 3 (00), and the
upper and lower fronts, 45 and 1. With the ‘feed’ f equal to 44 / 11 (00) =
;04, the four transversals (33, 29, 17, 13) can be computed by repeated use
of the similarity rule.

Fig. 11.4.2.  IM 31248. An easy problem for a 5-striped trapezoid.
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11.5. Erm. 15189. Diagrams for Ten Double Bisected Trapezoids

Bisected trapezoids with sa : d : sk = 7 : 13 : 17 and Aa = Ak were dis-
cussed above in Secs. 11.3 a (IM 58045), 11.3 b (VAT 8512), and 11 3 c
(YBC 4675). 

With departure from this standard example, OB mathematicians gener-
alized the idea of a bisected trapezoid in a variety of ways. (Cf. the survey
in Friberg, RlA 7 (1990), Sec. 5.4 k, and see the continued discussion of the
topic in the sections below.) One interesting generalization is demon-
strated by the geometric table text Erm. 15189 (Vaiman, EV 10 (1955)),
which displays 10 closely related examples of a “double bisected trape-
zoid”, where in each case two bisected trapezoids are joined in such a way
that they together form a new trapezoid.

Fig. 11.5.1.  Erm. 15189. A table of 10 double bisected trapezoids.
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Fig. 11.5.2.  Erm. 15189. Scale 1:2.
Photos: The State Ermitage Museum, St. Petersburg.

In example # 1 on the obverse of Erm. 15189, for instance, the first of
the two joined bisected trapezoids has the partial areas 30, 30, the partial
lengths 15, 22;30, and the fronts (actually two fronts and a transversal)
2 16, 1 44, 56. The second trapezoid has the partial areas 6, 6, the partial
lengths 7;30, 15, and the fronts 56, 40, 8. Here

2 16, 1 44, 56 = 8 · (17, 13, 7)   and   56, 40, 8 = 8 · (7, 5, 1).

All the other 9 examples are constructed in precisely the same way as
# 1, so that in the first bisected trapezoid the partial areas are 30, 30 and
the three fronts are equal to a multiple of the standard triple 17, 13, 7, while
in the second bisected trapezoid the partial areas are 6, 6 and the three
fronts are equal to a multiple of triple 7, 5, 1.

The situation is explained by a rudimentary diagram inscribed on the
lower edge of the reverse of the clay tablet. Apparently, according to the
diagram, the basic configuration is a double bisected trapezoid with the
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partial lengths 1 (00), 1 30, 30, 1 (00), and the fronts 17, 13, 7, <5,> 1.
Compared to this basic configuration, the lengths of the trapezoid #1 in

Erm. 15189 are scaled down by the factor 4 and the fronts are scaled up by
the factor 8. However, it is more interesting to investigate the relations
between # 1 and the remaining examples. Which are the relations between
the lower front 8 in # 1 and the lower fronts 6, 9;36, 6;40, 3;20 in the
remaining cases on the obverse, and the lower fronts 4, 7;30, 7;12, 10, 5 in
the five cases on the reverse? The answer is that, in a way which is typical
for OB mathematics, the lower fronts of the 10 trapezoids are

8 4 = 8 · (1 – 1/2) = 1 · 8 / 2
6 = 8 · (1 – 1/4) = 3 · 8 / 4  7;30 = 8 · (1 – 1/16) = 15 · 8 / 16

9;36 = 8 · (1 + 1/5) = 6 · 8 / 5  7;12 = 8 · (1 – 1/10) = 9 · 8 / 10
 6;40 = 8 · (1 – 1/6) = 5 · 8 / 6 10 = 8 · (1 + 1/4) = 5 · 8 / 4
 3;20 = 1/2 · 6;40 5 = 1/2 · 10

Here the pairs of numbers (1, 2), (3, 4), (4, 5), (5, 6), (9, 10), (15, 16) are
regular sexagesimal “twins”, just like the pairs (8, 9), (9, 10), (15, 16),
(12;5, 13;5) used to construct the data for the divided trapezoids in Ist. Si.
269, obv. (Sec. 11.3 f). Thus, the idea behind this particular choice of scal-
ing factors is to subtract nth parts where both n and n – 1 are regular sex-
agesimal numbers, or to add nth parts, where both n and n + 1 are regular!

Moreover, in Erm. 15189, the scalings of the partial lengths is inversely
proportional to the scaling of the fronts, in order to ensure that the partial
areas stay the same. Therefore, the lower lengths of the 10 trapezoids are

15 30 = 15 · (1 + 1) = 2 · 15 / 1
20 = 15 · (1 + 1/3) = 4 ·15 / 3 16 = 15 · (1 + 1/15) = 16 · 15 / 15

12;30 = 15 · (1 – 1/6) = 5 · 15 / 6  16;40 = 15 · (1 – 1/9) = 8 · 15 / 9
 18 = 15 · (1 + 1/5) = 6 · 15 / 5 12 = 15 · (1 – 1/5) = 4 · 15 / 5
 36 = 2 · 18 24 = 2 · 12

Note that the use of regular sexagesimal twins is imperative in this
situation, in view of the following OB “reciprocity rule” (cf. Friberg, UL
(2005), Sec. 3.1 f):

The reciprocal of  1 – 1/n  is 1 + 1/(n – 1),    and 
the reciprocal of  1 + 1/n  is 1 – 1/(n +1). 

Note also that it is not obvious why there should exist any double
bisected trapezoid at all. The conditions for the existence of a double
bisected trapezoid can be analyzed as follows.
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There are two equations that the parameters for a double bisected trap-
ezoid like the one in Fig. 11.5.3 below must satisfy. The first condition is
that the lower front in the upper trapezoid must be equal to the upper front
in the lower trapezoid. The second condition is that the ‘feed’ f must be the
same for the two trapezoids.

Fig. 11.5.3.  The parameters for a double bisected trapezoid.

In view of the generating rule for (rational) transversal triples, these
conditions can be expressed in the following way:

B' / m' – B' / n' + 2 B' / (m' + n') = sk' = sa = 2 B / (m + n) – B / m + B / n,   

and

(2 B' / n' – 2 B' / m') / (m' + n') = f' = f = (2 B / n – 2 B / m) / (m + n).

Equivalently,

[B' / {(m' + n') · m' · n'}] · {2 m' · n' – (sq. m' – sq. n')} = sk'
                                      = sa = [B / {(m + n) · m · n}] · {2 m · n + (sq. m – sq. n)},   

and

[B' /{(m' + n') · m' · n'}] · (m' – n') = f' = f = [B /{(m + n) · m · n}] · (m – n).

Together, these two equations show that

{2 m' · n' – (sq. m' – sq. n')} / (m' – n') = {2 m · n + (sq. m – sq. n)} / (m – n),

or

{2 sq. n' – sq. (m' – n')} / (m' – n') = {2 sq. m – sq. (m – n)} / (m – n).

This single equation for the two unknowns m' and n' can be arbitrarily
complemented by the second equation 

m' – n' = m – n.

Then the first equation collapses to

sq. n' = sq. m   so that   n' = m.
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What all this means is that if m, n, B are known parameters for a given
bisected trapezoid, then the corresponding three parameters for a second
bisected trapezoid which together with the given trapezoid forms a double
bisected trapezoid can be computed as follows:

n' = m,   m' = n' + (m – n) = 2 m – n,   and   B' = B · {(m' + n') · m' · n'}/{(m + n) · m · n}.

Let, for instance, the given bisected trapezoid be the one with 

m, n, B = 2, 1, 6 

and, consequently, 

sa, d, sk = 7, 5, 1,   and   m – n = 1.

Then,

n' = 2,   m' = 3,   B' = 6 · (5 · 3 · 2) / (3 · 2 · 1) = 30,   

and, consequently, 

sa, d, sk = 17, 13, 7.

Similarly, if 

m, n, B = 3, 2, 30, 

then

m – n = 1,   n' = 3,   m' = 4,   B' = 30 · (7 · 4 · 3) / (5 · 3 · 2) = 1 24,   

and

sa, d, sk = 31, 25, 17.

Clearly it is possible, in this way, to construct chains of bisected trape-
zoids, 3, 4, or more. As will be shown by the example in the problem text
AO 17264 (below), this fact was well known in Babylonian mathematics.

Fig. 11.5.4.  A chain of 3 bisected (rational) trapezoids.

Note, by the way, that the simplest way to compute the consecutive

1 3

f = 2  (relative place value notation)

3 4 2

30
1 24

1 24

30
6 6

2

157

1317

25

31



292 Amazing Traces of a Babylonian Origin in Greek Mathematics

transversal triples in a chain of bisected trapezoids is to compute the ‘feed’
f  for the first trapezoid and then use the similarity rule. When, for instance,
m, n, B = 2 (00), 1 (00), 6 (00), and sa, d, sk = 7, 5, 1 in the first bisected
trapezoid, that (see Fig.11.5.4 above), then  

f = (7 – 1) / (2 00 + 1 00) =;02,   d' = 7 + ;02 · 3 00 = 13,   sa' = 13 + ;02 · 2 00 = 17,  etc.

11.6. AO 17264. A Problem for a Chain of 3 Bisected Quadrilaterals

AO 17264 (Neugebauer, MKT 1 (135), 126-134) is a post-Old-Babylo-
nian (Kassite) single problem text with a curiously corrupt problem for a
threefold bisected quadrilateral. Here is the statement of the problem:

AO 17264, literal translation explanation

A ····· . A quasi-trapezoid

2 15 the upper length, 1 21 the lower length, u = 2 15, v = 1 21

3 33 the upper front, 51 the lower front. sa = 3 33, sk = 51

6 brothers. The oldest and the next one equal, 6 sub-fields, A1 = A2

3 and 4 equal, 5 and 6 equal. A3 = A4, A5 = A6

The extents, the transversals, and the descents are what?

Here, as in the case of the bisected quadrilateral in YBC 4675 (Sec. 11.
3 c) the introduction of a quadrilateral instead of a trapezoid is an inten-
tional but quite meaningless complication of the problem. The correspond-
ing problem for a trapezoid would be the case when the upper and lower
fronts and the length of the trapezoid are given and when one asks for the
division of the trapezoid into 6 parallel stripes as in the example in Fig.
11.5.4 above. This appears to be an under-determined problem.32 The text
seems to be the result of a thoughtless teacher handing out a defective
assignment and a smart but dishonest student handing in his faked answer. 

Note that the given ‘upper’ and ‘lower’ lengths of the quadrilateral are
so different in size that the quadrilateral would be unacceptably lopsided.
Therefore, in the explanation below (with notations as in Fig. 11.6.1) the
condition that the lower length should be given has been disregarded, and

32.Thus, Neugebauer writes (MKT 1, 130): “Man sieht sofort dass die Aufgabe in dieser
Form unbestimmt ist  · · · Es ist also klar, dass zur eindeutigen Lösung noch zwei weitere
Bedingungen nötig sind · · ·”.
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it is assumed instead that the figure is a trapezoid.
The solution in the text proceeds (essentially) in the following steps:

1. s2 = (s1 + s4 + v / u) / (u + v)/2 = 26 40;36 / 1 48 = 2 27 (= 3 · 49)
2. s3 = s2 – (u – v) = 2 27 – 54 = 1 33 (= 3 · 31)
3. sq. d1 = (sq. s1 + sq. s2)/2 = 9 18 09,   d1 = 3 03 (= 3 · 1 01)
4. sq. d2 = (sq. s2 + sq. s3)/2 = 4 12 09,   d2 = 2 03 (= 3 · 41)
5. sq. d3 = (sq. s3 + sq. s4)/2 = 1 33 45,   d3 = 1 15 (= 3 · 25)
6. n' = u · (s1 – d1)/(s1 – s4) = ;11 06 40 · 2 15 = 25
7. m' = u · (d1 – s2)/(s1 – s4) = ;13 20 · 2 15 = 30
6. n = u · (s2 – d2)/(s1 – s4) = ;08 53 20 · 2 15 = 20
7. ‘you make the 3 remaining descents like the preceding ones’

Apparently, the student who handed in this answer to the assignment
knew beforehand that part of the answer should be that

sa, d1, s2, d2, s3, d3, s4 
                 = 3 · (1 11, 1 01, 49, 41, 31, 25, 17) = 3 33, 3 03, 2 27, 2 03, 1 33, 1 15, 51

Therefore, in steps 1 and 2, he brashly invented meaningless combinations
of the given data which gave the correct values for s2 and s3. However,
from there on he proceeded correctly.

Fig. 11.6.1.  A chain of three bisected trapezoids. The general case.

It is a remarkable fact that, in spite of appearances, the problem is well
posed, in the following sense: 

Suppose that in Fig. 11.6.1 the chain of three bisected trapezoids has
been constructed with departure from the bisected trapezoid in the middle,
with the parameters m, n, B, and that the added bisected trapezoids to the
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left and right satisfy the condition, mentioned above, that 

m' – n' = m – n = m" – n".

Then all the parameters of the chain of bisected trapezoids are uniquely
determined as soon as the values of u, s1, and s4 are given.

It is clear that if the values of m, n, and B can be found, then the other
parameters can be computed. Therefore, what is needed is 3 equations for
the 3 unknowns m, n, B. The first of these equations is easy to find. Indeed,
recall that (see Sec. 11.5 above):

n' = m,   m' = n' + (m – n) = 2 m – n,   and   
B' = B · {(m' + n') · m' · n'}/{(m + n) · m · n},

and similarly for the parameters of the trapezoid to the right. Therefore,

u = (n' + m') + (n + m) + (n" + m") = (3 m – n) + (m + n) + (3 n – m) = 3 (m + n).

If, for the sake of symmetry, the pair m, n is called a + b, a – b, then

m, n = a + b, a – b   ⇒   m' = a + 3 b, n' = a + b,   and    m" = a – b, n" = a – 3 b.

Then also

u = 3 (m + n) = 6 a,   so that   a = u / 6.

Next, in view of the equations above for n', m', B', together with the
generating rule for (rational) transversal triples

s1 = {2B' / (m' + n') · m' · n' } · {2 m' · n' + (sq. m' – sq. n')}
    = {2B / (m + n) · m · n} · {2 (a + 3 b) · (a + b) + sq. (a + 3 b) – sq. (a + b)}
    = {2B / (m + n) · m · n} ·2 (sq. a + 6 a · b + 7 sq. b).

Similarly, then

s4 = {2B / (m + n) · m · n} · 2 (sq. a – 6 a · b + 7 sq. b).

Consequently,

s1 · (sq. a – 6 a · b + 7 sq. b) = s4 · (sq. a + 6 a · b + 7 sq. b).

Since s1 and s2 are known, this is a quadratic equation for a/b, and since
a = u/6, both a and b are now known. The values of the two interior fronts
and the three transversals can then be computed by use of similarity.

For a numerical example, choose 

s1 = 3 33 = 3 · 1 11, s4 = 51 = 3 · 17, and u = 2 15

as in AO 17264 (disregarding the given value v = 1 21, which transforms
the trapezoid into a distorted quadrilateral). Then
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a = 2 15 / 6 = 22;30   

and

1 11 (sq. t – 6 t + 7) = 17 (sq. t + 6 t + 7),    where    t = a/b.

This quadratic equation can be simplified to

9 sq. t + 1 08 = 1 28 t.

The solution can be found in the usual way. One finds that  

sq. (3 t – 14;40) = sq. 12;20   so that   3 t = 14;40 + 12;20 = 27,   and   t = 9.

Therefore,

a = 22;30   and    b = 22;30 / 9 = 2;30,   

and consequently

a + b, a + 3 b, a – b, a + b, a – 3 b, a – b = 25, 30, 20, 25, 15, 20.

Then, finally, by similarity,

f = (3 33 – 51) / 2 15 = 6 / 5 = 1;12   
 ⇒
s2 = 3 33 – 55 · 1;12 = 2 27,    s3 = 2 27 – 45 · 1;12 = 1 33, 

and so on.
It is likely that it was in this way that the author of the problem intended

it to be solved. If it was, then this Kassite (post-Old-Babylonian) problem
and its intended solution mark one of the high points of Babylonian
mathematics. In this connection it is worth pointing out that the only other
known Kassite mathematical problem text is MS 3876 (Sec. 8.3 above),
which with its computation of the weight of an icosahedron marks another
high point of Babylonian mathematics. Therefore, perhaps, Høyrup was
too pessimistic with regard to the level of Kassite mathematics when he
wrote in his LWS (2002), 387, the following words about AO 17264:

“· · · what the text offers is a mock solution · · · a piece of sham mathematics –– all
that remains of the stringency and creativity of the Old Babylonian mathematical
school is the higher level on which the fraud is perpetrated.”

In the terminology of modern mathematics, the problem stated (and in-
correctly solved) in AO 17264 is the oldest known example of a “boundary
value problem”, where the initial and final values are known for a
sequence of numbers generated by a recursive procedure.
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11.7. VAT 7621 # 1. A 2 · 9-striped trapezoid

In OB examples of divided trapezoids, the lengths of the transversals
are, as a rule, exactly determined sexagesimal numbers. An exception from
this rule is VAT 7621 (Thureau-Dangin, TMB (1938), 99). 

VAT 7621, literal translation explanation

# 1 Two are they, 9 each their sons. Divide each part of the 2-striped trapezoid

The upper bùr  in nine divide, in the diagram 

and the lower bùr  in nine divide, into 9 equal parts.

and (each) soldier show him his stake. Find the partial lengths.

# 2 To 3 men divide equally, Divide into 3 equal parts.

and (each) soldier show him his stake. Find the partial lengths.

# 3 ····· ····· ····· ····· ····· ·····

As shown in the diagram, the given upper and lower fronts of a bisected
trapezoid are sa, sk = 1 45 = 15 · 7, and 15 = 15 · 1. The two partial areas
are both equal to 30 (00) sq. ninda  = 1 bùr . Therefore, the transversal is
d = 15 · 5 = 1 15. The normalized length of the trapezoid, 1 00 ninda , is
divided in two parts, 20 and 40, in the ratio 1: 2. 

An unusual feature of problem # 1 is that the two sub-trapezoids are fur-
ther divided in nine parts each, allotted to the 2 · 9 sons of two (men). Thus,
each son gets 1/9 bùr  = 1/3 è$e  = 2 iku . To ‘show each soldier his stake’
means, as usual, to determine the positions of the transversals separating
the 18 lots from each other. This can be done by use of a method suggested
by Parker, JEA 61 (1975) as an explanation of the given length numbers in
the Egyptian demotic mathematical papyrus P.Heidelberg 663 # 2. (See
the discussion of P.Heidelberg 663 in Friberg, UL (2005), Sec. 3.7.)

Let the sum of the first n sons’ lots, counted from the left, be the trape-
zoid with the fronts sa, dn, and the length (sa – dn)/f, where f is the inclina-
tion of the sloping side of the trapezoid. Let the corresponding area be An.

3˚

2˚ 4˚

1 4˚5

1˚5
3˚

1
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Then (cf. YBC 4675, Sec. 11.3 c above)

An = (sa + dn)/2 · (sa – dn)/f = (sq. sa – sq. dn)/(2 f),   so that   sq. dn = sq. sa – 2 f · An.

In VAT 7621, sa = 1 45, f = (1 45 – 15)/1 00 = 1;30, and An = 1 00 00/18 ·
n = 3 20 · n. Hence, the length dn of the n-th transversal can be computed as

dn = sqs. (sq. sa – 2 f · An) = sqs. (3 03 45 – 10 00 · n),   for   n = 1, 2,  ··· , 18.

Once the transversals are known, it is easy to find also their positions.

The problem in VAT 7621 #2 seems to be to divide the same trapezoid
into three stripes of equal area. The solution can be found as follows:

sq. d1 = sq. sa – 2 f · Aa = sq. 1 45 – 2 · 1;30 · 20 00 = 3 03 45 – 1 00 00 = 2 03 45,
sq. d2 = sq. sk + 2 f · Ak = sq. 15 + 2 · 1;30 · 20 00 = 3 45 + 1 00 00 = 1 03 45.

Hence,

d1 = 15 · sqs. 33 = appr. 1 26;15,   and   d2 = 15 · sqs. 17 = appr. 1 01;52.

Or, one can make use of the general trapezoid bisection equations:

sq. d1 = (2 sq. sa + sq. sk)/3 = sq. 15 · (2 · 49 + 1)/3 = sq. 15 · 33,
sq. d2 = (sq. sa + 2 sq. sk)/3 = sq. 15 · (49 + 2 · 1)/3 = sq. 15 · 17.

11.8. VAT 7531. Cross-wise striped trapezoids.

VAT 7531 ## 1-4 (Friberg, UL (2005), Sec. 3.7 c; cf. Fig. 1.12.7 above)
are the only known OB examples of problems for “cross-wise striped trap-
ezoids”. In the trapezoids considered there, the lengths are parallel, not the
fronts, and it is likely that the transversals are required to be orthogonal to
the parallel lengths, as in the example shown in Fig. 11.8.1 below. (There
are no explicit solution procedures in the text that can confirm this reason-
able conjecture) Here is, for instance, the text of problem # 1.

VAT 7531 # 1, literal translation explanation

2 35 50 the long length, 1 54 10 the short length, u' = 2 35;50, u" = 1 54;10
50 the upper front, 41 40 the lower front. sa = 50, sk = 41;40
Its area, how much it is, find out, then A = ?
to 3 brothers equally divide it, Divided in 3 equal parts
and (each) soldier show him his stake Compute the partial lengths

In VAT 7531 # 1, the given figure can be interpreted as a trapezoid
composed of a central rectangle and two flanking non-equal triangles. If
the rectangle is removed, what remains is a rotated symmetric triangle,
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with two sides equal to 41;40 and the third side equal to 50. The height
against the side 50 can be computed by use of the diagonal rule. It is 33;20,
so that the triangle can be reinterpreted as the composition of two equal
right triangles with the sides 8;20 · (3, 4, 5).

The height h against the side 41;40 can be computed as follows:

h · 41;40/2 = Atriangle = 33;20 · 50/2,     so that   h = 33;20 · 50 / 41;40 = 40.

After h has been computed, the two components a and b of the base of the
triangle can be computed by use of the diagonal rule. They are 30 and
11;40. Hence, the triangle has an alternative composition as two right tri-
angles with the sides 10 · (3, 4, 5) and 1;40 · (7, 24, 25) joined together. 

Fig. 11.8.1.  VAT 7531 # 1. Three brothers sharing a trapezoidal field.

The aim of exercise # 1 is to divide the given trapezoid equally between
three brothers. Now, it is clear that the area of the trapezoid is equal to 

(2 35;50 + 1 54;10)/2 n. · 40 n. = 2 15 n. · 40 n. = 1 30 00 (sq. ninda) = 3 bùr . 

One third of that area is 30 00 (sq. ninda) = 1 bùr , which is equal to the
area of a rectangle with the length 45 n. and the height 40 n. Hence, the
middle brother gets a central rectangle with these sides, while the first
brother gets the left triangle plus a rectangle with the sides 30 and 40, and

2 35;50
(30) (30)

(30)

(45)

(4
0)

(4
0)

(11;40)

(11;40)

(39;10)

1 54;10

41;40

41;40

50
50

(33;20)

41;40

A = 1 30 00 sq. n. = 3 bùr
A/3 = 30 00 sq. n. = 1 bùr

1 bùr1 bùr 1 bùr
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the third brother gets the right triangle plus a rectangle with the sides 39;10
and 40. In this way, each brother gets a field with the area 1 bùr .

11.9. TMS 23. Confluent Quadrilateral Bisections in Two Directions

TMS 23 (Bruins and Rutten (1961)) is a fragment from the middle of
one side of a clay tablet. (See the proposed reconstruction in Fig. 11.9.1.)

Fig. 11.9.1.  TMS 23. Proposed reconstruction of part of the text.

The interpretation of TMS 23 in the original publication of the text was
only partly successful. A more thorough analysis shows that TMS 23 is
among the most important of all known OB mathematical texts. Here is the
translation of the proposed reconstruction of the text:

48  a-na  1  4˚ 5   sag   an. ta i-$í-ma 1 2˚4  ta-mar

3˚ 6  a-na  1˚ 5 sag  ki. ta    i-$í-ma   9   ta- mar  1 2˚4  a-na  9  da‹   

1  3˚ 3  ta-mar       1  3˚ 3  pi-  ir-  ku  an.  ta    tu-   úr-   ma  3˚ 6        

a-na 1 4˚ 5 sag  an. ta  i-$í-ma  1  3   ta-mar  4˚  8  a-na  1˚ 5 sag  ki. ta      

i-$í-ma  1˚ 2   ta-mar  1˚2 i- na 1  3    zi    5˚1  ta-mar  dal   ki.ta

 2   3˚     ta-   mar igi   2   3˚  pu-  #u-   ur    2˚ 4   ta-  mar  re-e$-ka  li-ki-il

 1  2˚  5   u$    an.ta   a- na   1  im.  gíd.  da   i- $í    1   2˚ 5   ta-mar

3˚  5   u$   ki.  ta  a- na  2  im. gíd. da  i- $í- ma  1   1˚ ta-mar  i-na 1   2˚ 5 zi

1˚ 5  ta-mar  2˚ 4  $à     re-  e$-  ka     ú-  ki- lu   a-na 1˚5  i- $í- ma  6 ta-mar

a- na  1  im.  gíd. da   i- $í- ma  6    ta-mar  6    i-na  1  2˚5  zi  

1 1˚ 9   ta- mar   1 1˚ 9    dal   an.ta     tu-   úr-   ma     3˚ 5  u$  ki. ta a-na 

1 i-$í-ma   3˚ 5   ta-mar  6    $à   2˚ 4   a-na  1˚5  ta-a$-$u-ú  a-na 2  i-$í-ma

 1˚ 2   ta- mar         1˚ 2  a-na    3˚  5   u$     ki.  ta    da‹ 4˚7   ta-mar  4˚7  

dal  ki. ta  1 4˚ 5  sag  an.  ta   e-   li    1˚ 5  sag  ki. ta  1  3˚   dirig   

 igi   1   3˚  pu-  #u-   ur    4˚    ta-  mar  4˚   a-na  1 2˚ 5 u$   an.ta   da‹   

5˚  6  4˚  ta-mar      

1  $u-tam-‹i-ir   1   ta-  mar  4     ù     1    ul.gar 5  ta- mar  2'  ‹e- pe

tu-   úr-   ma    2    ù   1 im.gíd.da  le-  qé   2  $u-tam-‹i-ir  4  ta-  mar    
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 TMS 23, literal translation explanation

····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ·
48 to 1 45, the upper front raise, then 1 24 you see. ;48 · sa = ;48 · 1 45 = 1 24
36 to 15, the lower front raise, then 9 you see. ;36 · sk = ;36 · 15 = 9
1 24 to 9 add, then 1 33 you see, ;48 · sa + ;36 · sk 
1 33 the upper crossline   = 1 24 + 9 = 1 33 = da
Turn around Begin again
36 to 1 45, the upper front, raise, then 1 03 you see. ;36 · sa = ;36 · 1 45 = 1 03
48 to 15, the lower front, raise, then 12 you see. ;48 · sk = ;48 · 15 = 12
12 from 1 03 tear off, 51 you see, the lower crossline. ;36 · sa – ;48 · sk = 51 = dk
Turn around Begin again
Take 2 and 1 from the table. Choose the parameters 2 and 1
Make 2 equalsided, 4 you see. sq. 2 = 4
Make 1 equalsided, 1 you see. sq. 1 = 1
4 and 1 heap, 5 you see. sq. 2 + sq. 1 = 4 + 1 = 5
1/2 break 2 30 you see. (sq. 2 + sq. 1)/2 = 2;30
The opposite of 2 30 resolve, 24 you see. 1 / 2;30 = ;24
Let it keep your head. Remember this value!
1 25 the upper length, to 1 from the table, 1 · ua = 1 · 1 25
raise, 1 25 you see.   = 1 25
35, the lower length, to 2, from the table, 2 · uk = 2 · 35
raise, 1 10 you see.   = 1 10
From 1 25 tear off, 15 you see. 1 · ua – 2 · uk = 1 25 – 1 10 = 15
24 that held your head to 15 raise, then 6 you see. (1 · ua – 2 · uk) · ;24 = 6
To 1, from the table, raise, then 6 you see. 1 · (1 · ua – 2 · uk) · ;24 = 6
6 from 1 25 tear off, 1 19 you see, ua – 1 · (1 · ua – 2 · uk) · ;24
1 19 the upper transversal.   = 1 19 = ea
Turn around Begin again
35, the lower length, to 1 raise, then 35 you see. 1 · uk = 1 · 35 = 35
6, that of 24 that you raised to 15, to 2 raise, 2 · (1 · ua – 2 · uk) · ;24 = 6 · 2
then 12 you see.   = 12
12 to 35, the lower length, add, 47 you see. uk + 2 · (1 · ua – 2 · uk) · ;24
47, the lower transversal.   = 35 + 12 = 47 = ek
1 45, the upper front, over 15, the lower front‚ sa – sk = 1 45 – 15
is 1 30 beyond.   = 1 30
The opposite of 1 30 resolve, 40 you see. 1 / (sa – sk) = 1 / 1 30 = :00 40
40 to 1 25, the upper length, raise, then 56 40 you see. ua / (sa – sk) = ;56 40
····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ·

The statement of the problem is not preserved, but apparently the object
considered in this text is a quadrilateral with the ‘upper front’ sa = 1 45 (=
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15 · 7), the ‘lower front’ sk = 15 (= 15 · 1), the ‘upper length’ ua = 1 25 (=
5 · 17), and the ‘lower length’ uk = 35 (= 5 · 7). See Fig. 11.9.2 below. Note
that if the Sumerian/OB “quadrilateral area rule” had been used in this text
(which it is not), the area of the quadrilateral would have been found to be
a conspicuously round number:

A = (ua + uk)/2 · (sa + sk)/2 = (1 25 + 35)/2 · (1 45 + 15)/2 = 1 00 · 1 00 = 1 00 00 (sq. n.)

In the present case, the rule would yield a wildly inaccurate value.

Fig. 11.9.2.  TMS 23. Confluent bisections in two directions.

As a matter of fact, all the computations in this text are wildly inaccu-
rate, because it is not taken into consideration that the quadrilateral is not
a (parallel) trapezoid in two directions. Apart from that, however, the pro-
cedures in the text are correct, so one way of saving the situation is to in-
terpret the text as dealing with two separate trapezoids, one where the
‘fronts’ are parallel and another where the ‘lengths’ are parallel.

With this amended interpretation of the text, the problem considered in
the exercise can be explained as follows: Let sa = 1 45 (= 15 · 7) and sk =
15 (= 15 · 1) be given values for the upper and lower fronts of a (parallel)

u
a  = 1 25

s
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s
k  = 15

u k
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 3
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d = 1 15
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e = 1 05
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trapezoid. Then it is clear that the trapezoid is bisected by the transversal
d = 1 15 (= 15 · 5), so that the triple sa, d, sk satisfies the equation

sq. sa + sq. sk = 2 · sq. d.

The question is now if it is possible to find an ‘upper’ and a ‘lower’ trans-
versal, da and dk, in the same trapezoid, such that also the trapezoid with
da and dk as its upper and lower fronts is bisected by the transversal d.
This phenomenon can be called “a confluent trapezoid bisection”.

Fig. 11.9.3.  A confluent trapezoid bisection.

The first part of the solution procedure in TMS 23 probably began with
the computation of (the length of) the transversal d. That computation is
now lost. Anyway, the solution procedure continues immediately with the
computation of the upper and lower transversals as 

da = ;48 · sa + ;36 · sk = ;48 · 1 45 + ;36 · 15 = 1 24 + 9 = 1 33,  
dk = ;36 · sa – ;48 · sk = ;36 · 1 45 – ;48 · 15 = 1 03 – 12 = 51.

Although this is not done in the text, it is easy to check that then, indeed, 

sq. da + sq. dk = sq. 1 33 + sq. 51 = 2 24 09 + 43 21 = 3 07 30 = 2 · 1 33 45 = 2 · sq. d.

Therefore, in the trapezoid in Fig. 11.9.3, Ca = Ck, as desired.

The explanation for this way of solving the problem comes in the sec-
ond part of the solution procedure, which is much more explicit. The main
idea is the following: The trapezoid in Fig. 11.9.3 is bisected by the trans-
versal d. Therefore the areas Ba + Ca and Bk + Ck are equal. Hence, if also
Ba and Bk are equal, it will follow that Ca and Ck are equal, as desired. 

s a d a

d

d k

s k

Ba

ba = n · t ca ck bk  = m · t 

Bk
Ck

Ca
sa = the upper front
da = the upper transversal
d = the transversal
dk = the lower transversal
sk = the lower front

Ba + Ca = Bk + Ck    and    Ba = Bk      ⇒      Ca = Ck 
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Suppose now that Ba and Bk are equal, and that, in addition, 

ba : bk = n : m   where ba, bk are partial lengths and m, n a given pair of integers.

(See again Fig. 11.9.3.) Then the upper and lower transversals da and dk
can be computed as the solutions to the following system of equations:

(sa – da) / n = (dk – sk) / m‚    n · (sa + da) = m · (dk + sk).

(The first of these equations is a similarity equation, the second an area
equation.) The system of equations can be solved in the following way:

Set   da = sa – n · t   and   dk = sk + m · t   where   t   is a new unknown.

Then the first equation is satisfied. The second equation is also satisfied if

n · (2 sa – n · t) = m · (2 sk + m · t)   that is, if   n · sa – m · sk = (sq. m + sq. n)/2 · t.

Consequently,

t = (n · sa – m · sk) / (sq. m + sq. n)/2.

Thus, finally,

da = sa – n · t = sa – n · (n · sa – m · sk) / (sq. m + sq. n)/2,   and
dk = sk + m · t = sk + m · (n · sa – m · sk) / (sq. m + sq. n)/2.

This OB “confluent bisection rule” is used explicitly in the second part of
the solution procedure in TMS 23, where the upper and lower transversals
ea and ek between the “parallels” ua and uk are computed as follows:

ea = ua – 1 · t = ua – 1 · (1 · ua – 2 · uk) / (sq. 2 + sq. 1)/2 = 1 19,   and
ek = uk + 2 · t = uk + 2 · (1 · ua – 2 · uk) / (sq. 2 + sq. 1)/2 = 47.

Thus, the solution procedure in the second part of TMS 23 makes use of
the confluent bisection rule with m, n = 2, 1. Note, by the way, that 

sq. 1 19 + sq. 47 = 1 46 01 + 36 49 = 2 20 50 = 2 · 1 10 25 = 2 · sq. 1 05.

(1 05 is the transversal in the bisected trapezoid with the parallels 1 25, 35.)

How is this confluent bisection rule related to the method used in the
first part of the solution procedure in TMS 23? The answer to this question
is that one can show, with a little bit of algebraic manipulation, that the
equations above for the upper and lower transversals can be reduced to

da = sa – n · (n · sa – m · sk) / (sq. m + sq. n)/2 
     = {(sq. m – sq. n)/2 · ua + m · n · uk} / (sq. m + sq. n)/2,
dk = sk + m · (n · sa – m · sk) / (sq. m + sq. n)/2
     = {m · n · ua – (sq. m – sq. n)/2 · uk} / (sq. m + sq. n)/2.

In other words, an alternative form of the confluent bisection rule is that
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da = a · sa + b · sk,   dk = b · sa – a · sk,

where

b = m · n / (sq. m + sq. n)/2,   and   a = (sq. m – sq. n)/2 / (sq. m + sq. n)/2.

One recognizes here that a and b are the short sides of a right triangle with
the diagonal 1, given by a generating rule for diagonal triples. In the spe-
cial case when m, n = 2, 1, the equations for a and b show that

b = 2 · 1 / (sq. 2 + sq. 1)/2 = 4/5 = ;48,   and   
a = (sq. 2 – sq. 1)/2 / (sq. 2 + sq. 1)/2 = 3/5 = ;36.

Therefore, the alternative form of the confluent bisection rule is used in the
first part of the solution procedure in TMS 23, with the same choice of the
parameters m, n as in the second part of the solution procedure.

This observation finally makes sense of the following cryptic remark at
the beginning of the second part of the solution procedure:

2 ù 1 im.gíd.da le-qé take 2 and 1 (from) the table

Here im.gíd.da  ‘long clay’ or ‘long clay tablet’ is a Sumerian word which
normally refers to a longish clay tablet inscribed with a mathematical table
text, such as a single multiplication table, or a table of reciprocals. In the
present context, it obviously refers to a mathematical table similar to but
slightly different from Plimpton 322 (Sec. 3.3), namely a table with sepa-
rate columns for the parameters m, n and for the fronts and lengths of a
number of right triangles satisfying the condition that the diagonal = 1.

11.10. Erm. 15073. Divided Trapezoids in a Recombination Text

Erm. 15073 (Vaiman, SVM (1961), 232-244), is a large fraction of an
OB mathematical recombination text. It is of the same kind as the more
well known recombination texts BM 85194 and BM 85196 (both men-
tioned in Sec. 1.12 above) and BM 96954+ (see Sec. 93, in particular Fig.
9.3.2), all from the ancient Mesopotamian city Sippar. Most of the text on
the reverse of Erm. 15073 is destroyed, but small parts remain of three
exercises, all dealing with divided figures. 

The final part of the first exercise in the leftmost column on the reverse
(col. vi) contains the explicit computation of the partial lengths ua = 20 and
uk = 40 of a bisected trapezoid with the upper front, the transversal, and the
lower front equal to 35, 25, 5 = 5 · (7, 5, 1).
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What remains of the second exercise in col. vi is only a diagram show-
ing a quadrilateral with some associated numbers. However, the numbers
are such that it is clear that this exercise is about a quadrilateral bisected in
two directions, thus to some extent a parallel to TMS 23.

Fig. 11.10.1.  Erm. 15073 rev. Remains of three exercises concerned with divided figures.

 Erm. 15073 col. vi # 2, literal translation explanation

A   · · ·  42 30 the long length, A trapezoid(?). u' =42;30
17 30 the short length, 46 the upper front u" = 17;30, sa = 46
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According to the “quadrilateral area rule”, the area of the figure is

A = (42;30 + 17;30)/2 · (46 + 14)/2 = 30 · 30 = 15 (00).

This number is recorded in the center of the diagram.
Assuming that there exists a transversal d “parallel” to the fronts and

bisecting the “trapezoid”, its length can be computed a follows:

sq. d = (sq. 46 + sq. 14)/2 = (35 16 + 3 16)/2 = 19 16 = sq. 34,   d = 34.

Similarly, assuming that there exists a transversal e “parallel” to the
lengths, bisecting the “trapezoid”, its length can be computed a follows:

ua = 42;30 = 2;30 · 17,   uk = 17;30 = 2;30 · 7   ⇒   e = 2;30 · 13.

Thus, the transversal triples for this in two ways bisected quadrilateral are

(sa, d, sk) = 2 · (23, 17, 7),   and  (ua, e, uk)  = 2;30 · (17, 13, 7).

What remains of the exercise in col. iv to the right on the reverse of
Erm. 15073 (see the text below) is partly a parallel to TMS 23, with a con-
fluent trapezoid bisection where the lower transversal is computed as fol-
lows:

dk = ;36 · sa – ;48 · sk = ;36 · 1 45 – ;48 · 15 = 1 03 – 12 = 51.

The computation of the transversals is followed by the computation of the
partial lengths, beginning with

ba = {(sa – da) / (sa – sk)} · 1 = (1 45 – 1 33) / (1 45 – 15) = 12 / 1 30 = 8.

The rest of the exercise, including the computation of the partial areas, is
lost. It is clear, anyway, that the divided trapezoid in this case was the one
depicted in Fig. 11.10.2 below:

Fig. 11.10.2.  Erm. 15073 col iv. A confluent trapezoid bisection.
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 Erm. 15073 col. iv, literal translation explanation
· · · · · · · · · · · · · · · · · · · · · · · · · · · you see  · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · you see  · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·  you lift  · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·  you see.  · · ·
36 to 1 45 lift, then 1 03 you see. Set it above. ;36 · sa = ;36 · 1 45 = 1 03
48 to 15 lift, then 12 you see. ;48 · sk = ;48 · 15 = 12
12 our from 1 03 that you set above ;36 · sa – ;48 · sk = 1 03 – 12 
tear off, then 51 the transversal you see. = 51 = dk
1 45 the upper front over 15 the lower front sa – sk = 1 45 – 15
is what beyond? 1 30 it is beyond. = 1 30
its opposite resolve, then 40 you see. Set it. 1/ 1 30 = ;00 40
1 45 over 1 33 the transversal is what beyond? sa – da =1 45 – 1 33 = 12
12 you see. 12 to 40 that · · · lift, 12 · ;00 40
then 8 the descent. = (sa – da) / (sa – sk) = ;08
  · · ·  · · ·

The problems on the obverse of Erm. 15073 are not related to the divi-
sion of figures problems on the reverse. The first problem appears to be a
combined work norm exercise, while the remaining problems on the
obverse are various kinds of volume computations. For details see
Vaiman, op cit. 

The importance of Erm. 15073 rev. is that it clearly demonstrates how
readily mathematical ideas could spread from one Mesopotamian city to
another in the OB period. (In the present case from Sippar(?) in central Me-
sopotamia to Susa far to the east.) This is evident in the case of the conflu-
ent trapezoid bisections, and even more so in the case of the in two ways
bisected quadrilaterals, where a surprisingly lax attitude towards features
apparently judged to be non-essential allows the treatment of decidedly
unsymmetrical quadrilaterals as figures with two parallel fronts and two
parallel lengths.
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Fig. 11.10.3.  Erm. 15073. Scale  3:5.
Photos: The State Ermitage Museum, St. Petersburg
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Chapter 12

Hippocrates’ Lunes and 
Babylonian Figures With Curved Boundaries

12.1. Hippocrates’ Lunes According to Alexander 

Hippocrates of Chios is the most famous of the Greek geometers of
the (last part of the) 5th century BCE. In the Summary of Proclus, it is said
that “he is the first of those mentioned as having compiled Elements”
(Thomas, GMW 1 (1980), 151. He also occupied himself with questions
related to the quadrature of the circle, in particular his famous “quadratures
of lunes” (Gr. mení skos ‘little moon’). Simplicius mentions, in his Com-
mentary on Aristotle’s Physics (van der Waerden, SA (1975), 131 ff.;
Thomas, op. cit., 235 ff.; Knorr,ATGP (1993), 29 ff.) two different sources
allegedly dealing with Hippocrates’ quadratures of lunes. 

One of these sources is a statement by Simplicius’ teacher Alexander
of Aphrodisias. Two different quadratures of lunes described by Alex-
ander are illustrated by the diagrams in Fig. 12.1.1 below, using metric
algebra notations. The construction of the first diagram begins with an
isosceles right triangle (a half-square) with the base p, the sides s and the
areaT. Three semicircles are applied to the sides of the triangle, a large
semicircle to the base and smaller semicircles to the legs. In this way, two
lunes are formed, both bounded on one side by a semicircle of diameter s
and on the other side by a 1/4-circle of radius p/2. Clearly, 

sq.p = 2 sq. s.

Assuming it to be known that the area of a semicircle is proportional to
the square of its diameter, it follows that the area Sp of the large semicircle
is equal to the sum 2 Ss of the areas of the small semicircles. On the other
hand, the figure formed by the two lunes and the large semicircle is the
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same as the figure formed by the right triangle and the two small semi-
circles. This means that

Sp = 2 Ss  and   2 L + Sp = T + 2 Ss,   where L is the area of each lune.

Consequently,

2 L = T   so that L = T / 2 (= sq. s/2).

Therefore, a lune bounded by a semicircle and a 1/4-circle is squarable.

Fig. 12.1.1.  Hippocrates’ lunes according to Alexander. Modern notations.

The next construction begins with one half of a regular hexagon with
the side s the base p, and the area T. Four semicircles are applied to the
sides of the trapezoid, a large semicircle to the base and smaller semicir-
cles to the legs. In this way, three lunes are formed, all bounded on one side
by a semicircle of diameter s and on the other side by a 1/6-circle of radius
s. Clearly,

p = 2 s,   so that   sq. p = 4 sq. s   and, consequently,Sp = 4 Ss.

On the other hand, the figure formed by the three lunes and the large
semicircle is the same as the figure formed by the trapezoid and the three
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small semicircles. This means that 

Sp = 4 Ss  and   3 L + Sp = T + 3 Ss,   where L is the area of each lune.

Consequently,

3 L + Ss = T.

Assuming that it is known that every rectilineal figure (a figure bounded
by straight lines) is squareable (cf. Euclid’s Elements II.14), it then follows
that3 times the area of a lune bounded by a semicircle and a 1/6-circle,
and the area of a semicircle, all together, are equal to the area of a square.

(In other words, the area of a circle is equal to the area of a square minus the
area of 6 such lunes. Maybe the idea was that in this way the problem of the
quadrature of the circle can be reduced to the problem of the quadrature of this
kind of lune.)

12.2. Hippocrates’ Lunes According to Eudemus

The other source used by Simplicius is a passage in the History of
Geometry by Eudemus. The constructions of lunes in that passage are
more sophisticated than the constructions mentioned by Alexander. Also
the argumentation is more sophisticated. In particular, Eudemus says that

“The quadratures of lunes, which seemed to belong to an uncommon class of prop-
ositions by reason of the close relationship to the circle, were first investigated by
Hippocrates, and seemed to be set out in correct form; therefore we shall deal with
them in length and go through them. He made his starting-point, and set out as the
first of his theorems useful to his purpose, that similar segments of circles have the
same ratios as the squares on their bases. And this he proved by showing that the
squares on the diameters have the same ratios as the circles.”

Unfortunately, Eudemus does not tell how Hippocrates proved that circles
have the same ratios as their squares. (Cf. El. XII.2.) Neither does he ex-
plain under which circumstances segments of circles are similar to each
other. Hippocrates’ definition of similar segments was probably the same
as Euclid’s in El. III, Def. 11: 

“Similar segments of circles are those which admit equal angles.”

What this means is made clear in El. III.33, where the angle admitted by a
circle segment is seen to be the angle between the chord which is the base
of the segment and the tangent to the circle at the endpoint of that chord.
The situation is particularly simple in the case of semicircles, all of which
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can be interpreted as similar circle segments, since the angles that they ad-
mit are always right angles. Therefore, the constructions of lunes by means
of similar circle segments (Fig. 12.2.1), can be viewed as direct generali-
zations of the constructions of lunes by means of semicircles (Fig. 12.1.1).

Fig. 12.2.1.  The three first of Hippocrates’ lunes according to Eudemus. Modern notations.

The construction of the first of Hippocrates’ lunes according to
Eudemus starts, just like the construction of the first lune according to
Alexander, with a half-square T of side s and base p, where then sq. p =
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2 sq. s. A semicircle is circumscribed around this half-square, and on the
base of the half-square is constructed a large circle segment Sp similar to
the two small circle segments Sswith the base s which are cut off from the
semicircle by the sides of the half-square. The common chord-tangent
angle of the three segments is then half a right angle, and the large segment
is tangent to the sides of the half-square. In the process, a lune is formed,
bounded on one side by a semicircle with the diameter p and on the other
side by the arc of a 1/4-circle segment with the base p. The area of the lune
can be computed as follows:

L = T + 2 Ss – Sp,   where    2 Ss = Sp,   so that L = T = the area of the half-square.

The conclusion is that a lune bounded on one side by a semicircle and on
the other by a 1/4-circle is squareable. Although it is not explicitly stated,
it is also clear that the chord-tangent angle of the outer arc of the lune is
twice as large as the chord-tangent angle of the inner arc.

The construction of the second of Hippocrates’ lunes according to
Eudemus starts with a trapezoid T with the sides and the smaller top all
equal to s and with the base p, where sq. p = 3 sq. s. A circle segment with
the base p is circumscribed around the trapezoid. It is shown as follows
thatthe circular arc of the segment is greater than that of a semicircle:

Let d be (the length of) the diagonal of the trapezoid. Then sq. p = 3 sq. s
and   sq. d > 2 sq. s   because the angle opposite to d is obtuse
Ç   sq. p < sq. d + sq. s   so that the angle opposite to p is acute.
Therefore the arc of the circumscribed segment is greater than that of a semicircle.

(Clearly, the arguments used here by Hippocrates are forerunners of
Euclid’sElements II.12-13 and III.31.)

Next, a segment Sp is constructed on the base p, similar to the three
small segments Ss with the base s which are cut off from the circumscribed
segment by the trapezoid. A lune is then formed, bounded on one side by
an arc greater than that of a semicircle and on the other side by the arc of
the segment Sp. The area L of the lune can be computed as follows:

L = T + 3 Ss – Sp,   where    3 Ss = Sp,   so that L = T = the area of the trapezoid.

Therefore, also this lune with an outer arc greater than that of a semicircle
is squareable. Although it is not explicitly stated, it is clear that the chord-
tangent angle of the outer arc of the lune is three times as large as the
chord-tangent angle of the inner arc. (Cf. Euclid’s Elements III.32 .)
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The construction of the third of Hippocrates’ lunes according to Eude-
mus is accompanied by a diagram which is excessively complicated
because it wants to show the construction in full detail. The third diagram
in Fig. 12.2.1 above is a somewhat simplified version of that diagram. 

Essentially, the construction begins with a straight line of given length
s, the top of the trapezoid in the diagram. A circle of diameter 2 s is drawn
with its center at one end point of the given straight line. Next a straight
line of length p where sq. p = 1 1/2 · sq. s is constructed by use of neusis
‘verging’, with one end point on the circle, with the second end point on a
perpendicular bisector of the given straight line, and such that its extension
p + q passes through the second end point of the given straight line.

Note that instead of using the neusis construction, Hippocrates could
have computed the length d = p + q of the diagonal as follows:

The triangle with the sides s, q, q is similar to the triangle with the sides d, s, s.
Therefore,d : s = s : q   so that d · q = sq. s.
Hence,d and q can be found as the solution to the rectangular-linear system of equations
   d · q = sq. s, d – q = p.

A trapezoid with three sides equal to s and with the diagonal p + q can
now be constructed, as in the third diagram in Fig. 12.2.1. Finally, a circle
segment is constructed, with the same base as the trapezoid and circum-
scribing the triangle formed by the base and the two straight lines of length
p. The triangle cuts off two segments Spof base p from this circle segment,
at the same time as the trapezoid cuts off three segments Ssof base s from
the circle segment circumscribing the trapezoid. It is clear that Sp andSs
are similar circle segments, since their chord-tangent angles are equal. (Cf.
againEl. III.32.) It is also clear that the angle at the base of the trapezoid
is twice as big. (Cf. El. III.27.)

A lune is now formed with its outer and inner arcs equal to the arcs of
the circle segments circumscribing the trapezoid and the triangle, respec-
tively. The area L of the lune can be computed as follows:

SinceSp and Ss are (the areas of) similar circle segments with the base p and s, respec-
tively, and since   2 sq. p = 3 sq. s,  it follows that   2 Sp = 3 Ss.
Let now T = (the area of) the figure equal to the trapezoid with the triangle torn off.
Then L = T + 3 Ss – 2 Sp = T.

Since rectilineal figures are squareable (cf. again El. II.14), it follows that
the lune with its outer and inner arcs equal to the arcs circumscribing the
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trapezoid and the triangle, respectively, is squareable. Although it is not
explicitly stated, it is also clear that the chord-tangent angle of the outer
arc of the lune is 1 1/2 times as large as the chord-tangent angle of the
inner arc. Finally, it is can be shown that the outer arc is less than the arc
of a semicircle (Thomas, op. cit., 247, footnote a).

The fourth of Hippocrates’ lunes according to Eudemus (see Fig.
12.2.2) is bounded on the outside by the arc of a 1/3-circle segment of base
p and on the inside by the arc of a 1/6-circle segment Sp with the same base.
The area L of the lune can be computed as 

L = T + 2 Ss – Sp‚   where T is a triangle with the sidesp, s, s,   with   sq. p = 3 sq. s.

SinceSs and Sp are similar circle segments, it follows that

Sp = 3 Ss   so that L = T – Ss.

This is a somewhat unsatisfactory result, so the construction continues as
follows: A circle Cs' is circumscribed around a regular hexagon Hs' with
the diameter 2 s', and with sq. s= 6 sq. s'. The hexagon then cuts of 6 circle
segmentsSs' from the circumscribed circle, and it is clear that 

Ss= 6 Ss'   so thatL = T – 6 Ss'.

Then also

L + (Hs'  + 6 Ss') = T + Hs'   so that L + Cs' = T + Hs' is squareable.

Thus, the final conclusion is that the area of the lune in Fig. 12.2.2 plus the
area of the small circle is equal to the area of a square. This is a result of
the same kind as the one for Hippocrates’ second lune according to Alex-
ander. See the second diagram in Fig. 12.1.1 above.

Fig. 12.2.2.  The fourth of Hippocrates’ lunes according to Eudemus. Modern notations.

sq.p = 3 sq. s   and   sq. s = 6 sq. s'

L + Sp = T + 2 Ss

Ç

Sp = 3 Ss   and Ss = 6 Ss'

L + Ss = T = Atriangle

L + C = Atriangle + Asmall hexagon

(C circle of diameter 2 s')

s

s'
p

s

s'

s

s'

SpS s

Ss

||



316 Amazing Traces of a Babylonian Origin in Greek Mathematics

12.3. Some Geometric Figures in the OB Table of Constants BR

A well known sequence of entries in the OB mathematical table of con-
stants BR = Bruins and Rutten, TMS(1961) text 3 was mentioned above in
Sec. 6.2. In these entries are listed, in a systematic way, the main parame-
ters for (in particular) the following plane geometric figures:

the ‘arc’ (circle) BR 2-4
the ‘crescent’ (semicircle) BR 7-9
the ‘bow’ (bow-like figure) BR 10-12
the ‘boat field’ (boat-like figure, rhomb) BR 13-15
the ‘barleycorn field’ (thin double circle segment) BR 16-18
the ‘ox-eye’ (thick double circle segment) BR 19-21
the ‘lyre-window’ (concave square) BR 22-24
the ‘lyre-window of 3’ (concave triangle) BR 25
the ‘5-front, 6-front, 7-front’ (regular polygons) BR 26-28
the ‘peg-head’ (equilateral triangle) BR 29
the ‘$ár field’ (ring of right triangles) BR 30
the ‘divider of the square’ (diagonal of a square) BR 31
the ‘divider of the length-and-front’ (diagonal of a 1 00 × 45 rectangle) BR 32

The rather obvious meaning of the parameters for the circle and the semi-
circle was discussed above in Sec. 6.2. Constants for regular polygons
(including the equilateral triangle) were discussed in Sec. 7.4. The much
less obvious meaning of the parameters for the geometric figures in entries
10-25 of the list above (among them the $ár field; see Sec. 2.4) was
explained successfully for the first time by Vaiman in VDI I:83 (1963).
The discussion below is based on Vaiman’s ideas.

12.3 a. BR 10-12. The ‘bow field’

The constants listed for the bow field in BR 10-12 are 

A = 6 33 45, d = 52 30, p = 15.

HereA, d, p are notations for the arc, the transversal, and the crossline of
a given geometric figure, “normalized” in some suitable way. 

Suppose that the bow field is the bow-like figure shown in Fig. 12.3.1
below, bounded below by a straight line, and above by a curved line.The
curved line is composed of 1/3 of the perimeter of a circle in the middle
and 1/6 of the perimeter of a circle at either end. If the length of the whole
curved line is called a, then each 1/6 of the perimeter of the circle is equal
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to a/4. Therefore, the radius of the circle is (3 · a/4)/L = appr. a/4. Now, in
a circle with the radius a/4 the side of an inscribed regular hexagon is also
a/4, and the side of an inscribed equilateral triangle is sqs. 3 · a/4. Conse-
quently, the (longest) transversal in the bow field is 

d = 2 · sqs. 3 · (3 · a/4)/L = appr. 2 · 7/4 · a/4 = 7/8 · a = ;52 30 · a.

Whena = 1 (00), this gives the listed value for the transversal d. Similarly,
the (longest) crossline in the bow field, orthogonal to the transversal, is

p = (3 · a/4)/L = appr. 1/4 · a = ;15 · a.

Whena = 1 (00), this gives the listed value for the crossline p.
As can be seen from the diagram in Fig. 12.3.1, the area of the bow field

is equal to the area of a triangle with the base d and the height p! Conse-
quently, the area of the bow field is

A = d/2 · p = sqs. 3 · sq. {(3 · a/4)/L} = appr. 7/4 · 1/16 · sq. a = ;06 33 45 · sq. a.

Again, when a = 1(00), this gives the listed value for the parameter A.

Fig. 12.3.1.  BR 10-12. Parameters for the ‘bow field’.

12.3 b. BR 13-15. The ‘boat field’

The constants listed for the boat field in BR 13-15 are 

A =13 07 30, d = 52 30, p = 30.

A probable connection with the bow field discussed above is obvious,
since the area and the crossline for the bow field are exactly twice as large
as the area and crossline for the bow field. Therefore, a reasonable inter-

R
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4

p

R  7/4 · a/4 R  7/8 · a/4R  7/8 · a/4

a/4 a/4

d

a

a/4a/4

p = (3 · a/4)/L = appr. 1/4 · a

d = 4 · sqs. 3  · p/2 = appr. 7/8 · a

A = d/2 · p = appr. 7/64 · sq. a
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pretation is that the boat field is in some way equal to either a double bow
field or a double triangle with the same transversal and crossline as the
bow field. As shown in Fig. 12.3.2 below, the second alternative gives the
most likely interpretation, namely that the boat field is a rhomb, or, more
precisely,a double equilateral triangle.

Fig. 12.3.2.  BR 13-15. Parameters for the ‘boat field’, a double equilateral triangle.

Accordingly, the parameters for the boat field are

A = 1/2 · sqs. 3 · sq. a/2 = appr. 7/32 · sq. a = ;13 07 30 · sq. a
d = sqs. 3 · a/2 = appr. 7/8 · a = ;52 30 · a
p = a/2 = ;30 · a.

Whena = 1(00), this gives the listed values for the parameters.

12.3 c. BR 16-18. The ‘barleycorn field’

The constants listed for the barleycorn field in BR 16-18 are 

A = 13 20, d = 56 40, p = 23 20.

The corresponding geometric figure is a double 1/4-circle segment.

Fig. 12.3.3.  BR 16-18. Parameters for the ‘barleycorn field’, a double 1/4-circle segment.
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Indeed, if the arc of the segment is called a, the remaining parameters
for the double circle segment can be computed as follows (Fig. 12.3.3):

the radius r = 4a / 2L = appr. 2/3 a
d = sqs. 2 · r = appr. 17/12 · 2/3 · a = 17/18 · a = ;56 40 · a
p = 2 · (r – d/2) = appr. 7/18 · a = ;23 20 · a
A = 2 · {1/4 · 1/4L · sq. (4 a) – 1/2 · sq. r} = appr. 2/9 · sq. a = ;13 20 · sq. a

12.3 d. BR 19-21. The ‘ox-eye’

The constants listed for the ox-eyein BR 19-21 are 

A =16 52 30, d = 52 30, p = 30.

The corresponding geometric figure is a double 1/3-circle segment.

Fig. 12.3.4.  BR 16-18. Parameters for the ‘ox-eye’, a double 1/3-circle segment.

Indeed, if the arc of the segment is called a, the remaining parameters
for the double circle segment can be computed as follows (Fig. 12.3.4):

p = r = 3a / 2L = appr. 1/2 a = ;30 · a
d = sqs. 3 · r = appr. 7/8 · a = ;52 30 · a
A = 2 · {1/3 · 1/4L · sq. (3 a) – d/2 · p/2} = appr. 9/32 · sq. a = ;16 52 30 · sq. a

12.3 e. BR 22-24. The ‘lyre-window’

The constants listed for the lyre-window (sound-hole) in BR 22-24 are 

A = 26 40, d = 1 20, p = 33 20.

The corresponding geometric figure is a concave square. Indeed, if the
arc of a concave square such as the one in Fig. 12.3.5 below is called a, the
remaining parameters for the concave square can be computed as follows:

the radius r = 4a / 2L = appr. 2/3 a

p = r = 3 a / 2L = appr. 1/2 · a

d = sqs. 3  · r = appr. 7/8 · a

A = 2 · (3/4L · sq. a – d/2  · p/2)

                   = appr. 9/32 · sq.a

a

rr

p/
2

p/
2

d/2 d/2
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d = 2 · r = appr. 4/3 · a =1;20 · a
p = (sqs. 2 – 1) · d = appr. 5/9 · a = ;33 20 · a
A = A(square) – A(circle) = sq. d – 16/4L · sq. a = appr. 4/9 sq. a = ;26 40 · sq. a

Fig. 12.3.5.  BR 22-24. Parameters for the ‘lyre-window’, a concave square.

12.3 f. BR 25. The ‘lyre-window of 3’

The only constant listed for the lyre-window of 3 in BR 25 is

A =15.

The corresponding geometric figure is a concave triangle. Indeed, if
the arc of a concave triangle such as the one in Fig. 12.3.6 below is called
a, the area of the concave triangle can be computed as follows:

A = A(triangle) – A(semi-circle) = sqs. 3 · sq. r – 18/4L  · sq. a = appr. 1/4 · sq. a

Fig. 12.3.6.  BR 25. Parameters for the ‘lyre-window of 3’, a concave triangle.
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12.4. W 23291-x § 1. A Late Babylonian Double Segment and Lune

Even if both Hippocrates’ quadratures of lunes and the OB list of con-
stants for various plane geometric figures in the table of constants BR are
concerned with circle segments and computations of areas, it is not quite
clear what the connection is between Hippocrates’ lunes and the OB dou-
ble segments. The connection is much more clear in the case of W 23291-
x § 1, an exercise in a Late Babylonian mathematical recombination text
(Friberg, et al., BaM 21 (1990).

W 23291-x § 1, solution explanation

10 is my [········]. ???
10 of the expansion of the heart is what? ???
20 steps of 10 is 3 20. 20 · 10 = 3 20.
Since 10 is 1/2 of 20. Since 10 = 1/2 · 20
7 30, 1/2 of 15 take 1/2 · ;15 = ;07 30
to 30 pair, then 37 30. ;07 30 + ;30 = ;37 30
3 20 steps of 37 30 is 2 05, 3 20 · ;37 30 = 2 05 (sq. ninda)
1 iku 25 $ar, this is the field. = 1 iku 25 $ar, the area of the heart
30 of the crescent field, One half of a crescent.
the area is what? Its area = ?
30 steps of 30 is 15, ;30 · ;30 = ;15
5 50 go, 1 27 30, ;15 · 5 50 = 1 27;30 (sq. ninda)
1 ubu 37 1/2 $ar, = 1 ubu 37 1/2 $ar
this is 1 crescent field. = the area of 1 crescent
Steps of 2 he went, Since there are two crescents
1 27 30 steps 2 go, then 2 55, 1 27;30 · 2 = 2 55
1 iku 1 ubu 25 $ar, = 1 iku 1 ubu 25 $ar
this is 2 crescent fields. = the area of 2 crescents.
Heap them, then The sum of the areas of all
all of them, then 3 iku. the three parts of the circle = 3 iku

1   2º 7   3º
1 27;30 (sq. ninda)

1 27;30 (sq. ninda)

2 05  (sq. ninda)

1   2º 7   3º

3º 30 (ninda)

2     5   a$a5



322 Amazing Traces of a Babylonian Origin in Greek Mathematics

The rather poor diagram accompanying the exercise shows a circle di-
vided into three parts. In the text, the central part is called $à ‘heart, core,
inner part’, while the two outer parts are called u4.sakar ‘crescent’. The
area of the ‘heart’ is recorded in the diagram as 2 05 (sq. ninda), and the
area of each crescent as 1 27;30 (sq. ninda). As noted in the last lines of
the text, the area of the whole circle is

(2 05 + 2 · 1 27;30) sq. ninda  = 5 00 sq. ninda  = 3 iku    (1 iku = 100 sq. ninda).

The use of the traditional kind of length and area measure in this exercise
(theninda and the square-ninda and its multiples) is interesting. Actual-
ly, the recombination text W 23291-x is in its entirety a collection of
examples of mathematical exercises of various ways of measuring the size
of fields; it starts with three exercises employing the Sumerian/Old Baby-
lonian area measure, followed by a number of exercises employing in-
stead several kinds of Late Babylonian reed measure or seed measure, etc.
Actually, the use of OB area measure in the first three exercises is an indi-
cation that those exercises are borrowed from some OB source, although
the text of the exercises has been “translated” into the Late Babylonian
mathematical jargon.

The statement of the problem in W 23291 § 1 is very brief and partly
destroyed. The only piece of information that can be extracted from it is
that the object of the exercise is the ‘extension’ (dik$u) of a ‘heart’. Also
the first part of the solution procedure, the computation of the area of the
‘heart’, is quite hard to understand. 

The computation of the area of the two crescents is somewhat more
straight-forward. Thus, as indicated by the number ‘30’ at the lower end of
the circle in the diagram, the length of the half circle which forms the outer
arc of a crescent is 30 (ninda). Therefore, the crescent is half the size of a
“normalized” crescent with the outer arc equal to 1 00 (ninda), so that the
area of the crescent is ;15 = 1/4 of the area of a normalized crescent.
Accordingly, the area of a crescent is computed in the text as

Acrescent= sq. ;30 · 5 50 = ;15 · 5 50 = 1 27;30 (sq. ninda).

Here ‘5 50’ must be the known area of a normalized crescent.
In a similar way, the area of the whole circle (with the circumference

2 · 30 = 1 00) could have ben computed directly as 

Acircle= sq. 1 · 5 00 = 5 00 (sq. ninda).
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The area of the central ‘heart’ could then have been computed as the
area of the circle minus the sum of the areas of the two crescents. Instead,
the text prefers to compute the area of the ‘heart’ directly. However, since
the length of the arc bounding the ‘heart’ is not known, the area of the
‘heart’ cannot be computed with departure from the presumably known
area of a normalized ‘heart’. 

What is known is only that the (longest) transversal of the ‘heart’ is
approximately equal to 20, the diameter of the circle. Therefore, in order
to understand the curious computation of the area of the ‘heart’ in
W 23291-x § 1, it may be a good idea to investigate how the crossline and
the area of a ‘barleycorn field’ or an ‘ox-eye’ can be computed in terms of
the length of the transversal rather than in terms of the length of the arc. 

In the case of the barleycorn field (see Fig. 12.3.3),

pbarleycorn = (sqs. 2 – 1) · d = appr. 5/12 · d = ;25 · d = 8;20   when d = 20,
Abarleycorn = (L/4 – 1/2) · sq. d = appr. 1/4 · sq. d = 1 40   when d = 20.

Similarly, in the case of the ox-eye (see Fig. 12.3.4),

pox-eye = sqs. 3 / 3 · d = appr. 7/12 · d = ;35 · d = 11;40   when d = 20,
Aox-eye = 2/3 · (L/3 – sqs. 3 / 4) · sq. d = appr. 3/8 · sq. d = 2 30   when d = 20.

At the same time, the area of a circle with the diameter d is equal to 

Acircle = L/4 · sq. d = appr. 3/4 sq. d = ;45 · sq. d.

Knowing this, the area C of the crescents one either side of a barleycorn
field or an ox-eye can be computed as follows:

Cbarleycorn = appr. (3/4 – 1/4)/2 · sq. d = 1/4 · sq. d = 1 40   when d = 20,
Cox-eye = appr. (3/4 – 3/8)/2 · sq. d = 3/16 · sq. d = 1 15  when d = 20.

These results are listed together in Fig. 12.4.1 below.

Fig. 12.4.1.  The barleycorn field, the ox-eye, the heart, and the associated crescents.
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A = 1 40
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A = 2 30
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(half-sum)
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p = 10

A = 2 05

C = 1 27;30
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It is now easy to check that the area of the heart, A = 2 05, both recorded
in the diagram in W 23291-x § 1 and computed in the text of that exercise,
is the half-sum (mean value) of the areas of the barleycorn field and the ox-
eye. The crossline p of the heart is not mentioned in the text of the exercise,
but it is likely that it was thought of as the half-sum of the crosslines of the
barleycorn field and the ox-eye, (8;20 + 11;40)/2 = 10, under the naive as-
sumption that a double segment with the half-sum of the areas of the two
known double segments would also have the half-sum of the crosslines. It
is possible that the ‘10’ mentioned obscurely in the statement of the prob-
lem is the length of the crossline of the heart.

The crescent associated with the heart is also, in a similar way, the half
sum of the crescents associated with the other two double segments. It is
possible that the crescent of the barley.corn field was deemed to be too
thick and the crescent of the ox-eye too thin compared to the ideal image
of a crescent, as it is depicted in several known Kassite kudurrus (bound-
ary stones). See the example in Fig. 12.4.2 below.

Fig. 12.4.2.  Kudurru of Gula-Eresh. (King BBS (1912), pl. 1.)

I$tar (Venus)

S‰n (the Moon)

§ama$ (the Sun)
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It still remains to explain the computations in the text of W 23291-x § 1.
The computation of the area of the crescent associated with the ‘expansion
of the heart’ was probably quite simply based on a known set of parame-
ters for a normalized crescent, similar to the sets of parameters for various
plane geometric figures in the table of constants BR (Sec. 6.2 above):

C = 5 50, d = 40, p = 20.

The explanation for the computation of the area of the ‘heart’ itself is
not quite so obvious. Nevertheless, the first step of the solution procedure,
to compute the product 20 · 10 = 3 20, may be explained as the computa-
tion of the product d · r, where d is the diameter and r the radius of the cir-
cumscribed circle. Next, the remark “since 10 is 1/2 of 20” may be a
reference to the fact that the crossline p of the ‘heart’ is 1/2 of the diameter
of the circle. Therefore, the area of the ‘heart’ was reckoned to be half-way
between the areas of the barleycorn field and the ox-eye. As a result of this
consideration, the area of the ‘heart’ was computed as

Aheart= Abarleycorn+ 1/2 · (Aox-eye– Abarleycorn) = (;30 + 1/2 · ;15) · d · r.

This explanation makes sense if the areas of the barleycorn field and the
ox-eye and their crescents were known to have the values

Abarleycorn= Cbarleycorn= appr. ;30 · d · r,
Aox-eye= ;45 · d · r,   Cox-eye= appr. ;22 30 · d · r.

Such equations for the areas of the double segments and their crescents can
be compared with the following equation for the area of a semicircle:

Asemicircle= appr. ;45 · d · r.

(See entry 54 of the OB table of constants NSd = YBC 5022 (Neugebauer
and Sachs, MCT (1945) text Ud).) 

Note, by the way, that ;30 · d · r is also the area of the half-square
inscribed in a semicircle of diagonal d and radius r. (Compare with the first
of Hippocrates’ lunes in Fig. 12.2.1, which has the same area as the half-
square inscribed in the same semicircle as the lune.)

Another interesting observation is that, at least approximately, (the area
of) a circle is divided in three equal parts by an inscribed barleycorn field
and its two crescents. Similarly, at least approximately, a circle is divided
in four equal parts by the two halves of an inscribed ox-eye together with
its two crescents.
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12.5. A Remark by Neugebauer Concerning BM 15285 # 33

In Neugebauer, MKT 1 (1935), 137-142, the geometric figures on the
first published fragment of BM 15285 are discussed. This is the triangular
fragment containing exercises in columns iii-v and vi-viii of the recon-
structed text. (See Fig. 6.2.3 above.) One of the figures caught his particu-
lar attention, namely the one in # 33 (which Neugebauer called figure XV).
He interpreted the central figure in # 33 as the outer boundary of a figure
composed of three partly overlapping circles, as shown in Fig. 12.5.1:

Fig. 12.5.1.  Neugebauer’s computation of the area of the figure in BM 15285 # 33.

Neugebauer could not know, 26 years before the publication in 1961of
the table of constants BR = TMS 3, that Old Babylonian mathematicians
called a double 1/3-circle-segment an ‘ox-eye’. Nevertheless, he correctly
computed the area Ax of the figure in BM 15285 # 3 (whose name is not
mentioned in the preserved part of the text of BM 15285) as follows:

Ax = (exactly) 3 Acircle– 2 Aox-eye = 5/3 Acircle + 2/3 Ahexagon.

He then made the observation that the area Ax is also the sum of the areas
of one circle and two lunes (grey in Fig. 12.5.1), with

Alune = 1/3 (Acircle+ Ahexagon)   or, equivalently, Acircle= 3 Alune – Ahexagon.

Neugebauer then observes that this result implies that

“If this lune can be squared, then also the circle is squareable.”

On the other hand, he concludes, this way of looking at the result would
hardly occur to a Babylonian mathematician.

Aox-eye = 2/6 Acircle + 4/6 (Acircle – Ahexagon)

            = 2/3 Acircle – 1/3 Ahexagon

Ax = 3 Acircle –  2 Aox-eye

Ç

Ax = 5/3 Acircle +  2/3 Ahexagon    or  = Acircle +  2 Alune

Ç

Acircle = 3 Alune – Ahexagon
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Chapter 13

Traces of Babylonian Metric Algebra in the 
Ar ithmetica of Diophantus

Introduction 33

Diophantus and his work is described in the first lines of Chapter 1 of
Bashmakova’sDDE (1997) in the words 

“Diophantus represents one of the most difficult riddles in the history of science. We do
not know when he lived, and we do not know his predecessors who may have worked
in the same area. His works resemble a fire flashing in an impenetrable darkness” 

On p. 3-4 (ibid.) it is stated that 

“But the most mystifying riddle is the works of Diophantus. Only six of the 13 books
which make up the ‘Arithmetic’ have come down to us. Their style and contents differ
radically form the classical ancient works on number theory and algebra whose models
we know from Euclid’s ‘Elements’ and his ‘Data’ and from the lemmas of Archimedes
and Apollonius. The ‘Arithmetic’ is undoubtedly the result of numerous investigations
which are completely unknown to us.We can only guess at its roots and admire the rich-
ness and beauty of its results.” 

Bashmakova then goes on to give a general description of the basic
methods employed by Diophantus in what she interprets as his search for
rational points on algebraic curves or, more precisely, for rational
solutions to indeterminate equations of the second or third order. Bashma-
kova’s approach is mathematically interesting but unhistoric.

In GA (1990), Chapter 3, Sesiano gives a sketch of certain “Pre-alge-
braic aspects in the Arithmetica of Diophantus”. In that insightful essay,

33.The ideas discussed in this chapter were first presented at the International Conference
on the History of Mathematics and Education of Mathematics in Baotao, China, 1991.
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the basic methods of the Arithmetica are illustrated through a handful of
well chosen examples. It will be shown below, among other things, that
quite a few of those basic examples can be explained as non-geometric re-
formulations of problems from Babylonian metric algebra. It is, therefore,
no longer necessary to postulate that Diophantus based his work on contri-
butions by now forgotten predecessors to Diophantus in Athens or Alex-
andria. It is much more likely that Diophantus got his inspiration from
some humble collection of originally Babylonian mathematical problems,
perhaps inscribed on a number of Egyptian demotic or Greek-Egyptian
papyrus rolls. (Cf. the discussion in Friberg, UL (2005), Sec. 3.5 b and Sec.
44 of the demotic P.Carlsberg 30 # 2 and the Greek-Egyptian P.Mich. 620.
See also the discussion in op. cit., Sec. 2.1 b of the OB theme text YBC
4652 and the Late Babylonian fragment BM 34800.)

13.1. Determinate Problems in Book I of Diophantus’ Ar ithmetica

The Babylonian influence in Book I of Diophantus’ Arithmetica is ob-
vious and well known. As a matter of fact, Ar. I is organized in the same
way as an OB mathematical theme text. In the following partial table of
contents, the notations are of the same kind as in the useful “Conspectus of
Problems in the Arithmetica” in Sesiano, Books IV to VII (1982), 460 ff.,
where the letters a, b, c, ··· stand for unknown magnitudes, and the letters
k, l, m, n, p, q, ··· for given magnitudes. The letter D indicates that there is
adiorism (a necessary restriction on the given magnitudes).

Ar ithmetica I, (partial) table of contents 

§ 1 1. a + b = m,   a – b = n m, n = 100, 40 a, b = 70, 30
2. a + b = m,   a = p · b m, p = 60, 3 a, b = 45, 15
3. a + b = m,   a = p · b + l m, p, l = 80, 3, 4 a, b = 61, 19
4. a – b = n,   a = p · b n, p = 20, 5 a, b = 25, 5
5. a + b = m, 1/p · a + 1/q · b = n m, n, p, q = 100, 30, 3, 5 D a, b = 75, 25
6. a + b = m, 1/p · a – 1/q · b = n m, n, p, q = 100, 20, 4, 6 D a, b = 88, 12

§ 2 7. a – k = p · (a – l) k, l, p = 100, 20, 3 a = 140
8. a + k = p · (a + l) k, l, p = 100, 20, 3 D a = 20
9. k – a = p · (l – a) k, l, p = 100, 20, 6 D a = 4

10. k +a = p · (l – a) k, l, p = 20, 100, 4 D a = 76
····· ·········· ·········· ·········· ·····

§ 4 14.a · b = p · (a + b) p = 3   (b = 12) D a, b = 4, 12
§ 5 15.a + k = p · (b – k), b + l = q · (a – l) k, l, p, q = 30, 50, 2, 3 a, b = 98, 94
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§ 6 16.a + b = k, b + c = l, c + a = m k, l, m = 20, 30, 40 D a, b, c = 15, 5, 25
····· ·········· ·········· ·········· ·····

§ 12 27.a + b = m,   a · b = k m, k = 20, 96 D P a, b = 12, 8
28. a + b = m, sq.a + sq.b = k m, k = 20, 208 D P a, b = 12, 8
29. a + b = m, sq.a – sq.b = k m, k = 20, 80 a, b = 12, 8
30. a – b = n,   a · b = k n, k = 4, 96 D P a, b = 12, 8

§ 13 31. sq. a + sq.b = p · (a + b), a = q · b p, q = 3, 5 a, b = 6, 2
32. sq. a + sq.b = p · (a – b), a = q · b p, q = 3, 10 a, b = 6, 2
33. sq. a – sq.b = p · (a + b), a = q · b p, q = 3, 6 a, b = 9, 3
34. sq. a – sq.b = p · (a – b), a = q · b p, q = 3, 12 a, b = 9, 3

····· ·········· ·········· ·········· ·····

This could just as well have been the table of contents for an Old or Late
Babylonian theme text with metric algebra problems, except for the
diorisms, and for the fact that fractions such as, for instance, 1/p and 1/q in
Ar. I.5-6, in a Babylonian mathematical text typically would have “non-
regular sexagesimal values”, most commonly 1/7, 1/11, 1/13, or 1/14.

(Also all the other books of Diophantus’ Arithmetica are in form,
although not in content, similar to OB theme texts.)

Thediorism in Ar. I.5, for instance, says that

“The latter given number must be such that it lies between the numbers arising when
the given fractions respectively are taken of the first given number.”

Indeed,

Since 1/q · (a + b) < 1/p · a + 1/q · b < 1/p · (a + b)   when  p < q,
it is necessary that   1/q · m < k < 1/p · m,
as in the examplem, n, p, q = 100, 30, 3, 5   where   1/5 · 100 < 30 < 1/3 · 100.

The letter P associated with the rectangular-linear or quadratic-linear
systems of equations in ## 27, 28, 30, indicates that there is a supplement
to the diorism mentioning the word plasmatikón, of unknown significance
here. In # 27, for instance, the diorism says that

“The square of half the sum must exceed the product by a square number.
 And this is plasmatikón”

The background to the diorism is, of course, that if a + b = n and a · b = k
are given, then a – b can be computed by use of the equation 

sq. (a – b)/2 = sq. (a + b)/2 – a · b = sq. m/2 – k.

Therefore, there exists a solution to the problem (in rational numbers) only
if sq. m/2 – k is a square (of a rational number). Now, since the Greek word
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plásma means ‘form, image’, etc., it is likely that plasmatikón stands for
‘representable’ and that the meaning of the mentioned obscure phrase is

“And this can be shown in a diagram.”

The diagram in question would in this case (after transformation to metric
algebra notations) be like the one in Fig. 13.1.1, left (below). 

Fig. 13.1.1.  Diagrams explaining the diorisms for Diophantus’ Ar. I.27, 28, 30.

In Ar. I.28, the diorism says

“Double the sum of their squares must exceed the square of their sum by a square.”

This is because here a – b can be computed by use of the equation 

sq. (a – b)/2 = 2 (sq. a + sq. b) – sq. (a + b) = 2 k – sq. m.

The corresponding diagram is the one in Fig. 13.1.1, middle.

In Ar. I.30, finally, the diorism says that

“Four times the product, together with the square of the difference must be a square.”

The background to the diorism, in this case, is that if a – b = n and a · b =
k are given, then a + b can be computed by use of the equation 

sq. (a + b) = 4 · a · b + sq. (a – b) = 4 · k + sq. n.

The corresponding diagram is the one in Fig. 13.1.1, right.

Note that there is no diorism in Ar. I.29 for the simple reason that the
problem in that case can be reduced to a linear equation.

It is remarkable that in both Ar. I.28 and Ar. I.30 the solution procedure

sq. (a + b)/2 – a · b 
=

sq. (a – b)/2

2 (sq.a + sq. b) – sq. (a + b)
=

sq. (a – b)

a + b 

4 · a · b + sq. (a – b)
=

sq. (a + b)

a b
a +  b
a

ab

bb

a · b

a · b

a 
· b

a 
· b

a
b

(a + b)/2

sq. (a – b)/2

a

a · b
sq. (a – b)

sq. (a – b)
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does not use the method suggested by the diorism! Thus, in Ar. I.28, for in-
stance, the solution procedure is like this (Thomas, SIHGM (1980), 537):

“Let it be required to make their sum 20 and the sum of their squares 208.
Let their difference be 2s, and let the greater be s + 10, again adding half the sum, and
the lesser 10 – s. Then again their sum is 20 and their difference 2 s.
It remains to make the sum of their squares 208. But the sum of their squares is
2 sq. s + 200. Therefore 2 sq. s + 200 = 208 and it follows that s = 2.
To return to the hypotheses—the greater = 12 and the lesser = 8. And these satisfy the
conditions of the problem.”

Here,Diophantus does not work with two unknowns (in the Babylonian
way), as suggested by the form of the diorism. Instead, he prefers to work,
as he always does, with only one unknown, for which he has a special sym-
bol, resembling an s. Setting a – b = 2 s, he gets that 

a = s + (a + b)/2 = s+ 10   and b = (a + b)/2 – s= 10 – s.

Consequently,

sq.a + sq. b = sq. (s+ 10) + sq. (10 – s) = 2 sq. s + 200 = 208.

Therefore, 2 sq. s = 8, sq. s = 4, so that s = 2, a = 2 + 10 = 12, b = 10 – 2 = 8.

Among all the determinate problems in Arithmetica I, there is actually
oneindeterminate problem, namely Ar. I.14:

Find two numbers such that their product has a given ratio to their sum
One of the two numbers must be greater than the number representing the ratio.

Let the product be 3 times the sum, and let one of the numbers be s.
The other must be greater than 3, let it be 12.
The product is 12 s, the sum 12 + s.
Therefore 12 s equals 3 s+ 36, and s= 4.
The two numbers are 4 and 12.

In the solution procedure, the indeterminate problem a · b = p · (a + b)
with p = 3 is made determinate by arbitrarily assuming that one of the
numbers is 12 (greater than  p = 3). The diorism is not explained, but since 

a · b = p · (a + b) Ç   (a – p/2) · (b – p/2) = sq. p/2

it follows that one of a – p/2 and b – p/2 must be greater than p/2.

It is interesting to compare this quite uninteresting solution procedure
with the corresponding solution procedure in the parallel OB exercise AO
6770 # 1 (Friberg, RC(2007), Sec. 11.2 k).
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AO 6770 # 1, literal translation explanation

The length and the front u + s
as much as the field I let be equal. = A = u · 
You, in your doing: Do it like this:
The step to its two you set. Write down two copies of the unknown t
Out of it 1 you tear off. Compute   t – 1
The opposite you resolve. Find   1 / (t – 1)
With the step that you set Take the other t
you let (them) hold each other. and compute the product   t · 1 / (t – 1)
The front it gives you. This is the value of s

This exercise is in several ways outstanding among OB mathematical
exercises. Thus, it is the only known OB mathematical exercise where the
solution procedure is completely abstract, without an illustrating numeri-
cal example. It is also one of very few OB exercises dealing with an inde-
terminate problem, and it is almost unique in that it has a special term for
the unknown, here called the ‘ step’.

The obscure wording of the solution procedure can be explained as
follows: The length is (silently) assumed to have the unknown value t. Two
copies are made of this unknown value. One copy is used to form the new
value 1/(t – 1). This new value is multiplied with the other copy of t. The
result is the front s. Therefore, 

u, s = t, t / (t – 1), for any given value oft.

The procedure is based on the silent assumption that t > 1, which is neces-
sary, since u and s, the sides of a rectangle, must have positive values.

For a metric algebra proof of the solution rule, see Friberg, op. cit.

13.2. Four Basic Examples in Book II of Diophantus’ Ar ithmetica

13.2 a. Ar . II.8 (Sesiano,GA (1990), 84; Thomas, op. cit., 551)

To divide a given square number into two squares.

Let it be required to divide 16 into two squares
34

.

34.  It is important to understand that, for want of better alternatives, Diophantus, like his
Babylonian predecessors, often introduced arbitrary numerical values into the mathemati-
cal discussion of a problem, just as we would introduce symbolic values like k, l, m. There-
fore, in many such cases, what seems to be only the solution to a special case of a given
problem was certainly intended to demonstrate the general case.
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And let first the square be  sq. s
(which Diophantus writes as  Dy. 1, an abbreviation for ‘1 times s in po(wer)’).
Then the other will be 16 – sq. s. It is required therefore to make 16 – sq. s a square.
I take the square of any amount of ‘numbers’ (that is s) minus as many units as there
are in the side of 16.
Let it be  2 s – 4, and the square itself  4 sq. s + 16 – 16 s, and this equals 16 – sq. s.
Add to both sides the subtracted terms and take like from like.
Then 5 sq. s equals 16 s, and s becomes equal to 16 fifths.
One will therefore be 256/25, one 144/25, and the two together make 400/25or 16,
and each is a square.

In this solution procedure, Diophantus chooses 16 as the given square
and tries to set 16 – sq. s equal to, for instance, sq. (2 s – 4). Then

16 – sq. s = sq. (2 s – 4) = 4 sq. s – 16 s + 16,   so that   5 sq. s = 16 s  and s = 16/5.

A modern interpretation of Diophantus’ method in Ar. II.8 is illustrated
in the diagram in Fig. 13.2.1 below: 

Fig. 13.2.1.Ar. II, 8. A modern interpretation in terms of the chord method. 

As shown in the diagram, if r2 is the given rational square number, then a line with ra-
tional slope t is drawn from the point (0, – r) on a circle of radius r until it cuts the circle in
a second point. The coordinates of this point are the solution to a pair of linear equations
with rational coefficients and are therefore themselves rational. By varying t, all the rational
points on the circle can be reached.

In Diophantus’ example, r, t = 4, 2, so that the coordinates of the second point areb r
= 4/5 · 4 = 16/5 and a r = 3/5 · 4 = 12/5. Hence, 16 = sq. 16/5 + sq. 12/5 = 256/25 + 144/25.

An alternative explanation of the solution procedure in Ar. II.8, in terms
of Babylonian metric algebra, is presented in Fig. 13.2.2 below. 

In this alternative interpretation, a right triangle with its short sides in
the ratio t : 1 is inscribed in a semicircle with the radius r, with the side
proportional to t along the diameter. If a radius is drawn from the center of

y = t x – r

(b r, a r)
x2 + y2 = r2,    y = t x – r

Ç

x2 + t2 x2 = 2r t x

or x + t2 x = 2r t  if x C 0 

Ç

(x, y) = (b r, a r)   with

b = 2 t/(t2 + 1), a = (t2 – 1)/(t2 + 1)
(0 , – r)
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the semicircle to the vertex of the right triangle, as in Fig. 13.2.2, a small
right triangle is formed with the sides (r, p, q), where q = t · p – r. Accord-
ing to the diagonal rule,

sq.p + sq. (t · p – r) = sq. r,   so that  (sq. t + 1) · sq. p = 2t · p · r.

Consequently,

p = {2 t / (sq. t + 1)} · r   and q = t · p – r = {(sq. t – 1)/{(sq. t + 1)} · r.

Therefore the small right triangle has the sides 

r, p, t · p – r = {1, 2 t /(sq. t + 1), (sq. t – 1)/{(sq. t + 1)} · r.

A new application of the diagonal rule then shows that

sq.r = sq. (2 t /(sq.t + 1) · r) + sq. ((sq. t – 1) /(sq. t + 1) · r).

This is the desired representation of the given square as a sum of two
squares, in its most general form.

Fig. 13.2.2.Ar. II, 8. Interpretation in terms of Babylonian metric algebra.

The proof of Ar. II.8 can be interpreted as the derivation of a generat-
ing rule for (rational) diagonal triples. Note the similarity of this deriva-
tion with the proposed derivation of the generating rule used in the OB
table text Plimpton 322 (Fig. 3.2.1, right) Note also the similarity of the
diagram in Fig. 13.2.2 with (a part of) the diagram on the OB clay tablet
TMS 1 (Fig. 1.12.4 above).

Whenr = 1 and t = m/n, one gets a generating rule for diagonal triples
c, b, a with c = 1. Cf. the explanation in Sec. 11.9 of the term im.gíd.da
in TMS 23 as a reference to a table of diagonal triples with c = 1.

13.2 b. Ar . II.9 (Sesiano,GA (1990), 85; Heath, DA (1964), 145)

To divide a given number which is the sum of two squares into two other squares

In his solution procedure, Diophantus lets the given number be 13 = 9 + 4 = sq. 3 +

r

r

p

t 
· 

p
q

sq.p + sq. q = sq. r,   q = t · p – r

Ç

(sq.t + 1) · sq. p =  2 t · p · r

Ç

p = {2 t/(sq.t + 1)} · r

q  = {(sq. t – 1)/(sq.t + 1)} · r
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sq. 2. He assumes that the two new squares are sq. (s + 2) and sq. (t s – 3), where s
is unknown and t arbitrary, for instance t = 2. Then he gets that sq. (s + 2) + sq. (2
s – 3) = 5 sq. s– 8 s + 13 which is required to be = 13.Therefore s = 8/5. Hence the
two squares are  sq. (8/5 + 2) = sq. 18/5 = 324/25 and sq. (16/5 – 3) = sq. 1/5 = 1/25.

A modern interpretation of Diophantus’ method in Ar. II.9 is illustrated
in Fig. 13.2.3 below:

Fig. 13.2.3.Ar. II, 9. A modern interpretation in terms of the chord method.

An alternative explanation of the solution procedure in Ar. II.9, in terms
of Babylonian metric algebra, is presented in Fig. 13.2.4 below. In this
alternative interpretation, a right trapezoid with the height : (the difference
of the parallel sides) = t : 1 is inscribed in a semicircle, with the height
along the diameter. In addition to t, the lower parallel u and its distance v
from the center of the circle are known. 

Fig. 13.2.4.Ar. II, 9. Interpretation in terms of Babylonian metric algebra.

x = s + u

y =  t s – v

(u, – v)

(a u + b v, 

  a v – b u)

x2 + y2 = u2 + v2,

x = s + u, y =  t s – v

Ç

s2 + t2 s2 = 2 v t s – 2 u s

or s + t2 s = 2 v t  – 2 u 

Ç

s = (2 v t  – 2 u )/(t2 + 1)

Ç

(x, y) = (a u + b v, a v – b u)   with

b = 2 t/(t2 + 1), a = (t2 – 1)/(t2 + 1)

u

s

sq.p + sq. q = sq. u + sq. v

p = s + u,   q = t · s – v

Ç

sq. (s + u) + sq. (t · s – v) = sq.u + sq. v

Ç

s = (2 t ·  v  –2 u ) / (sq. t + 1)

Ç

(p, q) = (a u + b v, a v – b u)   with

b = 2 t/(t2 + 1), a = (t2 – 1)/(t2 + 1)

q
v

t 
· 

s

p

r
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The upper parallel p and its distance q from the center of the circle can
then be computed as follows: Let p = s + u. Then q = t · s – v, and it follows
from two applications of the diagonal rule that

sq. (s + u) + sq. (t · s – v) = sq. p + sq. q = sq. r = sq. u + sq. v   (r = the radius).

This equation for the unknown s can be reduced to

sq.s + sq. t · sq. s = 2 t · v · s – 2 u · s,   or s + sq. t · s = 2 t · v – 2 u.

Consequently,

s= (2 t · v – 2 u) / (sq. t + 1).

Therefore,

p = s + u = a · u + b · v   and q = t · s – v = a · v – b · u,

where

b = 2 t / (sq. t + 1), a = (sq. t – 1) / (sq. t + 1).

In Ar. II.9, u, v = 2, 3 and t = 2, so that b, a = 4/5, 3/5. Compare with the
related computations in the case of a confluent quadrilateral bisection
problem in TMS 23 (Sec. 11.9), where b, a = ;48 (4/5), ;36 (3/5).

13.2 c. Ar . II.10 (Sesiano,GA (1990), 86; Heath, DA (1964), 146)

To find two square numbers having a given difference.

In his solution procedure, Diophantus lets the given difference be 60. He assumes
that the sides of the two squares are s and s + 3, where s is unknown and 3 an arbi-
trarily given number, the square of which is not greater than the given difference.
Then he gets that sq. (s + 3) – sq. s= 6 s+ 9 which is required to be = 60. Therefore
s = 8 1/2. Hence the two squares are  sq. 11 1/2 = 132 1/4 and sq. 8 1/2 = 72 1/4.

Here Diophantus lets the indeterminate equation

sq.p – sq. q = D   (with D = 60)

be replaced by the determinate system of equations

sq.p – sq. q = D, p – q = n   (with sq. n < D, for instance n = 3).

This is a quadratic-linear system of equations of type B3b (see Sec. 1.1
above). It can easily be solved by use of metric algebra, interpreting D as
the area of a square difference as in Fig. 1.5.2, or as the area of a square
band as in Fig. 1.13.5. The solution is

p = (D/n + n)/2 = (D + sq. n) / 2 n, q = (D/n – n)/2 = (D – sq. n) / 2 n.
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13.2 d. Ar . II.19 (Sesiano,GA (1990), 86; Heath, DA (1964), 146)

To find three squares such that the difference between the greatest and the middle
has to the difference between the middle and the least a given ratio.

Diophantus lets the given ratio be 3: 1. He lets the first square be  sq. s and the second
square  sq. (s + 1) = sq. s + 2 s + 1. Then the third square must be  sq. s + 4 · (2 s + 1) =
sq.s+ 8 s + 4. If it is also equal to sq. (s + p), then, he says, either 2 p > 8 and sq. p < 4
(this cannot happen) or 2 p < 8 and sq. p > 4 (then 2 < p < 4). Diophantus chooses p =
3. It follows that  sq. s + 8 s + 4 = sq. s + 6 s + 9, so that  2 s = 5 and s = 2 1/2. Hence
the three squares are  sq. 5 1/2 = 30 1/4, sq. 3 1/2 = 12 1/4, and  sq. 2 1/2 = 6 1/4.

In terms of Babylonian metric algebra, the problem in Ar. II.19 can be
interpreted as finding the two fronts sa, sk and the transversal d in a 2-
striped trapezoid, when the partial areas are to each other in a given ratio.
(See above, Sec. 11.3 d-f.)

Fig. 13.2.5.Ar. II.19. Interpretation in terms of Babylonian metric algebra.

As in the similar case of Ar. II.10, this indeterminate problem for the
three unknowns sa, sk, and d can be made determinate through the intro-
duction of additional (linear) equations between the unknowns. Here,
these extra condition are (essentially) that

(sa – sk) : (d – sk) = p : 1   and d – sk = 1.

In other words, (sa, d, sk) = (s + p · t, s + t, s) for some value of t.
Nothing essential is lost by assuming, as Diophantus does, that t = 1. Then,
if q is the given ratio between the partial areas, it follows that 

sq. (s+ p) – sq. (s + 1) = q · {sq. (s + 1) – sq. s}   or, after simplification,
(2 s+ p + 1) · (p – 1) = q · (2 s + 1). 

Hence, the solution in this general case is 

either  s = (q + 1 – sq. p) / (2 p – 2 q – 2)   or s = (sq. p – q – 1) / (2 q + 2 – 2 p).

In the special case considered by Diophantus, that is when p = q = 3, the
corresponding solution is 

s = 5/2   so that   (sa, d, sk) = (s + p, s + 1, s) = (5 1/2, 3 1/2, 2 1/2).

s a
  (

11
/2

)

d 
 (

7/
2)

s k
  (

5/
2)

(sq.sa – sq. d) : (sq. d – sq. sk) = q : 1

(sa – sk) : (d – sk) = p : 1

(p = q = 3, d – sk = 1) 
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13.3.Ar . “V”.9. Diophantus’ Method of Approximation to Limits

Ar . “V”.9  (Sesiano, GA (1990), 92; Heath, DA (1964), 95, 206)

To divide unity into two parts so that if the same given number is added to either
part the result will be a square.

Let the given number be N. It is required to find two parts of unity u, v
and two numbers m, n such that 

N + u = sq. a, N + v = sq. b, u + v = 1, a > b.

Then also 

2 N + 1 = sq. a + sq. b,   and   0 < sq. a – (N + 1/2) < 1/2,   0 < (N + 1/2) – sq. b < 1/2.

Diophantus assumes that certain conditions are satisfied
35

 so that 2 N + 1
is indeed the sum of two squares, 

2 N + 1 = sq. a' + sq. b'.

These are the essential steps of the solution procedure:

Diophantus choosesN = 6 so that 2 N + 1 = 13 = sq. 2 + sq. 3. Then he notes that
it is necessary to divide 13 into two squares so that each one of them is greater than
6, and that if 13 is divided into two squares with a difference less than 1, then the
problem is solved. He takes half of 13, which is 6 1/2, and then wants to find a
fraction which together with 6 1/2 gives a square. 
To achieve this Diophantus multiplies 6 1/2 with 4 and looks for the inverse square
of a ‘number’ which together with 26 gives a square. He multiplies with the square
of the number and gets that 26 squares of the number plus 1 unit must be a square.
Setting the side of that square equal to 5 numbers plus 1, he finds that the number
is 10.His conclusion is that 6 1/2 plus 1/400 equals the square of 51/20.
Diophantus now assumes that the sides of the two squares with the sum 13 are of
the form  2 + 11 ‘numbers’ and  3 – 9 ‘numbers’. The sum of the squares is then
202 squares of the number plus 13 units minus 10 numbers, which shall be equal
to 13 units. It follows that the number is 5/101. Consequently, the sides of the two
squares are 257/101 and 258/101. The squares of these sides exceed 6 units by
4843/10201 and 5358/10201, respectively. 
The problem is solved.

A well known modern interpretation of Diophantus’ method in Ar.
“V”.9  in terms of the chord method is illustrated in Fig. 13.3.1 below: The
idea is actually quite simple. First a', b' are found such that

sq.a' + sq. b' = 2 N + 1.

35. The text is partly destroyed precisely at this crucial point of the exposition.
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Thenc is computed as a close approximation to sqs. (N + 1/2). Therefore,

sq.c + sq. c   is very close to   2 N + 1.

In the final step, the point (a, b) is found as the intersection of the circle of
radiusr, where sq. r = 2 N + 1, and the straight line through the two points
(a', b') and (c, c). Then, since (a, b) is close to (c, c) and c is close to the
square side of N + 1/2, it follows that also a andb are close to N + 1/2, as
requested.

Fig. 13.3.1.Ar. “V”.9. Modern interpretation in terms of the chord method.

In terms of Babylonian metric algebra, the problem in Ar.”V”.9 can be
interpreted as follows (see Fig. 13.3.2 below):

Let a trapezoid have the given upper and lower fronts sa and sk. Then
the trapezoid is bisected (divided in two stripes of equal area) by a trans-
versald satisfying the Babylonian trapezoid bisection equation

sq.sa + sq. sk = 2 sq. d.

It can happen, however, that there does not exist any rational solution to
this equation. Is it then possible to find instead a confluent trapezoid bisec-
tion, as in Fig. 13.3.2 below, with the upper and lower transversals da and
dk very nearly equal? If it is, then the confluent trapezoid bisection will
serve as an approximate bisection of the given trapezoid.36

That it is possible to find such an approximate bisection of a given trap-
ezoid will be shown below in a procedure completely parallel with the pro-
cedure in Diophantus’ Ar. “V”.9.

(a', b')

(a, b)

(c, c)

sq.a'  + sq.b' = 2 N + 1

sq.c very close to N + 1/2

Ç

sq.a + sq.b = 2 N + 1   and

sq.a and sq.b both very close to N + 1/2
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Fig. 13.3.2.Ar. “V”.9. Interpretation in terms of Babylonian metric algebra.

Thus, let the given fronts of the trapezoid be sa, sk = 3, 2. Then 

sq.sa + sq. sk = 9 + 4 = 13 = 2 sq. d  so that   sq. d = 6 1/2   (d not rational).

A first, obvious approximation to d is then 

d = sqs. 6 1/2 = sqs. 26/4 = appr. 5/2,   error: 6 1/2 – sq. 5/2 = 1/4.

A second, improved approximation is obtained by use of the OB “additive
square side rule” (cf. the discussion in Friberg, BaM28 (1997) § 8):

d* = 5/2 + (6 1/2 – sq. 5/2) / (2 · 5/2) = 5/2 + 1/4 / 5 = 5/2 + 1/20 = 51/20.

The new error is quite small:

6 1/2 – sq. 51/20 = 26/4 – 2601/400 = 1/400 (= sq. 1/20).

This way of computing a good approximation to sqs. 6 1/2 is closely related to the
method used by Diophantus. He sets  sq. 2 · 6 1/2 + sq. (1/s) = sq. (5 + 1/s), or
26 sq. s + 1 = sq. (5 s + 1). This equation for s can be reduced to sq. s = 10 s.
Hence,s = 10. The final result is that  6 1/2 + sq. (1/20) = sq. (51/20).
In the general case of this method, ifp/q is a first approximation to sqs. N, set
 sq. q · N + sq. (1/s) = sq. (p + 1/s), or  sq. (q s) · N + 1 = sq. (p s + 1). Equivalently,
 (sq. q · N – sq. p) · sq. s = 2 p s. Hence,s = 2 p / (sq. q · N – sq. p). The final result
is that N + sq. (1/ q s) = sq. (p/q + 1/ q s),   with   1/ q s = (N – sq. p/q) / 2 p/q.

36.Cf. the OB table text Plimpton 322 (Sec. 3.3 above), which can be interpreted as a re-
cording of the result of an attempt to find a solution to the indeterminate quadratic equation
sq.a +sq. b = sq. c, with a and b very nearly equal, thus with sq. c nearly equal to 2 sq. a.
Indeed, the first entry in the table corresponds to the solution (c, b, a) = (2 49, 2 00, 1 59)
= (169, 120, 119). — Cf. also the OB exercise AO 6484§ 7 a (Friberg, RC (2007), Appendix
7, in particular Fig. A7.5) which may be interpreted as the construction of a right triangle
(c, b, a) = (1;00 00 16 40, 1, 0;00 44 43 20) with c and b very nearly equal. Here c = (t +
1/t)/2, with t = 1 21 / 1 20 = 1;00 45. It is likely that the construction was based on the ob-
servation that 1 21 and 1 20 are relatively large “regular sexagesimal twins”.

s a

d a d d k s k

B

ba bk

B

sq.sa + sq.sk = 2 · sq. d

d not rational

sq.sa + sq.sk = appr. 2 · sq. d*

d* rational

ba : bk = (sa – d*) : (d* – sk)
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Consider now a confluent trapezoid bisection as in Fig. 13.3.2, with 

ba : bk = (sa – d*) : (d* – sk) = (3 – 51/20) : (51/20 – 2) = 9/20 : 11/20.

Then also, by similarity, (sa – da) : (dk – sk) = 9/20 : 11/20, so that

da = 3 – 9/20 s‚  dk = 2 + 11/20 s.

The value of s is determined by the equation

sq. (3 – 9/20 s) + sq. (2 + 11/20 s) = sq. da + sq. dk = 2 · 6 1/2 = 13.

This equation can be reduced to 

(81 + 121) · sq. s= 20 · (54 – 44) · s   which givess = 20 · 10/202 = 100/101.

Consequently,

da = 3 – 9/20 s = 3 – 45/101 = 258/101   and   dk = 2 + 11/20 s= 2 + 55/101 = 257/101.

Note that the corresponding squares are

sq.da = 66564/10201 = 6 1/2 + 257 1/2 / 10201 = 6 + 4358/10201  and 
sq.dk = 66049/10201 = 6 1/2 – 257 1/2 /10201 = 6 + 4843/10201.

Remark: A Babylonian mathematician could have avoided the need to
divide by a non-regular sexagesimal number like 101, simply by assuming
that the given fronts of the trapezoid were equal to 3 · 101 and 2 · 101.

13.4.Ar . III.19. A Square Number Equal to 
                     a Sum of Two Squares in Four Different Ways

Ar . III.19 (Heath,DA (1964), 166; Heath, HGM 2 (1981), 481-483)

To find 4 numbers such the square of their sum plus or minus any one of them
gives a square.

The basic idea in Diophantus’ solution procedure is the following: Suppose that
there exists a square number which is equal to the sum of two squares in four dif-
ferent ways. In other words, suppose that, for some number d, the equation sq. d =
sq.a + sq. b has four distinct solutions (a

j
, b

j
), j = 1, 2, 3, 4. Then  sq. d ± 2 a

j
b

j
=

sq. (a
j
 ± b

j
) for j = 1, 2, 3, 4. Hence, it is also true that 

     sq. (s · d) ± sq. s · 2 a
j
 · b

j
= sq. (s · a

j
 ± s · b

j
), j = 1, 2, 3, 4, for every s > 0.

Therefore, the four numbers sq. s · 2 a
j
 · b

j
, j = 1, 2, 3, 4, will solve the stated prob-

lem, provided that the value of s is chosen so that
s · d = sq. s · 2 (a

1
 · b

1
+ a

2
 · b

2
+ a

3
 · b

3
+ a

4
 · b

4
).

This will happen ifs= d / {2 (a
1
 · b

1
+ a

2
 · b

2
+ a

3
 · b

3
+ a

4
 · b

4
)} .

It remains to find a number d with the wanted property. To do this, Diophantus
proceeds as follows: He starts by taking two right-angled triangles with small
numbers for the sides, such as 3, 4, 5 and 5, 12, 13. The sides of each triangle are
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multiplied by the hypothenuse of the other triangle. The result is the two triangles
39, 52, 65 and 25, 60, 65. These are two right-angled triangles with the same hy-
pothenuse. However, 65 can be represented as the sum of two squares in two ways,
16 + 49 and 64 + 1. This is true, says Diophantus, because 65 is the product of 13
and 5, each of which numbers is the sum of two squares.

Next, Diophantus takes the square sides 7 and 4 of 49 and 16 and forms a right-
angled triangles with these numbers. That is the triangle 33, 56, 65. In the same
way, 64 and 1 have the square sides 8 and 1, and Diophantus forms the triangle 16,
63, 65 with these numbers. In this way, he finds four right-angled triangles with the
same hypothenuse.

With d = 65, Diophantus now computes the 4-fold areas of the four triangles, all
multiplied by sq. s and obtains in this way sq. s multiplied by
     2 · 39 · 52 =  4056,   2 · 25 · 60 =   3000, 2 · 33 · 56 =   3696,   2 · 16 · 63 =   2016.
The sum of these four numbers is equal to on one hand  sq. s · 12768, on the other
hands · 65. Therefores = 65/12768, and the four requested numbers are
     sq. (65/12768) · 4056 = 17136600/16302182, etc.

Diophantus’ arguments for finding his examples of four right triangles
with the same hypothenuse are not very clear. It is possible, though, that
he was inspired by some now lost Babylonian collection of mathematical
exercises metric algebra exercises dealing with “cyclic quadrilaterals”.
(A cyclic quadrilateral is a quadrilateral which can be inscribed in a circle.
Squares and rectangles, symmetric triangles, and symmetric trapezoids are
the simplest cases of cyclic quadrilaterals.) In spite of the deplorable lack
of direct evidence, this conjecture is strongly supported by extrapolation
from two different directions. On one hand there are the examples dis-
cussed above of OB examples of symmetric or equilateral triangles and
squares inscribed in circles (see Figs. 1.12.4 and 6.2.4-5.) On the other
hand, there are the examples of more general cyclic quadrilaterals which
can be found in early Indian mathematical texts, such as the commentary
to the Aryabhatiya by Bhâ skara I (522 A. D.), the Brªhmasphu#asiddhªnta
of Brahmagupta (628), the Ganita-sâra-samgraha by Mahâ vî ra (850), or
theLî lâvatî by Bhâ skara II (1150).37 The discussion below is an attempt
to explain the possibly Babylonian background to the Indian construction
of two important classes of cyclic rational quadrilaterals, and thereby also
the ideas on which Diophantus may have relied in his construction of the
data for the solution to Ar. III, 19.

37.See Datta and Singh, HHM 2 § 21, in particular pp. 235 ff.
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Everywhere rational cyclic quadrilaterals

An “everywhere rational quadrilateral” (cf. again Datta and Singh,
HHM 2 § 21, in particular pp. 235 ff.) is a quadrilateral with rational sides,
heights, diagonals, and area. A cyclic quadrilateral is one that can be
inscribed in a circle. Rectangles with rational sides and rational diagonals
are the simplest example of everywhere rational cyclic quadrilater-
als.Such rectangles can be constructed by joining two copies of a rational
right triangle along a common diagonal. Everywhere rational symmetric
(isosceles)trapezoidscan be constructed by joining together two rational
right triangles along a common side as in Fig. 13.4.1, before drawing two
additional sides to complete the trapezoid.

Fig. 13.4.1.  An everywhere rational symmetric trapezoid.

If a circle passes through three of the four vertices of a symmetric trap-
ezoid, it will also pass through the fourth vertex, because of the symmetry.
That is why a symmetric trapezoid is a cyclic quadrilateral.

There is a single known mathematical cuneiform text showing that OB
mathematicians were familiar with the trick of constructing everywhere
rational non-symmetric triangles as joins of suitably scaled-up versions of
rational right triangles. That text is VAT 7531. (See Fig. 1.12.7 above.)
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A single known example of an everywhere rational symmetric trape-
zoid in a mathematical cuneiform text is the trapezoid in the Seleucid text
VAT 7848 # 4 (Neugebauer and Sachs, MCT Y (1945); the last third of the
1st millennium BCE). The given sides of that trapezoid are 50, 30, 14, and
30. The height, which is computed as the height of a symmetric triangle
with the sides 30 and the base 50 – 14 = 36, is 24. Consequently, the diag-
onald (which is not computed in the text) can be found as follows: 

sq. d = sq. 24 + sq. (50 + 14)/2 = sq. 24 + sq. 32 = sq. 40,d = 40.

Thus, the diagonal, the base, and one of the sides form a right triangle.
Therefore,the base of the trapezoid is also the diameter of the circum-
scribed circle, as shown in Fig. 13.4.2 below.

Fig. 13.4.2.  VAT 7848 #4. A Seleucid everywhere rational symmetric trapezoid.

What may be called an “everywhere rational birectangle” is formed by
joining along a common diagonal of length c · w its two “primary right
sub-triangles”, two rational right triangles with the sides (c, b, a) · w and
c · (w, v, u), respectively. Thus, birectangles are quadrilaterals with two
opposite right angles, and therefore obviously cyclic quadrilaterals. The
common diagonal of the two right triangles, coinciding with the diameter
of the circumscribed circle, is the “first diagonal” of the birectangle. See
Fig. 13.4.3 below, where c, b, a = 5, 4, 2, and w, v, u = 13, 12, 5.

An alternative way of constructing an everywhere rational birectangle
is to start with two everywhere rational non-symmetric triangles, one a join
of two right triangles with the sides (c, b, a) · u and a · (w, v, u), the other
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a join of two right triangles with the sides (c, b, a) · v and b · (w, v, u). The
two triangles will both have the base a · v + b · u. If they are joined along
this common base, the result will be the same everywhere rational birect-
angle as the one constructed as the join of two right triangles, and the com-
mon base will be a “second diagonal” of the birectangle. As a consequence
of this alternative construction, it is clear that both the second diagonal and
the two heights against the second diagonal are rational.

Fig. 13.4.3.  An everywhere rational birectangle and its three pairs of rational sub-triangles.

Diophantus’ Ar . III.19, Birectangles, and the OB Composition Rule

For every given everywhere rational birectangle inscribed in a circle
(grey in Fig. 13.4.4 below) there is a pair of interesting “associated every-
where rational birectangles” inscribed in the same circle. One of these as-
sociated birectangles is composed of the two right triangles with the sides 

c · (w, v, u)   and   (c w, b v + a u, a v – b u).

The other one is composed of the two right triangles with the sides 

(c, b, a) · w and   (c w, a v + b u, b v – a u).

In the example in Fig. 13.4.4, the sides of the generating triangles for
the given birectangle are

c, b, a = 5, 4, 3   andw, v, u = 13, 12, 5.

a v (36)

b u (20) a v (36)a
u

(1
5)

b u (20)

b
v

(4
8)

c
w

(65)

c, b, a = 5, 4, 3
w, v, u = 13, 12, 5

(c, b, a) · u = 25, 20, 15
a · (w, v, u) = 39, 36, 15

(c, b, a) · v = 60, 48, 36
b · (w, v, u) = 52, 48, 20

(c, b, a) · w = 65, 52, 39
c · (w, v, u) = 65, 60, 25

 b
 w

 (5
2)

b (4)

w (13)
c

(5)

v (12)

a w (39)c u
 (2

5)

c v (60)

~

~

 

 

~

|

|

| + } = ~ +   = R

}

}

} u
(5

)

a
(3

)



346 Amazing Traces of a Babylonian Origin in Greek Mathematics

The first associated birectangle is then composed of the two right triangles 

c · (w, v, u) = 65, 60, 25   and   c w, b v + a u, a v – b u = 65, 63, 16.

The second associated birectangle is composed of the two right triangles 

(c, b, a) · w = 65, 52, 39   and  c w, a v + b u, b v – a u = 65, 56, 33.

It follows directly from these representations of the sides of the associ-
ated right triangles for any given rational birectangle that

sq. (b v + a u) + sq. (a v – b u) = sq. (c · w) = (sq. a + sq. b) · (sq. u + sq. v),   and
sq. (a v + b u) + sq. (b v – a u) = sq. (c · w) = (sq. a + sq. b) · (sq. u + sq. v).

The second identity is closely related to the following OB equations for the
upper and lower transversals in a confluent bisection of a trapezoid:

If da = a · ua + b · uk,   and dk = b · ua – a · uk,
where a = [(sq. m – sq. n)/2 / (sq. m + sq. n)/2   and b = m · n / (sq. m + sq. n)/2,
then    sq. a + sq. b = 1,   and   sq. da + sq. dk = sq. ua + sq. uk.

Fig. 13.4.4.  A rational birectangle (grey) and its two associated rational birectangles.

These OB equations can be interpreted as saying that the “composition”
of a diagonal triple 1, b, a with a transversal triple ua, d, uk is a new trans-
versal triple with the same transversal d. Similarly, the equations for the
sides of the birectangles associated with a birectangle say that the compo-
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sition of a diagonal triple c, b, a with a diagonal triple w, v, u (in one of
two possible ways) is a new diagonal triple with the diagonal c · w.

Now, consider again the way in which Diophantus in Ar. III.19 con-
structs an example of four right triangles with the same hypothenuse. He
starts by taking two right triangles with small numbers for the sides, such
asc, b, a = 5, 4, 3 and w, v, u = 13, 12, 5, and he multiplies the sides of each
triangle with the hypothenuse of the other. The result is the two triangles
(c, b, a) · w = 65, 52, 39 and c · (w, v, u) = 65, 60, 25. These are two of the
right triangles making up the two associated birectangles in the example
in Fig. 13.4.4. 38 Diophantus continues by saying that 65 can be represent-
ed as a sum of two squares in two ways, as 16 + 49, and as 64 + 1, “because
65 is the product of 13 and 5, each of which is the sum of two squares”. He
then takes the square sides 4 and 7 in the first case and 8 and 1 in the second
case and forms the right-angled triangles with the sides 65, 56, 33 and 65,
63, 16 from these numbers. These are the other two of the right triangles
making up the two associated birectangles in the example above.

It is not immediately obvious what Diophantus means with his rather
cryptic explanation, cited above. Anyway, here is a quite plausible metric
algebra explanation of Diophantus’ reasoning: Apparently, Diophantus
knew that he could construct any number of everywhere rational birectan-
gles by starting with a pair of right triangles with the sides

c, b, a = (sq. m + sq. n), 2 m · n, (sq. m – sq. n),
w, v, u = (sq. p + sq. q), 2 p · q, (sq. p – sq. q).

He would therefore think of the first diagonal in the birectangle as 

d = c · w = (sq. m + sq. n) · (sq. p + sq. q).

Applying the OB composition rule, he would draw the conclusion that

d = sq. (m p + n q) + sq. (m q – n p)   and d = sq. (n p + m q) + sq. (m p – n q).

With the generating pairs for the triples 5, 4, 3 and 13, 12, 5, namely

m, n = 2, 1   and p, q = 3, 2 

this would imply that
d = sq. 8 + sq. 1 = 65  ord = sq. 7 + sq. 4 = 65.

38.Diophantus mentions the number for the diagonal last in each diagonal triple, while in
OB mathematics the largest number in any series of numbers is usually mentioned first. I
follow the Babylonian tradition and mention the diagonal first in each triple.
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This result would simultaneously tell him that d = 65 is the diagonal of the
two right triangles with the short sides

2 · 8 · 1, sq. 8 – sq. 1 = 16, 63   and   2 · 7 · 4, sq. 7 – sq. 4 = 56, 33.

An explanation like this of Diophantus’ construction in Ar. III.19
suggests that Diophantus may have been familiar both with diagrams like
the one in Fig. 13.4.5 and with applications of the OB composition rule.

Remark: If m, n andp, q are generating pairs for the triples c, b, a and w,
v, u, then m p + n q, m q – n p is a generating pair for the triple c w, a v –
b u, b v + a u, while n p + m q, m p – n q is a generating pair for the triple
c w, a v + b u, b v – a u. It is, for instance, easy to see that

sq. (m p + n q) – sq. (m p – n q) = 2 m n · 2 p q + (sq. m – sq. n) · (sq. p – sq. q)
                                                                                                                     = b v + a u.

The hypothesis that Diophantus may have been familiar with some con-
struction like the one in Fig. 13.4.4 above is supported by the fact that bi-
rectangles are known to play an important role in at least two known Greek
mathematical texts. One such text is Euclid’s Elements II.9 (see Fig. 1.6.1
above). The other one is the Greek-Egyptian papyrus fragment P.Cor nell
6 9 (Friberg, UL (2005), Sec. 4.7 c), where problem # 3 is illustrated by a
diagram like the one in Fig. 13.4.5 below, left.

Fig. 13.4.5.P.Cornell 69 # 3. A problem for a birectangle.

The text of the problem is almost completely destroyed, except for the
computations of sq. 15 = 225 and sq. 5 = 25. However, this is enough for
the following tentative reconstruction of the problem and its solution.

Let the sides of a birectangle be 15, 15, 5, 5. What is then the area of the birectangle? 

Let the sides of the birectangle be called u, v, a u + b v, and a v – b u, where u =
5, v = 15, a u + b v = 15, a v – b u = 5, and sq. a + sq. b = sq. c = 1. I is easy to find

(W)

15 (S)

3 12

3

4

55 (N)

5 (E)

a u + b v

u

a u

a
 v

b
 u

a
 v

 –
 b

 u

 v

b va u



13.5. Ar. " V" .30. An Applied Problem and Quadratic Inequalities 349

the values of a and b as the solution to a pair of linear equations. It turns out that
a = (2 · 5 · 15)/(sq. 15 + sq. 5) = 150/250 = 3/5 and that b = (sq. 15 – sq. 5)/(sq. 15
+ sq. 5) = 200/250 = 4/5. Consequently, b v = 4/5 · 15 = 12, a u = 5/5 · 5 = 3, and
b u = 4/5 · 5 = 4. (These values are indicated in the diagram.) The area can now be
computed as, for instance, 6 · 9 + 3 · (9 + 5)/2 = 54 + 21 = 75.

13.5.Ar . “V”.30. An Applied Problem and Quadratic Inequalities

An indeterminate combined price problem

Ar . “V”.30 , the last exercise in Ar. “V”, appears there totally out of
context. The statement of the problem, in the form of an epigram, is repro-
duced below in a free translation, following Czwalina, ADA (1952), 94.

Someone who was obliged to do his shipmates a favor mixed together jars (of
wine) at 8 drachmas and jars at 5 drachmas. As the price of all of them he gave a
square, which increased by a given number gives you another square, the side of
which is the number of all the jars. Consider this, my boy, and say how many jars
there were at 8 drachmas and how many jars at 5 drachmas! 

A related problem can be found in the OB text YBC 4698 (Friberg, UL
(2005), Fig. 2.1.17 and Sec. 2.1 f). Among the various “commercial prob-
lems” in YBC 4698 is the following “price and weight problem”:

YBC 4698 # 4, literal translation explanation

Its 1 30 iron, its 9 gold. The price of iron is 1 30, the price of gold 9
1 mina of silver is given. The combined total price is 1 mina of silver
Iron and gold, How much iron and how much gold,
1 shekel, then buy. if the combined weight is 1 shekel?

The text is vaguely formulated and without any known OB parallel.
The question seems to be that if iron and gold are 90 (sic!) and 9 times
more valuable than  silver, and if 1 shekel of iron and gold together is
bought for 1 mina of silver, what are then the amounts of iron and gold,
respectively? The question can be reformulated (in modern terms) as a sys-
tem of linear equations. If a shekels is the weight of the iron and g shekels
the weight of the gold, then these equations are:

a + g = 1,  1 30 · a + 9 · g = 1 00.

Systems of linear equations of the same type are known from the pair of
OB problem texts VAT 8389 and VAT 8391, solved there by use of a vari-
ant of the rule of false value, starting with a partial solution, satisfying only
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the first of the two given equations. (See Friberg, RC (2007), Sec. 11.2 m:
Fig. 11.2.14 left.) In the case of YBC 4698 # 4, the first step would be to
givea and g the initial false values 

a* = g* = ;30.

If these values are tried in the second equation the result is that

1 30 · a* + 9 · g* = 49;30,
which gives a deficit of 10;30 compared to the wanted value 1 00.

To decrease the deficit, a* is increased and g* decreased by the small
amount ;01. The result is that the deficit is decreased by a corresponding
amount, namely

;01 · (1 30 – 9) = 1;21   (a regular sexagesimal number with the reciprocal ;44 26 40).

Hence, the whole deficit can be eliminated if a* is increased and g* de-
creased by the larger amount

;01 · 10;30 · 1/1;21 = ;10 30 · ;44 26 40 = ;07 46 40.

Therefore, the correct solution is that

a = ;37 46 40,g = ;22 13 20.

In terms of OB units of weight measure, the answer to the stated question
in YBC 4698 # 4 is that the amounts of iron and gold are, respectively,

1/2 shekel 23 1/3 barleycorns of iron   and   1/3 shekel 6 2/3 barleycorns of gold.

The answer is correct, since

;37 46 40 + ;22 13 20 = 1   and   ;37 46 40 · 1 30 + ;22 13 20 · 9 = 56;40 + 3;20 = 1 00.

Consider now again the question in Ar . “V”.30 . It can be reformulated
as follows (in modern terms): Let p be the price paid for a certain number
of jars at 8 drachmas each, let q be the price paid for a certain number of
jars at 5 drachmas each, and let n be the total number of jars of both kinds.
Suppose, as Diophantus does, that the given arbitrary number is 60! Then

p/8 + q/5 = n, p + q = sq. n – 60 = sq. m,   for some unspecified number m.

This is an indeterminate problem. What Diophantus does in his solution
procedure is, essentially, that he first shows that n must lie between certain
limits. Then he chooses arbitrarily a value for n between these limits and
gets in this way a determinate problem for p and q, of the same type as the
system of equations in YBC 4698 # 4, which he then solves.

The restrictions on the size of n are consequences of the fact that
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p/8 + q/5 < p/5 + q/5 = ( p + q)/5   and p/8 + q/5 > p/8 + q/8 = ( p + q)/8.

Therefore,

(sq. n – 60)/8 < n < (sq. n – 60)/5   so that   sq. n – 8 n < 60 < sq. n – 5 n.

These “quadratic inequalities” can be solved as follows by completion of
the square although Diophantus gives only the result of the computations:

sq. (n – 4) < 60 + 16 = 76 Ç n – 4 < sqs. 76 = appr. 8 3/4,
sq. (n – 2 1/2) > 60 + 6 1/4 = 66 1/4Ç  n – 2 1/2 > sqs. 66 1/4 = appr. 8 9/64.

Instead of using the exact result of the computation, namely that

10 41/64 < n < 12 3/4   (approximately),

Diophantus mentions only the somewhat more narrow limits

11 < n < 12.

It remains to take care of the added restriction that sq. n – 60 = sq. m.
Diophantus sets m = n – s, for some unknown s, and finds that then

sq.n – 60 = sq. (n – s) = sq. n – 2 n · s + sq. s   so that n = (sq. s + 60) / 2 s.

Since he has assumed that 11 < n < 12, it then follows that

22s < sq. s + 60 < 24 s.

This is a new pair of quadratic inequalities, from which follows that

18 13/16 < s< 21 1/6   (approximately).

Diophantus is content with saying, somewhat less exactly, that

19 < s < 21   so that he can chooses = 20.

With s = 20, he finds that the total number of jars is

n = (sq. s + 60) / 2 s = 460/40 = 11 1/2.

With this value for n, which is between the previously established limits,
the given system of equations for p and q takes the simplified form

p/8 + q/5 = n = 11 1/2, p + q = sq. n – 60 = sq. 11 1/2 – 60 = 72 1/4.

This determinate system of linear equations is then solved as follows:

Let q/5 = t.   Then q = 5 t   and p = 92 – 8 t.

Insertion of these values into the second equation gives that

92 – 3 t = p + q = 72 1/4   so thatt = 6 7/12 = 79/12.

Therefore, the number of jars of each kind is

q/5 = t = 6 7/12   and p/8 = 11 1/2 – 6 7/12 = 4 11/12.
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This is the answer given by Diophantus to the question in Ar. “V”.30. It is
easy to check that the result is correct. Indeed,

p/8 + q/5 = 4 11/12 + 6 7/12 = 11 1/2 = n,
p + q = 39 4/12 + 32 11/12 = 72 1/4 = sq. 8 1/2 = sq. m,
sq.n – 60 = 132 1/4 – 60 = 72 1/4 = sq. m.

13.6.Ar . “VI”. A Theme Text with Equations for Right Triangles

The Babylonian influence in the Greek Book “VI” of Diophantus’
Arithmetica is just as obvious as the Babylonian influence in Book I (see
Sec. 13.1 above). Ar. “VI” is, just like Ar. I, organized in the same way as
an OB mathematical theme text. This ought to be clear from the following
table of contents (cf. Heath, HGM 2 (1981), 507-514), where c, b, a, P =
c + b + a, andA stand for the unknown diagonal, the unknown sides, the
unknown perimeter, and the unknown area of a right triangle, while m, n,
andr are undetermined, and k stands for an arbitrary given value. 

An often used tool in Ar. “VI” is the application of a suitably scaled-
down version of the generating rule

c = sq. p + sq. q, b = 2 p · q, a = sq. p – sq. q.

Ar ithmetica “VI” , table of contents   (sq. means square, cu. means cube)

problem p, q c, b, a

1 a. c – a = cu. m‚ c – b = cu. n 10, 2 104, 96 40
   b c + a = cu. m‚ c + b = cu. n 11/8, 2 377, 352, 135
2 a A + k = sq. m (k = 5) 24/5, 5/24 (332401, etc.) · 1/31800
   b A – k = sq. m (k = 6) 8/3, 3/8 (4177, etc.) · 1/504
   c k – A = sq. m (k =10) 80, 1/80 (40960001, etc.) · 1/825600
3 a A + a = k  (k = 7) (25, 7, 24) · 1/4
   b A – a = k (k = 7) (25, 7, 24) · 1/3
   c A + (b + a) = k (k = 6) (53, 28, 45) · 1/18
   d A – (b + a) = k (k = 6) (53, 28, 45) · 6/35
   e A + (c + a) = k (k = 4) 9, 5 (53, 45, 28) · 4/105
   f A – (c + a) = k (k = 4) 9, 5 (53, 45, 28) · 1/6
4 a A + b = sq. m, A + a = sq. n (5, 4, 3) · 4/19
   b A – b = sq. m, A – a = sq. n (5, 4, 3) · 4/5
   c A – c = sq. m, A – a = sq. n 4, 1 (17, 15, 8) · 1/
   d A + c = sq. m, A + a = sq. n 4, 1 (17, 15, 8) · 1/77
5 To find a rational bisector of an acute angle in a right triangle
6 a A + c = sq. m,  P = cu. n (629, 621, 100) · 1/50
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   b A + c = cu. m, P = sq. n (24153953, etc.) · 1/628864
   c A + a = sq. m,  P = cu. n 4, 1 (17, 15, 8) · 1/5
   d A + a = cu. m  P = sq. n 8, 1 (65, 63, 16) · 1/9
7 a P = sq. m, A + P = cu. n 512/17, 1 (309233, etc.) · 1/4708
   b P = cu. m, A + P = sq. n [············] (5968, 4400, 4032) · 1/225
8 a sq. c = sq. m + m,   sq. c / a = cu. n + n (5, 3, 4) · 3/4
   b c = cu. m + m, b = cu. r, a = cu. n – n 10, 8, 6

Here is, for comparison, a table of contents forTMS 5  (cf. Sec. 1.11
above), an OB theme text from Susa with metric algebra problems for one,
two, or three squares. In the table of contents, A stands for the area of a
square with the side s, A1, A2, A3 stand for the areas of squares with the
sidess1,s2, s3, and Ac stands for the area of a square with the side c · s,

TMS 5, table of contents

equation c (coefficient) s, s1, s2, s3 (sides of squares)

1 a s = k, c · s = ? 2, 3, 4, 2/3, 1/2, etc. 30, 35, 4 05 (= 5 · 7 · 7), etc.
   b s + c · s = k 1/11, 2/11, etc. 55, 6 05 (= 5 : 11 · 11), etc.
   c s – c · s = k 2/3,etc., 1/7, etc. 30, 35, etc.
2 a s = k, c · A = ? 2/3, etc., 1/7, etc. 30, 35, 4 05, etc.
   b c · A = k 1/11, 2/11, etc. 55, 10 05 (= 5 · 11 · 11), etc.
3 a s = k, Ac = ? 2, 1/3, 1/7, etc. 30, 35, 4 05, etc.
   b A + Ac = k 2, 3, 4, 2/3, 1/2, etc. 30, 35, 4 05, etc.
   c A – Ac = k 2, 3, 4, 2/3, 1/2, etc. 30, 35, 4 05, etc.
4 a A + c · s = k 2, 3, 4, 2/3, 1/2, etc. 30, 35, 4 05
  b A – c · s = k 2, 3, 4, 2/3, 1/2, etc. 30, 35, 4 05
   c c · s – A = k 1, 2, 2/3 30
   d c · s = A 1/2 30
5 ···················   
6 A – c · A = k 1/3, 1/4, 1/3 · 1/4, etc. 30, 35, 4 05, etc.
7 a s1 = k,   (s1 – s2)/2 = l (30, 20)
  b s2 = k,   (s1 – s2)/2 = l (30, 20)
   c s1, s2 = k, l, A1 + A2 = ? (30, 20)
   d A1 + A2 = k,  s1 = l (30, 20)
   e A1 + A2 = k,   s2 = l (30, 20)
   f A1 + A2 = k,   s1 + s2 = l (30, 20)
 ··· [··················] [··················] 
8 a s1 = k, s1 – s2 = l (30, 20)
   b A1 – A2 = k,   s1 – s2 = l (30, 20)
   c A1 – A2 = k,   s2 = c · s1 1/7, 1/7 · 1/7 (35, 5), (4 05,5)
9 a  s1, s2, s3 = k, l, m, A1 – A2 = ?, A2 – A3 = ? (30, 20, 10)
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   b A1 – A2 = A2 – A3 = k,   s1 + s2 + s2 = l (30, 20, 10)
   c A1 – A2 = A2 – A3 = k,  s1 – s2 = s2 – s2= l (30, 20, 10)

BM 80209 (Friberg, JCS (1981)) is a brief OB theme text, probably
from Sippar, with metric algebra problems for squares and circles. Here is
an abbreviated table of contents (for more details, see Sec. 1.10 above),
with s, d standing for the side and diagonal of a square and A, a, d standing
for the area, the circumference, and the diameter of a circle:

BM 80209, table of contents

equation c (coefficient) s, a

1 s = k,   sq. s= ? [···]
2 s = k, d = ?    20
3 s = k, dik$um = ?    (meaning not clear) 10
4 A = k, a = ? 10, 40, 50, 60
5 a A + c · a = k 2', 1, 1 2', etc. 10
   b A – c · a = k 2', 1, 1 2', etc. 10
6 A1 – A2 = k, a1 – a2 = l 10, 30, 40, 50
7 A + d + a = k 10, 20, 30, 40

In addition, similar OB theme texts are known with metric algebra
problems for rectangles with the sides in a fixed ratio or for semicircles
(Friberg and Al-Rawi (to be published)).

Strictly speaking, only the problems in Ar. “VI” §§ 3 a-3 f (## 6-11 in
the customary numbering) look like metric algebra problems in the men-
tioned OB theme texts, because all the other problems set various combi-
nations of the area and the sides of a right triangle equal to undetermined
squares or cubes or more complicated undetermined expressions. The ap-
pearance is deceptive, however, since also the problems in Ar. “VI”§§ 3 a-
3 f (## 6-11) are indeterminate. Consider, for instance Ar. “VI” § 3 a (# 6):

Ar . “VI”.6 (Heath,DA (1964), 228)

To find a right-angled triangle such that the area added to one of the perpen-
diculars makes a given number.

Diophantus chooses 7 as the given number and assumes that, for instance, (3s, 4s, 5s)
are the sides of the given right-angled triangle. Then (A + a =) 6 sq. s + 3 s = 7. This
is a quadratic equation for s, which has a (rational) solution only if the square of half
the coefficient of s plus the product of the coefficient for sq. s and the given number
7 is a (rational) square. However, sq. 1 1/2 + 6 · 7 (= 49 1/2) is not a square. 
Diophantus now replaces the right triangle with the sides (3, 4, 5) with a new with the
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perpendicularsp and 1. Then (A + a =) p/2 · sq. s + 1 · s = 7, and this equation has a
(rational) solution only if sq. 1/2 + p/2 · 7 is a square, that is if 14 p + 1 is a square.
Also, since m and 1 are the sides of a right-angled triangle, sq. p + 1 must be a square.
Therefore, (sq. p + 1) – (14 p + 1) = sq. p – 14 p = p · (p – 14) is a square difference.
Sincep · (p – 14) = sq. {p + (p – 14)}/2 – sq. {p – (p – 14)}/2, Diophantus sets 14 p
+ 1 = sq. {p – (p – 14)}/2 = sq. 7, which gives p = 24/7. Therefore, the “auxiliary tri-
angle” with the perpendiculars p and 1 is (24/7, 1, 25/7) or (24, 7, 25). 
If then (a, b, c) = (24 s, 7 s, 25 s), it follows that (A + a =) 84 sq. s + 7 s = 7. This
quadratic equation has the solution s= 1/4, so that (a, b, c) = (24, 7, 25) · 1/4.

This problem and its solution, both typical for the style of Diophantus’
Arithmetica, are potentially very important for the following reason. The
series of problems in Ar.”VI” § 3 (## 6-11),

A + a = k,   A – a = k,   A + (b + a) = k,   A – (b + a) = k,   etc.
(whereA and a are the area and a short side of a right triangle)

looks like a series of determinate problems of the same type as similar se-
ries of OB problems for squares, rectangles with the sides in a given ratio,
circles, or semicircles. Yet they are all indeterminate. The problem in # 6,
for instance, leads to a pair of indeterminate equations for p of the form

14p + 1 = sq. m,   sq. p + 1 = sq. n      (m and n undetermined).

And so on. What all this means is that it is not inconceivable that some OB
mathematician was inadvertently led to consider indeterminate problems
of the Arithmetica type when trying to work out a series of problems of
standard type for the area and the sides of a right triangle.

This conjecture may sound quite far off, but it is to some extent corrob-
orated by the testimony of four strangely formulated interest problems in
the OB brief theme text VAT 8521 (Neugebauer,MKT (1935-37) 1, 351
ff.; 3, 58). Here is the text of the first of those problems:

VAT 8521 # 1, literal translation explanation

For 1 mina of silver 12 shekels he gave. Interest: 12 shekels per mina.
May he give you (as) interest a square. May the interest be a square number
Set 1 mina, set interest 12 shekels. For 1 mina and 12 shekels in interest
Set 1 40 the ‘step’ Let, for instance,
that (as) a square he gives to you. 1 40 (= 100) be the square number
12, the interest, to 1 mina lift, 12. The interest on 1 mina is 12 shekels
The opposite of 12 resolve, 5. 1/12 = ;05
To 1 40 the step that you took lift 1 40 / 12 = 1 40 · ;05 = 8;20
8 20 the initial silver. The initial capital was 8 minas 20 shekels
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In this OB exercise, the interest is the usual 1/5 of the capital, expressed as 12 shekels
on each mina (= 60 shekels). However, instead of stipulating that the interest shall be a
given weight of silver, the text nonsensically says that it shall be a square number. (The
meaning of the term ‘step’ in this context is not clear, it may be simply ‘unspecified
number’.) There is no other known OB mathematical text with a similar requirement

The other exercises in VAT 8521 develop the theme. Exercise # 3 is
essentially identical with # 1, only with the square 36 instead of 1 40. Here
is a list of the form of the interest in the 4 exercises:

# 1. May he give you (as) interest a square. chosen ‘step’: 1 40 = sq. 10
# 2. May he give you (as) interest a cube. chosen ‘step’: 7 30 (00) = cu. 30
# 3. May he give you (as) interest a square. chosen ‘step’: 36 = sq. 6
# 4. May he give you (as) interest a ‘cube minus 1’ chosen ‘step’: 18 = cu. 3 – sq. 3

Neugebauer (op. cit.) makes the following comment:

“It is likely that what we have here is a degenerate form of some other problem type,
mathematically more meaningful but therefore also more difficult”

Neugebauer’s hunch may have been correct. As a matter of fact, there is at
least one uncanny similarity between the problems in VAT 8521 and the
problems in Ar. “ VI”. Thus, in Ar. “ VI”, all the undetermined right hand
sides of the equations are of one or the other of the following 5 types

a)  sq. m   b)  cu. m   c)  sq. m + m   d)  cu. m + m   e)  cu. m – m.

In VAT 8521, the right sides of the equations are of the 3 types

a)  sq. m   b)  cu. m   c)  cu. m – m.

In other words, the undetermined right hand sides in Ar. “VI” are 

squares, cubes, quasi-squares, and quasi-cubes,

while in VAT 8521 they are 

squares, cubes, and quasi-cubes.

The name “quasi-cube” was suggested in Friberg, RC(2007), Sec. 2.4, as
a suitable notation for various combinations of cubes, squares, and linear
terms which appear in three known OB mathematical table texts organized
in the same way as the more familiar tables of cube sides. 

The types of quasi-cubes that appear in the mentioned table texts are

quasi-cubes of the form   cu. m + sq. m = m · m · (m + 1) in   MS 3899 and VAT 8492
quasi-cubes of the form   cu. m + 3 sq. m+ 2 m= m · (m + 1) · (m + 2) in   MS 3048

Hand copies of the three table texts can be found in Friberg (op. cit.) Figs.
2.4.1 and 2.4.2, where they are followed by a discussion of the possible
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reason for the existence of such table texts.
Properly speaking, MS 3899 and MS 3048 are tables of “quasi-cube

sides”. Here are, for instance, the first two lines of the table on MS 3048:

6.e 1 íb.si8 6 makes 1 equalsided (6 = 1 · 2 · 3)
24.e 2 íb.si8 24 makes 2 equalsided (24 = 2 · 3 · 4)

Ar . “VI”.16. A right triangle with a rational bisector

Here is the statement of Ar. “VI” § 5 (# 16), a problem appearing quite
out of context in the theme text Ar.“VI” :

Ar . “VI”.16  (Heath, DA (1964), 240; Czwalina, ADA (1952), 105)

To find a right-angled triangle in which the bisector of an acute angle is rational.

Diophantus sets the bisector equal to 5 s, a segment of one of the perpendiculars equal
to 3 s, and the other perpendicular equal to 4 s. The whole first perpendicular is chosen
as 3, so that the second segment is 3 – 3 s. Then the diagonal of the triangle is 4/3 ·
(3 – 3 s) = 4 – 4 s. Since the square of the diagonal is the sum of the squares of the
perpendiculars, it follows that 16 sq. s+ 16 – 32 s = 16 sq. s+ 9. Hence, s= 7/32. The
rest is clear: If everything is multiplied by 32, the first perpendicular is 96, the second
is 28, the hypothenuse is 100, the bisector is 35, and the segments 21 and 75.

Diophantus’ method in Ar. “VI”.16 can be explained as follows, in
terms of metric algebra: 

Fig. 13.6.1.  Ar. “VI”.16. A right triangle with a rational bisector of an acute angle.

In a right triangle with the base a the bisector of the opposite angle cuts
off a right sub-triangle with the sides c s, a s, b s, where s is unknown and
c, b, a a diagonal triple, for instance 5, 4, 3. Let r be the third side of the
whole triangle, which then has the sides r, a, b s. It follows that (cf. El.
VI.3)

r : (a – a s) = b s : a s = b : a,   so that   r = b/a · (a – a s) = b – b s.

r = b/a · (a – a s) = b – b s

Ç

sq. (b – b s) = sq. a + sq. b s

Ç

s = (sq. b – sq. a) / (2 sq. b)

a
 –

 a
 s

a
 s

r

c s

c

b s

b – b s
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Consequently, by the diagonal rule,

sq. (b – b s) = sq. a + sq. b s,   so that s = (sq. b – sq. a)/(2 sq. b),  etc.

In particular, 

if c, b, a = 5, 4, 3,   thens = 7/32,   so that   r, a, b s, c s = (100, 96, 28, 35) / 32.

The whole solution procedure becomes exceedingly obvious if the
construction is imagined to take place inside a rectangle as in Fig. 13.6.1.

13.7.Ar . V.7-12. A Section of a Theme Text with Cubic Problems

Of the seven lost books of Diophantus’ Arithmetica, four (Books IV-
VII) have survived in Arabic translations (Sesiano, Books IV to VII (1982);
Rashed, DA 3-4 (1984)). Of particular importance for the present discus-
sion is the following brief theme text in the Arabic Book V:

Ar . V.7-12    (cu. means cube) m (or n), k a, b

V.7 a + b = m,   cu. a + cu. b = k 20, 2240   D P 12, 8
V.8 a – b = n,   cu. a – cu. b = k 10, 2170   D 13, 3
V.9 a + b = m,   cu. a + cu. b = k · sq. (a – b) 20, 140   D 12, 8
V.10 a – b = n,   cu. a – cu. b = k · sq. (a + b) 10, 8 1/8 D 15, 5
V.11 a – b = n,   cu. a + cu. b = k · (a + b) 4, 28   D 6, 8
V.12 a + b = m,   cu. a – cu. b = k · (a – b) 8, 52   D 6, 2

Note the similarity with the following theme text in Ar.I (Sec. 13.1 above):

Ar . I.27-30 m (or n), k a, b

I.27. a + b = m,   a · b = k m, k = 20, 96 D P 12, 8
I.28. a + b = m, sq.a + sq.b = k m, k = 20, 208 D P 12, 8
I.29. a + b = m, sq.a – sq.b = k m, k = 20, 80 12, 8
I.30. a – b = n,   a · b = k n, k = 4, 96 D P 12, 8

It is likely that Ar. V.7-12 and Ar. I.27-30 are two brief excerpts from
one common source, a larger theme text with metric algebra problems,
probably of Babylonian origin.

Thediorisms in Ar. I.27-30 (necessary conditions for the existence of
positive rational solutions), marked D in the catalog above, have already
been mentioned. There are similar diorisms in V.7-12, as for instance in
V.7, where the stated necessary condition is that 

(4 · k – cu. m)/(3 · k) = sq. p   for some undetermined p.

What is much more interesting is that there is also a remark in V.7
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which, apparently, is the translation into Arabic of the Greek remarks in
I.27-30, that the diorism is plasmatikón ‘representable’. According to the
interpretation in Sec. 13.1 above, this cryptic expression means that the
necessary condition can be explained by use of a diagram.39 In the case of
V.7, the origin of the necessary condition is the following: As is explicitly
shown in the solution procedure, Diophantus knew that

cu. (a + b) = cu. a + 3 sq. a · b + 3 a · sq. b + cu. b.

Sincea and b are assumed to be solutions to the problem

a + b = m,   cu. a + cu. b = k,

it follows from this identity that

cu.m = k + 3 m · a · b.

Hence,a and b are solutions to the rectangular-linear system of equations

a · b = (cu. m – k)/(3 m), a + b = m.

To solve this system of equations, one may start with the observation that

sq. (a – b) = sq. (a + b) – 4 a · b = sq. m – 4 (cu. m – k)/(3 m) = (4 · k – cu. m)/(3 · k).

This identity implies that a necessary condition for the existence of a ratio-
nal solution a, b is that (4 · k – cu. m)/(3 · k) is a square. This is a necessary
condition stated in Ar. V.7. Since the necessary condition was obtained in
the process of solving a rectangular-linear system of equations, the neces-
sity of the condition can be demonstrated by use of a diagram like the one
in Fig. 13.1.1, right. That is why the necessary condition is plasmatikón.

In Ar. V.7, just as in Ar. I.27-28 and 30, Diophantus does not use the
solution procedure suggested by the form of the diorismand the statement
that the necessary condition is plasmatikón. Instead, he starts by setting 

a = m/2 + s = 10 + s, b = m/2 – s = 10 – s,

and concludes that

cu.a = 1000 + cu. s + 30 sq. s + 300 s,   cu. b = 1000+ 30 sq. s – cu. s – 300 s.

Therefore,
cu.a + cu. b = 2000 + sq. s = 2240,   60 sq. s = 240,   sq. s = 4,   and s = 2.

39.The meaning of the obscure term plasmatikón and its alleged Arabic counterpart is a
hotly debated issue. Conflicting interpretations can be found in, for instance, Sesiano (op.
cit., 192) and Rashed (op. cit., 133-138). See also Christianidis, Hist. Sci. 6 (1995).
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13.8.Ar . IV.17. Another Appearance of the Term ‘Representable’

In addition to Ar. I.27-28 and 30 and Ar. V.7, there are just two other
problems in Diophantus’ Arithmetica where a necessary condition is qual-
ified by the term ‘representable’, namely IV.17 and IV.19. Here is the con-
text in which those two problems appear (Sesiano, op. cit., 186-198):

Ar .IV.14-22  (p, q are undetermined numbers) k, l or m a, b

IV.14 k · a = cu. p,  l · a = sq. q 10, 5 8/5
IV.15 k · a = cu. p,  l · a = sq. p 10, 4 25/16
IV.16 k · b = cu. p,  k · a = p 10 3, 2700
IV.17 k · sq.b = cu. p,  k · sq.a = p,   b = m · a 5, 20   D P 2, 40
IV.18 k · cu.b = sq. p,  k · cu.a = p,   b = m · a 8, 3   D 3/2, 9/2
IV.19 k · a = cu. p,  l · a = p 20, 5   D P 2/5
IV.20 k · cu.a = sq. p,  l · cu.a = p 200, 5   D 2
IV.21 k · sq.a = cu. p,  l · sq.a = p 40 1/2, 2   D 3/2
IV.22 k · cu.a = cu. p,  l · cu.a = p 91 1/8, 2   D 3/2

There is no indication that this group of problems is in any way related
to the problems Ar. I.27-28 and 30 and Ar. V.7, other than the diorisms and
two cases of the term ‘representable’ in IV.17 and IV.19. 

The necessary condition in IV.17 is of the following form:

m · k = sq. q   with q undetermined.

It is possible that what is meant by saying that this condition is ‘represent-
able’ (in a diagram) is that m, k, p are related as the two segments of the
diameter and the upright in a semicircle, as in Fig. 1.7.2 above, right.

The necessary conditions in IV.17-22 are the following ones:

IV.17 m · k = sq. q
IV.18 k = cu. q
IV.19 k · l = sq. q
IV.20 k · l = cu. q
IV.21 k · l = sq. sq. q
IV.22 k · l = sq. q,   k · cu. l = sq. cu. q

It is clear that the necessary conditions in IV.17 and IV.19 are of the same
kind and can both be ‘represented’ in a geometric diagram like Fig. 1.7.2,
right. On the other hand, the other necessary conditions cannot readily be
represented geometrically. 
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Chapter 14

Heron’s, Ptolemy’s, and and Brahmagupta’s 
Area and Diagonal Rules

14.1.Metr ica I.8 / Dioptr a 31. Heron’s Triangle Area Rule

The area of a triangle with given sides can be found by first computing
the height against one of the sides. Then the area is half the product of the
height and the side. However, in his famous theorem Metr ica I.8, Heron
of Alexandria shows how the area of a triangle can be computed without
the need to first compute a height in the triangle. According to Al-B‰r¥n‰
(973-1038) in The Book Concerning the Chords, the proof of this theorem
is due to Archimedes. The proof is reproduced below, together with an ex-
planation in terms of metric algebra. The notations used in the metric
algebra version of the proof are the ones appearing in Fig. 14.1.1, right

In the lettered diagram associated with the identical texts Metrica I.8
andDioptra 31(see Høyrup, BSSM 17 (1997)), a circle is inscribed in the
given triangle ABC (Fig. 14.1.1, left). D, E, F are the three points where
the circle touches the sides of the triangle, and O is the center of the circle.
BH is equal to AF, OL is orthogonal to OC, and BL is orthogonal to BC.

In the corresponding metric algebra diagram (Fig. 14.1.1, right), the
sidesa, b, c of the triangle are cut by the points where the circle touches
the sides into six segments, of lengths u, u, v, v, w, w. The bisectors of the
three angles of the triangle and the normals against the three sides from the
center of the circle cut the triangle into three pairs of right triangles. The
angles at the center of the circle of these right triangles are |, |, }, }, ~, ~.
The right triangle drawn below the given triangle has the angle   at its
lower vertex and the sides v + w and t. The line joining the center of the
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circle to the same lower vertex is orthogonal to the line from the center of
the circle to the lower right corner of the given triangle and cuts the seg-
mentu in two pieces p and q. The radius of the circle is r, and half the
perimeter of the triangle is s.

Fig. 14.1.1.  Heron’s Metrica I.8. Left: a lettered diagram. Right: a metric algebra diagram.

Metr ica I.8 (Heath,HGM 2 (1981), 322) explanation in terms of metric algebra

ABC = BOC + COA + AOB 2 A = (u + v) · r + (v + w) · r + (w + u) · r

ABC = CH · OD A = (u + v + w) · r = s · r

sq. ABC = sq. CH · sq. OD sq. A = sq. s · sq. r

since COL and CBL are right the lower triangle and its adjoining right 

COBL is a cyclic quadrilateral triangles form an overlapping birectangle

angles COB + CLB = 2 R | + } +   = two right angles

angles COB + AOF = 2 R | + } + ~ = two right angles

angle AOF = angle CLB ~ =  

AOF and CLB are similar triangles therefore, by similarity,

BC : BL = AF : FO = BH : OD (u + v) : t = w : r   and

CB : BH = BL : OD = BK : KD (u + v) : w = t : r = p : q

CH : HB = BD : DK s : w = (u + v + w) : w = (p + q) : q = u : q

sq. CH : CH · HB = BD · DC : CD · DK sq. s : s · w = u · v : v · q

= BD · DC : sq. OD = u · v : sq. r

sq. ABC = sq. CH · sq. OD sq. A = sq. s · sq. r

= CH · HB · BD · DC = (s · w) · (u · v) = s · (s – a) · (s – b) · (s – c)
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u + v = a
v + w = b
w + u = c
u + v + w = s
= (a + b + c)/2
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It is evident from this metric algebra explanation of Metrica I.8 that the
basic ideas in Archimedes’ proof of the triangle area rule are:

1) A = s · r   where s = u + v + w = (a + b + c)/2
2)   sq. r = u · v · w / (u + v + w) = (s – a) · (s – b) · (s – c) / s

In other words, the essential part of Archimedes’ proof is the computation
of the radius of the inscribed circle in terms of the segments u, v, w cut off
by the inscribed circle. This realization leaves us with two equally plausi-
ble explanations of how Archimedes can have found his proof of the trian-
gle area rule. One possible situation is that he first computed the radius of
the inscribed circle and then saw that he could obtain the triangle area rule
as an easy corollary. Another possibility is that he already knew the rule
and found a new proof for it in terms of the radius of the inscribed circle.

Assume that, as in the second alternative, Archimedes already knew the
triangle area rule in the form sq. A = s · (s – a) · (s – b) · (s – c), but that he
also knew the more obvious rule A = s · r. He can then have understood
that he could obtain the former rule from the latter if he could prove that 

sq.r = (s – a) · (s – b) · (s – c) / s or sq.r = u · v · w / (u + v + w).

He can also have seen that it would be easier to prove that

(u + v + w) : w = u · v : sq. r.

This observation may have been a decisive first step towards the proof in
the form that we know it from Metrica I.8.

14.2. Two Simple Metric Algebra Proofs of the Triangle Area Rule

One simple proof of the triangle area rule is the one explicitly dismissed
by Heron in the first few lines of Metrica I.8, namely the rather obvious
proof in terms of the height against one of the sides of the given triangle.

Let, as in Fig. 1.8.1, right, above, p, q be the segments into which the
sideb of the given triangle is divided by the height against b. Then

sq.c – sq. p = sq. h = sq. a – sq. q.

Therefore,p and q are solutions to the quadratic-linear system of equations

p + q = b,   sq. p – sq. q = sq. c – sq. a.

This was a familiar fact already in OB mathematics. See the discussion of
VAT 7531 in Sec. 1.1, in particular Fig. 1.12.7. Consequently,

p = b/2 + (sq. c – sq. a) / 2 b = (sq. b + sq. c – sq. a) / 2 b, etc.
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When p is known in this form, sq. h can be expressed as follows

sq.h = sq. c – sq. p = (c + p) · (c – p)
         = (2 b · c + sq. b + sq. c – sq. a) · (2 b · c – sq. b – sq. c + sq. a) / sq. (2 b)
         = {sq. (c + b) – sq. a} · {sq. a – sq. (c – b)} / sq. (2 b).

The triangle area rule then follows, in the form

sq. (4 A) = sq. (2 b · h) = sq. (2 b) · sq. h = {sq. (c + b) – sq. a} · {sq. a – sq. (c – b)}.

It is easy to get from there to the rule in the more symmetric form

 sq. A = s · (s – a) · (s – b) · (s – c)   with s = (a + b + c)/2.

Another metric algebra proof, reproduced by Id and E. S. Kennedy in
King and M. S. Kennedy (eds.), SIES (1969), 492-494, is given by Al-
Shann‰ in the medieval manuscript MS 223, Bibliothèque Orientale,
Université Saint Joseph, Beirut. The basic idea in Al-Shann‰’s proof is to
inscribe the given triangle in a right triangle (essentially the lower right
half of the rectangle in the diagram in Fig. 14.2.1 below) in a suitable way,
and then make two applications of Ptolemy’s diagonal rule (Heath, HGM
2 (1981), 278), which states that in any cyclic quadrilateral the sum of the
products of the two pairs of opposite sides equals the product of the diag-
onals. Below, Al-Shann‰’s proof is replaced by a simplified version.

Fig. 14.2.1.A simplified version of Al-Shann‰’s proof of the triangle area rule.

Consider a given triangle with the sides c, b, a. Construct two concen-
tric, parallel, and similar rectangles with the sides m, t m andn, t n, respec-
tively, n < m, and such that the side c of the given triangle coincides with
the half-diagonal of the larger rectangle, while the side b coincides with the
half-diagonal of the smaller rectangle, as in Fig. 14.2.1. Then c + b is the
diagonal in a symmetric trapezoid with the sides m, a, n, a. Therefore,

sq. (c + b) – sq. a = m · n,

in view of Ptolemy’s diagonal rule. Similarly, a is the diagonal in a sym-
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c

2 A = m/2 · t n
sq. (c + b) – sq. a = m · n
sq.a – sq. (c – b)  = t m · t n
Ç
sq. (4 A) = sq. (m · t n)
= (m · n) · (t m · t n)
= {sq. (c + b) – sq. a} · {sq. a – sq. (c – b)}



14.3. Simple Proofs of Special Cases of Brahmagupta’s Area Rule 365

metric trapezoid with the sides t m, c – b, t n, c – b. Therefore,

sq.a – sq. (c – b) = t m · t n.

Combining the two identities, one finds that

{sq. (c + b) – sq. a} · {sq. a – sq. (c – b)} = (m · n) · (t m · t n).

On the other hand, the given triangle can be formed by joining together
two triangles with the common base t n and with the sum of their heights
against this base equal to m/2. (See again Fig. 14.2.1.) Therefore, twice the
the area A of the given triangle can be computed as

2 A = m/2 · t n.

Consequently, the triangle area rule is obtained in the form

sq. (4 A) = sq. (m · t n) = (m · n) · (t m · t n) = {sq. (c + b) – sq. a} · {sq. a – sq. (c – b)}.

14.3. Simple Proofs of Special Cases of Brahmagupta’s Area Rule

In his Brªhmasphu#asiddhªnta XII.21 (Colebrooke, AAMS (1973),
295), the Indian astronomer Brahmagupta (628) formulated as follows a
rule for the area of a triangle or quadrilateral in terms of the sides:

“The product of half the sides and countersides is the inexact area of a triangle or
quadrilateral. Half the sum of the sides set down four times, and in turn lessened by
the sides and multiplied together, the product is the exact area.”

The inexact area rule mentioned here by Brahmagupta is clearly the
proto-Sumerian/Sumerian/Babylonian “false area rule” for triangles and
quadrilaterals. (See, for instance, Sec. 11. 3 a above.)

The exact area rule is stated here in the same form for triangles and
‘quadrilaterals’. Brahmagupta gives no information about which kind of
quadrilaterals he has in mind. However, the area rule is correct only for
cyclic quadrilaterals.40

According to Al-B‰r¥n‰, Brahmagupta’s area rule was first found by
some anonymous Indian mathematician (Tropfke, GE 4 (1940), 155).
However, Tropfke himself (op. cit., 154) was of the opinion that 

40. For a fairly exhaustive account of the interesting history of cyclic quadrilaterals in
ancient Indian and Islamic or more recent Western mathematical works, the reader is ad-
vised to consult Tropfke, GE 4 (1940), 150-169. In Europe, the first algebraic proof of the
area rule for general cyclic quadrilaterals was given by P. Naudé  in 1727 (op. cit., 166). A
simple proof by use of trigonometry was found by N. Fuss in 1797 (op. cit., 167).
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“It is hardly likely that an Indian mathematician could derive the area rule algebraic-
ally, and even less could Indian mathematicians accomplish it by geometric means.”

This verdict may be much too harsh, since correct derivations of the area
rule for the most interesting special kinds of (cyclic) quadrilaterals are so
easy to find that they may have been known to Indian mathematicians, or
even to their Babylonian predecessors. This will be shown below.

What has to be shown is that if  p, s, q, t (in this order) are the sides of
a quadrilateral, then the area of the quadrilateral is given by the equation

sq.A = (p + q + s – t)/2 · (p + q – s + t)/2 · (s + t + p – q)/2 · (s+ t – p + q)/2,

or simply 

sq. (4 A) = (p + q + s – t) · (p + q – s + t) · (s + t + p – q) · (s+ t – p + q).

Now, this rule is correct for triangles, because 

if t = 0, then the rule is reduced to Heron’s triangle area rule. 

The rule is trivially correct for squares and rectangles. Indeed, 

if p = q and s = t, then the rule is reduced to  sq. A = p · p · s · s = sq. (p · s).

The rule is also correct for symmetric trapezoids, because 

if p and q are parallel, p > q, and s= t, then the rule is reduced to
sq.A = (p + q)/2 · (p + q)/2 · (2 s + p – q)/2 · (2 s – p + q)/2
         = sq. (p + q)/2 · (sq. s – sq. (p – q)/2) = sq. {(p + q)/2 · h},

whereh is the height of the trapezoid.

That the rule is correct for birectangles can be shown as follows:

Fig. 14.3.1.  An easy metric algebra derivation of the area rule in the case of a birectangle.

Let p, s, q, t (in this order) be the given sides of a birectangle, let d be

d

sq.p + sq. t = sq. q + sq. s

and   2 A = p · t + q · s

Ç

4 A = 2 p · t + 2 q · s

= sq. (p + t) – sq. (q – s)

= sq. (q + s) – sq. (t – p)

Ç

sq. (4 A)

= {sq. (p + t) – sq. (q – s)}

   · {sq. (q + s) – sq. (t – p)}

t

ps

q
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the first diagonal, and let A be the area, as in Fig. 14.3.1. Then, clearly,

sq.p + sq. t = sq. d = sq. q + sq. s    and    2 A = p · t + q · s.

Consequently,

 4 A = 2 p · q + 2 s · t = sq. (p + q) – sq. (t – s)      (if t > s, for instance),

but also

4 A = 2 p · q + 2 s · t = sq. (s + t) – sq. (q – p)    (if q > p, for instance).

Through multiplication of the two alternative results, one arrives at

sq. (4 A) = {sq. (p + q) – sq. (t – s)} · {sq. (s + t) – sq. (q – p)}.

After factorization, this expression becomes

sq. (4 A) = (p + q + s – t) · (p + q – s + t) · (s + t + p – q) · (s + t – p + q).

Finally, it is easy to show that Brahmagupta’s area rule is correct for
cyclic quadrilaterals with orthogonal diagonals, which here, for simplici-
ty, will be referred to as “cyclic orthodiagonals”. As is well known, there
is a simple relation between birectangles and cyclic orthodiagonals, which,
incidentally, shows that since Brahmagupta’s area rule holds for birectan-
gles, it holds also for cyclic orthodiagonals.

Fig. 14.3.2.  A simple relation between cyclic orthodiagonals and birectangles.

Indeed, all that is required to pass from a birectangle to a cyclic ortho-
diagonal is to join together the two pairs of right sub-triangles of a birect-
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angle in a different way. See Figs. 13.4.3, 14.3.2. Evidently, the
transformation does not change the area of the quadrilateral, and it changes
only the order of the sides, from p, s, q, t to p, s, t, q.

14.4. Simple Proofs of Special Cases of Ptolemy’s Diagonal Rule

As mentioned above, in Sec. 14.2, Ptolemy’s diagonal rule says that

In any cyclic quadrilateral the sum of the products of the two pairs of opposite
sides equals the product of the diagonals.

Ptolemy’s well known proof is simple enough, but it is interesting that it is
possible to find alternative proofs in special cases by use of metric algebra.

Thus, in the case of a rectangle with the sides u, s, u, s and diagonals d,
Ptolemy’s diagonal rule is identical with the OB diagonal rule:

sq.u + sq. s= sq. d.

In the case of a symmetric trapezoid with the sides m, s, n, s and diagonals
d, Ptolemy’s diagonal rule is identical with the OB trapezoid diagonal rule
discussed in Appendix 1:

m · n + sq. s= sq. d.

A simple metric algebra proof is given in Fig. 14.4.1 below.

Fig. 14.4.1.  A proof of Ptolemy’s diagonal rule in the case of a symmetric trapezoid.

In the case of a birectangle (see Fig. 14.3.2), 

p = a w   and q = c v  is one pair of opposite sides,
s = c u   and t = b w   is another pair of opposite sides,
d = c w   and e = b u + a v  are the two diagonals.

Then Ptolemy’s diagonal rule follows easily, because

p · q + s · t = a w · c v + c u · b w = c w · (a v + b u) = d · e.

Similarly, in the case of a cyclic orthodiagonal (see again Fig. 14.3.2)

p = a w   and t = b w  is one pair of opposite sides,

p

ds sd h

q

n

m

sq.d – sq. p
= sq. h
= sq. s – sq. q
Ç
sq.d – sq. s
= sq. p – sq. q
= (p + q) · (p – q)
= m · n
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s = c u   and q = c v  is another pair of opposite sides,
d = a u + b v  and e = b u + a v  are the two diagonals.

Here, too, Ptolemy’s diagonal rule follows easily, because

p · t + s · q = a w · b w + c u · c v = a b · sq. w + sq. c · u v 
  = a b · (sq. u + sq. v) + (sq. a + sq. b) · u v = (a u + b v) · (b u + a v) = d · e.

A simple derivation of Ptolemy’s diagonal rule can be given also in the
case of an overlapping birectangle, by which is meant a cyclic quadrilat-
eral formed by two partly overlapping right triangles with a common diag-
onal, as in Fig. 14.4.2 below.

Fig. 14.4.2.  Ptolemy’s diagonal rule in the case of an overlapping birectangle.

Note that the diagram in Fig. 14.4.2 is essentially identical with the
diagram used in Ptolemy’s proof of a subtraction rule for chords. See
Heath,HGM 2 (1981), 279. (Note also the occurrence of an overlapping
birectangle in Archimedes’ proof of the triangle area rule.)

Although the proof of Ptolemy’s diagonal rule for an overlapping bi-
rectangle as in Fig. 14.4.2 is exceedingly simple, there seems to be no sim-
ple way of proving Brahmagupta’s area rule for an overlapping
birectangle in the same way as the area rule was proved above for a
birectangle or a cyclic orthodiagonal!

It is not difficult to find a first expression for the area A of an overlap-
ping birectangle, for instance as follows: It is obvious from the diagram in
Fig. 14.4.2 that A is equal to the area of a trapezoid with the parallel sides
b v, a u and the height b u + a v, minus the areas of two right triangles with
the sides b v, a v and a v, a u. Therefore,

2 A = (b v + a u) · (b u + a v) – (a v · b v + a u · a v) = b v · b u + a u · b u.

The trouble is that it seems to be difficult to identify this simple equation
for the area with the one given by Brahmagupta in terms of the sides.
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14.5. Simple Proofs of Special Cases of Brahmagupta’s Diagonal Rule

Brahmagupta’s rule for the lengths of the diagonals of a quadrilateral
in terms of the sides is formulated as follows in Bss XII.28 (Colebrooke,
AAMS (1973), 300):

“The sums of the products of the sides about both the diagonals being divided by each
other, multiply the quotients by the sum of the products of opposite sides; the square-
roots of the results are the diagonals in a quadrilateral with unequal sides”

The rule is correct for a cyclic orthodiagonal. Indeed, if p, s, t, q are the
sides and d, e the diagonals of a cyclic orthodiagonal, then with the nota-
tions in Fig. 14.3.2 above 

p · t + s · q = d · e   (as in Ptolemy’s diagonal rule; see above),
p · s + t · q = a w · c u + b w · c v = c w · (a u + b v) = c w · d,
p · q + s · t = a w · c v + c u · b w = c w · (a v + b u) = c w · e.

Combining these results, one finds that 

d · e = p · t + s · q and  d / e = (p · s + t · q) / (p · q + s · t) Ç
sq.d = (p · t + s · q) · (p · s + t · q) / (p · q + s · t)   and 
sq.e = (p · t + s · q) · (p · q + s · t) / (p · s + t · q).

The rule is also correct for a birectangle. Indeed, if p, s, q, t are the
sides and d, e the diagonals of a birectangle, then with the notations in Fig.
14.3.2 above 

p · q + s · t = d · e   (as in Ptolemy’s diagonal rule; see above),
p · s + q · t = a w · c u + c v · b w = c w · (a u + b v) = d · (a u + b v),
p · t + q · s = a w · b w+ c v · c u = a b · sq. w + sq. c · u v =
= a b · (sq. u + sq. v) + (sq. a + sq. b) · u v = (a u + b v) · (a v + b u) = (a u + b v) · e.

And so on, as in the case of a cyclic orthodiagonal.

14.6. A Proof of Brahmagupta’s Diagonal Rule in the General Case

A simple proof of Brahmagupta’s area rule in Yuktibhª%ª and
Kriyªkramar‰ (India, 16th century; see Amma, GAMI (1979), Sec. 5.5.13)
is actually a straightforward modification of the first of the proofs of
Heron’s area rule mentioned in Sec. 14.2 above. In metric algebra nota-
tions, as in Fig. 14.6.1 below, the proof can be explained as follows:

Let the sides of a (concave) quadrilateral be p, s, q, t and let the two
diagonals be d and e. Let h and k be the heights in the triangles with the
sidesp, s, e and q, t, e, respectively. Then the area of the quadrilateral is
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A = e/2 · h + e/2 · k,   so that    4 A = 2 e · (h + k).

Finally, let f and g be the segments of e to the left of h and k, respectively.
Thend is the diagonal in a rectangle with the length h + k and the width
g – f (if, say, g > f). Therefore,

sq. (h + k) = sq. d – sq. (g – f).

The lengths of the segments g and f are known to be

g = (sq. e + sq. q – sq. t) / (2 e)    and f = (sq. e + sq. s – sq. p) / (2 e).

Consequently,

2 e · (g – f) = (sq. q + sq. p) – (sq. s + sq. t).

Hence,

sq. (4 A) = sq. (2 e) · sq. (h + k) = sq. (2 e) · {sq. d – sq. (g – f)}
        = sq. (2 d · e) – sq. {(sq. q + sq. p) – (sq. s + sq. t)}
        = {2 d · e + (sq. q + sq. p) – (sq. s + sq. t)} · {2 d · e – (sq. q + sq. p) + (sq. s + sq. t)}.

In the next step of the procedure it must be assumed that the quadrilateral
is cyclic so that Ptolemy’s diagonal rule can be applied. Then

2 d · e = p · q + s · t

and it follows from two completions of squares that (if, say, t > s, q > p)

sq. (4 A) = {sq. (q + p) – sq. (t – s)} · {sq. (t + s) – sq. (q – p)}.

Fig. 14.6.1.  A simple proof of Brahmagupta’s area rule in the general case.

The proof is then complete. Note that this means that the problem of prov-
ing Brahmagupta’s area rule has been reduced by a straightforward use
of metric algebra to the problem of proving Ptolemy’s diagonal rule.

Unfortunately, there does not seem to be any simple way of proving
Ptolemy’s diagonal rule in the general case by use of metric algebra.
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A quick look at Ptolemy’s proof of his diagonal rule (Heath, HGM 2
(1981), 278) will show where the difficulty lies. Expressed in terms of
metric algebra notations, Ptolemy’s proof proceeds as follows: 

Let a cyclic quadrilateral have the sides p, s, q, t and the diagonals d, e
(as in Fig. 14.6.2). Then according to Elements III.21 : in a circle angles
on the same arc are equal, the angle (|) between s and e equals the angle
betweend and t, and the angle (}) between p and e equals the angle
betweend and q. Draw the line v cutting e into e' and e" so that also the
angle (ß) between s and v equals the angle between d and p. Then the tri-
angles with the sides s, v, e' andd, p, t are similar, and it follows that s : e'
= d : t, so that s · t = d · e'. For a similar reason, p · q = d · e". Consequently, 

s · t + p · q = d · (e'  + e") = d · e.

Note that the proposition El. III.21 which is used in this seemingly sim-
ple proof is totally beyond the scope of Babylonian-type metric algebra!

Fig. 14.6.2.  The proof of  Ptolemy’s diagonal rule in metric algebra notations.

Conclusion. The fairly detailed discussion above of Heron’s and
Brahmagupta’s area rules, as well as of Ptolemy’s and Brahmagupta’s
diagonal rules can be summarized in the following way: All those rules
can be derived in a simple and straightforward way by use of metric alge-
bra, at least as long as no other cyclic figures are considered than triangles,
rectangles, symmetric trapezoids, birectangles, and cyclic orthodiagonals.
What that means is that it is not unlikely that all those rules were first dis-
covered (in these special cases) either by Babylonian mathematicians
(although there is no direct evidence for that), or by Greek or Indian math-
ematicians working in the Babylonian tradition.
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The triangles with the sides
s, v, e'  and d, p, t  are similar
Ç  s : e'  = d : t Ç  s · t = d · e' .

The triangles with the sides
p, v, e"  and d, s, q  are similar
Ç  p : e"  = d : q Ç  p · q = d · e" .

Therefore,
 s · t +  p · q =d · (e' + e") = d · e.
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Chapter 15

Theon of Smyrna’s Side and Diagonal Numbers 
and Ascending Infinite Chains of Birectangles

The Greek “side and diagonal numbers algorithm” has been discussed
extensively in many previous studies of the topic, such as, for instance,
Heath,HGM 1 (1981 (1921)), 91-93, Knorr, EEE (1975), Chapter 2, and
Fowler,MPA (1987), Secs. 2.4(e), 3.6(b).

The key reference is a passage from Theon of Smyrna’s Expositio
Rer um Mathematicar um ad L eg endum Platonem Utilium, below in a
translation borrowed from Fowler, op. cit., Sec. 2.4(e):

Theon of Smyrna, ERML PU, 42-5.

“Just as numbers potentially contain triangular, square, and pentagonal ratios, and
ones corresponding to the remaining figures, so also we can find side and diagonal
ratios appearing in numbers in accordance with the generative principles; for it is
from these that the figures acquire balance. Therefore since the unit, according to the
supreme generative principle, is the starting point of all the figures, so also in the unit
will be found the ratio of the diagonal to the side. 
For instance, two units are set out, of which we set one to be a diagonal and the other
a side, since the unit, as the beginning of all things, must have it in its capacity to be
both side and diagonal. Now there are added to the side a diagonal and to the diag-
onal two sides, for as great as is the square on the side, taken twice, the square on the
diagonal [is] taken once. The diagonal therefore became the greater and the side be-
came the less. Now in the case of the first side and diagonal, the square on the unit
diagonal will be less by a unit than twice the square on the unit side; for units are
equal, and 1 is less by a unit than twice 1.
Let us add to the side a diagonal, that is, to the unit let us add a unit; therefore the
side will be two units. To the diagonal let us now add two sides, that is, to the unit
let us add two units; the diagonal will therefore be three units. Now the square on the
side of two units will be 4, while the square on the diagonal of three units will be 9;
and 9 is greater by a unit than twice the square on the side 2.
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Again, let us add to the side 2 the diagonal of three units; the side will be 5. To the
diagonal of three units let us add two sides, that is, twice 2; there will be 7. Now the
square from the side 5 will be 25, while that from the diagonal 7 will be 49; and 49
is less by a unit than twice 25.
Again, if you add to the side 5 the diagonal 7, there will be 12. And if to the diagonal
7 you add twice the side 5, there will be 17. And the square on 17 is greater by a unit
than twice the square of 12. 
When the addition goes on in the same way in sequence, the proportion will alter-
nate; the square on the diagonal will be now greater by a unit, now less by a unit,
than twice the square on the side; and such sides and diagonals are both expressible.

The squares on the diagonals, alternating one by one, are now greater by a unit than
double the squares on the sides, now less than double by a unit, and the alternation
is regular. All the squares on the diagonals will therefore become double the squares
on the sides, equality being produced by the alternation of excess and deficiency by
the same unit, regularly distributed among them; with the result that in their totality
they do not fall short of nor exceed the double. For what falls short in the square on
the preceding diagonal exceeds in the next one.

Thealgebraic meaning of this passage is clear. A double sequence of
‘sides’ and ‘diameters’ sn, dn is formed in a recursive procedure starting
with a pair of units. The steps of the recursive procedure are the following:

d1, s1 = 1, 1 and    dn +1 = dn + 2 sn, sn +1 = dn + sn for    n = 1, 2, 3, . . .

In this way are formed the pairs

d1, s1 = 1, 1, d2, s2 = 3, 2, d3, s3 = 7, 5, d4, s4 = 17, 12,    and so on.

It is observed that

sq. 1 = sq. 1 · 2 – 1,    sq. 3 = sq. 2 · 2 + 1,    sq. 7 = sq. 5 · 2 – 1,    sq. 17 = sq. 12 · 2 + 1.

From this observation is inferred the conclusion that

sq.dn = sq. sn · 2 – 1    for all odd n,    and    sq. dn = sq. sn · 2 + 1    for all even n.

Therefore, in average, sq. dn = sq. sn · 2.

Note the diagram in the text, headed by a figure with two straight lines
forming an angle, one horizontal and tagged with a π for πλευρα‹ ‘sides’,
the other slanting and tagged with a δ for διάµετροι ‘diagonals’.
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15.1. The Greek Side and Diagonal Numbers Algorithm41

Fig. 15.1.1.  The first few steps of the side and diagonal numbers algorithm.

In the diagram in Fig. 15.1.1, the initial step of a geometric algorithm
producing the side and diagonal numbers is a half-square with the side 1
and the diagonal d. These are the ‘units’ for the sides and the diagonals,
respectively. One of the sides is extended indefinitely to the left and the
diagonal is extended indefinitely to the left and downwards. In this way a
diagram is formed which closely resembles the leftmost figure in the small
diagram illustrating Theon’s cited passage. 

In the second step of the algorithm, a birectangle with two given sides,
1 and d, is joined to the initial half-square, so that a new half-square is
formed, one with the side 2 d, and therefore with the diagonal 4. Conse-
quently, the third and fourth sides of the birectangle are 3 and 2 d. The side
2 d of the birectangle is the diagonal of a half-square with the side 2. Now,
a crucial observation is that the two new sides 3 and 2 d of the birectangle
arenearly equal. Therefore, 2 d is the inexpressible diameter of 2, while 3
can be interpreted as an expressible diameter of 2. The closeness of the
approximation is demonstrated by the equation 

41.The ideas discussed in this chapter were first presented at a mathematical meeting at
Niagara Falls in the summer of 1996. 
The proposed explanation in Sec. 15.1 of the side and diagonal numbers in terms of a chain
of birectangles is related to a similar proposal in Hofmann, Centaurus 5 (1956).
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d5, s5 = 17 + 2 · 12, 17 + 12 = 41, 29

etc.
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sq. 3 = 2 · sq. 2 + 1.

In the third step of the algorithm, a second birectangle, with two given
sides 2 d and 3, is joined to the first birectangle in such a position that a
half-square is formed with the side 7 and therefore with the diagonal 7 d.
Therefore the two other sides of the birectangle are 7 and 5 d, with 7 and
5 d even more nearly equal than 3 and 2 d. Here 5 d is the geometric, irra-
tional diagonal of 5, and 7 is the rational diagonal of 5. This time,

sq. 7 = 2 sq. 5 – 1.

And so on. The general step in the algorithm is described by Proclus (410-
85), as follows:

Proclus,Comm. on Plato’s Republic, ii.2 7 .1 1 - 2 2(Thomas, SIHGM 1 (1939), 137)

“The Pythagoreans proposed this elegant theorem about the diameters and sides,
that when the diameter receives the side of which it is the diameter it becomes a
side, while the side, added to itself and receiving its diameter, becomes a diameter.
And this is proved graphically in the second book of the Elements by him (Euclid):
If a straight line is bisected and a straight line is added to it, the square on the whole
line including the added straight line and the square on the latter by itself are to-
gether double of the square on the half and of the square on the straight line made
up of the half and the added straight line.”

It has generally been taken for granted that the theorem in the Elements
referred to in this passage is El. II.10, since the statement of the proposition
in El. II.10 is very close to the cited statement in Proclus’ commentary.
However, as will be shown below, it is equally possible that the proposi-
tion in El. II referred to by Proclus is El. II.9, the proposition proved by use
of a birectangle. (Cf. Fig. 1.6.1 above.)

In step (n + 1) of the algorithm, a birectangle with the given sides dn
and sn · d is joined to the n-th birectangle along a vertical side of length dn
or a slanting side of length sn · d. As shown by the diagram in Fig. 15.1.2,
the other sides of the new birectangle are then dn +1 andsn +1 · d, where

dn +1 = dn + 2 sn   and  sn +1 = dn + sn.

These are, evidently, the rules for the formation of the successive side and
diagonal numbers described by Theon of Smyrna and Proclus in the cited
passages. Now, since the birectangle can be divided into two right triangles
joined along a common diagonal, it follows that

sq. (2 sn + dn) + sq. dn = sq. (sn · d) + sq. {(dn + sn) · d} = 2 {sq. sn + sq. (dn + sn)}.
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This is precisely El. II.9, with 2 sn as the bisected straight line and with dn
as the straight line added to it. The result can be rephrased as

sq.dn +1 + sq. dn = 2 sq. sn + 2 sq. sn +1.

Equivalently,

sq.dn +1 – 2 sq.sn +1 = 2 sq. sn – sq. dn.

This is a recursion formula with the known initial value

2 sq. s1 – sq. d1 = 2 sq. 1 – sq. 1 = 1.

Therefore,

2 sq. sn – sq. dn = 1   for all odd n,   and   sq. dn – 2 sq. sn = 1   for all even n.

In other words, 

2 sq. sn = sq. dn + 1   for all odd n,   and   2 sq. sn = sq. dn – 1   for all even n.

All this agrees perfectly with the description given by Theon of Smyrna of
the properties of the side and diagonal numbers.

Fig. 15.1.2.  The general step in the side and diagonal numbers algorithm.

The result must have intrigued the ancient Greek mathematicians not
only because it is an “elegant theorem”, but also because it leads to a series
of increasingly improved approximations to the square side of 2. Indeed,
it can be interpreted, in modern terms, as saying that

sq. (dn /sn) = 2 ± sq. (1/sn)   where sn > the (n - 1)th power of 2.

(The estimate for sn follows from the recursion formula for sn.)

15.2. MLC 2078. The Old Babylonian Spiral Chain Algorithm
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There is no known direct parallel to the Greek side and diagonal num-
bers algorithm in Babylonian mathematics. However, there is nothing in
the proposed explanation of the algorithm that would have been beyond
the capabilities of Old Babylonian mathematicians, and the idea of a
“geometric algorithm” producing a series of rational sides seems to have
been well known. Two OB examples have been mentioned already. 

One such example is IM 55357 (Sec. 4.3 above), where a right triangle
with the rational sides 1 15, 1 00, 45 is cut into a chain of increasingly
small rational right sub-triangles by a series of heights, alternatingly
against the diagonal and against the long side of the given triangle. 

A second example is provided by the chains of increasingly larger
rational bisected trapezoids considered in the problem text AO 17264,
with three consecutive bisected trapezoids (Fig. 11.6.1 above).

A third example may possibly be provided by the well known but
previously never adequately explained algorithm table MLC 2078
(Neugebauer and Sachs, MTC (1945), 35), referred to in MCT as a table of
exponents and logarithms.

Fig. 15.2.1.  MLC 2078. An Old Babylonian algorithm table.

The mathematical meaning of the table of sexagesimal numbers in two
columns on MLC 2078 is quite obvious. The new interpretation below is
concerned with a possible geometric background to the algorithm table.
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Here is a copy and a tentative translation of the table in the text:

MLC 2078, transliteration tentative translation

15.e 2 íb.si8 ;15 makes 2 a square side

30.e 4 íb.si8 ;30 makes 4 a square side

45.e 8 íb.si8 ;45 makes 8 a square side

1.e 16 íb.si8 1 makes 16 a square side

ga-mi-ru-um 4 · · · · · · · · · ·· ? ? ? ? ?

2.e 1 íb.si8 2 is the 1st square side

4.e 2 íb.si8 4 is the 2nd  square side

8.e 3 íb.si8 8 is the 3rd  square side

16.e 4 íb.si8 16 is the 4th  square side

32.e 5 íb.si8 32 is the 5th  square side

1 04.e 6 íb.si8 1 04 is the 6th  square side
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1.15.e 32 íb.si8 1;15 makes 32 a square side

1 30.e 1 04 íb.si8 1;30 makes 1 04 a square side

The table can be divided into two or three parts. The first part consists
of the first four lines and is (possibly) concluded with the text in the fifth
line. Unfortunately, that text is badly preserved and without a known par-
allel in OB mathematics. No translation of it was offered in the original
publication of MLC 2078. The word ga-mi-ru-um may be some derived
form of the verb gamªrum ‘to complete’ (although that derived form is not
in the dictionary). The two lines on the edge of the clay tablet are, obvious-
ly, a continuation of the four lines in the first part of the table. 

The second part of the table consists of the 6 lines after the line of text.

The Sumerian wordíb.si8 literally means something like ‘it is equal’.
It is used most often in tables of square sides, where a phrase like 4.e 2
íb.si8 can be translated loosely as ‘4 makes 2 a square side’, or simply ‘4
has the square side 2’. The corresponding phrase 8.e 2 íb.si8 in a table of
cube sides (less common) means ‘8 makes 2 a cube side’, or simply ‘8 has
the cube side 2’. The same kind of phrase appears also in the table of “qua-
si-cube sides” MS 3048 (see Sec. 13.6), and in Plimpton 322 (Sec. 3.3).
The tentative interpretation of the table text MLC 2078 proposed here is
based on the assumption that it is related to the spiraling chain of half-
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squares and right trapezoids shown in Fig. 15.2.2 below.

Fig. 15.2.2.  A chain of similar right trapezoids, made up of pairs of half-squares.

According to this interpretation, this OB “spiral chain algorithm”
begins, just like the Greek side and diagonal numbers algorithm interpret-
ed as in Fig. 15.1.1 above, with a half-square with the sides 1, 1, d, where
sq.d = 2. This half-square and a larger half-square with the sides d, d, 2 are
joined along the diagonal of the first half-square, forming a right(-angled)
trapezoid with the sides 1, 1, d, 2. This right trapezoid is then, in its turn,
joined along its side of length 2 with a right trapezoid of the same form,
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but twice as large, that is with the sides 2, 2, 2 d, 4. And so on. 
In terms of this spiral chain algorithm, the table text MLC 2058 can be

explained as follows. The first four lines say that

After ;15 = 1/4 turn of the spiral, the square side 2 is reached,
after ;30 = 1/2 turn of the spiral, the square side 4 is reached,
after ;45 = 3/4 turns of the spiral, the square side 8 is reached,
after 1 full turn of the spiral, the square side 16 is reached.

The enigmatic text line then probably says something like

After 4 quarter-turns, the spiral is complete.

Indeed, after the fourth quarter-turn, the spiral begins to overlap itself. See
the upper diagram in Fig. 15.2.2.

The second part of the table text is a kind of inverse of the first part,
apparently saying that

The square side 2 is reached after 1 quarter-turn,
the square side 4 is reached after 2 quarter-turns,
the square side 8 is reached after 3 quarter-turns,
the square side 16 is reached after 4 quarter-turns,
the square side 32 is reached after 5 quarter-turns,
the square side 1 04 (= 64) is reached after 6 quarter-turns.

Thus, in this second part of the table the spiral continues, overlapping it-
self, as in the lower diagram in Fig. 15.2.2.

Finally, for the sake of symmetry, the first part of the table is continued
on the edge of the clay tablet, with two additional lines saying that

After 1;15 = 1 1/4 turns of the spiral, the square side 32 is reached,
after 1;30 = 1 1/2 turns of the spiral, the square side 1 04 (= 64) is reached,

15.3. Side and Diagonal Numbers When Sq. p = Sq. q · D – 1

The proposed interpretation of the Greek side and diagonal numbers
algorithm in terms of a chain of birectangles can easily be extended to the
case when the initial half-square with the sides d, 1, 1, where sq. d = 2, is
replaced by a right triangle with the sidesq · d, p, 1, where sq. d = D and
sq. p = sq. q · D – 1. Examples of such triangles are 

d, 2, 1  with D = sq. d = 5,   and  5 d, 18, 1  with D = sq. d = 13.

Application of the algorithm in the mentioned cases will yield rational
approximations to the square sides of 5 and 13, in the same way as Theon’s
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algorithm yields approximations to the square side of 2.
The general step in the side and diagonal numbers algorithm in the case

when sq. p = sq. q · D – 1 is shown in Fig. 15.3.1 below. Note that the algo-
rithm can be run through backwards: If dn +1 and sn +1 are known, then dn

andsn can be obtained algebraically as the solutions to a system of linear
equations, or geometrically through inspection of the diagram.

Fig. 15.3.1.  The general step in the case when  sq. p = sq. q · D – 1.

In the case when D = 13, for instance,

d1 = p = 18, s1 = q = 5,   sq.s1 · D – sq. d1 = sq. 5 · 13 – sq. 8 = 325 – 324 = 1,
d2 = 18 · 18 + 5 · 5 · 13 = sq. 18 + sq. 5 · 13 = 324 + 325 = 649,
s2 = 5 · 18 + 18 · 5 = 90 + 90 = 180, 
sq.d2 – sq.s2 · D = sq. 649 – sq. 180 · 13 = 421201 – 421200 = 1, etc.

15.4. Side and Diagonal Numbers When Sq. p = Sq. q · D +  1

With the necessary modifications, the side and diagonal numbers algo-
rithm can be made to work also in the case when the initial right triangle
has the sides q, p · d, 1, where sq. d = D and sq. p = sq. q · D + 1. Examples
of such triangles are 

2, d, 1  with   sq. d = 3,   and  5, 2 d, 1   with   sq. d = 6.

The diagram in Fig. 15.4.1 for the case when sq. d = 3 starts with an
initial right triangle with the sides 2, d, 1. Here d is the inexpressible and 2
anexpressible diagonal of 1, and

sq. 2 – sq. 1 · 3 = 1.
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To the initial right triangle is joined the first birectangle, with the given
sides 2 and d. The second pair of sides in the birectangle can then be shown
to be 7 and 4 d. Here 4 d is the inexpressible diagonal corresponding to the
side 4, while 7 is the expressible diagonal. Note that 7 and 4 d, the two long
sides of the birectangle are nearly equal. Indeed,

sq. 7 – sq. 4 · 3 = 49 – 16 · 3 = 1.

In the second birectangle, 15 d and 26 are the inexpressible and expressible
diagonals of 15, and

sq. 26 – sq. 15 · 3 = 676 – 225 · 3 = 1.

And so on.

Fig. 15.4.1.  The first few steps of the algorithm when  D = sq. d = 3.

The general step of the side and diagonal numbers algorithm in the case
when sq. p = sq. q · D + 1 is shown in Fig. 15.4.2 below:

Fig. 15.4.2.  The general step in the case when  sq. p = sq. q · D + 1.
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Chapter 16

Greek and Babylonian 
Square Side Approximations

16.1.Metr icaI.8 b. Heron’s Square Side Rule

An explicit rule for the approximation of square sides (square roots) is
given in Heron of Alexandria’s Metrica I.8 (in connection with an example
of the application of Heron’s triangle area rule):

Metr ica I.8 b (Bruins,CCPV 3 (1964), 189; Schöne, HAVD (1903), 19)

“But as 720 does not have a rational side, we shall with the smallest difference take

the side like this: 

Since the closest square to 720 is 729 and it has the side 27, divide 720 by 27, it

becomes 26 and two thirds. 

Add 27, it becomes 53 and two thirds. Of this the half, it becomes 26 1/2 1/3. 

Thus, the side of 720 is very close to 26 1/2 1/3.

For 26 1/2 1/3 on itself becomes 720 1/36. 

Thus, the difference is the 36th part of the unit.

However, if we want the difference to be smaller than the 36th part, we shall re-

place 729 by 720 1/36 that we now have found, and when we do the same again,

we shall find that the difference becomes much smaller than1/36,”

This is an explicit example of “Heron’s square side rule”, a general rule
for the computation of an approximate square side to a given area number.
The rule can be formulated as follows:

Let D be a given area number and let a be a known approximation to sqs. D.

Set r = (a + D/a)/2. Then r is an improved approximation to sqs. D.

To get an even more accurate approximation, repeat the process.
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An alternative, more precise, formulation of the rule is as follows:

Let D be a given area number and let u be an approximation from above to sqs. D.
Set r = (u + D/u)/2. Then r is an improved approximation from above to sqs. D.

If, instead, s is an approximation from below to sqs. D, set   r = (s + D/s)/2. Then r is an
improved approximation to sqs. D, but from above.

In Heron’s example in Metrica I.8, 

D = 720, u = 27, D/u = 720/27 = 26 18/27 = 26 2/3, 
r = (27 + 26 2/3)/2 = 26 1/2 1/3,
sq.u – D = 729 – 720 = 9,   sq. r – D = 720 1/36 – 720 = 1/36.

A simple geometric proof of Heron’s area rule is given in Fig. 16.1.1
below. (Cf. El. II.14, Figs. 1.7.1-2.)

Fig. 16.1.1.  Geometric explanation of Heron’s square side rule in Metrica I.8.

16.2. Heronic Square Side Approximations

A complete and detailed survey of all examples of square side approx-
imations in Heron’s collected works is presented in Hofmann, JDMv 43
(1934). In the first 3 examples, the first approximation is from above:

1 D = 720 u = 27 s = 26 2/3 r = (u + s)/2 = 26 1/2 1/3
2 D = 63 u = 8 s = 8 – 1/8  r = (u + s)/2 = 7 1/2 1/4 1/8 1/16
3 D = 250 u = 16 s = 15 5/8 r = (u + s)/2 = 15 13/16

In the next 12 examples, the first approximation is from below:

4 D = 72 u = 8 s = 9 r = (u + s)/2 = 8 1/2
5 D = 96 u = 9 s = 10 1/3 r = (u + s)/2 = 9 1/2 1/3
6 D = 150 u = 12 s = 12 1/2 r = (u + s)/2 = 12 1/4
etc.

In all but 2 of these examples, the first approximation is an integer.

In 7 further examples, an integer p giving a good approximation to the
square side is found directly:

18 D = 288 = sq. 12 · 2 = sq. 17 – 1   p = 17 (sqs. 34 = appr. 35/6)

dr

su

u · s = sq. d = D,   u > s

s = D/u < d < u or  u = D/s > d > s 

r = (u + D/u)/2 > d or  r = (s + D/s)/2 > d

sq.r – D = sq. (u – D/u)/2 = sq. (D/s – s)/2
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(p is here the approximate diagonal of a square with the side 12)
19 D = 675 = sq. 15 · 3 = sq. 26 – 1   p = 26 (sqs. 3 = appr. 26/15)

(p is here the approximate height of an equilateral triangle with the side 30)
20 D = 1224 = sq. 6 · 34 = sq. 35 – 1   p = 35
21 D = 144 1/2 = sq. 12 + 1/2 p = 12
22 D = 195 1/2 1/4 1/8 1/16 = sq. 14 – 1/16 p = 14
23 D = 75600 = sq. 60 · 21 = 25 · (sq. 55 – 1) p = 275 (sqs. 21 = appr. 55/12)
24 D = 67500 = sq. 150 · 3 = sq. 10 · (sq. 26 – 1)p = 259 (sqs. 3 = appr. 26/5)

Sixteen further examples are of the same types as the ones already men-
tioned, but with various round-offs. 

The five remaining examples in Hofmann’s survey are especially inter-
esting. According to Hofmann’s interpretation, they are all examples of
applications of a second, more accurate square side rule, namely

P (x2 – 1) = appr. x – 1/(2 x – 1) + 1 /{(2 x – 1) (2 x + 1)} = x – 1/{2 x – 1/(2 x)}.

The five special examples are:

41 D = 3 = sq. 2 – 1 p = 2 – 1/3 + 1/15
42 D = 135 = 9 · (sq. 4 – 1) p = 3 · (4 – 1/7 + 1/63) = 11 1/2 1/14 1/21
43 D = 216 = 9 · (sq. 5 – 1) p = 3 · (5 – 1/9 + 1/99) = 14 2/3 1/33
44 D = 1575 = 25 · (sq. 8 – 1) p = 5 · (8 – 1/15 + 1/255) = 39 2/3 1/51
45 D = 6300 = 100 · (sq. 8 – 1) p = 10 ·(8 – 1/15 + 1/255) = 79 1/3 1/34 1/102

16.3. A New Explanation of Heron’s Accurate Square Side Rule

The side and diagonal numbers algorithm in the case when

sq. a = sq. c · D – 1,   D = sq. d

(see Fig. 15.3.1 above) is governed by the recursive equations

d1, s1 = a, c, dn +1, sn +1 = a dn + c sn · D, c dn + a sn for n = 1, 2, 3, . . .

It is, in certain situations, convenient to express these equations more
concisely in terms of a formal multiplication of pairs of numbers:42

(d1, s1) = (a, c),   (dn +1, sn +1) = (a, c) · (dn, sn) for n = 1, 2, 3, . . .

The result of iterated birectangular compositions of the initial pair (a, c)
with the factor (a, c) can then be interpreted as formal powers of (a, c):

42. The oldest documented use of this kind of formal multiplication can be found in
Brahmagupta,Bss XVIII.65-66  (Colebrooke, AAMS (1973), 363). See also, for instance,
Weil, NTATH (1984), § IX.)
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(dn, sn) = (a, c)n, n = 1, 2, ···.

Take, for instance, the case when D = 2. Then

(a, c) = (1, 1),    (1, 1)2 = (1, 1) · (1, 1) = (3, 2),    (1, 1)3 = (1, 1) · (3, 2) = (7, 5),etc.

In this case, it follows from the equation

sq. dn +1 – sq. sn +1 · 2 = sq. sn · 2 – sq. dn for all n

that (in a deliberately anachronistic notation)

sq. dn – sq. sn · 2 = rn   where rn = – 1 when n is odd, but rn = +1 when n is even.

The result can be expressed in a concise way by expanding the number
pairs (dn, sn) to number triples (dn, sn; rn). Thus, whenD = 2:

(d1, s1; r1) = (1, 1; – 1),    (1, 1; – 1)2 = (3, 2; 1),   (1, 1; – 1)3 = (7, 5; – 1), etc.

The situation in the case when, as in Fig. 15.4.2 above,

sq. c = sq. a · D +1,   D = sq. d

is perfectly parallel, except that c and a change place, and 

sq. dn +1 – sq. sn +1 · D = sq. dn – sq. sn · D    so that rn = 1 for all n.

Therefore, in this case, 

(d1, s1; r1) = (c, a; 1),   (dn +1, sn +1; 1) = (c, a; 1) · (dn, sn; 1) for all n,

and consequently

(dn, sn; 1) = (c, a; 1)n, n = 1, 2, · · · .

WhenD = 3, for instance, (Fig. 15.4.1 above):

(d1, s1; r1) = (2, 1; 1),   (2, 1; 1)2 = (7, 4; 1), (2, 1; 1)3 = (26, 15; 1), etc.

Therefore, the “first”, “second”, and “third” approximations to sqs. 3 are

2/1 = 2,    7/4 = 1 1/2 1/4,   and    26/15 = 1 2/3 1/15.

The corresponding errors are

sq. 2 – 3 = 1,    sq. 7/4 – 3 = sq. 1/4,    sq. 26/15 – 3 = sq. 1/15.

The case when D = 6 is only slightly more complicated:

(d1, s1; r1) = (5, 2; 1),   (5, 2; 1)2 = (49, 20; 1), (5, 2; 1)3 = (485, 198; 1), etc.

Thus, the first, second, and third approximations to sqs. 6are

5/2 = 2 1/2,    49/20 = 2 1/3 1/10 1/60,  and    485/198 = 2 1/3 1/9 1/198.

The corresponding errors are

sq. 5/2 – 6 = sq. 1/2,    sq. 49/20 – 6 = sq. 1/20,    sq. 485/198 – 6 = sq. 1/198.

Similarly in the case when D = 7:



16.3. A New Explanation of Heron’s Accurate Square Side Rule 389

(d1, s1; r1) = (8, 3; 1),   (8, 3; 1)2 = (127, 48; 1), (8, 3; 1)3 = (2024, 765; 1), etc.

Therefore, the first, second, and third approximations to sqs. 7 are

8/3 = 2 2/3,    127/48 = 2 1/2 1/8 1/48,    2024/765 = 2 1/2 1/9 1/30 1/765.

It should be obvious by now what the respective errors are in this case.

The case when D = 15 is just as simple as the case when D = 3:

(d1, s1; r1) = (4, 1; 1),   (4, 1; 1)2 = (31, 8; 1), (4, 1; 1)3 = (244, 63; 1), etc.

Therefore, the first, second, and third approximations to sqs. 15 are

4/1 = 4,   31/8 = 3 1/2 1/4 1/8,    and244/63 = 3 5/6 1/42 1/63.

Note that all the mentioned approximations to sqs. 3, sqs. 6, sqs. 7, and
sqs. 15 are from above.

The special examples 41-45 of Heronic square side approximations
considered by Hofmann (op. cit.), can now be explained as follows, all in
terms of third approximations:

41 sqs. 3 =  1 2/3 1/15 (= 26/15)

42 sqs. 135 =   3 · sqs. 15 = 3 · 3 5/6 1/42 1/63 = 11 1/2 1/14 1/21 Geom. 15.4

43 sqs. 216 =   6 · sqs. 6 =   6 · 2 1/3 1/9 1/198 = 14 2/3 1/33 Geom. 16.34

44 sqs. 1575 = 15 · sqs. 7 = 15 · 2 1/2 1/9 1/30 1/765 = 39 2/3 1/51 Geom. 15.11

45 sqs. 6300 = 30 · sqs. 7 =  30 · 2 1/2 1/9 1/30 1/765 = 79 1/3 1/34 1/102Geom. 15.10

Note that in Heron’s work accurate expressions for sqs. 3 appear on
three occasions in connection with equilateral triangles, namely

Aequil. tr. = 1/3 1/10 · sq. s    (1/4 · sqs. 3 = 1/4 · 26/15 = 13/30) Geom. 10.1

hequil. tr = s – 1/10 1/30 · s (1/2 sqs. 3 = 1/2 · 26/15= 26/30) Geom. 10.3

when s = 30: hequil. tr = sqs. (900 – 900/4) = sqs. 675 = 15 · 26/15 = 26 Geom. 10.12

Hofmann’s explanation of the five special cases 41-45 is related in the
following way to the explanation above in terms of third approximations:

D = sq. c – 1

Ç   (d1, s1; r1) = (c, 1; 1),

       (d2, s2; r2) = (c, 1; 1)2 = (sq. c + D, 2 c; 1) = (2 sq. c – 1, 2 c; 1)

       (d3, s3; r3) = (c, 1; 1)3 = (c · (2 sq. c – 1) + 2 c · D, 1 · (2 sq. c – 1) + c · 2 c; 1) 

               = (4 cu. c – 3 c, 4 sq. c – 1; 1).

Consequently, if D = sq. c – 1, the first, second and third approximations
to sqs. D are, in agreement with Hofmann’s explanation,

d1/ s1 = c,
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d2/ s2 = (2 sq. c – 1)/(2 c) = c – 1/(2 c),

d3/ s3 = (4 cu. c – 3 c)/(4 sq. c – 1) = c – 1/{2 c – 1/(2 c)}.

Note, however, that in order to be able to make use of his explanation, Hof-
mann did not consider the simple cases D = 6 and D = 7 in his special ex-
amples 43-45, but instead D = 4 · 6 = 24 and D = 9 · 7 = 63.

16.4. Third Approximations in Ptolemy’s Syntaxis I.10

The preliminaries to the Table of Chords in Book I.10 of Ptolemy’s
Syntaxis or the Almagest (150) include the computation of the side of a
regular polygon inscribed in a circle, expressed as a multiple of the 120th
part of the diameter of the circle, when the regular polygon in question has
10, 5, 6, 4, or 3 sides. (This is equivalent to computing the chords of 36˚,
72˚, 60˚, 90˚, and 120˚. See Heath, HGM 2 (1921), 276-278.)

In all these cases, except the case of the hexagon, a crucial step in the
procedure is to find a very accurate approximation to the square side of a
small integer, namely 5 in the case of the decagon and the pentagon, 2 in
the case of the square, and 3 in the case of the equilateral triangle. A close
look at the approximations to these square sides actually appearing in
Syntaxis I:10 reveals that they were probably computed, just like Heron’s
accurate square side approximations, as third approximations, however
with departure from good first approximations. The approximations men-
tioned by Ptolemy are:

1   sqs. 7200 = 60 sqs. 2 = 84;51 10

2   sqs. 10800 = 60 sqs. 3 = 103;55 23 

3   sqs. 4500 = 30 sqs. 5 = 67;04 55

These approximations can be explained as follows:

sqs. 2:   (17, 12; 1)2 = (sq. 17 + sq. 12 · 2, 2 · 17 · 12; 1 · 1) = (577, 408; 1),

(17, 12; 1)3 = (577 · 17 + 408 · 12 · 2, 577 · 12 + 408 · 17; 1 · 1) = (19601, 13860; 1)

60 · sqs. 2 = 19601/231 = 84 197/231 = 84 51/60 13/4620 = appr. 84;51 10

sqs. 3:  (7, 4; 1)2 = (sq. 7 + sq. 4 · 3, 2 · 7 · 4; 1 · 1) = (97, 56; 1)

   (7, 4; 1)3 = (97 · 7 + 56 · 4 · 3, 97 · 4 + 56 · 7; 1 · 1) = (1351, 780; 1)

60 · sqs. 3 = 1351/13 = 103 12/13 = 103 55/60 1/156 = appr. 103;55 23

sqs. 5:  (9, 4; 1)2 = (sq. 9 + sq. 4 · 5, 2 · 9 · 4; 1 · 1) = (161, 72; 1)

(9, 4; 1)3 = (161 · 9 + 72 · 4 · 5, 161 · 4 + 72 · 9; 1 · 1) = (2889, 1292; 1)
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60 · sqs. 5 = 67 53/646 = 67 4/60 149/9690 = appr. 67;04 55

Remark. Ptolemy’s computation of sqs. 4500 is explained in the
commentary to the Almagest by Theon of Alexandria (380) by use of a
geometric diagram (see Heath, HGM 2, 60-63). Theon’s method is based
on sexagesimal place value notation and iteration. It is interesting that a
close parallel to this method may have been used in scribe schools in Me-
sopotamia in the Old Akkadian period, 500 years before the time of the OB
mathematical cuneiform texts. See Friberg, CDLJ (2005/2), Fig. 14.

16.5. The General Case of Formal Multiplications

In the preceding section, formal multiplications were considered with
factors of the form (p, q; – 1) or (p, q; 1). It was shown that these two kinds
of formal multiplications can be used to construct sequences of increasing-
ly accurate approximations to the square side of D, when either sq. p =
sq.q · D – 1 (Fig. 15.3.1) or sq. p = sq. q · D + 1 (Fig. 15.4.2).

It is possible to modify the diagrams in Figs. 15.3.1 and 15.3.2 so that
they cover also the more general cases of formal multiplications with fac-
tors of the form (p, q; - r) or (p, q; + r). This is done, in the first of the two
cases, in Fig. 16.5.1 below. 

Fig. 16.5.1.  Formal multiplication in a more general case.

The result can be formulated as the rule43 that

(p, q; - r) · (m, n; s) = (p m + q n · D, q m + p n; – r s).

43. Actually Brahmagupta’s rule (Bss XVIII.65-66  (Colebrooke, AAMS (1973), 363)).
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In the second case, the following rule can be verified in a similar way:

(p, q; r) · (m, n; s) = (p m + q n · D, q m + p n; r s).

It follows from this second rule that, in particular,

(m, n; s)2 = (sq. m + sq. n · D, 2 m n; sq. s).

Therefore, there is a simple connection between Heron’s square side rule
in Metrica I. 8 and formal multiplication with regard to D. Indeed,

(m/n + D · n/m)/2 =(sq. m + sq. n · D)/(2 m n).

This means that, for any given initial approximation m/n to sqs. D the im-
proved approximation to sqs. D given by Heron’s square side rule coin-
cides with the “second” approximation yielded by formal multiplication.
Note, by the way than an iterated application of Heron’s square side rule
yields not the “third” but the “fourth” approximation.

Note also that it is easy to see that

sq. (sq. m + sq. n · D) – sq. (2 m n) · D = sq. (sq. m – sq. n · D),

which is another way of proving that (m, n; s)2 = (sq. m + sq. n · D, 2 m n; sq. s).

16.6. A New Explanation of the Archimedian Estimates for Sqs. 3

In the proof of Proposition 3 in Archimedes’ Measurement of the
Circle, the arguments are based on the following precise lower and upper
bounds for sqs. 3, or, more precisely, for the ratio of the diameter of a circle
to the side of a circumscribed hexagon:

265/153 < sqs. 3 < 1351/780.

Archimedes says nothing about the origin of these very accurate estimates.
Many different explanations have been proposed by various authors in the
course of more than a century. The difficulty is to reach a consensus about
which of these explanations is the one that has the greatest chance of being
historically correct. In HGM 2(1921), 51, Heath writes:

“How did Archimedes arrive at these particular approximations? No puzzle has 
exercised more fascination upon writers interested in the history of mathematics.” 

More than fifty years later the matter was still not settled. In AHES 15
(1975/76), Knorr writes: 

“These values have stimulated a massive scholarly commentary.” 

The answer to the question proposed below, a further development of the
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answer proposed by Knorr (op. cit.), has the advantage of linking
Archimedes’ estimates to Heron’s second square side rule, as well as to
Ptolemy’s accurate approximations to the square sides of 2, 3, and 5.

Knorr begins his discussion of Archimedes’ estimates with the obser-
vation that a side and diagonal numbers sequence for the square side of 3
is generated by the formula

dn +1 = dn + 3 sn,   sn +1 = dn + sn,   d1 = 2, s1 = 1.

From the terms of this sequence can be obtained the approximations

sqs. 3 = 2/1, 5/3, 14/8 = 7/4, 19/11, 52/30 = 26/15, 71/41, 194/112 = 97/56, 265/153, etc.

The eighth term of the sequence is Archimedes’ lower estimate, and the
eleventh term is his upper estimate. This does not sound right, so Knorr
proposes a revised sequence with fewer terms. His point of departure is
that 5/3 is a lower estimate for sqs. 3 and that 3/(5/3) = 9/5 is a correspond-
ing upper estimate. Therefore, he introduces the following modified side
and diagonal numbers sequence, making use of a weighted average:

dn +1= 9 sn + 5 dn, sn +1 = 5 sn + 3 dn,   d1 = 5, s1 = 3.

The resulting sequence of lower and upper estimates is

5/3, 52/30 = 26/15, 265/153, 2702/1560 = 1351/780.

Thus, in this revised sequence, the third and fourth terms coincide with
Archimedes’ estimates, which sounds convincing.

In terms of formal multiplications with regard to D = 3, Knorr’s analy-
sis can be explained as follows: Knorr’s first sequence actually starts with
the lower estimate 1/1, so that, more correctly, Archimedes’ estimates are
theninth and twelfth terms of the sequence, namely

(1, 1; – 2)9   and   (1,1; – 2)12.

The terms of Knorr’s modified side and diagonal numbers sequence are

(1, 1; – 2)3n = (5, 3; – 2)n, n = 1, 2, · · · .

Note that here, for instance,

(5, 3; – 2)2 = (5 · 5 + 3 · 3 · 3, 2 · 5 · 3; 4) = (52, 30; 4) = (26, 15; 1).

The transformation of (52, 30; 4) into (26, 15; 1) is a way of exploiting the
circumstance that, through elimination of the square factor 4,

sq. 52 – sq. 30 · 3 = 4 Ç  sq. 26 – sq. 15 · 3 = 1.

A similar transformation is needed for every second term of the sequence.



394 Amazing Traces of a Babylonian Origin in Greek Mathematics

Knorr’s explanation can be refined in the following way (Friberg, BaM
28 (1997), Sec. 9 d): Assume that Archimedes started with the OB stan-
dard approximation to the square side of 3, which was 7/4 (= 1;45). He
could then easily obtain the following improved estimates:

(7, 4; 1)2 = (7 · 7 + 4 · 4 · 4, 2 · 7 · 4; 1) = (97, 56; 1),   and
(7, 4; 1)3 = (97 · 7 + 56 · 4 · 3, 97 · 4 + 56 · 7; 1) = (1351, 780; 1).

Therefore, Archimedes can have been obtained his upper estimate of sqs. 3
as the third approximation when starting with the upper estimate 7/4.

To get an accurate lower estimate, Archimedes would have to start with
a relatively accurate lower estimate. As such he could choose 5/3, from
which he could derive the following improved estimates:

(5, 3; – 2)2 = (5 · 5 + 3 · 3 · 3, 2 · 5 · 3; 4) = (52, 30; 4) = (26, 15; 1),   and
(5, 3; – 2)3 = (26 · 5 + 15 · 3 · 3, 26 · 3 + 15 · 5; 1 · - 2) = (265, 153; – 2).

Therefore, Archimedes can have been obtained his lower estimate of sqs. 3
as the third approximation when starting with the lower estimate 5/3.

Remember, by the way, that one or several applications of Heron’s
(first) square side rule will only lead to upper estimates of the square side.
Note also that Archimedes’ upper estimate coincides with the accurate
approximation to sqs. 3 used in Ptolemy’s Syntaxis I.10! (Sec. 16.4 above.)

16.7. Examples of Babylonian Square Side Approximations

The additive and subtractive square side rules

The Demotic mathematical papyrusP.BM 1 0 5 2 0(Early Roman?) con-
tains a couple of exercises with explicit examples of the application of a
method for the approximate computation of square sides. (Cf. Friberg, UL
(2005), Sec. 3.3 f.) One of them is reproduced below.

P.BM 1 0 5 2 0 § 6 a (Parker,DMP (1972) # 62). 

Let 10 be reduced to its square side.
You shall count 3 3 times, result 9, remainder 1. (Its) 2', result 2'.
You let 2' make part of 3, result 6'.
You add 6' to 3, result 3 6'. It is the square side.
Let it be known, namely:
You shall count 3 6', 3 6' times, result 10 36.
Its difference of square side 36.
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The computations in this exercise can be explained as follows:

1) sqs. 10 = sqs. (sq. 3 + 1) = appr. 3 + (1/2)/3 = 3 1/6.
2) Check: sq. 3 1/6 = 10 1/36. Error: 1/36.

Apparently, the rule in its general form was 

sqs. (sq. s + R) = appr. s + R/(2 s).

This is Heron’s square side rule (Sec. 16.1) in another form. Indeed,

sqs.D = appr. s,   D = sq. s + R (R> 0)
Ç   (s + D/s)/2 = (sq. s + D)/(2 s) = (2 sq. s + R)/(2 s) = s + R/(2 s).

The rule in this form presumes that the given approximation s is a lower
estimate for sqs. D. It may be called the “additive square side rule”. An in-
dependent, metric algebra derivation of this rule is shown in Fig. 16.7.1:

Fig. 16.7.1.  A metric algebra proof of the additive square side rule.

The diagram shows that the improved approximation is an upper estimate
for the square side.

There is also a corresponding “subtractive square side rule” with a sim-
ilar metric algebra proof. This rule, another reformulation of Heron’
square side rule, presumes that the given approximation u is an upper es-
timate for sqs. D. Note that 

sqs.D = appr. u,   D = sq. u – R (R> 0)
Ç   (u + D/u)/2 = (sq. u + D)/(2 u) = (2 sq. u – R)/(2 u) = u – R/(2 u).

There is no known Babylonian mathematical text with an explicit for-
mulation of a square side rule. However, since computations with squares
and rectangles are much more common in Babylonian mathematics than
computations with circles, it is likely that the square side rule used in
Babylonian mathematics was the additive/subtractive square side rule
(Fig. 16.7.1) rather than Heron’s square side rule (Fig. 16.1.1).

sq.s s
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sq.s

R/2

R
/2

R/s p

R

D = sq.s + R

D = sq.(s + p) – sq.p

p = R/(2 s)
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sqs.D = appr.  s + R/(2 s)
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Late and Old Babylonian approximations to sqs. 2

A moderately good approximation to sqs. 2 appears in the following
isolated exercise in the Late Babylonian mixed problem text AO 6484
(Neugebauer,MKT 1 (1935), 98; Thureau-Dangin, TMB (1938) 158):

AO 6484 § 8, literal translation explanation

The great divider of an equalside,10 cubits. The diagonal d of a square is 10 c.
The length of the equalside is what? The side s = ?
10 · 42 30 go, it is 7 05, the length. d · ;42 30 = s
7 05 · 1 25 go, it is 10 25, the great divider. s · 1;25 = d

In this exercise, the length of the diagonal of a square is given, d = 10
cubits. The side of the square is computed as ‘42 30’ times the diagonal.
The constant has to be interpreted as 

1/(sqs. 2) = 1/2 · sqs. 2 = appr. ;42 30.

The obtained result is that the side is 7;05 cubits. This value, in its turn, is
multiplied by the constant ‘1 25’ in order to retrieve the length of the diag-
onal. The constant ‘1 25’ must therefore be interpreted as 

sqs. 2 = appr. 1;25   with sq. 1;25 = 2;00 25 (= 2 1/144).

An approximation like this may, of course, have been obtained by trial and
error, but it is also possible that it was obtained through a combined appli-
cation of the additive and subtractive square side rules. Indeed,

1)   sqs. 2 = sqs. (sq.1 + 1) = appr.  1 + 1/2 = 1;30 (= 3/2),      withsq.1;30 = 2;15
2)   sqs. 2 = sqs. (sq.1;30 – ;15) = appr. 1;30 – ;15/3 = 1;30 – ;05 = 1;25 (= 17/12)

A famous example of an Old Babylonian text with an accurate square
side approximation is YBC 7289 (Neugebauer and Sachs, MCT (1945),
42), a round hand tablet showing a square with the side 30. Along the di-
agonal of the square are inscribed the numbers ‘1 24 51 10’ and ‘42 25 35’.
These numbers can be interpreted as 

sqs. 2 = 1;24 51 10   with   sq. 1;24 51 10 = 1;59 59 59 38 01 40

and

1/(sqs. 2) = 1/2 · sqs. 2 = appr. 1;24 51 10/2 = ;42 25 35.

The two approximations 1;25 and 1;24 51 10 to sqs. 2 are mentioned in
two OB tables of constants (BR = TMS 3, NSe = YBC 7243), in the fol-
lowing way:
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1 25 constant of the diagonal of a square BR 31
1 24 51 10 the diagonal of an equalside NSe 10

It is interesting that 1;24 51 10 is the same accurate approximation to sqs. 2
as the one used in Ptolemy’s Syntaxis I.10! Indeed, it was shown in Sec.
16. 4 above that Ptolemy’s approximation can be obtained as follows:

(17, 12;1)3 = (19601, 13860; 1)    which gives the third approximation
60 · sqs, 2 = 60 · 19601/13860 = 19601/231 = appr. 84;51 10.

The corresponding accurate approximation to sqs. 2 is

sqs. 2 = 84;51 10 / 60 = 1;24 51 10.

Fig. 16.7.2.  YBC 7289. An OB hand tablet with an accurate approximation to sqs. 2.

Late and Old Babylonian approximations to sqs. 3

In the Late Babylonian mathematical text W 23291 § 4 b (see Sec. 7.7
above), a computation rule for equilateral triangles is stated as follows:

1 peg-head-field, equilateral, the one with the 8th torn out.
Stroke steps of ditto, and steps of 26 15 go.

This abstract rule is accompanied by a numerical example and a diagram
showing a triangle with the sides given as ‘1’ and the height as ‘52 30’.

What the rule means is that in an equilateral triangle with the side s, the
heighth and the area A can be computed as follows:

h = s – 1/8 · s = (1 – 1/8) · s = ;52 30 · s   and
A = h · s/2 = ;26 15 · sq. s.

Evidently, this rule is based on the following series of approximations:

sqs. 3 = 1;45 (= 7/4),  1/2 · sqs. 3 = ;52 30 (= 7/8),   1/4 · sqs. 3 = ;26 15 (= 7/16).

In the next exercise, W 23291 § 4 c, a more accurate computation rule
for equilateral triangles is stated in the following form:

1 2˚4   5˚1 1˚

4˚  2   2˚ 5 3˚ 5

3˚
obv.
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1 peg-head-field, equilateral, that with a 10th and a 30th torn off.
Stroke steps of ditto, and steps of 26 go.

Here, obviously,

h = s – 1/10 1/30 · s = (1 – 1/10 1/30) · s = (1 – ;08) · s = ;52· s   and
A = h · s/2 = ;26 · sq. s.

The rule is based on the following series of accurate approximations:

sqs. 3 = 1;45 (= 26/15),  1/2 · sqs. 3 = ;52 (= 26/30),   1/4 · sqs. 3 = ;26 (= 26/60).

These are the same accurate approximations as the ones used in the
pseudo-HeronicGeometrica, which can be obtained as third approxima-
tions, starting with 2/1! What is particularly surprising is that this is the
only known example of the use in a Babylonian text of a sum of parts such
as 1/10 1/30. What is even more surprising is that precisely the same rather
weird expression for the height, h = s – 1/10 1/30 · s, reappears in the
pseudo-HeronicGeometrica 10:3! (See the end of Sec. 16.3 above.)

The continuity of the Babylonian mathematical tradition is demonstrat-
ed by the fact that the following constants for an equilateral triangle appear
in an OB table of constants (G = IM 52916; Robson, MMTC (1999), 40):

A peg-head, the one with the eighth torn out, 26 15 its constant G rev. 7
The transversal of the triangle, 52 30 its constant G rev. 8

Thus here, just as in W 23291 § 4 b, the height of an equilateral triangle is
given as h = (1 – 1/8) · s, expressed with an almost identical phrase!

The same rule for the computation of the height of an equilateral trian-
gle appears also in the Kassite (post-OB) mathematical text MS 3876, in
which the weight is computed of an icosahedron built of 20 equilateral tri-
angles (called ‘gaming-pieces’) made of 1 finger thick copper sheets. In
that text, the area of each one of the 20 equilateral triangles is computed as
follows, in preparation for the computation of its volume:

MS 3876 # 3 (Friberg,RC (2007), Sec. 11.3)

If 3 cubits each a gaming-piece is equalsided, the volume (is) what?
Half (of) 15, the front, break, then 7 30.
7 30 steps of 15, the second front, 1 52 30, halved. 14 03 45, its eighth tear off, then
1 38 26 15 (is) the ground (of) one gaming-piece-field that you see.

Here, the area of an equilateral triangle with the side 3 cubits = ;15 ninda
is computed in the following steps:
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1 s/2 · s = ;07 30 n. · ;15 n. = ;01 52 30 sq. n.
2    1/8 · s/2 · s = 1/8 · ;01 52 30 = ;00 14 03 45 sq. n
3 s/2 · s – 1/8 · s/2 · s = ;01 52 30 sq. n – ;00 14 03 45 sq. n. = ;01 38 26 15 sq. n.

A Late Babylonian approximation to sqs. 5

W 23291§ 4 a in the same Late Babylonian text where §§ 4 b and 4 c
are based on two different approximations to sqs. 3, is devoted to the com-
putation of the area of a symmetric triangle with the base and the height
both equal to ‘1’ (actually 1 00 ninda). The exercise is illustrated by a
diagram showing a symmetric triangle, with the length of each sloping side
given as 1 07 ninda 2', that is as 1 07;30 ninda.This length can have been
computed in the following way:

sqs. (sq. 1 00 + sq. 30) = 30 · sqs. (sq. 2 + sq. 1) = 30 · sqs. 5 = 30 · 2;15 = 1 07;30.

The approximation to sqs. 5 apparently used in this computation is

sqs. 5 = 2;15 (= 9/4),

a value resulting from an application of the additive square side rule.

Note that the Babylonian approximations to the square sides of 2, 3, and
5, namely 1;25 = 12/17, 1;45 = 7/4, and 2;15 = 9/4 were the points of
departure for Ptolemy’s accurate approximations (17, 12; 1)3, (7, 4; 1)3,
and (9, 4; 1)3, while the OB accurate approximation to sqs. 2 was the same
as Ptolemy’s accurate approximation. (See Sec. 16.4 above.)

Late and Old Babylonian exact computations of square sides

In the Seleucid (late Late Babylonian) series of igi-igi.bi problems AO
6484 § 7 a-d (see Sec. 1.13 above), the following square sides of many-
place sexagesimal numbers are mentioned:

sqs. 33 20 04 37 46 40 = 44 43 20 § 7 a
sqs. 3 02 15 = 13 30 § 7 b
sqs. 5 34 04 37 46 40 = 18 16 40 § 7 c
sqs. 15 00 56 15 = 3 52 30 § 7 d

These square sides can have been computed as shown below (in relative
values), by use of the OB additive/subtractive square side rule:

33 20 = appr. 33 45 = sq. 45,   33 20 = sq. 45 – 25 § 7 a
sqs. 33 20 = appr. 45 – 25/(2 · 45) = 45 – 5/18 = 45 – 16 40 = 44 43 20
sq. 44 43 20 = 33 20 04 37 46 40   (the exact answer)
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5 34 = appr. sq. 18 = 5 24,   5 34 = sq. 18 + 10 § 7 c
sqs. 5 34 = appr. 18 + 10/(2 · 18) = 18 + 5/18 = 18 + 16 40 = 18 16 40
sq. 18 16 40 = 5 34 04 37 46 40   (the exact answer)

The two examples show how seemingly difficult computations of square
sides of given many-place sexagesimal numbers are actually simpler than
expected when the given numbers are perfect squares.

It is easy to find similar examples of computations of square sides of
many-place sexagesimal numbers that are actually perfect squares in OB
mathematical texts. One such example can be found in TMS 20 (Bruins
and Rutten (1961)). In TMS 20, a quadratic equation is set up for the area
A, the length a, and the divider (transversal) d of a ‘lyre-window’ (cf. Fig.
6.2.6 above). The equation is

A + a + d = B = 1 16 40.

Inserting the constants for the lyre-window, as in Fig. 6.2.6, one gets:

cA · sq. a + a + cd · a = 26 40 · sq. a + (1 + 1 20) · a = B = 1 16 40.

In the solution procedure for this quadratic equation, the need arises to find
the square side of 

cA · B + sq. (1 + cd)/2 = 1 55 44 26 40.

The indicated square side 1 23 20 of 1 55 44 26 40 can have been computed
in the following way, using sexagesimal relative place value notation:

1 55 44 26 40 = 20 · 20 · 17 21 40,   17 21 40 = sqs. 4 + 1 21 40
sqs. 17 21 40 = appr. 4(00) + 1 21 40/8 (00) = appr. 4 10,   sq. 4 10 = 17 21 40
20 · 4 10 = 1 23 20   (the exact answer).

The example shows how the computation of square sides of given many-
place sexagesimal numbers is considerably simplified when it is possible
to find by inspection square factors of the given number.

The idea of first eliminating any obvious square factors from a given
many-place sexagesimal number before attempting to find the square side
is demonstrated explicitly by use of the example 

sqs. 26 00 15 = 30 · sqs. 1 44 01 = 30 · 1 19 = 39 30.

in the OB exercise IM 54472. See Muroi, HSc 9 (1999). The idea was ap-
parently routinely applied in OB mathematics. This is shown by 35 exam-
ples from 22 OB mathematical texts cited by Muroi (op. cit.).

The idea is demonstrated explicitly also by an example inscribed on the
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round hand tablet UET 6 / 2 222 from Ur (Robson, MMTC (1999), 252;
Friberg,RA 94 (2000), 108). The text on the reverse of UET 6/2 222 is
organized as a table with seven rows and three columns:

1 03 45
1 03 45

15 1 07 44 03 45 16
15 18 03 45 16
17 4 49

3 45
1 03 45

In the first three rows of UET 6/2 222 rev.are inscribed two copies of
the number n = 1 03 45, followed by their product, the square of 1 03 45:

sq. 1 03 45 = 1 07 44 03 45.

In the next four lines of the table, the square side of 1 07 44 03 45 is com-
puted by use of a factorization algorithm based on the properties of sexag-
esimal numbers in Babylonian relative (floating) place value notation. 

Fig. 16.7.3.UET 6/2 222 rev. A square side algorithm using elimination of square factors.

The first step of the algorithm exploits the fact that the “trailing part”
of the given number 1 07 44 03 45 is 3 45 = sq. 15, which is the reciprocal
of 16 = sq. 4, in the sense that 3 45 · 16 = 1 (times some power of 60). Now,
if a sexagesimal number ends with 03 45, the whole number contains 3 45
as a factor. In the present case, for instance,

1 07 44 03 45 / 3 45 = (1 07 44 · 1 00 00 + 3 45) / 3 45 = 1 07 44 · 16 + 1
                                 = 18 03 44 + 1 = 18 03 45.

Therefore, the meaning of line 3 of the table is that if 1 07 44 03 45 is mul-

1     3 4˚5
1     3 4˚5

1˚5

1˚5

1˚7
4  4˚ 9

3  4˚5

1   3  4˚5

rev.

1 7 4˚ 4 3 4˚5 1˚6

 1˚ 8      3    4˚  5  1˚6
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tiplied by 16 (written to the right) then the factor 3 45 is eliminated, and
simultaneously the factor 15 (written to the left) is eliminated from the
square side of 1 07 44 03 45. The number 18 03 45 remaining after the
elimination of the factor 3 45 is written in the middle of line 4 of the table.
The process is repeated, and the result after the removal of another factor
3 45 is the number 4 49, which is written in the middle of line 5. Since the
square side of 4 49 is 17, the number 17 is written to the left in line 5. 

Now, finally, sqs. 1 07 44 03 45 is computed in lines 5-6 as follows:

15 · 15 = 3 45,   3 45 · 17 = 1 03 45.

A beautiful example of the probable application of a factorization
method of this kind is offered by the amazing OB problem text TMS 19b
(Høyrup,LWS (2002), 194), where the sides u, s and the diagonal d of a
rectangle are required to satisfy the following system of equations:

u · s = A = 20,   sq. u · u · d = B = 14 48 53 20.

The solution procedure in the text for this highly unusual system of equa-
tions can be explained as follows:

sq.B = sq. (sq. u · u · d) = sq. sq. u · sq. u · sq. d
         = sq. sq. u · sq. u · (sq. u + sq. s) = sq. sq. u · (sq. sq. u + sq. (u · s)).

Therefore, the given system of equations can be reduced to the following
quadratic equation for a new unknown a:

sq.a + sq. A · a = sq. B, a = sq. sq. u.

This quadratic equation is solved in the usual way, beginning with44

sq. (a + 1/2 · sq. A) = sq. B + sq. (1/2 · sq. A) = 3 39 28 43 27 24 26 40 + 11 06 40
                               = 3 50 35 23 27 24 26 40.

The square side of the 8-place sexagesimal number 3 50 35 23 27 24 46 40
is given in the text as 15 11 06 40, without any indication of how this result
was obtained. It is likely, however, that the square side was found without
trouble through an application of the same factorization technique as the
one in UET 6/2 222. Indeed, 15 11 06 40 = 20 · 20 · 20 · 10 · 41, so that

3 50 35 23 27 24 26 40 = sq. 20 · sq. 20 · sq. 20 · sq. 10 · sq. 41.

Another beautiful example of the application of the same factorization

44. The reader can find a discussion of the many interesting copying or calculation errors
in this text in Høyrup (op. cit.), footnotes 222-235. The errors are corrected here.
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technique is given by the round hand tablet Ist. Si. 428 from Sippar
(Friberg,RlA 7 (1990), Sec. 5.3 a). There the square side of 2 02 02 02 05
05 04 is computed by use of the factorization method, as follows:

Fig. 16.7.4.  Ist. Si. 428. Computation of the square side of  2 02 02 02 05 05 04.

1.   2 02 02 02 05 05 04 = 4 · 30 30 30 31 16 16
2.   30 30 30 31 16 16 = 16 · 1 54 24 24 27 16
3.   1 54 24 24 27 16 = 16 · 7 09 01 31 42 15
4.   7 09 01 31 42 15 = 15 · 28 36 06 06 49
5.   sqs. 28 36 06 = sqs. (sq. 5 + 3 36 06) = appr. 5 + 21 = 5 21
6.   sqs. 28 36 06 06 49 = sqs. (sq. 5 21 – 1 15 53 11) = appr. 5 21 – 7 = 5 20 53
7.   sq. 5 20 53 = 28 36 06 06 49 (exactly)
8.   sqs. 2 02 02 02 05 05 04 = 2 · 4 · 4 · 30 · 5 20 53 = 1 25 34 08 (exactly)

Steps 5-6 are reconstructed here, since there is no explicit indication in
the text of how sqs. 28 36 06 06 49 was computed. 

How did the author of this problem find out in the first place that the
funny number 2 02 02 02 05 05 04 is a square number? He probably started
with the even funnier 7-place sexagesimal number 2 02 02 02 02 02 02 and
found by computation, in some way, that its 4-place square side is

    sqs. 2 02 02 02 02 02 02 = 1 25 34 08     (approximately).

Therefore, the author of Ist.Si. 428 may have found 1 25 34 08 as an
accurate 4-place approximation to  sqs. 2 02 02 02 02 02 02, and then used
this prior knowledge in order to construct for his students a surprisingly

obv.

2        2     2    2     5      5      4

3˚     3˚    3˚   3˚   1  1˚6   1˚ 6
1   5˚ 4   2˚4   2˚4   2˚7    1˚ 6 
7      9   1  3˚ 1   4˚  2     1˚ 5

1 2˚ 5 3˚ 4 8 ur ab.sì

5 2˚ 5˚ 3 íb.si8

2˚ 8 3˚ 6 6 6 4˚ 9 mi-nam íb.si8
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elegant problem with a funny number and an exact answer!
It is interesting to note that the construction of this exercise may have

been inspired by the observation that an accurate approximation to sqs. 2
is 1 24 51 10, where sq. 1;24 51 10 = 1;59 59 59 38 01 40. Therefore, 

sqs. 1 59 59 59 38 01 40 = 1 24 51 10.

Obviously, 2 02 02 02 05 05 04 and 1 59 59 59 38 10 40 are numbers of
the same kind. Both are 7-place sexagesimal numbers, both are exact
squares, and both are “funny numbers” in the sense that one of them con-
tains four sexagesimal places 02 in a row, while the other contains three
sexagesimal places 59 in a row.
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Chapter 17

Theodorus of Cyrene’s Irrationality Proof and 
Descending Infinite Chains of Birectangles

17.1.Theaetetus 147 C-D. Theodorus’ Metric Algebra Lesson

Below is reproduced a brief excerpt from Plato’s well known account
in the dialogue Theaetetusof a lesson given by Theodorus of Cyrene.
Cf. Knorr’s translation in EEE(1975), 62, which is followed by a detailed
discussion of several difficult words in the text.

“Theaet.: Theodorus drew something for us about powers, 
about the one of three feet and the one of five feet, 
demonstrating that these are not commensurable in length with the foot,
and selecting in this way each one separately up to the one of seventeen feet.
But in this, in some way, he ran into trouble.
Now, this is what occurred to us:
Since we recognized the powers to be unlimited in number, 
we might try to collect them under a single name,
by which we would designate all these powers.”

Here ‘power’ is a term for (geometric) square, a power of 3, 5, or 17 feet
is a square with the area 3, 5, or 17 square feet, and the statement that
‘these (powers) are not commensurable in length with the foot’ means that
the sides of these squares are not commensurable with a length of 1 foot. 

So, apparently, Theodorus gave a lesson in mathematics for Theaetetus
and his fellow students, demonstrating by use of diagrams that the sides of
squares with areas ranging from 3, and 5, all the way up to 17, square feet
(avoiding, of course, the trivial cases, 4, 9, and 16 square feet) are not com-
mensurable with the unit length of 1 foot. However, at 17 feet he could not
continue, for some unspecified reason.
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In the last part of the cited passage (and its continuation, which is omit-
ted here), Theaetetus seems to claim that he and some others managed to
do what Theodorus had been unable to do, namely to take care of the gen-
eral case of squares of N square feet for all non-square positive integers N.

All this is relatively easy to understand. There is only one obscure
point, although an extremely important one for any proposed interpretation
of the meaning of the whole passage. Did Theodorus have trouble with the
case of 17 square feet, or was he unable to continue beyond this case?

17.2. A Number-Theoretical Explanation of Theodorus’ Method

Knorr (EEE (1975), Sec. 3.5) is definitely of the opinion that the text
says that Theodorus could not handle the case of 17 square feet, and he has
found a quite ingenious explanation of how Theodorus may have rea-
soned.45 Knorr’s basic idea is to let the square side of N be represented by
the upright in a right triangle with the hypothenuse (N + 1)/2 and the base
(N – 1)/2, if N is odd, and by half the upright in a right triangle with the
hypothenuseN + 1 and the base N – 1, if N is even. Knorr also proves the
following crucial lemma of his own design (op. cit., 158):

If in a right triangle triple of integers the hypothenuse is even, then also the upright
and the base are even.

Four cases are considered by Knorr, op. cit., Chapter 6. The first case is:

N = 4 n + 3: Then (N + 1)/2 = 2 n + 2 and (N – 1)/2 = 2 n + 1. Assume that the
square side of N (square units) is commensurable with the unit, the rational ratio
between the two being, in its lowest terms, a : b. Then a is the upright of a right
triangle with the hypothenuse (2 n + 2) · b and the base (2 n + 1) · b. Here the
hypothenuse is even, so that also the upright a and the base (2 n + 1) · b are even.
Hence both a and b are even, which is a contradiction, since the ratio a : b is sup-
posed to be in its lowest terms. This means that the assumption was false, and
therefore the square side of N is not commensurable with the unit.

The remaining three cases are:

N = 8 n + 5, N = 4 n + 2,   and N = 4 n.

Also in these cases, the assumption that the square side and the unit length

45. In EEE, Chapter 4 Knorr has written a critical review of a series of earlier attempts to
explain Theodorus’ method. His conclusion is that they all fail to satisfy one or another of
several basic criteria he has set up for a successful explanation of the method.
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have a rational ratio leads to a contradiction. 
In this way, it can be proved that the square side is irrational when

N = 3, 7, 11, 15, 19, · · ·  (N = 4 n + 3)
N = 5, 13, 21, · · · (N = 8 n + 5)
N = 6, 10, 14, 18, · · · (N = 4 n + 2)
N = 8, 12, 20, · · · (N = 4 n)

This takes care of all non-square N strictly between 2 and 17. However, in
the case N = 17, the method proposed by Knorr does not work. This result
seems to confirm Knorr’s hypothesis that the method proposed by him is
also the method used by Theodorus and that Theodorus stopped at N = 17,
because he could not find a proof in that particular case.

17.3. An Anthyphairetic Explanation of Theodorus’ Method

Another way of explaining Theodorus’ method to prove the irrational-
ity of square sides is discussed by Knorr in EEE (1975), Sec. 4.3, following
in the steps of Zeuthen, OKDVSF (1910), Heath, HGM 1 (1981), 206-8,
and Heller, Centaurus 5 (1956). Here follows an account of Knorr’s expla-
nation, somewhat simplified and improved.

Fig. 17.3.1.  An anthyphairesis proof of the irrationality of sqs. (sq. n + 1).

Consider first the case when d = sqs. (sq. n + 1) for a positive integer n.
Draw a right triangle with the sides d, n, 1, and divide the right triangle into
a symmetric birectangle with the sides n, n, n a, n a and a right triangle
with the sides (d, n, 1) · a, as in Fig. 17.3.1 above. Apply the Euclidean

n

n  a d  a
1

n  a a

n

d

sq.n + 1 = sq. d = D

(for instanceD = 2, n = 1 or D = 5, n = 2)

d = n + a, 1 = n a + d  a

Ç

d – n · 1 = a,  1 – n · a = d a

Ç

1/a = n + d, d = n + 1/(n + d)

Ç

d = [n, 2 n]
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division algorithm (anthyphairesis) to the pair d, 1. As is evident from the
diagram in Fig. 17.3.1, the first couple of steps of the algorithm are

d – n · 1 = a,   1 – n · a = d a.

The next couple of steps are, similarly,

d · a – n · a = sq. a, n – n · sq. a = d sq.a.

And so on, forever. Therefore, d and 1 are incommensurable (El. X.2).
The argument is, of course, closely connected to the expansion of d into

acontinued fraction. This can be shown as follows:

d = n · 1 + a,   1 = n · a + d a Ç d = n + a,   1/a = n + d Ç d = n + 1/(n + d).

(The last equation above can also be proved algebraically, since it is a con-
sequence of an application of the conjugate rule to the left hand side of the
equation sq. d – sq. n = 1.) Now by substitution of the expression for d into
the expression itself it follows that

d = n + 1/(n + d) = n + 1/(2 n + 1/(n + d)) = · · · .

The substitution can be repeated any number of times. Therefore,
d = n + 1/(2 n + 1/(2 n + 1/(2 n + · · ·)) = [n, 2 n].

The case when d = sqs. (sq. n – 1) for a positive integer n can be
explained similarly, although it is somewhat more complicated:

Fig. 17.3.2.  An anthyphairesis proof of the irrationality of  sqs. (sq. n – 1).

Draw a right triangle with the sides n, d, 1, and divide the right triangle
into a symmetric birectangle with the sides d, d, d a, d a and a right triangle
with the sides (n, d, 1) · a, as in Fig. 17.3.2 above. Apply the Euclidean
division algorithm (anthyphairesis) to the pair d, 1. As is evident from the

d

d a n a
1

d a

a

d

n

sq.n – 1 = sq. d = D

(for instanceD = 3  andn = 2)

 n = d + a, 1 = n a + d a Ç

d = (n – 1) · 1 + (1 – a), 1 = 1 · (1 – a) + a,

(1 – a) = (n – 1) · a + d a Ç

1/(1 – a) = 1 + a/(1 – a),   (1 – a)/a = (n – 1) + d,

d = (n – 1) + 1/(1 + a/(1 – a))

   = (n – 1) + 1/(1 + 1/((n – 1) + d))

Ç d = [(n – 1), 1, 2 (n – 1)]
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diagram in Fig. 17.3.2, 

n = d + a   and   1 = n a + d a.

Therefore, the first three steps of the algorithm are

d = (n – 1) · 1 + (1 – a),   1 = 1 · (1 – a) + a,   (1 – a) = (n – 1) · a + d a.

(The middle step is trivially true.) The next three steps are similar. And so
on, forever. Therefore, d and 1 are incommensurable (El. X.2).

The argument is, in this case, too, closely connected to the expansion
of d into a continued fraction, which can be shown as follows:

d = (n – 1) · 1 + (1 – a),   1 = 1 · (1 – a) + a,   (1 – a) = (n – 1) · a + d a
Ç d = (n – 1) + (1 – a),  1/(1 – a) = 1 + a/(1 – a),   (1 – a)/a = (n – 1) + d
Ç d = (n – 1) + 1/(1 + a/(1 – a)) = (n – 1) + 1/(1 + 1/((n – 1) + d)).

Now by substitution of the expression for d into the expression itself it
follows that

d = (n – 1) + 1/(1 + 1/(2 (n – 1) + 1/(1 + 1/((n – 1) + d)))).

The substitution can be repeated any number of times. Therefore,

d = (n – 1) + 1/(1 + 1/(2 (n – 1) + 1/(1 + 1/((2 (n – 1) + ···)))) = [(n – 1), 1, 2 (n – 1)].

This anthyphairetic explanation of Theodorus’ method is completed as
follows (Knorr, op. cit., 124): 

“For any non-square integer M, integers p and q are to be found such that p2 M = q2 ± 1
(a relation frequently known as the Fermat-, or Pell-, equation). Having specified p and
q for a given M, the irrationality of P q2 ± 1 (whichever pertains) has been established
from the previous constructions. Hence, P p2 M is irrational; as this equals p PM, the
irrationality of M follows.”

17.4. A Metric Algebra Explanation of Theodorus’ Method

Ingenious as it is, Knorr’s number-theoretical/geometrical explanation
(Sec. 17.2 above) of the method used by Theodorus for his incommensu-
rability proof is not quite satisfactory, for the following reasons. First, a
method of this kind would be an isolated phenomenon in the corpus of
Greek mathematics. There are no known parallel or related methods.
Secondly, the mention of feet as units for area and length places Theo-
dorus’ method squarely in the same tradition as the pseudo-Heronic
Geometrica (ms SV) and Stereometrica (see Sec. 18.1 below). Since both
Geometrica and Stereometrica show clear signs of having been influenced
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by the Babylonian mathematical tradition, it is likely that also Theodorus’
irrationality proof was influenced by that tradition. 

Indeed, Plato’s account in Theaetetus 147 C-D may have been intended
to be a demonstration of how Greek-style mathematics, exemplified by
Theaetetus’ general proof of the irrationality of square sides (of non-
squares), was superior to Babylonian-style metric algebra, exemplified by
Theodorus’ attempted proof, which ran into difficulties.

It will be shown below how an alternative explanation of the method
used by Theodorus may be phrased in terms of a descending infinite chains
of birectangles, which means that Theodorus’ method of proof may have
been closely related to Theon of Smyrna’s side and diagonal numbers
algorithm, in the form in which it was explained in Secs. 15.3-4 above.

Fig. 17.4.1.  A metric algebra proof of the irrationality of sqs. D, when sq. p = sq. q · D – 1.

Consider the case when sq. p = sq. q · D – 1, D = sq. d, for some given
pair of positive integers p, q, and assume that the pair d, 1 is commensu-
rable. Then there exists another pair of integers d1, s1 such that 

d1 = s1 · d.

Now, construct a birectangle as in Fig. 15.3.1 above. Let the longer sides
of the birectangle be d1, s1 · d, and let the sides of a descending chain of
birectangles be determined by the recursive equations

dn +1 = q · sn · D – p · dn, sn +1 = q · dn – p · sn   for n = 1, 2, · · · .

See Fig. 17.4.1 above. Then

sq.d1 – sq. s1 · D = 0 Ç   sq. d2 – sq. s2 · D = 0 Ç   sq. d3 – sq. s3 · D = 0 Ç   · · ·

Consequently,

dn = sn · d   for n = 1, 2, · · · .

d 1

d2 d2

s 1
 · 

d

s
2  · d dn +1 = q · sn · D – p · dn

sn +1 = q · dn – p · sn

sq.s1 · D – sq. d1 = 0

Ç

sq.dn – sq. sn · D = 0  for n = 1, 2, ···

sq.p = sq. q · D – 1, D = sq. d

1

q ·
 dp
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This means that all the birectangles in the chain are symmetric birectan-
gles, similar to the first birectangle in the chain. Therefore, the chain goes
on forever, and the sides dn of the birectangles form an infinite strictly de-
creasing sequence of positive integers. Since this is impossible, the initial
assumption was incorrect. Therefore the pair d, 1 is not commensurable.

A similar argument holds also in the case when sq. p = sq. q · D + 1,
D = sq. d, for some given pair of positive integers c, a.

In the discussion below, it will be convenient to say that 

p/q is an “optimal approximation” to sqs. D when  sq. p = sq. q · D ± 1. 

The result obtained above can then be expressed in the following way:

sqs.D (D non-square) is irrational if there exists an optimal approximation p/q to sqs. D.

Since, for instance,

2 = sq. 1 + 1,   5 = sq. 2 + 1,   10 = sq. 3 + 1,   17 = sq. 4 + 1,

and
3 = sq. 2 – 1,   8 = sq. 3 – 1,   15 = sq. 4 – 1,

it follows immediately that 

the square sides of 2, 5, 10, 17 and 3, 8, 15 are irrational, 

and that the corresponding optimal approximations are 1/1, 2/1, 3/1, 4/1
and 2/1, 3/1, 4/1, respectively.

It is also clear that 

the square sides of 12 and 18 are irrational, 

since sqs. 12 = 2 · sqs 3 and sqs 18 = 3 · sqs. 2. 
Another group of cases can be taken care of as follows: Take, for

instance,D = 6. It is clear that sq. 2 = sq. 1 · 6 – 2. Now, in view of the
discussion in Sec. 16.5 above,

(2, 1; – 2)2 = (4 + 6, 2 · 2; 4) = (10, 4; 4) = (5, 2; 1)   whenD = 6.

Hence, sq. 5 = sq. 2 · 6 + 1, and 5/2 is an optimal approximation to sqs. 6. 
Generally, when sq. p = sq. q · D ± 2, so that therefore sq. p + sq. q · D

= 2 sq. q · D ± 2 is even, a similar argument shows that

(p, q; ± 2)2 = (sq. p + sq. q · D, 2 p · q; 4) = (sq. q · D ± 1, p · q; 1).

For instance, since sq. 3 = sq. 1 · 7 + 2, it follows that

(3, 1: 2)2 = (9 + 7, 2 · 3; 4) = (16, 6; 4) = (8, 3; 1)   whenD = 7.
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Hence, sq. 8 = sq. 3 · 7 + 1 and 8/3 is an optimal approximation to sqs. 7.
Therefore, it is convenient to say that

p/q is a “pre-optimal approximation” to sqs. D, when sq. p = sq. q · D ± 2. 

Then,

sqs.D is irrational if there exists a pre-optimal approximation p/q to sqs. D.

In particular,

the square sides of  6, 7, 11, 13, 14, 18 are irrational.

Now, consider instead the case D = 13, with sq. 3 = 13 – 4. Then,

(3, 1; - 4)2 = (9 + 13, 2 · 3; 16) = (22, 6; 16) = (11, 3; 4)   and

(3, 1; - 4)3 = (33 + 3 · 13, 9 + 11; – 16) = (72, 20; –16) = (36, 10; – 4) = (18, 5; – 1).

Thereforea couple of formal multiplications is enough to show that 

sq. 3 = 13 – 4Ç   sq. 11 = sq. 3 · 13 – 4Ç   sq. 18 = sq. 5 · 13 – 1.

This means that in this case the “third approximation” is optimal. 
Although it is not necessary, it can be shown also that 

(3, 1; - 4)6 = (18, 5; – 1)2 = (324 + 25 · 13, 2 · 18 · 5; 1) = (649, 180;1).

Compare the example above and Brahmagupta’s Bss XVIII.69  (Cole-
brooke,AAMS(1973), 365) is a rule saying, without a proof, that

if   sq. p = sq. q · D + 4,   then   sq. p* = sq. q* · D + 1, 

where

p* = (sq. p – 3)/2 · p  and q* = (sq. p – 1)/2 · q.

The rule is applied in Bss XVIII.70  to the case when  p = 4, q = 2, D = 3,
in which case p* = 26, q* = 15, and sq. 26 – sq. 15 · 3 = 1.46 (Cf. the ex-
planation in Sec. 16.3 above of Hofmann’s example 41: sqs. 3 = 26/15.)

Actually, the proof of the rule is easy, since,

(p*, q*; 1) = (p, q; 4)3.

A similar rule in Bss XVIII.71  says, without proof, that

if   sq. p – sq. q · D = – 4,   then   sq. p* – sq. q* · D = 1, 

where

p* = [(sq. p + 3) · (sq. p + 1)/2 – 1] · (sq. p + 2)  and 
q* = (sq. p + 3) · (sq. p + 1)/2 · p · p.

46. For a brief but informative account of Brahmagupta’s treatment of what he called the
“square-nature” equation  sq. p = sq. q · D + r, see Weil, NT (1984), 19-22. 
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The rule is applied in BssXVIII.72  to the case when  p = 3, q = 1, D = 13,
in which case p* = 649, q* = 180, and sq. 649 – sq. 180 · 13 = 1.

The rule can be proved by observing that, in this case,

(p*, q*; 1) = (p, q; – 4)6.

In view of these rules, it is convenient to say that 

p/q is a “pre-pre-optimal approximation” to D when sq. p = sq. q · D ± 4. 

If Theodorus used the metric algebra method outlined in this section (or
the related anthyphairetic/continued fraction method outlined in Sec. 17.3)
he apparently omitted the case D = 2, because it was already well known,
and he explained in some detail the two model cases D = 3 and D = 5 (“the
one of three feet and the one of five feet”), where sq. 2 = sq. 1 · 3 + 1, while
sq. 2 = sq. 1 · 5 – 1. Having done that, all that remained for him to do was
to show that he could find optimal approximations to the square sides of
all squares of D (square) feet, where D is any non-square positive integer.
He did not manage to do that, but it is possible that he showed how far he
had come by writing out for his students a tabular survey of (essentially)
the following kind:

D equation (p, q; r) appr. value of d type of appr.

 2 sq. 1 = 2 – 1 (1, 1; – 1) 1 optimal
 3 sq. 2 = 3 +1 (2, 1; 1) 2 optimal
 5 sq. 2 = 5 – 1 (2, 1; – 1) 2 optimal
 6 sq. 2 = 6 – 2 (2, 1; – 2) 2 pre-optimal

sq. 5 = sq. 2 · 6 + 1 (2, 1; – 2)2 = (5, 2; 1) 5/2 = 2 1/2    optimal
 7 sq. 3 = 7 + 2 (3, 1; 2) 3 pre-optimal

sq. 8 = sq. 3 · 7 + 1 (3, 1; 2)2 = (8, 3; 1) 8/3 = 2 2/3    optimal
 8 sqs. 8 = 2 · sqs. 2 –––
10 sq. 3 = 10 – 1 (3, 1; – 1) 3 optimal
11 sq. 3 = 11 – 2 (3, 1; – 2) 3 pre-optimal

sq. 10 = sq. 3 · 11 + 1 (3, 1; – 2)2 = (10, 3; 1) 10/3 = 3 1/3    optimal
12 sqs. 12 = 2 · sqs. 3 –––
13 sq. 3 = 13 – 4 (3, 1; – 4) 3 pre-pre-optimal

sq. 11 = sq. 3 · 13 + 4 (3, 1; – 4)2 = (11, 3; 4) 11/3 = 3 2/3    pre-pre-optimal
sq. 18 = sq. 5 · 13 – 1 (3, 1; – 4)3 = (18, 5; – 1) 18/5 = 3 3/5      optimal

14 sq. 4 = 14 + 2 (4, 1; 2) 4 pre-optimal
sq. 15 = sq. 4 · 14 + 1 (4, 1; 2)2 = (15, 4; 1) 15/4 = 3 3/4    optimal

15 sq. 4 = 15 + 1 (4, 1; 1) 4 optimal
17 sq. 4 = 17 – 1 (4, 1; – 1) 4 optimal
18 sqs. 18 = 3 · sqs. 2 –––
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Theodorus could not continue past D = 17 (not counting the trivial case
D = 18) for the reason that he could not find an optimal, pre-optimal, or
pre-pre-optimal approximation to the square side of 19. Note that the best
approximations by integers to the square side of 19 are 4 and 5, where

sq. 4 = 19 – 3   and   sq. 5 = 19 + 6.

It is interesting to note that in the applications of Heron’s improved
square side rule by use of “third approximations” in examples 41-45 (see
Sec. 16.3 above) the improved square side approximations are based on the
optimal first approximations 2/1 for sqs. 3, 4/1 for sqs 15, 5/2 for sqs. 6,
and 8/3 for sqs. 7, the same optimal approximations as in the survey above!

Remark 1. A way of solving the equation  sq. p = sq. q · D + 1 in the
general case was presented by the Indian mathematician Jayadeva in the
eleventh century, however with no indication of a strict proof.47 (A totally
different solution method, with a complete proof, was published much
later (in 1767) by Lagrange.) Applying Jayadeva’s “cyclic process” one
can show that when D = 19 the equation has the solution p, q = 170, 39.
These values are clearly so large that Theodorus must have given up long
before he could find them through trial and error.

Remark 2. In the tabular survey above (and elsewhere in this chapter)
the use of what looks like common fractions has been allowed only for the
sake of convenience. It is unlikely that Theodorus would have written, for
instance, the optimal approximation to sqs.13 in the form 18/5 = 3 3/5 as
here in the survey. (The corresponding sum of parts of the standard Greek/
Egyptian kind is 3 1/2 1/10.) For this reason, the proper way to understand
18/5, for instance, is not as a fraction but as ‘18 divided by 5’. (The earliest
documented use of common fractions, in a very explicit form, is in the
early Roman Greek-Egyptian mathematical papyrus P.BM 1 0 5 2 0 § 5
(Friberg,UL (2005), Sec. 3.3 e). An even earlier example of the use of
(a kind of) common fractions is in the Egyptian demotic mathematical
papyrus (Ptolemaic, 3rd c. BCE) P.Cair o § 1 (Friberg, op. cit., Sec. 3.1 c).

47. See Weil, NT (1984), 22-24. See also Srinivasiengar, HAIM (1967), Chapter 10, or Dat-
ta and Singh, HHM (1962 (1938)), Chs. 16-17.
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Chapter 18

The Pseudo-Heronic Geometr ica

18.1.Geometr ica, a Compilation of Various Sources

Høyrup’s informative paper in ANwR 7 (1997) contains a detailed com-
parison of the contents of the Heronic Metr ica and the “pseudo-Heronic”
Geometr ica with related issues in the Near Eastern “practical tradition”
and in various Arabic or Western medieval mathematical problem collec-
tions. He begins the comparison with the following summary of what
Heiberg himself wrote in Latin in the preface of HAOO 5 (1914) about the
sources he had used for his compilated version of Geometrica:

“(1) Geometrica ‘was not made by Hero, nor can a Heronian work be reconstructed

by removing a larger or smaller number of interpolations’ (p. xxi). 

(2) Mss AC represent a book which, with additions, changes and omissions, only

reached the present shape in Byzantine times; it was not meant to serve field

mensuration directly but was for use ‘in [commercial and legal] life’ and in general

education (p. xxi). 

(3) Manuscript S, with the closely related ms V, was intended to serve youth study-

ing ‘architecture, mechanics and field mensuration’ in the ‘University of Constan-

tinople’ and thus ‘more familiar with theoretical mathematics’ – a use which in

Heiberg’s view agrees with the presence of Heron’s (more or less) genuine Metrica

in the same manuscript (p. xxiii). 

(4) Both versions of the work merge (in their own ways) ‘various problem collec-

tions together with Heronian and Euclidean excerpts’ (p. xxiv). · · · As things are,

only a very careful observation or reading of the Latin preface to volume V of the

Opera omnia will reveal that a work contained in volume IV is a modern conglom-

erate of two (indeed more) ancient conglomerates. · · · He (Heiberg) also seems to
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have known, but does not say it too directly, that the origin of the ‘problem collec-

tions’ was neither Heronian nor Euclidean.”

The following brief comparison of Geometrica with Metrica in Heath,
HGM 2 (1981 (1921)), 318, is also interesting:

“The mensuration in the Geometry has reference almost entirely to the same figures

as those measured in Book I of the Metrica, the difference being that in the Geometry

(1) the rules are not explained but merely applied to examples, 

(2) a large number of numerical illustrations are given for each figure, 

(3) the Egyptian way of writing fractions as the sum of submultiples is followed, 

(4) lengths and areas are given in terms of particular measures, and the calculations

are lengthened by a considerable amount of conversion from one measure into

another.”

To these important remarks about the nature of Geometrica can be
added here the following observations: 

(1) In Geometrica there are not, as in Metrica, any lettered diagrams. Nor are there

any discussions of chains of “givens”, in the style of Euclid’s Data.

(2) In Metrica, lengths are measured in ‘units’ or abstract numbers. The “particular

measures” used in Geometrica, are in mss AC ‘ropes’ (schoiní a) and ‘fathoms’

(órgyiai), but in mss SV ‘feet’ (as also in Stereometrica (Heiberg, HAOO 5 (1914)).

(3) Høyrup chose to neglect the testimony of Greek-Egyptian mathematical papyrus

fragments from the Ptolemaic and Roman periods in Egypt (see Friberg, UL (2005),

Chapter 4) in his otherwise quite extensive comparison of geometric themes and ter-

minology in Metrica, Geometrica, and medieval mathematical problem collections. 

Høyrup (op cit.) ends as follows his scrutiny of, among other things, the
terminology used in Geometrica, mss AC, mss SV, and the independent
source ms S, Chapter 24:

“·If we think of Moritz Cantor’s old metaphor, according to which the development

of mathematics is to be likened to a river landscape, the river that had sprung from

Near Eastern geometrical practice had dissolved itself in later antiquity into a delta,

in a multitude of independent streams now running together, now splitting apart. Hero

knew some of them and used them – at times literally – in Metrica; Geometrica/AC

collected others, Geometrica/S and S:24 still others. Further studies of terminology

and style may help us sort out more details; given the complexity of the situation and

the paucity of sources for precisely the practitioners’ level of mathematical activity,

however, we are not very likely to get very far.”
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18.2.Geometr ica mss AC

Near the beginning of ms A, after a long metrological introduction,
there is a brief note mentioning that 

One must also know that a módios of seed is 40 lí tra,
and each lí tra seeds 5 fathoms of land.

What this means is that here, just as in Late Babylonian field plans and
mathematical texts (see Friberg, BaM 28 (1997), Chs. 1-3), the size of a
field is measured in “seed measure” rather than area measure. The fixed
conversion rate is 

1 lí tra in seed measure = 5 (square) fathoms in area measure, or
1 módios in seed measure (= 40 lí tra) = 200 (square) fathoms = 2 (square) ropes.

After the mentioned brief note follow two metrological conversion tables.
No similar Late Babylonian tables are known (cf. Friberg, GMS 3 (1993)).

For width and length (meaning area measure) of 5 fathoms make 1 lí tra
width and length of 10 fathoms make  2 lí tra
width and length of 15 fathoms make  3 lí tra
··········· ··········· ···········
width and length of 100 fathoms make  20 lí tra
width and length of 200 fathoms make  40 lí tra
··········· ··········· ···········
width and length of 1000 fathoms make  200 lí tra
width and length of 2000 fathoms make  400 lí tra
··········· ··········· ···········
width and length of 10000 fathoms make  2000 lí tra

200 fathoms are land for 1 módios
300 fathoms are land for 1 1/2 módios
··········· ··········· ···········
1000 fathoms are land for 5 módios
2000 fathoms are land for 10 módios
··········· ··········· ···········
10000 fathoms are land for 50 módios

The metrological tables are followed by what is, essentially, a hand
book in mensuration of the kind that one finds in medieval Arabic and
Western texts. (See Høyrup (op cit.), 74-78.) It begins with exercises for
squares, rectangles, trapezoids, and right-angled triangles. In Geom. 7.1-
3/AC, for instance, the base and upright of a right-angled triangle are 4
ropes = 40 fathoms and 3 ropes = 30 fathoms, respectively. The size of the
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triangle is then computed first as 6 (square) ropes, with the corresponding
seed measure equal to 1/2 · 6 = 3 módios, and then as 600 (square) fathoms,
with the corresponding seed measure 1/200 · 600 = 3 módios.

Then follows what must be an interpolation in mss AC, because only
abstract numbers are used for lengths and surfaces. In Geom. 8.1, it is
shown how to construct a right-angled triangle by “the method of Pythag-
oras”, when an odd number is given. (Cf. the discussion in Sec. 3.1 above.)
The method is demonstrated only by an example, in the case when the
upright 5 of the triangle is given. Then the base is (5 · 5 – 1)/2 = 12, and
the hypothenuse is the base + 1 = 13. In modern notations:

c, b, a = (sq. a + 1)/2, (sq. a – 1)/2, a    for any odd number a.

In Geom. 9.1 it is then shown by an example how to construct a right-
angled triangle by the “method of Plato” when an even number is given.
Let the upright be 8. Then the base is 8/2 · 8/2 – 1 = 15, and the hypothe-
nuse is the base + 2 = 17. In modern notations:

c, b, a = sq. a/2 + 1, sq. a/2 – 1, a    for any even number a.

The derivations of these rules by use of (metric) algebra is obvious. In the
first case (the “method of Pythagoras”), c and b are obtained as the solu-
tions to the quadratic-linear system of equations

sq.c – sq. b = sq. a, c – b = 1  where a is a given odd number.

In the second case (the “method of Plato”), c and b are obtained as the
solutions to the quadratic-linear system of equations

sq.c – sq. b = sq. a, c – b = 2  where a is a given even number.

After this brief interruption, the hand book continues with exercises for
equilateral triangles. In Geom 10.1-5, the following rules are stated:

A = 1/3 1/10 · sq. s,   h = s – 1/10 1/30 · s         (1/3 1/10 = 26/60,   1 – 1/10 1/30 = 52/60).

(Cf. Sec. 16.3 above.) If, for instance, s = 10 ropes, then 

A = (33 1/3 + 10) (square) ropes = 43 1/3 (square) ropes = 21 módios 26 2/3 lí tra.

In Geom. 11 the topic is isosceles (symmetric) triangles, and in Geom.
12 scalene (non-symmetric) triangles. In Geom.12.1-14, for instance, the
example is the triangle with the sides 13, 14, and 15 ropes. The rule used
for the computation of the segment q of the base can be explained as fol-
lows, with the same notations as in Fig. 1.8.1 above, right:

q = {(sq. b + sq. a – sq. c)/2}/b.
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This means, apparently, that the computation of the segment q in
Geom.12.14 is based on Euclid’s El. II.13. The examples in Geom. 12.15,
12.23, 12.28, and 12.29 are similar.

In Geom. 12.30, the area of the triangle with the sides 13, 14, 15 ropes
is computed by use of Heron’s triangle area rule (cf. Sec.14.1). 

In Geom. 12.33, an obtuse-angled triangle with the sides 17, 9, 10 ropes
is considered. The rule for the computation of the extension q of the base
is the following, with the same notations as in Fig. 1.8.1 above, left:

q = {(sq. c – sq. b – sq. a)/2}/b                  {(289 – 81 – 100)/2}/9 = 54/9 = 6 (ropes).

Apparently, therefore, the computation of the segment q in Geom.12.33 is
based on Euclid’s El. II.12.

Another rule for the computation of the extension q of the base of the
same triangle is used in Geom. 12.38. There q is computed as follows:

q = {(sq. c – sq. a)/b + b)/2 – b                   {(289 – 100)/9 + 9}/2 – 9 = 15 – 9 = 6 (ropes).

This alternative rule can be found by use of metric algebra, by looking for
solutions to the quadratic-linear system of equations (cf. Fig. 1.8.1, left):

sq.p – sq. q = sq. c – sq. a, p – q = b.

It is interesting to compare the rules for scalene triangles in Geom. 12.1,
12.30 and 12.38 with the rules used in the Greek-Egyptian mathematical
papyrus fragments P.Chicago litt. 3 and P.Cornell 69 (Friberg, UL (2005)
Secs. 4.7 b-c). In the exercise P.Chicag o litt. 3 # 2, a non-symmetric
trapezoid is reduced, by removal of a central rectangle, to a non-symmetric
triangle with the sides 13, 14, 15 ropes. The segment q of the base (op. cit.,
Fig. 4.7.1) is computed as follows:

q = {b – (sq. c – sq. a)/b)/2 – b                    {14 – (225 – 169)/14}/2 = 5 (ropes).

In P.Chicag o litt. 3 # 3, a non-symmetric trapezoid is reduced, by removal
of a central parallelogram, to a non-symmetric obtuse-angled triangle with
the sides 15, 4, 13 ropes. Then the extension q of the base is found as:

q = {(sq. c – sq. a)/b – b)/2 – b                   {(225 – 169)/4 – 4}/2 = 5 (ropes).

P.Cor nell 6 9 # 2 is a similar exercise, where a given non-symmetric trap-
ezoid is reduced to the same triangle with the sides 15, 4, 3 báion (1/16
rope). Here, the sum p of the base and the extension of the base is found as

p = {(sq. c – sq. a)/b + b)/2                       {(225 – 169)/4 + 4}/2 = 9 (ropes).
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It is clear that the computation rules in Geom. 12.38, P.Chicago litt. 3 ##
2-3 and P.Cornell 69 # 2 are closely related. Therefore, all of them were
probably obtained in the same way by use of metric algebra.

The topic dealt with in Geom. 12.41-71 is isosceles triangles with
inscribed squares. The treatise on mensuration continues in Geom. 13-16
with exercises for various kinds of quadrilaterals, and ends in Geom. 17-
20 with exercises for circles and circle segments. (See the discussion in
Høyrup,ANwR 7 (1997) 87-90.)

18.3.Geometr ica ms S 24

While Geometrica mss A is throughout a rather dull hand book in men-
suration, the independent source “ms S 24” = Geom. 24.1-51 is a compos-
ite of (a) another series of dull exercises concerned with triangles with
inscribed or circumscribed circles or squares, and (b) an interesting collec-
tion of cleverly designed problems (what Høyrup likes to call “riddles”).48

Take, for instance, Geom. 24.1. The problem in that exercise is an
indeterminate pair of equations for four unknowns:

To find two fourangled fields [such the perimeter of the second is the threefold of 
that of the first and] such the area of the first is the threefold of that of the second.

The following solution is given in the manuscript:

I make it so: Cube 3, result 27. This twice, result 54. Now take away 1 unit, 
the rest is 53. Thus one side shall be 53 feet, the other side 54 feet.
And [the sides] of the other field like this: set together 53 and 54, result 107 feet. 
Make this times 3 [and take away 3 units]: result 318 feet. 
Thus that of the first side shall be 318 feet, the second side 3 feet. 
The area of one becomes 954 feet, and of the other 2862 feet.

Note that here, as everywhere else in ms S, lengths are measured in feet
and the size of fields in (square) feet, that is in area measure.49

The explanations for the solution procedure in Geom. 24.1 suggested.

48. For reproductions of the pages of Geom. 24, see Bruins, CCPV 1 (1964), I:52-72.
49.Compare with the fact that, as mentioned, in the known Greek-Egyptian mathematical
papyrus fragments the sizes of fields are measured in area measure. Thus, in P.Vindob. G.
26740 (Friberg, UL (2005), Sec. 4.3) and in P.Chic. litt. 3 (op. cit., Sec. 4.7 b), fields are
measured in sq. schoiní a (arouras). In P.Cornell 69 (op. cit., Sec. 4.7 c), fields are mea-
sured in sq. baia, and in P.Genè ve 259 (op. cit., Sec. 4.7 a) they are measured in (sq.) feet.
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by Heath, HGM 2 (1981 (1921)), 442, and Bruins (op. cit.), III:83, are un-
necessarily complicated. There is, indeed, a much easier explanation:

Given that   (1) u + v = p · (a + b),   ( 2) a · b = p · (u · v)        (in the text p = 3).
Set u = 2 p · a.
Then  (2) Ç a · b = p · (2 p · a) · v Ç b = 2 sq. p · v.
Then  (1) Ç   2 p · a + v = p · (a + 2 sq. p · v) Ç   (2 cu. p – 1) · v = p · a.
This equation is satisfied when, for instance,v = p   and a = 2 cu. p – 1.
It follows that b = 2 cu. p   and u = 2 p · (2 cu. p – 1).

The solution procedure given in the text can now described as follows:

1    2 cu. p – 1 = 54 – 1 = 53 = a
2    2 cu. p = 54 = b
3 a + b = 107, p · (a + b) = 321 = u + v
4 v = p = 3, u = (u + v) – v = 318
5 u · v = 318 · 3 = 954 (feet),a · b = 53 · 54 = 2862 (feet)

The extreme briefness of this solution procedure suggests that this partic-
ular exercise originally was one of several in a theme text, where full in-
formation was given only in the solution procedure for the initial exercise.
Single exercises appearing like this without the needed explaining context
are commonplace in Babylonian mathematical recombination texts.

A simple way of explaining the solution procedure works also in the
case of Geom. 24.2, as in the case of Geom. 24.1:

To find a field in perimeter equal to a field and with the area the fourfold of the area.

The following solution is given in the manuscript:

I make it so: Cube 4 with itself, result 64 feet. Take away 1 unit, result: the rest is 63.
So much is each one of the perimeters of the 2 parallel-sides. Now separate the sides.
I make it so: Set 4. Take away 1 unit: 3 remains. Then one side is 3 feet. 
The other side like this: From 63 take away 3, the rest is 60 feet.
[For the sides] of the other field make it so: 4 on itself, result 16 feet. 
From this take away 1 unit, the result is the rest 15 feet. So much is the first side, 15 feet.
The second side like this: Take away 15 from 63, result: the rest is 48 feet.
The other side shall be 48 feet. Then the area of one is 720 feet, and of the other 180 feet.

This solution procedure can be explained as follows (with p = 3):

Given that   (1)u + v = a + b,  ( 2) a · b = p · (u · v)         (in the text p = 4).
Set u = p · a.   Then
(2) Ç a · b = p · (p · a) · v Ç b = sq. p · v.
(1) Ç p · a + v = a + sq. p · vÇ   (sq. p – 1) · v = (p – 1) · a.
This equation is satisfied when, for instance,v = p – 1   and a = sq. p – 1.
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It follows that b = sq. p · (p – 1) = cu. p – sq. p  and u = p · (sq. p – 1) = cu. p – p.
Therefore  a + b = u + v = cu. p – 1.

The solution procedure given in the text is, accordingly (with p = 4):

1    cu. p – 1 = 64 – 1 = 63 = a + b = u + v
2 p – 1 = 3 = v
3    (u + v) – v = 63 – 3 = 60 = u
4    sq. p – 1 = 16 – 1 = 15 = a
5 (a + b) – a = 63 – 15 = 48 = b
6 a · b = 15 · 48 = 720 (feet),u · v = 60 · 3 = 180 (feet)

Fig. 18.3.1.Geom. 24.2. An indeterminate problem for two rectangles.

Nothing like the indeterminate problems in Geom. 24.1-2 appears in
Diophantus’Arithmetica. There is also nothing like these problems in the
known corpus of Babylonian mathematics. On the other hand, both the for-
mulation of the problems and the solution procedures are so simple and
straightforward that a Babylonian origin cannot be excluded. (In favor of
a Babylonian origin speaks also the circumstance that in Geom. 24. 2 the
areas of the two rectangles are multiples of 60.)

In Geom. 24.4, the problem is stated as follows:

The suma + b + c of the sides of a right-angled triangle is 50 feet. Find the sides.

It is assumed that the sides are proportional to 3, 4, 5, the “first” triple of
sides that can be constructed by use of the “method of Pythagoras”. Since
3 + 4 + 5 = 12, it follows directly that a = 3 · 50/12 = 12 1/2 feet, etc.

In Geom. 24.5, the problem is:

The area of a right-angled triangle is 5 feet. Find the sides.

The brief solution procedure can be explained as follows: According to the
“method of Pythagoras”, the sides can be assumed to be n, (sq. n – 1)/2,
(sq.n + 1)/2, where n is odd. Then the area is 

60

315 \   720

48

\   180
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A = n/2 · (sq. n – 1)/2 = (n – 1) · n · (n + 1)/4,   with n odd.

Sincen is odd one of the numbers is a multiple of 4, another a multiple of
2, and a third a multiple of 3. Therefore A must be a multiple of 6. Let, for
instance,A = 5 · sq. 6 = 180. Then n is a solution to the cubic equation

(n – 1) · n · (n + 1) = 720. 

The value of n can be obtained by trial and error or from a “quasi-cube
table” like the OB table text MS 3048 (Sec. 13.6 above). It is found to be
n = 9, so that a, b, c = 9, 40, 41.

In Geom. 24.7,
The upright a of a right-angled triangle is 12 feet (and the area is 96 feet). 

The base b and the hypothenuse c are then found as

b = a + a/3 = 16 feet, c = b + b/4 = 20 feet.

The embarrassingly simple-minded method can be explained as follows:

if a, b, c are proportional to 3, 4, 5, thenb = 4/3 · a   and c = 5/4 · b.

Similarly in Geom. 24.8-9, where the corresponding equations are

a = b – b/4 (= 3/4 · b), c = b + b/4 (= 5/4 · b)   and
b = c – c/5 (= 4/5 · c), a = c – c/4 (= 3/4 · c).

An OB problem text of a similar kind is MS 3971 § 4 (Friberg, RC
(2007), Sec. 10.1 d), where it is stated that

The diagonalc = 7 of a right triangle is given. 

The remaining sides of the triangle are then computed as 

b = 7 · 4/5 = 7 · ;48 = 5;36   anda = 7 · 3/5 = 7 · ;36 = 4;12.

A LB (Seleucid) exercise of a somewhat similar kind is BM 34568 # 1
(Neugebauer,MKT 3 (1937), 20):

4 the length, 3 the front, what is the great divider?
Since you do not know it: 2' of your length to your front add on, that is it.
4 the length · 30 go, then 2, 2 to 3 add on, 5. 5 is the great divider.
The third of your front to your length add on, that is the great divider.
3 the front steps of 20 go, 1, 1 to 4 add on, 5. 5 is the great divider.

Although awkwardly formulated, the text of this exercise probably wants
to say that for the right triangle with the sides c, b, a = 5, 4, 3, the diagonal
c can be expressed in these two ways as a linear combination of b and a:

c = b/2 + a   and c = b + a/3.
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This makes little sense, but BM 34568 is a large theme text concerned with
increasingly difficult systems of equations for the sides of right triangle.
(An application of the diagonal rule appears already in exercise # 2.) In a
theme text of this kind, the introductory first exercise should play an im-
portant role, rather than being nearly meaningless. Perhaps like this:

Let c, b, a be the sides of a right triangle. Suppose that c = b/p + a, for
some (regular sexagesimal) number p. Then the pair c, a satisfies the
following quadratic-linear system of equations:

sq.c – sq. a = sq. b, c – a = b/p.

Consequently,

c + a = sq. b / (b/p) = p · b.

Evidently, then, the solution to the system of equations for c and a is

c = (p + 1/p)/2 · b, a = (p – 1/p)/2 · b.

This means that

c = b/p + a Ç   c, b, a = {(p + 1/p)/2, 1, (p – 1/p)/2} · b,   and, similarly,

c = b + a/q Ç   c, b, a = {(q + 1/q)/2, (q – 1/q)/2, 1} · a.

Therefore, it is possible that a teacher could use the seemingly trivial ex-
ercise # 1in BM 34568 as an introduction to an oral presentation of a meth-
od to find two generating pairs of numbers p, 1 and q, 1 for every given
right triangle with rational sides. (Cf. the discussion of OB igi-igi.bi
problems in Secs. 3.2-3 above.) In the given example, for instance,

5 = 4/2 + 3 Ç   5, 4, 3 = {(2 + 1/2)/2, 1, (2 – 1/2)/2} · 4   and
5 = 4 + 3/3 Ç   5, 4, 3 = {(3 + 1/3)/2, (3 – 1/3)/2, 1} · 3.

A particularly interesting problem in Geom. 24 is Geom. 24.10, where 

The area plus the perimeter of a right-angled triangle is 280 feet.

This looks like one of the indeterminate problems for right-angled tri-
angles in Diophantus’ Arithmetica “VI”.6-11. Nevertheless, the solution
method here is totally different. It is stated, quite cryptically, like this:

Always look for factors. Factorize by 2, 140, by 4, 70, by 5, 56, by 7, 40, 
by 8, 35, by 10, 28, by 14, 20. I find that 8 and 35 meet the condition. 
1/8 of 280, result 35 feet. Always take 2 away from 8, the rest is 6 feet. 
Now 35 and 6 together, result 41 feet. These on themselves, result 1681 feet. 
And 35 on 6, result 210 feet. These always on 8, result 1680 feet. 
Take these away from 1681, the rest is 1. Of which the square side, result 1.
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Next set 41 and take away 1 unit, the rest is 40. Of which 1/2, result 20.
This is the upright, 20 feet. And set again 41 and add 1, result 42 feet. 
Of which 1/2, result 21 feet. The base shall be 21 feet. 
And set 35 and take away 6, the rest is 29.

The solution method is (silently) based on the observation that if a, b, c are
the sides and A the area of a right-angled triangle, then

(a + b + c) · (a + b – c) = sq. (a + b) – sq. c = 2 a · b = 4 A.

Therefore, the stated problem can be reformulated in the following way:

A + (a + b + c) = (a + b + c)/2 · {(a + b – c)/2 + 2} = B = 280 (feet).

Now, if B is factorized as B = 35 · 8, it is possible to begin by setting

(a + b + c)/2 = 35,   (a + b – c)/2 + 2 = 8,   so that    (a + b – c)/2 = 8 – 2 = 6.

Then

a + b = (a + b + c)/2 + (a + b – c)/2 = 35 + 6 = 41   and
a · b / 2 = (a + b + c)/2 · (a + b – c)/2 = 35 · 6 = 210.

This rectangular-linear system of type B1a is solved as follows:

sq. (b – a) = sq. (a + b) – 4 a · b = sq. 41 – 8 · 210 = 1681 – 1680 = 1,   andb – a = 1.

Therefore,

b = {(a + b) + (b – a)}/2 = (41 + 1)/2 = 21,a = {(a + b) – (b – a)}/2 = (41 – 1)/2 = 20.

Finally, the remaining side c can be computed as

c = (a + b + c)/2 – (a + b – c)/2 = 35 – 6 = 29.

Hence, the solution to the problem is the diagonal triple a, b, c = 20, 21, 29.

The text of Geom. 24.10 ends with a verification:

A = 210 feet, a + b + c = 70 Ç A + (a + b + c) = 210 + 70 = 280.

Now, recall that the solution procedure in Geom. 24.10 starts with the
factorizations

280 = 2 · 140 = 4 · 70 = 5 · 56 = 7 · 40 = 8 · 35 = 10 · 28 = 14 · 20,

after which it is stated that “8 and 35 meet the condition”. What this means
can be found out by looking at a couple of alternative factorizations of the
given number 280. If, for instance, the chosen factors are 7 and 40, then

(a + b + c)/2 = 40   and    (a + b – c)/2 = 7 – 2 = 5 Ç
a + b = 40 + 5 = 45    and a · b / 2 = 40 · 5 = 200Ç
b – a = sqs. (sq. 45 – 8 · 200) = sqs. (2025 – 1600) = sqs. 425 = 5 · sqs. 17.

Similarly, if the chosen factors are 4 and 70, say, then



426 Amazing Traces of a Babylonian Origin in Greek Mathematics

(a + b + c)/2 = 70   and    (a + b – c)/2 = 4 – 2 = 2Ç
a + b = 70 + 2 = 72   and a · b / 2 = 70 · 2 = 140Ç
b – a = sqs. (sq.72 – 8 · 140) = sqs. (5184 – 1120) = sqs. 4064 = 4 · sqs. 254.

Thus, apparently, the factorization 280 = 35 · 8 was chosen because it was
the only one that would lead to a solution in integers.

The proposed interpretation of Geom. 24.10 is supported by the testi-
mony of Geom. 24.26, where the question is:

A circle is inscribed in a right-angled triangle with the sides 6, 8, and 10 feet.
Find the diameter of the circle.

The diameter d of the circle is computed in the following two ways:

1 d = a + b – c = 6 + 8 – 10 feet = 4 feet.
2 d = (4 A)/ (a + b + c) = (4 · 6 · 4)/(6 + 8 + 10) feet = 96/24 feet = 4 feet.

The given triangle can be divided into three sub-triangles, each with half
the diameter as height and one of the sides as base. Therefore,

2 A = 2 A1 + 2 A2 + 2 A3 = d/2 · a + d/2 · b + d/2 · c = d/2 · (a + b + c).

The second computation rule in Geom. 24.26 follows immediately from
this observation. The first computation rule then follows from the second,
in view of the identity (a + b + c) · (a + b – c) = 4 A.

The suggested interpretation of Geom. 24.10 is important, because:

a) This is the only known example of a Greek mathematical problem text contain-
ing an explicit solution procedure for a rectangular-linear system of equations.
b) The form of the entire solution procedure looks like a typical OB solution pro-
cedure, with an algorithmic series of instructions without theoretical motivations,
and with each step of a general procedure illustrated by an explicit numerical com-
putation.
c) One crucial step of the solution procedure, the factorization of B = 280, would
be meaningless if it was not known beforehand that the problem is constructed so
that it will have a solution in integers. This is a typically Babylonian feature.
d) The use of the identity (a + b + c) · (a + b – c) = 2 A (twice the area of a rectangle)
is known from the Seleucid mathematical theme text BM 34568 ## 17-18.

Here is the text of BM 34568 ## 17-18 (cf. Neugebauer, MKT 3, 14 ff.):

BM 34568 # 17
The length, front, and great divider add, then 12, and the field 12.
What as the length, front, and great divider?
Since you do not know: 
12 · 12  2 24.  12 · 2  24.  24 from 2 24 lift, then remaining is 2.
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2 · 30 go, then 1.   12 · what shall I go so that 1?   12 · 5  1.  5 is the great divider.

BM 34568 # 18
The length, front, and great divider add, then 1, 5 the field.
The length, front, and great divider · the length, front, and great divider go.
The field · 2 go, from <···> the great divider lift. What is remaining · the half go.
The length, front, and great divider · what! as your step do you set?
The great divider is your step.

The text of # 17 is condensed, with the elimination of words that are not
really necessary, and with the use of the cuneiform sign GAM for ‘times’,
here represented by the symbol ‘·’. Note that while # 17 gives a numerical
example, # 18 gives the general rule (with an omission in line 3).

The questions in ## 17-18 are both of the type

a, b, c, and A are the sides, the diagonal, and the area of a rectangle.
b + a + c and A are given. Find b, a, c.

The value of the diagonal c is computed by use of the identity

c · (b + a + c) = {sq. (b + a + c) – 2 A}/2.

This identity can be proved in several ways. See Neugebauer, op. cit., 21,
and Høyrup, LWS (2002), 397. The simplest proof is probably this:

c = {(b + a + c) – (b + a – c)}/2 Ç
c · (b + a + c) =   {sq. (b + a + c) – (b + a + c) · (b + a – c)}/2 = {sq. (b + a + c) – 2 A}/2.

Actually, the computation of the diagonal c is only the first step of the so-
lution procedure. After c has been computed, b and a can be found without
trouble as solutions to the following problem

The diagonal c and the sum b + a of the sides of a rectangle are known. Find b and a.

The way to solve a problem of this kind is shown in BM 34568 # 10.

Another particularly interesting problem in Geom 24 is Geom. 24.21:
In a right-angled triangle, the upright is 15, the base 20, and the hypothenuse 25 feet.
Another triangle is circumscribed at a distance of 2 feet. I look for its sides.

The problem is interesting for two reasons. First, figures extended a cer-
tain fractional distance in all directions are known from both OB and LB
(Seleucid) mathematical texts. See the discussion of the term dakª$u ‘to
push outwards’ in Friberg, et al., BagM 21 (1990), 488, and in Friberg, RlA
7 (1990), Sec. 5.4 l. The term is used for outwards extended squares, cir-
cles, and double circle-segments. Secondly, the problem is interesting be-
cause the way it may have been solved (not explicitly indicated in the text)
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is loosely related to the proof of Heron’s triangle area rule in Metrica I.8
(Chapter 14 above).

Fig. 18.3.2.  Left and middle: A diagram illustrating the extension problem Geom. 24.21.

In Geom. 24.21, the following answer is given without explanation:

1 a* = 21 2/3 feet, b* = 28 1/2 1/4 1/8 feet,c* = 36 1/9 feet
2 a* = a + 1/3 1/9 · a, b* = b + 1/3 1/9 · b, c* = c + 1/3 1/9 · c.

Here is a proposed explanation of how the sides of the extended triangle
may have been computed: Let a, b, c and a*, b*, c* be the sides of the
given and the extended triangle, let e be the distance between the sides of
the two triangles, and let r = d/2 and r* = d*/2 be the half diameters of the
inscribed circles (Fig. 18.3.2, right). With respect to the common center of
the inscribed circles, the two triangles are concentric, parallel, and similar.
Therefore, one is a scaled-up version of the other, with the scale factor t
given by the equations (cf. Geom. 24.26 above)

t · r = r* = r + e    so that t – 1 = e / r = 2 e / d = 2 e · (a + b + c)/(4 A).

With the given values e = 2 and a, b, c = 15, 20, 25 (feet) it follows that 

t = 1 + 4 · 60/(2 · 15 · 20) = 1 + 4 · 1/10 = 1 1/3 1/15.

The answer given in the text is t = 1 1/3 1/9 = 1 + 4 · 1/9. The error is easy
to explain if the author of the problem looked up the value of 4 · 1/10 in a
table of fractions such as P.Akhmî m (Friberg, UL (2005), Sec. 4.5 a). He
can then have chosen the wrong column in the table and found incorrectly
the value of 4 · 19 as ‘of 4 3 9’ instead of correctly the value of 4 · 1/10 as
‘of 4 3 15’ (Baillet, PMA (1892) 27-28: columns 7-8).

Geom. 24.46-47 are well known because they are the only known
examples of the explicit solution of a quadratic equation in a Greek math-
ematical text. The question in Geom 24.46 is

The sumd + a + A of the diameter, circumference, and area of a circle is 212 feet.
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Separate the three from each other.

An OB parallel to this question (without solution) can be found in BM
80209, a “catalog text” with equations for circles (see Sec. 1.10 above).

The solution to the problem in Geom. 24.46 proceeds like this: 

212 · 154 = 32648,   32648 + 841 = 33489 = sq. 183 feet,   183 – 29 = 154,
1/11 · 154 = 14 feet = the diameter.

Actually, with the Archimedian approximation area of circle / square of ra-
dius of circle = appr. 3 1/7 = 22 · 1/7, the equation for d becomes

d + a + A = d + 22 · 1/7 · d + 11 · 1/14 · sq. d = 112.

Through multiplication with 14 · 11 = 154, this equation is reduced to

2 · 29 · 11 · d + sq. 11 · sq. d = 154 · 112 = 32648.

This equation, in its turn, is reduced through completion of the square to

sq. (11 d + 29) = 32648 + sq. 29 = 32648 + 841 = 33489 = sq. 183.

Therefore, 11 d + 29 = 183, and d = (183 – 29)/11 = 14 (feet).

18.4.Metr ica III.4. A Division of Figures Problem

The difference in style between exercises in Heron’s Metrica and in the
pseudo-Heronic “Geometrica” was mentioned above (Sec. 18.1). Here is
an example of the style in Metrica (Schöne HA (1903), 149), where use is
made of a lettered diagram:

Metr ica 3.4

Given the triangle ABC, take away from it the triangle DEZ, given in magnitude, so
that the remaining triangles ADE, BDZ, CEZ are equal to each other.   If now <the
sides> are divided so that AD is to DB as BZ to ZC and as CE to EA, then the tri-
angles ADE, BDZ, and ZCE shall be equal to each other. Let now AZ be joined.
Since then as BZ is to ZC, so is CE to EA, and compounding, as BC is to CZ, so is
CA to AE. And therefore, as the triangle ABC is to AZC, so is AZC to AZE, and
subtracting, as the triangle ABC is to ABZ, so AZC is to ECZ, which is given. And
also ABC is given. · · ·

The solution procedure continues in this manner, showing first that AZC
is given, and that, if AH is the height against BC, then the square of AH
times the product of BZ and ZC is given. Since the square of AH is given,
also the product of BZ and ZC is given, and since BC is given, Z is given,
and similarly E and D are given. Therefore, DE, EZ, and ZD are given. 
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After this demonstration in the style of Euclid’s Data follows a numer-
ical example, with AB, BC, CA = 13, 14, 15 units, and DEZ = 24 units.

Fig. 18.4.1.Metr. 3.4. An elegant division of figures problem.

If the three sides of the given triangle are divided in the same ratio s : t,
with s + t = 1, and if A and Q are the areas of the given triangle and the
corner triangles, then the procedure shows that Q : A = s · t. Therefore,
b' = s · b andb" = t · bare solutions to the following rectangular-linear sys-
tem of equations of type B1a:

b' · b" = 4 A · Q / sq. h = 4 · 84 · 20 / sq. 12 = 46 2/3,b' +· b" = b = 14.

The solution given in the text is b' = 8 <1/2>, b" = 5 1/2.
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Appendix 1

A Chain of Trapezoids with Fixed Diagonals

by Jöran Friberg and Joachim Marzahn

A.1.1. VAT 8393. A New Old Babylonian Single Problem Text

VAT 8393 is a well preserved and unusually interesting Old Babylo-
nian mathematical cuneiform text from the Near Eastern Museum
(Vorderasiatisches Museum) in Berlin, with a single metric algebra prob-
lem, illustrated by an intriguing diagram. 

The diagram on the clay tablet is drawn in the usual OB way with little
regard to the true proportions of various parts of the figure. The diagram is
reproduced below, with corrected proportions:

Fig. A.1.1.  The diagram on VAT 8393, with corrected proportions.

On the following five pages are displayed together 1) a hand copy of
the tablet, 2) a conform transliteration of the text, within an outline of the
clay tablet, 3) a transliteration sentence by sentence, 4) a corresponding
translation of the text, and 5) photos of the clay tablet.
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Fig. A.1.2.  VAT 8393. (Hand copy by J. Marzahn, curator of the collection of clay tablets 
in the Near Eastern Museum, Berlin.)
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Fig. A.1.3.   VAT 8393. A conform transliteration within an outline of the clay tablet.
(Transliteration by J. Friberg and J. Marzahn, with the assistance of M. Krebernik.)
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VAT 8393,  transliteration sentence by sentence

obv.

Fig.

1 $um-ma sag.ki.gù 2 u$ 2 30 sag.ki an.ta 2 u$ sag.ki ki.ta 

3  %i-li-ip-tum /

2 ki ma-%i lu-ri-id-da! lu! 3 u$ %i-li-ip-tum /

3 ù ki ma-%i a-na e-le-nu-um lu-li-i-ma lu 3 u$ %i-li-ip-tum /

4 2 %i-il-pa-a-tum a-na e-le-nu-um 2  a-na $a-ap-la-nu-um /

5 [3] u$  $a %i-il-pa-a-tum li-im-ta-a‹-ra /

6 [z]a.e ak.da.zu.[dè] /

lower edge

7 2 u$ 2 30 sag.ki an.ta sag.ki ki.ta lu-[x-x-x] /

8 sag.ki an.ta e-li sag.ki ki.ta  mi-nam i-[te-er 30 diri] /

9 igi 2 u$ pu-#ù-ur-ma 

a-na 30 diri  sag.ki an.ta [bi-il-ma 15] /

r ev.

10 15 ninda-nu a-na 2 u$ bi-il-ma 30

ù  2 u$ a-na [30 %i-im-ma 2 30 u$ ki.ta] /

11 15 ninda-nu a-na 2 30 u$ bi-il-ma 37 30 i-il-li-[a-kum] /

12 i-na 2 sag.ki ‹u-ru-u%-ma 1 22 30 sag.ki ki.ta /

13 15 ninda-nu a-na 1 22 30 sag.ki [b]i-il-ma $a i-li-a-kum /  

14 a-na $à 2 30 u$  %i-im-ma 2 50 37 30 u$ ki.ta /

15 15 ninda-nu a-na 2 50 37 30 u$ ki.ta bi-il-ma /  

16 $a i-li-a-kum i-na $à 1 22 30 ‹u-ru-u%-ma 

39 50 37 30 sag.ki ki.ta /

17 15 ninda-nu a-na 2 30 sag.ki bi-il-ma $a i-li-a-kum /

18 i-na 2 u$ ‹u-ru-u%-ma 1 22 30 u$ an.t[a]

[15 ninda-nu]  a-na 1 22 30 u$ /  

19 $a i-li-a-kum bi-il-ma $a i-li-a-kum 

20 a-n[a 2 30 sa]g.ki  %i-im-ma /  2 50 37 30 sag.ki an.[ta]

[1]5 ninda-nu a-na 2 [50] 37 30  sag.ki bi-il-ma /  $a i-li-a-kum 

21 i-na $à 1 22 [30] u$ [‹]u-ru-u[%] 39 50 37 30 u$ anta /

22 15 ninda-nu a-na 1 22 30 u$ bi-il-ma $a i-il-li-a-kum / 

23 [a-n]a 2 50 37 30 sag.ki %i-im-ma 

3    35 09 22 30 sag.ki an.ta
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VAT 8393,  translation

obv.

Fig.

1 If a trapezoid, 2 (00) the length, 2 30 the upper front, 2 sixties the lower front, 

3 (00) the diagonal. /

2 How much shall I go down so that 3 (00) the diagonal? /

3 And how much above shall I go up so that 3 (00) the diagonal? /

4 2 diagonals above, 2 below. /

5  3 sixties what the diagonals may be equal. /

6 You in your doing: /

lower edge

7 2 (00) the length, 2 30 the upper front, 2 (00) the lower front may x x x. /

8 The upper front over the lower front what does it exceed? 30 the excess. /

9 The reciprocal of 2 resolve (= 1 / 2 00 = 0;00 30).

To 30 the excess of the upper front bring (= multiply) then ; 15. /

r ev.

10 ;15 the ninda  (= growth rate) to 2 (00) the length bring, then 30.

And 2 (00) the length to 30 double (= add), then 2 30, the lower length. /

11 ;15 the ninda  to 2 30 the length bring, 37;30 comes up for you. /

12 From 2 (00) the front tear off (= subtract), then 1 22;30 the lower front. /

13 ;15 the ninda  to 1 22;30 the front bring. What comes up for you /

14 onto 2 30 the length double, then 2 50;37 30 the lower length. /

15 ;15 the ninda  to 2 50;37 30 the lower length bring, then /

16 what comes up for you out from 1 22;30 tear off, then 

39;50 37 30 the lower front. /

17 ;15 the ninda  to 2 30 the front bring. What comes up for you /

18 from 2 (00) the length tear off, then 122;30 the upper length.

; 15 the ninda to 1 22;30 the length / 

19 that comes up for you bring. What comes up for you 

20 to 2 30 the front double, then / 2 50;37 30 the upper front.

21 ; 15 the ninda  to 2 50;37 30 the front bring, then / what comes up for you 

out from 1 22;30 the length tear off, 39;50 37 30 the upper length. /

22 ;15 the ninda  to 1 22;30 (error!) the length bring, then what comes up for you /

to 2 50;37 30 the front double, then

23 3 00;35 09 22 30 the upper front.
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Fig. A.1.4.  VAT 8393. (From color photos courteously provided by Olaf M. Teß mer.)

3 cm

Scale 5 : 6
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In the metric algebra explanation below of VAT 8393, the notations
used are the ones displayed in Fig. A.1.5.

Fig. A.1.5.  Metric algebra notations for the parameters of the trapezoids on VAT 8393.

Hereu is the length, s and t the “upper” and “lower” fronts, and d one
of the diagonals of a symmetric trapezoid, situated in the middle of a chain
of five symmetric trapezoids. The two trapezoids “below” and the two
trapezoids “above” have diagonals of the same length as the trapezoid in
the middle. Their lengths are denoted v1, v2, and u1, u2, respectively, and
their fronts t1, t2, and s1, s2, respectively. The question and the successive
steps of the solution procedure can then be described briefly as follows:
Question:

Given a symmetric trapezoid. The length  u = 2 00 (120), the upper fronts = 2 30 (150), 

the lower front  t = 2 00 (120), the diagonal  d = 3 00 (180), all measured in ninda  = 6 m.

Find 2 symmetric trapezoids below with the diagonal d = 3 00 and 2 symmetric 

trapezoids above with d = 3 00 so that all the trapezoids form a chain of trapezoids.

Procedure:

1 f = (s – t)/u = 30 / 2 00 = ;15   (the growth rate nindanu in ninda /ninda) lower edge

2 v1 = u + f · t = 2 00 + ;15 · 2 00 (= 30) = 2 30 rev. 1

3 t1 = t – f · v1 = 2 00 – ;15 · 2 30 (= 37;30) = 1 22;30 rev. 2-3

4 v2 = v1 + f · t1 = 2 30 + ;15 · 1 22;30 (= 20;37 30) = 2 50;37 30 rev. 4-5

5 t2 = t1 – f · v2 = 1 22,30 – ;15 · 2 50;37 30 (= 42;39 22 30) = 39;50 37 30rev. 6-7

6 u1 = u – f · s = 2 00 – ;15 · 2 30 (= 37;30) = 1 22;30 rev. 8-9a

7 s1 = s + f · u1 = 2 30 + ;15 · 1 22;30 (= 20;37 30) = 2 50;37 30 rev. 9b-11a

8 u2 = u1 – f · s1 = 1 22;30 – ;15 · 2 50;37 30 (= 42;39 22 30) = 39;50 37 30 rev. 11b-12

9 s2 = s1 + f · u2 = 2 50;37 30 + ;15 · 39;50 37 30 (= 9;57 39 22 30) = 3 00;35 09 22 30

u
u1

u2

v1
v2

t 2s 2 tss 1 t 1d d d d d

u1 = u – f · s

s1 = s + f · u1

u2 = u1 – f · s1

s2 = s1 + f · u2

v1 = u + f · t

t1 = t – f · v1

v2 = v1 + f · t1
t2 = t1 – f · v2
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The numbers given or computed in the text agree with the ones dis-
played in the diagram (see Fig. A.1.1 above). The error in rev. 13, with
1 22 30 instead of 39 50 37 30, does not influence the computation of s2.
This circumstance proves that the text is a copy of all or part of an older
text. Actually, it is likely that the exercise on VAT 8393 was the last exer-
cise in a long theme text beginning with simpler exercises of the same kind.

A likely candidate for the initial exercise in a theme text of this kind
would be the computation of the diagonal in a symmetric trapezoid with
given sides. How that could be done is shown in Fig. A.1.6, left.

Fig. A.1.6.  A metric algebra proof of the OB fixed trapezoid diagonal rule.

Let u be the (slanting) side, s and t the fronts, d the diagonal, and h the
distance between the fronts in a symmetric trapezoid. Then two applica-
tions of the OB (rectangle) diagonal rule show that

sq.u = sq. h + sq. (s – t)/2    and    sq. d = sq. h + sq. (s + t)/2.

Through a combination of these two identities one finds that

sq.d = sq. u + sq. (s + t)/2 – sq. (s – t)/2,    so that sq.d = sq.u + s · t.

Since the author of the exercise VAT 8393 must have been familiar with
this rule, it is motivated to call it “the OB trapezoid diagonal rule”. The rule
is, of course, identical with Ptolemy’s diagonal rule in the case of a sym-
metric trapezoid. See Fig. 14.4.1 above.

A likely candidate for a second exercise in a theme text of the kind men-
tioned above is an exercise where the set task is to extend a given symmet-
ric trapezoid from below (or from above) into a brief chain of two

u

u

ts d

h

u
v1

ts t 1d d

sq.u = sq.h + sq. (s – t)/2
sq.d = sq.h + sq. (s + t)/2
Ç
sq.d =  sq. u +  s · t

a)  s –  t = f · u 
Ç t – t1 = f  · v1  and s – t1 = f · (v1 + 
b) sq.u + s · t = sq. d = sq.v1 + t1 · t
Ç sq. v1 –  sq. u = (s – t1) · t = f · (v1 + u)
Ç v1 – u =  f  · t 
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symmetric trapezoids, both with diagonals of the same length. Such a
chain may be called a “chain of symmetric trapezoids with fixed diago-
nals”. The situation is illustrated by the example in Fig. A.1.6, right, where
a symmetric trapezoid with the slanting side v1, the fronts t, t1, and the
diagonald is an extension from below of the given trapezoid.

Sincet and d are known, the only new parameters are v1 and t1. Their
values can be determined as the solutions to a system of two equations, one
a similarity equation, the other an equation for the diagonal of the added
trapezoid. The similarity condition says that if f is the growth rate, then

s – t = f · u Ç t – t1 = f · v1   or s – t1 = f · (v1 + u).

The fixed diagonal condition says, in view of the OB trapezoid diagonal
rule, that

sq.u + s · t = (sq. d =) sq. v1 + t1 · t.

If these equations are combined, one finds that

sq.v1 – sq. u = (s – t1) · t = f · (v1 + u) · t.

Since sq. v1 – sq. u = (v1 + u) · (v1 – u), it follows that

v1 – u = f · t.

This means that the equations for v1 and t1 can be reduced to the pair

v1 = u + f · t    and  t1 = t – f  ·v1.

This pair of equations my be called the “OB fixed trapezoid diagonal rule”.

A corresponding pair of equations determines how the given symmetric
trapezoid can be extended from above. It is also clear that the process can
be repeated, so that the given trapezoid can be extended several times in
either direction in a recursive procedure. In this way will be formed what
may be called “descending or ascending chains of symmetric trapezoids
with fixed diagonals”. Examples of such descending or ascending chains
of trapezoids may have been the object of successive exercises in an OB
mathematical theme text of the kind mentioned above.

It was conjectured above that the exercise in VAT 8393 may originally
have been the last exercise in a theme text of this kind. This conjecture is
based on the following observation: Consider the diagrams in Figs. A.1.1
and A.1.5. If one tries to continue the descending chain of trapezoids one
step further, the next slanting side will have the length

v3 = v2 + f · t2 = 2 50;37 30 + ;15 · 39;50 37 30 (= 9;57 39 22 30).
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This means that v3 > 3 = d, which is geometrically impossible. Therefore,
the descending chain of trapezoids with fixed diagonals is self-terminat-
ing. Similarly it can be shown that the ascending chain is self-terminating,
since, with the given parameter values, 

u3 = u2 – f · s2 = 39;50 37 30 – ;15 · 3 00;35 09 22 30 (= 45;08 47 20 37 30).

This means that u3 < 0, which is geometrically impossible.

A surprising feature of the diagrams in Figs. A.1.1 and A.1.5 is the con-
spicuouslopsided symmetry of the data, namely that

t = 2 00 = u, s = 2 30 = v1, t1 = 1 22;30 = u1,
s1 = 2 50;37 30 = v2,   and t2 = 39;50 37 30 = u2.

These unexpected relations between the values of the parameters can be
explained as follows by use of a recursive argument:

t = u Ç s = t + f · u = u + f · t = v1,

t = u    and s = v1 Ç t1 = t – f · v1 = u – f · s = u1,

s = v1   and t1 = u1 Ç s1 = s + f · u1 = v1 + f · t1 = v2,

t1 = u1   and s1 = v2 Ç t2 = t1 – f · v2 = u1 – f · s1 = u2.

Hence, the lopsided symmetry of the parameter values is an automatic con-
sequence of the initial relation t = u. It is, of course, impossible to know if
the author of the problem was aware of the fact that he would obtain this
lopsided symmetry of the parameter values by choosing t = u (= 2 00).

It is interesting to note that in certain ways the descending/ascending
chain of symmetric trapezoids with fixed diagonal in Fig. A.1.1 is similar
to the descending/ascending chain of birectangles in Fig. 15.1.1 above.
However, only the descending chain of birectangles is self-terminating.

Strictly speaking, the idea to construct such chains of trapezoids with a
fixed diagonal is completely new and unexpected. No similar constructions
appear to be known from any other mathematical documents, Greek, or
Islamic, or whatever.

A.1.2. VAT 8393. About the Clay Tablet

The clay tablet VAT 8393 was acquired by the Near Eastern Museum
in Berlin from the art dealer David in Paris at the beginning of the 20th
century, together with several hundred other clay tablets, of varied content,
linguistically as well as with regard to subject matter. Unfortunately, as far
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as is known today, all acquisition documents were lost in the war, so that
nothing more precise can be said about when the museum’s acquisition of
the clay tablets in the lot was made, or about from whom the dealer David
had purchased them, and therefore about the provenance of the clay tab-
lets. However, to judge from the inventory lists of the museum, the years
1913 or 1914 appear to be the most likely acquisition dates. All other texts
from the same lot that are mathematical, like VAT 8393, were published
long ago. In particular, VAT 8389, 8390, and 8391, with nearby catalog
numbers, were published in Neugebauer’s Mathematische Keilschrift-
Texte 1 (1935), pp. 317, 395, and 317. Only VAT 8393 has remained un-
published, why is not known. Incidentally, the mathematical terminology
in VAT 8393 is quite different from the terminology used in all other math-
ematical texts of the lot, so a common provenance can be excluded.

For this and other reasons, the authors of this appendix are happy to be
able to present here this extraordinarily interesting mathematical cunei-
form text, which is an important testimony of the surprisingly high level of
Old Babylonian mathematics (in some instances). The difficult reading of
the cuneiform text was accomplished by the two authors in a mutual giving
and taking, where J. Friberg, who initially knew the text only from less
than perfect photos, had to rely on the exactness of the readings made by
J. Marzahn, while the latter, whose understanding of the mathematical
content was limited, had to rely on the former’s explanations of the text.
Gradually, the increasing understanding of the text made possible a far-
reaching, error free cleaning of the text, which in its turn made it possible
to finally read large parts of the text that had been obscured by dirt ever
since the excavation of the clay tablet. When, eventually, in this way, the
meaning of the text was revealed, both authors were pleasantly surprised.

The clay tablet is 6.9 cm high, 8.8 cm wide, and 3.2 cm thick. It consists
of two large fragments glued together, with the addition of a small super-
ficial flake on the obverse. It is no longer possible to say if the pieces were
glued before the acquisition or in the course of some previous preservation
procedure. Although the clay tablet remains unbaked, not much of it has
been lost, so that almost the whole text can be read after the cleaning. Also
the diagram which accompanies and explains the text is relatively well pre-
served, even if the proportions in it are far from correct. In a few places,
the beginnings of straight lines in the diagram show that the same stylus
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was used for the drawing of the diagram as for the writing of the text.
The text is undated, but the hand writing and the inventory of cuneiform

signs used in it, as well as the form of the imprint of the tip of the stylus,
show that it is from the Old Babylonian period, most likely from between
the 18th and 16th centuries BC. A more precise dating is probably not pos-
sible. The size of the text and the diagram relative to the size of the clay
tablet, and also the sureness of the hand, indicate that the author of the text
was a well educated scribe with a considerable routine. On the other hand,
there are several peculiarities in the cuneiform text. The signs §A and TA,
normally easily distinguishable, can in VAT 8393 hardly be separated
from each other, they are almost completely identical. In other cases, vari-
ant writings can be found inside the text. Thus, the sign KI is written in
lines 3, 7, 8, and 9 with a clear vertical wedge on the left side, a wedge that
is missing in other places where it cannot be found even in a microscope
and after cleaning. The case is the same with the sign LI, which only in
lines 2, 3, and 8 displays its characteristic vertical wedge in the middle of
the sign, while the wedge does not appear elsewhere.

It is, in view of such variations in the way of writing the signs, hard to
believe that VAT 8393 is a text written by a school boy. It is more likely
that it was produced by a well advanced student. This conclusion is sup-
ported by the observation above that VAT 8393 probably is an excerpt
from a large and systematically organized theme text.

VAT 8393 belongs to no known group of OB mathematical texts.
Characteristic terms in it are %i-ip ‘double’ (= add), ‹u-ru-u% ‘tear off’
(= subtract), bi-il ‘bring’ (= multiply), igi pu-#ù-ur ‘resolve the opposite’
(= compute the reciprocal), $a i-li-a-kum ‘what comes up for you’ (=
the result), and ninda-nu ‘ninda’ (= the growth rate). The terms ‹u-ru-u%,
bi-il, igi pu-#ù-ur, and $a i-li-a-kum appear also in CBS 19761, a mathe-
matical fragment from Nippur (Robson, Sciamvs 1 (2000)), 36). There-
fore, VAT 8393, too, is probably a text from Nippur. In addition, the terms
bi-il, $a i-li-a-kum, and (the inflected form) ni-in-da-nam appear in the
brief text YBC 10522 (MCT (1945), text Uc), while the term (n)in-da-nu
alone appears repeatedly in the two texts MS 3052 and MS 2792, both
from Uruk (Friberg, RC (2007), Chapter 10).
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Appendix 2

A Catalog of Babylonian Geometric Figures

A large number of Babylonian geometric figures have been mentioned
in this book, in various connections. On the following three pages, an
effort is made to enumerate all plane or solid geometric figures appearing
in cuneiform mathematical texts.

The following notations will be used:

c the most likely form of a figure mentioned in a mathematical table of constants

d the most likely intended form of a figure shown in a geometric diagram

p the most likely form of a figure mentioned in a mathematical problem text

t the most likely form of a figure related to entries in a mathematical table text.

If nothing else is said the geometric figure appears, in one way or another,
in an Old Babylonian mathematical text. Otherwise, the following nota-
tions are used

(LB) the figure appears only in a Late Babylonian or Seleucid text

(+LB) the figure appears also in a Late Babylonian or Seleucid text

(+OAkk) the figure appears also in an Old Akkadian text

(+OSum) the figure appears also in an Old Sumerian (ED III) text

(+pr-Sum) the figure appears also in a proto-Sumerian text.

The figures are generally of three kinds. In illustrations 1 a - 1 h are shown
a basic set of plane geometric figures, divided by diagonals, transversals,
etc. In 2 a - 2 g are shown more complicated plane geometric figures, such
as figures within figures, concentric figures, repeatedly divided figures,
and rings or chains of figures. In 3 a - 3 g, finally, are shown a number of
solid figures, and in 3 h examples of the not very successful attempts of
Babylonian mathematicians to depict such solid figures.
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1 a
Squares and
rectangles

d, p (LB)
p(+LB) p

c, p d, p (LB)

d, p (LB)cc

c, d  d

c, dc

d c, d

d p(+LB)

c, d d dd

cc, d, p

c

p(+pr-Sum) d(+OAkk), p, t p p(+LB)

c, d(+OSum), p, t c, d, p

p(+pr-Sum, +OAkk), 
t(+OSum)

c, p(+OAkk), 
t(+OSum)

c, d c, d, p

1 b 
Right, symmetric,
and equilateral
triangles

d, p p, t

1 d 
Circles,
semicircles,
segments

1 c
Quadrilaterals
and trapezoids

1 g 
Regular
polygons,
etc.

1 h 
Other figures

1 f 
Concave squares, 
concave triangles,
etc.

1 e
Rhombuses,
double-segments,
and crescents
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2 a
Basic
metric algebra
figures

2 b.
Concentric
figures

d, p (LB)
2 c 
Figures within 
figures

2 d 
Striped triangles
and  trapezoids

2 f
Rings of 
figures

2 g
Chains of
figures

2 e 
Bisected
trapezoids Confluent

bisections

d(+OAkk), p p

pt

p

p

p(+LB) p

d

d

d, pd, p

d, p d, p

d, p p

d d  d  dd(+OSum)

d d p

p d, p

p(+OAkk) p  p

c, pp d
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3 a
Walls or canals
with rectangular,
triangular, or 
trapezoidal
cross sections

3 b
Cubes, whole
and truncated
square pyramids,
step pyramids

3 c 
Cylinders, whole
and truncated
circular cones,
and ring-cones 

3 f 
Ramps with 
straight or 
sloping sides

3 g
Horn figure
(icosahedron)

3 h 
Drawings of
solid figures

3 d
Whole and
truncated
crest pyramids

3 e 
Gate with
interior
diagonal

p(LB), t

d, p d, pp d, pd, p

p

p

p(+LB) p

p p d, pp

p p

p pd, p

p

2 h
Similar
sub-triangles

p(LB)pppp
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Index of Texts, Propositions, Lemmas

Text, etc. Sec. Fig. Topic Kind

Al-Shann‰ 14.2 14.2.1 another proof of Heron’s triangle area rule Isl
AO 17264 11.6 11.6.1 a chain of three bisected trapezoids OB
AO 6484 § 7 1.13 1.13.9 4 rectangular-linear igi-igi.bi problems Sel
AO 6484 § 7 16.7 exact square side computations Sel
AO 6484 § 8 16.7 a problem with an approximation to sqs. 2 OB
AO 6770, 1 13.1 an indeterminate problem for a rectangle OB
Ar. I 13.1 (partial) table of contents Gr
Ar. I.14 13.1 a product in a given ratio to the sum Gr
Ar. I.27-30 13.1 13.1.1 diagrams explaining the diorisms Gr
Ar. II.8 13.2a 13.2.1-2 sq. p + sq. q = sq. r Gr
Ar. II.9 13.2b 13.2.3-4 sq. p + sq. q = sq. u + sq. v Gr
Ar. II.10 13.2c sq. p – sq. q = D Gr
Ar. II.19 13.2d 13.2.5 (sq. sa – sq. d) : (sq. d – sq. sk) = q : 1 Gr
Ar. III.19 13.4 13.4.3  sq. (s · d) ± sq. s · 2 a

j
 · b

j
), j = 1, 2, 3, 4 Gr

Ar. IV.14-22 13.8 diorisms and the term plasmatikón Gr
Ar. V.7-12 13.7 cubic problems with diorisms Gr
Ar. “V”.9 13.3 13.3.1-2 approximation to limits Gr
Ar. “V”.30 13.5 price problem, quadratic inequalities Gr
Ar. “VI” 13.6 contents: equations for right triangles Gr
Ar. “VI”.6 13.6 area + upright of right triangle given Gr
Ar. “VI”.16 13.6 13.6.1 a right triangle with a rational bisector Gr
Archimedes 16.6 accurate estimates for the square side of 3 Gr
Ash. 1922.168 11.4 11.4.1 a diagram of a 3-striped trapezoid OB
Before Writing, 1 9.2 pre-literate number tokens in the Middle East pre-lit
BM 13901 1.12a 1.12.1-3 a theme text with metric algebra problems OB
BM 13901, 12 5.4 5.4.1 a quadratic-rectangular system of type B5 OB
BM 15285 6.2 6.2.2-3 a catalog of 41 division of figures problems OB
BM 15285, 33 12.5 12.5.1 double segments and lunes (Neugebauer) OB
BM 34568, 1 18.3 rules for computing the diagonal of a rectangle Sel
BM 34568, 12 1.13 1.13.8 a “pole-against-a-wall problem” Sel
BM 34568, 17-18 18.3  given the area and perimeter of a right triangle LB
BM 80209 1.10 a catalog text with metric algebra problems OB
BM 85194, 21-22 1.12b two problems for a chord in a circle OB
BM 85196, 9 1.12b 1.12.6 a “pole-against-a-wall problem” OB
BM 96954+ 9.3 9.3.2 outline of the clay tablet, with contents OB
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BM 96954+, § 1 f 9.3 9.3.3 a ridge pyramid truncated at mid-height OB
BM 96954+ § 4 9.3 problems for cones and truncated cones OB
BR 2-19 6.2 parameters for the circle, the semicircle, etc. OB
BR 10-12 12.3a 12.3.1 parameters for the ‘bow field’ OB
BR 13-15 12.3b 12.3.2 parameters for the ‘boat field’ OB
BR 16-18 12.3c 12.3.3 parameters for the ‘barleycorn field’ OB
BR 19-21 12.3d 12.3.4 parameters for the ‘ox-eye’ OB
BR 22-24 12.3e 12.3.5 parameters for the ‘lyre-window’ OB
BR 25 12.3f 12.3.6 parameters for the ‘lyre-window of 3’ OB
BR 26-28 7.8 parameters for the 5-, 6-, and 7-fronts OB
BR 31 16.7 an approximation to sqs. 2 OB
Bss XII.21 14.3 14.3.1 Brahmagupta’s area rule for quadrilaterals Ind
Bss XII.28 14.5-6 14.6.1 Brahmagupta’s diagonal rule Ind
Bss XVIII.50-51 9.4 volumes of conical piles of grain Ind
Bss XVIII.65-66 16.5 16.5.1 formal multiplication of number pairs Ind
Bss XVIII.69-72 17.4 Brahmagupta’s solution rules Ind
CBS 19761 App.1 a mathematical fragment from Nippur OB
Collections IV.1, see Pappus Gr
CUNES 50-08-001 11.3a a combined table of areas of squares ED III
Data 54-55 10.4 10.4.3 figures given in form and magnitude Gr
Data 57 10.1 10.1.3 parabolic applications of parallelograms  Gr
Data 58 10.2 10.2.2 elliptic applications of parallelograms Gr
Data 59 10.3 10.3.1 hyperbolic applications of parallelograms Gr
Data 66 11.1 a rule for the area of a triangle Gr
Data 84 10.5 10.5.1 an equivalence rule for quadratic equations Gr
Data 86 10.6 10.6.1-2 a rectangular-linear system of type B5 Gr
DPA 37 5.3 5.3.2 computation of the area of a square OAkk
DPA 36-37 1.14 1.14.1 computations of the areas of squares OAkk
DPA 39 10.1 10.1.2 a metric division exercise OAkk
El. I.41. 43 5.3 5.3.1 relation to the OB similarity rule 76
El. I.43 10.1 10.1.1 equal complements about the diameter Gr
El. I.44 10.1 10.1.1 parabolic applications of parallelograms Gr
El. II.2-3 1.2 1.2.1-2 systems of equations vs. quadratic equations Gr
El. II.4, II.7 1.3 1.3.1-2 quadratic-linear vs. rectangular-linear systems Gr
El. II.5-6 1.4 1.4.1-2 rectangular-linear systems of equations Gr
El. II.8 1.5 1.5.1-2 subtractive quadratic-linear systems of equations Gr
El. II.9-10 1.6 1.6.1 constructive counterparts to El. II.4, II.7 Gr
El. II.11*, II.14* 1.7 1.7.1-2 constructive counterparts to El. II.5-6 Gr
El. II.12-13 1.8 1.8.1 constructive counterparts to El. II.8 Gr
El. III.32 12.2 proposition about the chord-tangent angle Gr
El. IV 6.1 outline of contents Gr
El. IV.10-11 6.1 6.1.1 preliminaries to the construction of a pentagon Gr
El. VI.19 10.4 10.4.2 similar triangles in duplicate ratio of sides Gr
El. VI.24 10.1 parallelograms about the diameter Gr
El. VI.25 10.4 10.4.1 a figure of given shape and size Gr
El. VI.28 10.2 10.2.1 elliptic applications of parallelograms Gr
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El. VI.29 10.3 10.3.1 hyperbolic applications of parallelograms Gr
El. VI.30 7.1 7.1.1 cutting a line in extreme and mean ratio Gr
El. VI.33 7.4 angles have the same ratio as their arcs Gr
El. X 5.1 outline of contents Gr
El. X.16/17 10.5 an equivalence rule for quadratic equations Gr
El. X.17-18 5.2 5.2.1 commensurable solutions to a system of equations Gr
El. X.28/29 1a 3.1 3.1.1 generating rules for diagonal triples Gr
El. X.30 5.2 an auxiliary construction Gr
El. X.32/33 4.1 4.1.1 right sub-triangles in a right triangle Gr
El. X.33 5.2 5.2.2 a + b = u, a · b = sq. v/2 (u and v as in X.30) Gr
El. X.41/42 5.2 5.2.3 an interesting metric algebra lemma Gr
El. X.54 5.2 5.2.4 the square side of e times a first binomial Gr
El. X.57 5.2 the square side of e times a fourth binomial Gr
El. X.60 5.2 5.2.5 the square on a binomialapplied to e Gr
El. X.63 5.2 the square on a major applied to e Gr
El. X.112 5.2 an expressible area applied to a binomial Gr
El. X.114 5.2 an expressible area applied to an apotome Gr
El. XI.Defs. 25-28 8.1 four (of the five) regular polyhedrons Gr
El. XII.3 9.1 9.1.1 dissection of a triangular pyramid Gr
El. XII.4-7 9.1 9.1.2 the volumes of pyramids Gr
El. XIII.1-12 7.2 7.2.1 outline of contents Gr
El. XIII.8 7.2 7.2.1 division of the diagonals in a pentagon Gr
El. XIII.9 7.2 7.2.1 r + s10 is divided in extreme and mean ratio Gr
El. XIII.10 7.2 7.2.1 the square on the side of a decagon Gr
El. XIII.11 7.2 7.2.1 metric analysis of the pentagon Gr
El. XIII.12 7.2 7.2.2 the square on the side of an equilateral triangle Gr
El. XIII.13-18 8.1 outline of contents Gr
El. XIII.13 8.1 8.1.2-3 edge of a tetrahedron inscribed in a sphere Gr
El. XIII.14 8.1 8.1.4 construction of an octahedron in a sphere Gr
El. XIII.15 8.1 8.1.5 construction of a cube inscribed in a sphere Gr
El. XIII.16 8.1 8.1.6-7 construction of an icosahedron in a sphere Gr
El. XIII.17 8.1 8.1.8-9 construction of a dodecahedron in a sphere Gr
El. XIII.18, ps 8.1 uniqueness of the five regular polyhedrons Gr
Erm. 15073 11.10 11.10.1 outline of the reverse of the clay tablet OB
Erm. 15073 11.10 11.10.3 photos of the clay tablet OB
Erm. 15073 iv 11.10 11.0.2 a confluent trapezoid bisection OB
Erm. 15073 vi 11.10 bisections in two directions OB
Erm. 15189 11.5 11.5.1-2 ten double bisected trapezoids OB
ERMLPU, 42-5 15.0 Theon of Smyrna’s side and diagonal numbers Gr
G = IM 52916 16.7 approximations to sqs. 3 in a table of constants OB
GeometricaAC 18.2 a hand book in mensuration Gr
Geom. 8.1 18.2 the “method of Pythagoras” Gr
Geom. 9.1 18.2 the “method of Plato” Gr
Geom. 24.1-2 18.3 18.3.1 indeterminate problems for pairs of rectangles Gr
Geom. 24.4 18.3 a rational right triangle with given perimeter Gr
Geom. 24.5 18.3 a rational right triangle with given area Gr
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Geom. 24.7-9 18.3 relations between the sides of a right triangle Gr
Geom. 24.10 18.3 given the area plus perimeter of a right triangle Gr
Geom. 24.21 18.3 a pair of parallel right triangles Gr
Geom. 24.26 18.3 the diameter of a circle inscribed in a right triangle Gr
Geom. 24.46 18.3 given the sum of diameter, arc, and area of a circle Gr
Hippocrates 12.1 12,1,1 quadrature of lunes according to Alexander Gr
Hippocrates 12.2 12,2.1-2 quadrature of lunes according to Eudemus Gr
IM 31248 11.4 11.4.2 a problem for a 5-striped trapezoid OB
IM 43996 11.2j 11.2.11 a problem for a 3-striped triangle OB
IM 51979 7.8 7.8.2 a drawing of an octagram OB
IM 52916 = G 7.7 a table of constants OB
IM 54472 16.7 elimination of square factors OB
IM 55357 4.3 4.3.1-2 a chain of right sub.triangles in a right triangle  OB
IM 58045 11.3a 11.3.1 a drawing of a bisected trapezoid OAkk
IM 67118 5.4 5.4.2 a quadratic-rectangular system of type B5 OB 
IM 121613, 1 10.4 a form and magnitude problem OB
Ist. Si. 269 11.3f 11.3.5 diagrams of six 2-striped trapezoids OB
Ist. Si. 428 16.7 16.7.4 the square side of 2 02 02 02 05 05 04 OB
JZSS V.2-16 9.4 outline of contents, with diagrams Chin
Kudurru 12.4 12.4.2 images of the Sun, the Moon, and Venus Kass
Practica Geom. 11.0 Leonardo Pisano’s classical work Eur
Liber Mahameleth1.13 a Latin manuscript based on Islamic sources Eur
Liu Hui 9.3 commentary to JZSS V Chin
MAH 16055 11.2i 11.2.10 outline of the clay tablet with its 10 diagrams OB
MAH 16055 11.2i 11.2.9 a problem for a 3-striped triangle OB
Meno, 82 B - 85 B 6.1 Socrates and the slave boy Gr
Metrica I.8 14.1 14.1.1 Heron’s triangle area rule Gr
Metrica I.8 b 16.1 16.1.1 Heron’s square side rule Gr
Metrica II 9.3 volumes of pyramids and cones Gr
Metrica III.4 18.4 a triangle divided into four sub-triangles Gr
MLC 1950 11.2f 11.2.6 a problem for a 2-striped triangle OB
MLC 2078 15.2 15.2.1-2 an OB algorithm table for a chain of trapezoids OB
MS 1938/2 6.2 6.2.9 a circle in the middle of a hexagon OB
MS 2192 2.4 2.4.2 a ring of three trapezoids OB
MS 2985 6.2 6.2.8 a circle in the middle of a square OB
MS 3049 § 1 a 1.12b 1.12.5 a problem for a chord in a circle OB
MS 3049 § 5 8.2 8.2.1 the inner diagonal of a gate OB
MS 3050 6.2 6.2.4 a square with diagonals inscribed in a circle OB
MS 3051 6.2 6.2.5 an equilateral triangle inscribed in a circle OB
MS 3052 § 1 c 11.2 a problem for a triangular clay wall OB
MS 3876, 3 8.3 8.3.1-2 the weight of a copper icosahedron Kass
MS 3908 11.4 11.4.1 a drawing of a 3-striped trapezoid OB
MS 3971 § 2 5.4 5.4.2 a quadratic-rectangular system of type B5 OB
MS 3971 § 3 3.2 3.2.1 five igi-igi.bi problems OB
MS 3971 § 4 3.3 a scaling problem for diagonal triples OB
MS 4632 9.2 9.2.2 a spherical envelope with number tokens pre-lit
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MS 5112 § 2 c 5.4 5.4.2 a quadratic-rectangular system of type B5 OB
MS 5112 § 11 1.12 a rectangular-linear system of equations OB
MS 5112 1.12a a recombination text w. metric algebra problems OB
NSe = YBC 7243 16.7 a table of constants OB
NSe 10 16.7 an approximation to sqs. 2 OB
O 176 7.9 App. 2 a 12-pointed star (a zodiac diagram) Sel
OD 1-2, 30-31 11.1 11.1.1 a triangle divided into parallel strips Gr
OD 3 11.1. 11.1.2 a triangle bisector through a point on the side Gr
OD 4-5 11.1 11.1.3 a trapezoid divided into parallel strips Gr
OD 8, 12 11.1. 11.1.4-5 a trapezoid bisector through a point on the side Gr
OD 19-20 11.1. 11.1.6 a triangle divided by a line through a given point Gr
OD 32 11.1 11.1.1 a trapezoid divided into parallel strips  Gr
OIP 14, 70 11.3, fn. 31 table of areas of small squares ED III
Pappus 2.2 Coll. IV.1: a generalization of El. I.47 Gr
P. BM 10520 § 5 17.4 earliest use of common fractions Gr-Eg
P.BM 10520 § 6 a 16.7 a square side rule (demotic) Gr-Eg
P.Cairo § 1 17.4 early use f a kind of common fractions Eg-dem
P.Cairo § 11 6.2 an equilateral triangle inscribed in a circle Eg-dem
P.Cairo § 12 6.2 a square inscribed in a circle Eg-dem
P.Chicago 3, 2-3 18.2 areas of a non-symmetric trapezoids Gr-Eg
P.Cornell 69, 3 18.2 the area of a non-symmetric trapezoid Gr-Eg
P.Heidelberg 66311.7 a divided trapezoid Eg-dem
P.Moscow, 17 10.4 a form and magnitude problem Eg-hier
Plimpton 322 3.3 3.3.1 a table of parameters for 15 igi-igi.bi problems OB
Proclus 3.1 In Primum Euclidis Elementorum Comm. Gr
Proclus 12.1 Summary:Hippocrates of Chios Gr
Proclus 15.1 Comm. on Plato’s Republic, ii.27.11-22 Gr
Ptolemy 14.4 4.4.1 the diagonal rule for a symmetric trapezoid Gr
Ptolemy 14.6 4.6.2 the diagonal rule for a cyclic quadrilateral Gr
Ptolemy 16.4 Synt. I.10: accurate square side approximations Gr
P.Vindob. G. 19969.4 volumes of pyramids and cones Gr-Eg
Str. 364 obv. 11.2a 11.2.1 outline of clay tablet OB
Str. 364 § 2 11.2a a problem for a 3-striped triangle OB
Str. 364 § 3 11.2b 11.2.2 a quadratic equation for a 2-striped triangle OB
Str. 364 §§ 4-7 11.2c problems for 2-striped triangles OB
Str. 364 rev. 11.2d 11.2.3 outline of clay tablet OB
Str. 364 § 8 c 11.2d 11.2.4 a problem for a 5-striped triangle OB
Str. 367 11.3e 11.3.4 a problem for a 2-striped trapezoid OB
Suan Shu Shu 9.3 early mathematical text on 190 bamboo strips Chin
Syntaxis I.10, see Ptolemy Gr
Theaet. 147 C-D 17.1 Theodorus’ incommensurability proofs Gr
Theon of Smyrna, see ERMLPU, 42-5 Gr
Thymaridas’ Bloom 11.3g a special kind of systems of linear equations Gr
TMH 5, 65 5.3 5.3.2 metric division OAkk
TMS 1 1.12b 1.12.4 a drawing of a symmetric triangle in a circle OB
TMS 2 7.8 7.8.1 drawings of a hexagon and a heptagon OB
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TMS 3 = BR 6.2 a table of constants OB
TMS 5 1.11 a catalog text with metric algebra problems OB
TMS 5 13.6 a theme text with problems for squares OB
TMS 5 § 7-8 2.4 problems for concentric and parallel squares OB
TMS 14 9.3 9.3.1 a problem for a ridge pyramid OB
TMS 18 11.2e 11.2.5 a clever problem for a 2-striped triangle OB
TMS 19 b 16.7 an amazingly elegant metric algebra problem OB
TMS 20 16.7 an exact square side computation OB
TMS 21 6.2 6.2.6 a concave square in the middle of a square OB
TMS 23 11.9 11.9.1-2 confluent bisections in two directions OB
TSS 77 6.2 6.2.1 four circles inscribed in a square ED III
UE 3, 78 7.9 7.9.1 drawing of a conjugate pair of hyperbolas pr-Sum
UE 3, 286 7.9 7.9.3 two entangled acrobats (a concave square) pr-Sum
UE 3, 393 7.9 7.9.4 four entangled acrobats pr-Sum 
UE 3, 518 7.9 7.9.6 four entangled armed men (a concave square) ED III
UET 6/2 222 16.7 16.7.3 a square side algorithm by use of factorization OB
VA 5953 7.9 7.9.7 a pentagram of entangled bearded men OB
VAT 7351 1.12c 1.12.7 cross-wise striped trapezoids OB
VAT 7531 11.8 11.8.1 cross-wise striped trapezoids OB
VAT 7621 11.7 a 2 · 9-striped trapezoid OB
VAT 7848, 4 1.12c a problem for a rational symmetric trapezoid Sel
VAT 7848, 4 13.4 13.4.2 a rational symmetric trapezoid Sel
VAT 8389 13.5 systems of linear equations OB
VAT 8393 App.1 A.1.1-6 a chain of trapezoids with fixed diagonals OB
VAT 8512 11.2g 11.2.7 a clever problem for a 2-striped trapezoid OB
VAT 8512 11.3b 11.3.3 Gandz’ and Huber’s interpretation OB
VAT 8521 13.6 indeterminate interest problems OB
VAT 12593 11.3a table of areas of squares ED III
W 23291 § 1 a-g 1.13 1.13.1-6 metric algebra problems in terms of seed measure LB
W 23291 § 4 a-b 7.7 two rules for the area of an equilateral triangle LB
W 23291 § 4 a 16.7 a standard approximation to sqs. 5 LB
W 23291 § 4 b 16.7 a standard approximation to sqs 3 LB
W 23291 § 4 c 16.7 an accurate approximation to sqs. 3 LB
W 23291-x § 1 12.4 12.4.1 double circle segment and lunes LB
W 23291-x § 2 1.13 1.13.7 a problem for five concentric circles LB
W 23291-x § 4 1.13 metric algebra problems in terms of area measure  LB
YBC 10522 App.1 a brief text related to VAT 8393 OB
YBC 4608 11.3d a problem for a 2-striped trapezoid OB
YBC 4675 11.3c a problem for a bisected quadrilateral OB
YBC 4696 11.2h 11.2.8 outline of the clay tablet OB
YBC 4696 11.2h a series of problems for a 2-striped triangle OB
YBC 4698, 4 13.5 a price and weight problem for gold and iron OB
YBC 4709 10.8 systems of equations of types B5 and B6 Kass
YBC 7289 16.7 16.7.2 an accurate approximation to sqs. 2 OB
YBC 7359 6.2 6.2.7 a square in the middle of a square OB
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accurate construction of a figure MS 3051 (OB) 136
additivity of areas El. II.1 (Gr) 7
algorithm table MLC 2078 (OB) 378
analytic and non-constructive solutions El. II.4-8 (Gr) 24
apotomes El. X.73; XIII.6, 17(Gr) 101 f, 142, 172
application of areas El. I.44; Data 57-61, 84-85 (Gr) 114, 211 f
approximation to limits Ar. “V”.9 (Gr) 338
Archimedes (c.250 BC) Metr. I.8 (Gr) 361
––––– Meas. of Circle, prop 3 (Gr) 391
ascending and descending chains VAT 8393 (OB)  439
barleycorn field BR = TMS, 16-18 (OB) 133, 318, 323
basic problems in metric algebra (OB), W 23291 § 1 (LB) 6, 50
binomial El. X.36 (Gr) 101 f, 107
birectangle El. II.19 (Gr) 16
––––– P.Cornell 69, 3 (Gr-Eg) 348
–––––  overlapping El. II.10; Metr. I.8; Synt. (Gr) 17, 362 f, 369
bisected quadrilateral YBC 4675 (OB) 272
bisected trapezoid IM 58045 (OAkk); VAT 8512 (OB) 269, 271 f
Bloom of Thymaridas Nichomachus’ Introductio (Gr) 282
boat field BR = TMS 3, 13-15 (OB) 133, 317
bow (field) BR = TMS 3, 10-12 (OB) 133, 316
Brahmagupta (628 AD) Brªhmasphu#asiddhªnta (Ind) 206, 342, 365
–––––  area rule Bss XII.21 (Ind) 365 f, 371
–––––  diagonal rule Bss XII.28 (Ind)  370
–––––  formal multiplication of pairs Bss XVIII.65-66 (Ind) 387, 391
–––––  square-nature equation Bss XVIII.69  (Ind) 412
capacity number W 23291 § 1 (LB)  52
catalog of metric algebra problems BM 80209 (OB) 27
chain of birectangles Fig. 15.1.1 (Gr) 375, 410, 440
chain of bisected trapezoids Erm. 15189, AO 17264 (OB) 287, 293
chain of right sub-triangles IM 55357 (OB) 97
chain of symmetric trapezoids VAT 8393 (OB) 439
characteristic triangle for an octahedron Fig. 7.6.2 157
characteristic triangle for a pentagon Fig. 7.3.2 148
chord problem MS 3049 § 1; BM 85194, 21 (OB) 44
chord method Ar. II.8, 9; Ar. “V”.9 (Gr) 333, 338, 339
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chord-tangent angle El. III.32 (Gr) 313 f
circumscribed circle TMS 1; MS 3050, 3051 (OB) 42, 135
cleverly designed problem TMS 18; VAT 8512 (OB) 255, 259
commensurable straight lines or areas El. X.Def. I.1 (Gr) 102, 104 f
commensurable in square only El. X.Def. I.2 (Gr) 104 f, 145
complements about the diagonal El. I.43 (Gr) 113, 212
completion of the square El. II.5; Ar. “V”.30 (Gr) 3, 351
––––– Geom. 24.46 (Gr) 429
––––– Str. 364 §§ 3-7 (OB) 248 f
composition of triples TMS 23 (OB) 301 f, 346
concave square (lyre-window) BM 15285 ## 28, 40 (OB) 132-134
–––––  in the middle of a square TMS 21 (OB) 137
–––––  triple of constants BR = TMS 3, 22-24 (OB) 316, 319
–––––A + a + d = B = 1 16 40 TMS 20 (OB) 400
concave triangle BM 15285, 40 (OB) 132, 133
–––––  area constant BR = TMS 3, 25 (OB) 316, 320
concentric circles W 23291 § 1 g; W 23291-x § 2 (LB) 59, 61
concentric and parallel squares TMS 5 §§ 7-9; YBC 7359 (OB) 3, 1384
––––– W 23291 § 1 f (LB) 58
concentric and parallel triangles Geom. 24.21 (Gr) 428
––––– MS 2192 (OB) 80
cones BM 96954+ § 4 (OB) 199, 202 f
confluent trapezoid bisection TMS 23; Erm. 15073 col. iv (OB) 301 f; 306
––––– Ar. “V”.9 (Gr) 39, 346
conjugate pair of hyperbolas UET 3, 78 (pr-Sum) 164
constant of copper MS 3876 (Kass) 187 f
constants, mathematical and metrological (OB) 51, 79, 133, 152, 159, 161, 208, 222, 316
correction factor for false values IM 121613, 1; YBC 4608 (OB) 224, 276 f
cross-wise striped trapezoid VAT 7531 (OB) 297
cube inscribed in a sphere El. XIII.15 (Gr) 171, 175
cubit (= 1/2 m.) (OAkk, Sum, OB, LB) 51 f, 68
cyclic orthodiagonal (Ind) 367 f
cyclic quadrilateral (Gr, Ind) 342 f, 362, 364 f
deliberately introduced difficulty MS 3049 § 5 (OB) 183
diagonal quartet MS 3049 § 5 (Kass) 183
diagonal rule in three dimensions El. XIII.17 (Gr) 178 f
––––– MS 3049 § 5 (Kass) 183
diagonal triple El. X.28/29; Ar. II.8 (Gr) 83, 105, 334
––––– MS 3971 §§ 3-4 (OB) 86, 93
––––– MS 3049 § 5; Str. 364 § 3 (OB) 183, 248 f
––––– MAH 16055; TMS 23 (OB) 265, 304
Diophantus (c. 250 AD ?) Arithmetica (Gr) 327 f
diorism (condition) Ar. I; Ar. V (Gr) 328 f, 358 f
dissection of a triangular pyramid El. XII.3 (Gr) 189 f
––––– Liu Hui’s commentary (Chin) 207
dodecahedron El XIII.17 (Gr) 178
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double bisected trapezoid Erm. 15189 (OB) 287 f
double circle segment BR = TMS, 16-21 (OB) 316 f
down (= to the right) VAT 7531, 4 (etc.) (OB) 48
Early Dynastic III period (ED III) 2, 126, 271
Elements II* , forerunner of Elements II (Gr) 24
elliptic application El. VI.28; Data 58 (Gr)  217
equalsided (square, square side) (OB) 28
–––––  W 23291-x (LB) 63
equilateral triangle MS 2192; MS 3051; TMS 2 (OB) 80, 135,162
––––– G = IM 52916, rev. 7 (OB) 159, 398
––––– MS 3876 (Kass) 184 f, 398
––––– W 23291 § 4 (LB) 160, 397
––––– El. XIII.12(Gr) 143, 146, 172
––––– Geom. 10 (Gr) 389, 418
equilateral triangle inscribed in a circle MS 3051 (OB) 135
equilateral triangular band MS 2192 (OB) 80
Euclid’sElements (c. 300 BC) (Gr) 1-308
everywhere rational quadrilateral (Ind) 343 f
exact computations of square sides AO 6484 § 7 (Sel) 399
expressible diameter ERMLPU, 42-5 (Gr) 373 f
expressible straight lines or areas El. X; El. XIII.6, 11 (Gr) 102 f, 142 f, 179 f
extreme and mean ratio, construction El. II.11 (Gr) 19
––––– construction El. VI.Def. 3A, El. VI.30 (Gr) 141
––––– metric analysis El. XIII.1-6 (Gr) 142
––––– explanation of the term Fig. 7.4.1 (Gr) 151
factor diagram for systems of numbers pre-literate vs. proto-literate 194
factorization method UET 6/2 222; Ist. Si 428 (OB)  90, 401 f
false values  (see rule of false value) (OB)
feet as units for area and length Sec. 17.4; Sec. 18.1 (Gr) 409, 416
field between two squares Fig. 1.1.2 5
–––––  two or three squares TMS 5 (OB) 31
–––––  concave square in a square TMS 21 (OB) 137
field expansion procedure Sec. 1.15 (pr-Sum) 69
first apotome (with respect to e) El. XIII.6 (Gr) 143
first binomial (with respect to e) El. X.Def. II.1; El. X.54 (Gr) 108 f
form and magnitude problem El. VI.25; Data 55 (Gr)  220 f
––––– P.Moscow, 17 (Eg-hier) 223
–––––  IM 121163, 1 (OB) 224
form and magnitude rule TMS 18 (OB) 258
formal multiplication of pairs of numbers Bss XVIII.65-66, 69-71 (Ind) 387 f, 412
fourth apotome (with respect to e) El. X.Def. III 4 (Gr) 145
fourth binomial (with respect to e) El. X.Def. II 4 (Gr) 108
–––––  and the square of a major El. X.57, 63 (Gr) 110, 112
–––––  the height of a pentagram Fig. 7.3.1 147
funny number Ist. Si 428 (OB) 403-4
gaming-piece field  (equilateral triangle) MS 3876 (Kass) 185
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general computation rule W 23291 §§ 1, 4 (LB) 54 f, 397
generating rule for diagonal triples MS 3971 § 3 (OB) 87
–––––  table of parameters Plimpton 322 (OB) 92
–––––  igi-igi.bi problem TMS 23 (OB) 304
–––––  Euclid El. 28/29 1 a (Gr) 83
–––––  Plato Proclus’ Comm.;Geom. 9.1 (Gr) 84, 418
–––––  Pythagoras Proclus’ Comm.;Geom. 81. (Gr) 84, 418
–––––  square number equal to 2 squaresAr. II.8 (Gr) 334
–––––  used as a tool by Diophantus Ar. “VI” (Gr) 352
generating rule for transversal triples YBC 4608 (OB) 277
–––––  Fig. 11.3.6 (OB) 284
geometric(al) algebra (Gr)  vi-vii, 71, 232
geometric progression in the literal sense IM 55357 (OB) 100
going-out (coefficient) BM 13901 § 1 (OB) 37
grain measure TMS 14; BM 96954+ (OB) 198
hand tablet, triangle inscribed in a circleTMS 1 (OB) 42
–––––  four circles in a square TSS 77 (ED III) 126
–––––  square inscribed in a circle MS 3050 (OB) 135
–––––  equilateral triangle in a circle MS 3051 (OB) 135
–––––  square in the middle of a square YBC 7359 (OB) 138
–––––  octagram IM 51979 164
–––––  3-striped triangle IM 43996 (OB) 267
–––––  bisected trapezoid IM 58045 (OAkk) 269
–––––  3.striped trapezoid Ash. 1922.168 (OB) 285
–––––  3-striped trapezoid MS 3908 (OB) 285
–––––  square with diagonal YBC 7289 (OB) 396
–––––  square side algorithm UET 6/2 222 (OB) 401
–––––  square side algorithm Ist. Si 428 (OB) 403
heptagon = 7-front BR = TMS 3, 28 (OB) 161
Heron of Alexandria (c. 60 AD) Geometrica, Metrica (Gr) 361 f, 385 f, 415 f
Heron’s accurate square side rule Geom. 10, 15 (Gr) 387 f
Heron’s triangle area rule Metr. I.8 (Gr) 361 f
Heron’s square side rule Metr. I.8 b (Gr) 385
Heronic triangles VAT 7531 (OB) 49 f
hexagon = 6-front MS 1938/2; BR 27 (OB) 139, 161
Hippocrates (c. 430 BC) lunes according to Alexander (Gr) 309
––––– lunes according to Eudemus (Gr) 311
Hofmann, side and diagonal numbers Fig. 15.1.1 (Gr) 375
––––– square side approximations Sec. 16.2 (Gr) 386
horn figure (icosahedron) MS 3876 (Kass) 185 f
Høyrup, J. 37, 40, 295, 402, 416, 417, 420
hundred-cubit-square W 23291 § 1 (LB) 52
hyperbolas, conjugate UE 3, 78 (pr-Sum) 165
––––– intersecting Data 86 (Gr) 232
hyperbolic application El. VI.29; Data 59 (Gr)  219
icosahedron El. XI.Def.27; El. XIII.16 (Gr) 171, 176
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igi-igi.bi problems AO 6484 § 7 (Sel) 66, 399
–––––  MS 3971 § 3; Plimpton 322 (OB) 87, 88
im.gí d.da ‘long clay’ (table text) TMS 23 (OB) 304, 334
impressed tablets (pr-Sum) 193
inexpressible diameter (Gr) 375
inner diagonal of a gate MS 3049 § 5 (Kass) 181
Jiu Zhang Suan Shu (= Nine Chapters) Sec. 9.4 (Chin) 202
Kassite MS 3049, 3876; YBC 4709 181, 184, 233
––––– AO 17264; Fig. 12.4.2 (Kass) 292, 324
Knorr, W. 101, 105, 147, 153, 211, 309, 373, 392, 405-409
Larsa ancient Mesopotamian city 88, 272
lettered diagram (Gr) 2, 24, 74, 361, 416, 429
linear correction factor IM 121613, 1 (OB) 224
linear similarity rule for triangles Str. 364 §§ 2-3, 8, etc. (OB) 246 f, 254 f
Liu Hui’s dissection commentary to JZSS (Chin)  207
lunes Figs. 12.1.1, 12.2.1 (Gr) 309 f
––––– (crescent) W 23291-x § 1; BM 15285, 33 (LB) 321 f
lyre-window, see concave square (OB)
lyre-window of 3 BR = TMS 3, 25 (OB) 134, 316, 320
major, definition El. X.39 (Gr) 107
–––––  relation to a fourth binomial El. X.57, 63 (Gr) 110, 112
–––––  the diagonal of a pentagon Fig. 7.3.1 (Gr) 148
–––––  possible origin of the term Fig. 7.5.1 (Gr) 153
many-place sexagesimal numbers (OB, LB) 91, 183, 399 f
medial straight lines or areas El. X.21, etc. (Gr) 102 f
metric algebra (OAkk/OB/LB) vi f
metric algebra diagram (OAkk/OB/LB) vii, 2
metric analysis, pentagon El. XIII.8-11 (Gr) 146 f
–––––  octagon Fig. 7.6.1 156
metric conjugate rule W 23291 § 1 (LB) 58
metric square side computation (OAkk) 69
metric division W 23291 § 1b; W 23291-x § 4 d (LB) 50 f, 63
––––– TMH 5, 65; DPA 39 (OAkk) 115, 214
metric squaring W 23291 § 1 a; W 23291-x, § 4 b (LB) 50, 63
minor, definition El. X.76 (Gr) 107
–––––  the side of a pentagon El. XIII.11 (Gr) 143
–––––  possible origin of the term Fig. 7.5.1 (Gr) 153
–––––  the edge of an icosahedron El. XIII.16 (Gr) 171, 176
missing analysis El. XIII. 13, 16, 17 (Gr) 174, 177, 179
––––– OD 19-20, 32 (Gr) 241 f
Muroi, K. 46, 137, 400
neusis construction Hippocrates (Gr) 314
ninda = c. 6 meters (Sum/OB) 5
ninda and cubit sections W 23291 § 1 (OB) 54
Nippur ancient Mesopotamian city 269, 440
non-symmetric (scalene) triangle Geom. 12 (Gr) 419
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––––– VAT 7531 (OB) 49
non-symmetric trapezoid P.Chicago 3, 3; P.Cornell 69, 2 (Gr) 419
––––– VAT 7531 (OB) 49
normalized diagonal triple Plimpton 322; MS 3971 § 3 (OB) 92, 152
normalized side of a figure BR = TMS 3,2-32 (OB) 152, 161, 316, 322
number tokens BW 1 (pre-lit) 192 f
octagram IM 51979 (OB) 164
octahedron El. XIII.Def.26, 14 (Gr) 171, 174
Old Akkadian,  square expansion rule Fig. 1.14.1 (OAkk) 68 f
–––––  early examples of metric algebraTMH 5, 65; DPA 37, 39 (OAkk) 115, 214
–––––  bisected trapezoid IM 58045 (OAkk) 269
–––––  computation of squareside Ash. 1924.689 (OAkk) 391
overlapping birectangle El. II.10; Metr. I.8; Synt. (Gr) 17, 362, 369
ox-eye  (fat circular double-segment) BR = TMS 3, 19-21 (OB) 133, 319, 323
parabolic application El. I.43-44; Data 57 (Gr) 212
Pappus’ proof  (c. 320 D) Fig. 2.2.1 (Gr) 75
peg-head (triangle) (Sum/OB/LB) 97, 129, 246, 261, 316, 397
pentagon = 5-front El. IV.11-14, XIII.7-11 (Gr) 123, 142 f, 171 f
––––– BR = TMS 3, 26 (OB) 161
pentagram of bearded men VA 5953 (OB) 169
plasmatikón (representable) Ar. I.27, 28, 30; IV. 17, 19; V.7 (Gr) 329, 359
Plato, the diagonal of a square Meno, 82 B - 85 B (Gr) 132
–––––  Theodorus’ proof Theaetetus 147 C-D (Gr) 410
Plimpton 322 Sec. 3.3 (OB) 88 f
pole-against-a-wall problem BM 85196, 9 (OB) 46 f
––––– BM 34568, 12 (LB) 64 f
pre- and proto-literate number notations (pre-lit) 194
pre-optimal approximation 412 f
pre-pre-optimal approximation BSS XVIII.70-71 (Ind) 413 f
price and weight problem, indeterminateAr. “V”.30 (Gr) 349
––––– indeterminate YBC 4698, 4 (OB) 349
Proclus (c. 450 AD) IPEEC; Summ.; CPR(Gr) 84, 235, 309, 376
pseudo- Heronic Geometrica Ch. 18 (Gr) 415 f
Ptolemy’s diagonal rule  (c. 150 AD) Synt, I.10 (Gr) 364 f, 371 f, 438
Ptolemy’s accurate approximations Synt, I.10(Gr) 399
purpose of Babylonian mathematics MS 3049 § 5 (OB) 183
pyramid, volume El. XIII.13, XII.3-7 (Gr)  173, 189 f
––––– BM 96954+ (OB) 199
quadratic correction factor IM 121613, 1 (OB) 224
quadratic equations for 2-striped triangles Str. 364 § 3-7 (OB) 247 f
quadratic equation, type B4a El. II.3, VI. 29, 30; Data 59 (Gr)6, 8, 142, 220
quadratic equation, type B4b El. II.2; Data 59 (Gr) 6, 7, 220
quadratic equation, type B4c El. II.3, VI.28; Data 58 (Gr) 6, 9, 219
quadratic equation, types B4a-c TMS 5 § 4; BM 13901 § 1 (OB) 3, 384
quadratic inequalities Ar. “V”.30 (Gr) 351
quadratic-rectangular system, type B5 El. X.33, 54, 57 (Gr) 116, 120
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––––– BM 13901, 12 (OB) 116, 120
––––– MS 5112 § 2; IM 67118 (OB) 118, 121
––––– MS 3971 § 2 (OB) 119, 121
––––– YBC 4709 § 15 (Kass) 233, 234
––––– TMS 18 (OB) 257
quadratic-rectangular system, type B6 Data 86 (Gr) 228
––––– YBC 4709 § 1 (Kass) 234
quadratic similarity rule (OB) 222, 246 f
quadratic-linear system, type B3a El. II.8, II.13 (Gr) 6, 15, 23, 26
quadratic-linear system, type B3b El. II.12; Ar II.10 (Gr) 6, 23, 26, 336
––––– TMS 5 (OB)
––––– W 23291 § 1 f; BM 34568, 12(LB) 58, 64
quadrilateral bisected in two directions TMS 23; Erm. 15073 col. iv (OB) 301, 306
quasi-cube Ar. “VI”; Geom. 24.5 (Gr) 356, 423
––––– VAT 8521, 4 (OB) 356
quasi-cube table MS 3048, 3899; VAT 8492 (OB) 356, 423
rational bisector Ar. “VI”.16 (Gr) 357
reciprocals (Sum/OB/LB) 28
reciprocal pair of numbers (igi, igi.bi) AO 6484 § 7 (Sel); MS 3971 § 3 (OB) 66, 87
recombination text, problems for squares BM 13901 (OB) 35, 116
–––––  problems for squares/rectangles MS 5112 (OB) 41, 118
–––––  mixed geometric problems MS 3049 (OB) 43, 181
–––––  mixed problems BM 85194 (OB) 45
–––––  mixed problems BM 85196 (OB) 46
–––––  expressions for surface content W 23291 (LB) 50
–––––  expressions for surface content W 23291-x (LB) 61, 321
–––––  mixed problems BM 34568; AO 6484 (Sel) 64, 66
–––––  mixed problems MS 3971 (OB) 86
––––– problems for pyramids and cones BM 96954+ (OB) 199
––––– mixed problems Erm. 15073 (OB) 304
rectangular-linear system, type B1a El. II.4, 5, 14*; X.54 (Gr) 6 f, 21, 26, 109
––––– AO 6484 § 7 (Sel) 66
––––– Data 58, 85 (Gr) 227
––––– Geom. 24.10; Metr. III.4 (Gr) 425, 430
––––– TMS 18; YBC 4709 § 15 (OB) 234, 257
rectangular-linear system, type B1b El. II.2, 3, 6, 7, 11* (Gr) 6, 8, 9, 11, 13, 26
––––– MS 5112 § 11 (OB) 41
rectangular-linear system, types B1a-b W 23291 §§ 1d-e (LB) 50, 55, 57
rectangular-linear system, types B2a-bEl. II.4, 7, 9, 10 (Gr) 6, 11, 17
––––– TMS 5 § 4; BM 13901 § 2 (OB) 3, 394
recursive procedure IM 55357 (OB) 99
––––– AO 17264 (OB) 295
––––– ERMLPU, 42-5 (Gr) 374, 387, 410 f
––––– VAT 8393 (OB) 440
reed measure, a surface measure W 23291-x § 4 (LB) 63, 70, 322
reed, a length measure IM 58045 (OAkk) 269
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regular sexagesimal numbers (OB) 92, 93, 255, 289
––––– DPA 39 (OAkk) 214
––––– AO 6484 § 7 (LB) 340
regular sexagesimal twins Erm. 15189 (OB) 289
––––– AO 6484 § 7 a (LB) 340
representable, see plasmatikón (Gr)
riddles Geom. 24 (Gr) 420
ridge pyramid TMS 14; BM 96954+, §§ 1 a-m (OB) 196 f
ridge pyramid truncated BM 96954+, § 1 f (OB) 200
right sub-triangle rule (OB) 212
right sub-triangles El. X.32/33 (Gr) 95
right(-angled) triangle vii
ring of four trapezoids Figs. 2.3.2, 11.3.6 (OB) 78, 284
ring of four rectangles W 23291 § 1 (LB) 78 f
ring of four right triangles TMS 3, 30 (OB); UE 3, 393 (pr-Sum) 79, 167
Robson, E. 163, 198
royal seal UE 3, 518 (ED III) 168
rule of false value TMS 5; IM 121612, 1 (OB) 33, 224, 276 f
––––– Data 55 (Gr) 225
––––– VAT 8389, 8391 (OB) 349
sag ‘front’  (short side) (Sum/OB) 5
$ar (= 1 square ninda) W 23291, W 23291-x (LB) 70
$ár-figure BR = TMS 3, 30 (OB) 79
$ár-sign Fig. 2.4.1 (Sum/OB) 79
scaling problem for right triangle MS 3971 § 4 (OB) 93
scaling rule for plane figures (OB) 208
scaling rule for solid figures (OB) 208 f
scaling, reciprocal, of length and width Ist. Si 269; Erm. 15189 (OB) 281, 289
seal imprints UE 3 (pr-Sum) 164 f
seed constant W 23291 (LB) 50 f
seed measure W 23291 (LB) 50, 70, 322
––––– Geometrica ms A (Gr) 417
semichord in a semicircle BM 34568, 12 (OB) 65
separate ninda and cubit sections W 23291 § 1 (LB) 54, 62, 70
series text YBC 4696 (OB) 264
––––– YBC 4709 (Kass) 233
sexagesimal place value notation (OB/LB) 34, 86, 91, 215, 276, 400 f
side and diagonal numbers algorithm Theon of Smyrna (Gr) 373 f
similar segments of circles Sec. 12.2 (Gr) 311 f
Sippar, ancient Mesopotamian city 27, 46, 205, 279, 304, 354, 403
solution in integers Geom. 24.10 (Gr) 426
solution procedure, abstract AO 6770, 1 (OB) 332
––––– W 23291 § 4 (LB) 160, 397
spherical envelopes (pre-lit) 193
spiral chain algorithm MLC 2078 (OB) 377
square band TMS 5, §§ 7-9 (OB) 34 f
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––––– W 23291 § 1 (LB) 50, 58 f
square corner (gnomon) (Gr) 15, 59, 85
––––– MS 5112 § 2 c (OB) 118
square contraction rule Fig. 1.14.1 (OAkk) 68
square expansion rule Fig. 1.14.1 (OAkk) 68
square in a circle MS 3050 (OB) 135
square side algorithm UET 6/2 222; Ist. Si 428 (OB) 401, 403
square side rule Metr. I.8 b (Gr) 32, 114
––––– P.BM 10520 § 6 a (Eg-dem) 394
––––– accurate Geom. 15 (Gr) 389
––––– Sec. 16.7 (OB/LB) 396 f
step (= unknown) AO 6770, 1 (OB) 332
string (radius) MS 3049 § 1 (Kass) 45
striped triangles Sec. 11.2 (OB) 244 f
stroke (= straight line, side) AO 6770, 1 (OB) 160. 397
student’s awkward copy YBC 7359 (OB) 138
Suan Shu Shu on 190 bamboo strips (Chin) 205
surface content W 23291, W 23291-x (LB)  50, 70
Susa, ancient city east of Mesopotamia  29, 42, 193, 196, 255, 307, 353
symmetric (isosceles) triangle TMS 1 (OB) 42
––––– Geom. 11 (Gr) 418
symmetric trapezoid VAT 8393 (OB) 431
––––– VAT 7848, 4 (LB) 344
––––– Figs. 14.2.1, 14.4.1 364, 368
synthetic and constructive solutions El. II.9-14; El. VI.28 (Gr) 24, 219
synthetic arguments El. X; El. XIII; OD 19-20 (Gr) 85, 173, 241
system of linear equations YBC 4698 (OB) 277, 349 f
––––– bloom of Thymaridas (Gr) 282
––––– MS 3809 (OB) 286
––––– VAT 8389, 8391 (OB) 349
systematic variation of a basic idea (OB) 79
table of areas, small squares OIP 14, 70 (OB) 271
––––– large squares VAT 12593 (OB) 271
––––– large and small squares CUNES 50-08-001 (ED III) 271
table of constants BR = MS 3 (OB) 79, 133, 151, 161,
––––– 222, 316, 396
––––– G = IM 52916 (OB) 159, 398
table of diagrams, 3-striped triangles MAH 16055 (OB) 264
––––– 2-striped trapezoids Ist. Si 269 (OB) 279
––––– double bisected trapezoids Erm. 15189 (OB) 287
table of fractions P.Akhmî m(Gr-Eg) 428
Taisbak, M. 211, 213, 219, 231, 232
tetrahedron El. XIII.13 (Gr) 171, 173
theme text, basic metric algebra problemsEl. II* (Gr) 24
–––––  problems for squares BM 13901 (OB) 35
–––––  basic metric algebra problems W 23291 § 1 (LB) 50
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–––––  basic metric algebra problems W 23291-x § 4 (LB) 64
–––––  figures within figures El. IV (Gr) 123
–––––  subdivided squares BM 15285 (OB) 126 f, 133
––––– volumes of basic solid figures Jiu Zhang Suan Shu V (Chin) 205
––––– striped triangles Str. 364 (OB) 245
––––– determinate linear equations Ar. I (Gr) 328
––––– equations for right triangles Ar. “VI” (Gr) 352, 357
––––– problems for one or more squaresTMS 5 (OB) 353
––––– indeterminate interest problems VAT 8521 (OB) 355
––––– cubic-linear systems of equationsAr. V.7-12 (Gr) 358
––––– problems for right triangles BM 34568 (Sel) 424
––––– trapezoids with fixed diagonals VAT 8393 (OB) 438
Theodorus’ lesson  (c. 400 BC ?) Theaet. 147 C-D (Gr) 405 f
Theon of Smyrna ERMLPU, 42-5 (Gr) 373 f
third approximation, pseudo-Heronic Geom. 15 (Gr) 388 f
––––– Ptolemy Syntaxis I.10 (Gr) 390
––––– Archimedes Measurem. of the Circle (Gr) 392
––––– Theodorus(?) Sec. 17.4 (Gr) 409
––––– YBC 7289; NSe 10 (OB) 398
Thymaridas, see bloom (Gr)
traditional area measure (OB/Sum) 62
––––– YBC 4608 (OB) 275 f
transversal triple IM 58045 (OAkk) 269 f
––––– and the bloom of Thymaridas Sec. 11.3 g (Gr) 282
–––––  composition with a diagonal triple Fig. 13.4.4 (OB) 346
trapezoid bisection equation IM 58045 (OAkk) 275
trapezoid bisection rule IM 58045 (OAkk) 270, 275 f
trapezoid diagonal rule VAT 8393 (OB) 368, 438
triangular prism, see wedges
triangular pyramid El. XII.3 (Gr) 189 f
twelve-pointed star, months and planets O 176 (Sel) 170
two completions of squares Str. 364 § 3; VAT 8512 (OB) 248 f, 260
up (= to the left) MS 3049 § 1 a; VAT 7531, 4 (OB) 43, 48
u$ ‘length’ (long side) (Sum/OB) 5
Ur, ancient Mesopotamian city 164, 401
Uruk ancient Mesopotamian city  48, 50, 86, 193, 245, 258, 275, 277, 440
volume (Gr) 4, 189 f,
––––– (OB) 186, 197 f
––––– (Chin) 203 f
wedges (triangular prisms) El. XII.3-4 (Gr) 190
––––– TMS 14 (OB) 196
––––– JZSS V.14-16 (Chin) 204 f
zeros and separators, not used (OB) 51
Zeuthen’s conjecture Data 86 (Gr) 211, 232
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