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SURVEY OF EXTRAPOLATION PROCESSES IN
NUMERICAL ANALYSIS*

D. C. JOYCE’

Abstract. This survey traces the development of extrapolation processes in numerical analysis,
dealing mainly with those based on polynomial or rational functions. The more important results
are presented in a uniform notation and interconnections between work in different fields are brought
out. An extensive bibliography is appended.

1. Introduction. This survey traces the development ofextrapolation processes
in numerical analysis, dealing mainly with those based on polynomial or rational
functions. An extensive search of the English, German and French mathematical
literature was carried out so that individual contributions could be placed in their
historical perspective. Many of the earlier works are somewhat obscure and have
been overlooked by other reviewers. In this survey the more important results are
presented in a uniform notation and interconnections between work in different
fields are brought out.

The sections follow each other in roughly chronological order as do the refer-
ences within each section. Citations of works which deal with extrapolation
processes appear in capitals and an author index has been appended for ease of
reference. The following abbreviations are used:

BV Boundary Value,
EV Eigenvalue,
IV Initial Value,
IE Integral Equation,
ODE Ordinary Differential Equation,
PDE Partial Differential Equation.
Often in numerical analysis an unknown quantity, a0, is approximated by a

calculable quantity, T(h), depending on a parameter h > 0, such that

T(O) lim T(h) ao,
h-,O

and it is known that there exist constants a l, a2, ])1, ’))2, C1, C2, and
/40 such that, for J 1, 2, 3, ..., and h < Ho,

() T(h) ao + a h + a2h2 + + ajh’ + Rj(h),

where IRj(h)l < CjhJ+l and 0 < ’1 2 < < )j < j+l.

That is, T(h) "admits an asymptotic expansion for h 0." We do not assume
that the infinite series ao + alh + a2h’2 + converges.

In this situation it is natural to attempt to accelerate the convergence of the
approximations towards a0. Ways in which this "extrapolation" (to h 0) can
be carried out for a variety of problems are discussed in the following sections.
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436 D.C. JOYCE

2. Approximating n. Archimedes (250 BC) obtained bounds for rc by calcu-
lating the perimeters of regular polygons inscribing and circumscribing a circle
of unit diameter. Using 96-sided polygons he was able to prove that 3 < r < 3.

In order to show that his approximations are of form (1), let us denote the
perimeter of the n-sided inscribed polygon by T,, or T(h), where nh 1. It is
easily verified that

T n x sin (rein)

or

T(h) (l/h) x sin (rh).

Now

X X

sin(x)=x-. +
5!

)jx2j +
-+- +ooo

(2j +
(convergent for all x), so

T(h) - x
(rch) 3 (rch)

ch- + +
3! 5!

(_)j(7h)eJ +

(2j+)! +"’

or

g3 g5h4 )J
1.C2j+1

(2) T(h)=rc--.he +. +(-
(2j+1)h2J + ""’

which is of form (1), with

aj (-)i(rc2J+1/(2j + 1)!), j 0, 1,2,...,

7j 2j, j= 1,2,3,....

For h < 1, T(h) < , so T,} is a sequence of lower bounds for , increasing
with n. Similarly, the perimeter of the n-sided circumscribing polygon is given by"

U, U(1/n)= n tan (/n).

Thus

(3)
7"g 3 2rc

h,
177

U(h) rc + -h2
nt- - nt-

315
h6 +

(convergent for h < 1/2), and U,} is a decreasing sequence of upper bounds for
The bounds for n 6, 12, 24, 48 and 96 are shown in Table 1, to 4 decimal places
(4D). To this accuracy, Archimedes’ bounds are 3.1408 and 3.1429.

TABLE

12 24 48 96

3.0000 3.1058 3.1326 3.1393 3.1410

U. 3.4641 3.2154 3.1597 3.1461 3.1427D
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EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 437

Subsequent refinements obtained using Archimedes’ method are shown in Table 2
(information from Rudio (1892), Moors (1905), Turton (1946), Dijksterhuis (1954),
Eves (1969)), where all dates are AD and "accuracy" means number of decimal
places correct.

TABLE 2

Namc

Date

Accuracy

Aryabhata

530

6x26

Vieta

1579

6 216

Romanus

1593

23o

Ceulcn

1610

35

262

Several attempts had been made to reduce the amount of calculation required
to obtain accurate approximations before HUYGENS (1654) suggested using two
new sequences, {S,} and {V,}, defined by

(4)

and

S. S(h) =_ (4T(h)- T(2h))/3

V. =_ V(h) (2U(h) + T(2h))/3.

He used geometric arguments (see Hardingham (1932), Lodge (1935), Whiteside
(1960), Hofman (1966)) to show that

Sn<< V

(SNELL (1621) had stated, without proof, that V, > re). GREGORY (1667) subse-
quently proved a similar result for a general central conic.

Expansions (2) and (3) can be used to show that

ioe.

{6)

and

S(h) ({4 1)ao + {4 22)alh2 + (4 24)a2h4

+ (4- 26)a3h6 -4- -4- (4- 22J)ajh2j + ...)/3,

S(h) ao 4a2h4 20a3h6
rc5

h4
re7

h626

(4 4)ajh2J/3 +

2rc5
h4

2rc7
h6V(h) r + + +

The terms in h2 have been eliminated and the errors in S(h) and V(h) are only
O(h4). Thus S(1/23) is correct to 35D. Formula (4) accelerates the convergence of
the sequence T, T(h)} towards re.
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438 D.C. JOYCE

MILNF (1903) extended this idea, showing that the terms in h2, h4, h2’

can be eliminated by solving the system of linear equations

h2T(h) bo + bl + + b,h2",

(7) r(h/2) bo + bl(h/2)2 + + b,,(h/2)2m,

r(h/2) bo + bl(h/2")2 + + b,(h/2m)2",
where the bj are, in some sense, approximations to the aj. bo is an approximation
to rc (or, more generally, to the length of a circular arc), obtained by combining
together the cruder approximations T(h), T(h/2),..., T(h/2’). If we define

(8) r(h, h/2, h/2m) =_ bo . r(h/2)
k=O

we find that

For example,

(9)

Similarly

(10)

(__)m-k2k(k+ 1/ I-[ 4i- l)
i=1

H 4J- l)
j=l

T(h,h/2) (4T(h/2) T(h))/3,

T(h, hi2) S(h/2).

T(h, hi2, hi4) (64T(h/4) 20T(h/2) + T(h))/45.

Using h , m 4, rc can be computed to 1613.

3. Numerical integration. One class of quadrature rules for approximating

I f(x)dx

uses weighted sums of the values of the integrand at equidistant points

Xo =a, x =a+h, x2 =a+2h,..., x,=a+ nh=b.

The simplest of these is the trapezoidal rule"

r(h) 1/2h{fo + 2fl + 2f2 + 2f3 + 2f4 +’" + 2f.-1 + f.},(11)

where

=- f(xr) f(a + rh), r O, 1,...,n.

When n is even we may use Simpson’s rule"

(12) S(h) -h{fo + 4fl + 2/2 + 4f3 + 2f, +... + 4/,,- + f,}.
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EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 439

When n is divisible by 3 (3In), we have Newton’s - rule"

(1.3) N(h) =_-h{fo + 3fl + 3f2 + 2f3 + 3f4 +"" + 3f.-1 + f.},
and when 4In, Boole’s rule:

(14) B(h) 4--23h{7f0 + 32ji + 12f2 + 32f3 + 14f4 +... + 7f,}.
These four rules are examples ofcomposite Newton-Cotes integrationformulas,

based on approximating the integrand by a piecewise interpolating polynomial
(Davis and Rabinowitz (1967, p. 29)).

Other rules, which do not belong to the Newton-Cotes class of formulas, are
Weddle’s rule (Weddle (1854)):

(15) W(h) =_

and Hardy’s rule (Hardy (1883)):

(16) U(h)=_ oh{14fo + 81fl + l10f3 + 81f + 2Sf6 +... + 81f,_1 + 14f,},
which are applicable when 6In.

SHEPPARD (1900) observed that these rules can be obtained by linear com-
bination of trapezoidal approximations for different values of h. For instance,
Simpson’s rule may be obtained by combining T(h) and T(2h), thus:

(4T(h)- T(2h))/3 (4 x 1/2h{fo + 2fl + 2f2 +... + 2f,_ + f,}
-1/2(2h){fo + 2f2 + + f,})/3
1/2h({2f0 + 4f + 4f2 +... + 4f,-1 + 2f,}

{j; + 2fz +... +f})
-}h{fo + 4/1 + 2f2 + + 4/,-1 +f}.

So
S(h) (4T(h) T(2h))/3

(compare (4)). He also noted that

N(h) =_ (9T(h)- T(3h))/8

and

(17) W(h) =_ (15T(h)- 6T(2h) + T(3h))/lO

(HARDY (1883) had observed that W(h) =_ (9S(h) 4N(h))/5).
To generalize these results he called on the Euler-Maclaurin summation

formula (Euler (1738), Maclaurin (1742))

(18)

Ba B2 ’"(b)T(h) I + .(y (b) f’(a))h2 -4-(.(f f’"(a))h4

+ + (_)_ Ba (f(2J-(b) f(2J-(a))h2J + R
(2J)!
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440 D.C. JOYCE

where B B2-- , B3
,... are the Bernoulli numbers (Whittaker and

Watson (1927, pp. 125-128), Sheppard (1930), Grant (1969). Another notation,
with B2 , B4 -0, B6 2,"" and Bzs+I 0 for j 1, 2, 3,..., is used
by Jordan (1950, p. 233) and other authors). It is convenient to define

(19) fls B/(2j)!.

Equation (18) is of the form (1), with

T(0) ao I,

and, for j 1, 2, 3, ...,
as (_)s- fls(f(2s- )(b) f(2s- )(a)), 7s 2j.

Thus (as in (6))

S(h) I 4a2h 20a3h6 (4 4)ash2S/3
Similarly

N(h) I 9a2h4- 90a3h6 (9s- 9)ash2S/8
and

W(h) I + 36a3h6 + 504a,h8 + + (9 6 x 4 + 15)ashZS/lO +
In the last case the terms in h2 and h have been eliminated. Sheppard suggested

extending the process by combining m + trapezoidal values with different
steps to eliminate h2, h4, h2m and obtain the O(h2m+ 2) approximation

T(ho, h hm) aT(h)
k=O

(compare (8)), where h rh, ro < r < < r,,, and the a depend on the
sequence r} and satisfy

CZo+a + +a,,= 1,

(20)
org .ql_ 0 lrl

2 + + mr2,, 0,

oro + ,r + + r o,

r ’=0.Oor + X + +
It can be shown that if we solve (20) with r 2- we obtain the same expression
for as Milne obtained by solving (7). Apart from the choice of r, the two ap-
proaches are completely equivalent. For example,

(21)

(compare (9)),

T(h, 2h)= (4T(h)- T(2h))/3 S(h)

T(h, 3h)= (9T(h)- T(3h))/8 =_ N(h),

T(h, 2h, 3h)= (15T(h)- 6T(2h) + T(3h))/lO =_ W(h),

T(h, 2h, 4h) (64T(h) 20T(2h) + T(4h))/45
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EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 441

(compare (10)). It is easily verified that

(22) T(h, 2h, 4h) _= B(h).

Sheppard also used the following sequences {rk}: {1, 5}, {1, 2, 5}, {1, 3, 5},
{1, 3,9), {1,2, 3,4), {1,2, 3, 6}, {1,2, 4, 8), {1,2, 5, 10) and {1,2, 3, 4, 6}. He noted
that, iff’(b) f’(a),--i.e., a 0--then T(h) is usually more accurate than S(h),
having a smaller coefficient of h4. In this case we can choose the {k) to eliminate
h4, h6, hZm+2. Similarly, if also f"’(b) f’"(a), then T(h) is usually more
accurate than W(h).

He observed that the midpoint or rectangle rule,

(23) U(h) =_ h{f/2 + f3/2 + fs/2 +"" + f,--1/2},
can be obtained from

(24) U(h) 2T(h/2)- T(h),

and hence

(25) U(h) I 1/2alh 2 -a2h4 (1 21-2J)ajh2j

Thus the same elimination techniques can be applied to U(h). He noted that they
are also applicable to modified rules like Parmentier’s rule,

(26) P(h) =- U(h) + h{fo A/2 L-1/2 1- L}
(which has error O(h4)), and to product rules for the approximation of

fi’fcdf(x,y)dxdy.
BUCHANAN (1902, 1903) used the central difference form of (18) to obtain

(20) and noted that

(27) T(h, 2h, 3h, 6h) (9W(h) + 5H(h))/14.

It is easily verified that T(h, 2h, 3h, 6h) is the Newton-Cotes 7-point rule.
COREY (1906) suggested eliminating the terms in h2q+2, h2q+4, hZq+6,

h2q+ 2m from the expansion for the corrected trapezium rule,

Tq(h) T(h) fl(f’(b) f’(a))h2 + 2(f’"(b) f’"(a))h

nt (__)qflq(f(2q- )(b) f(2q- )(a))h2q

(compare (18)), to obtain To(ho,hl,...,hm) with error O(h2q+2+2). Obviously
To(h =_ T(h) and

To(ho h x,..., hm) T(ho hx,..., h,,),

so this is a generalization of Sheppard’s technique, to be used when the values of
f,,f,,,...,f(Eq-1) are known at a and b. Corey used _>_ ro > r > > r,,,
and recommended that, in choosing the {rk} we should "take the largest value
(of 1Irk) such that one or more of the lesser values will be submultiples thereof"--
e.g., {1/2, 1/2, }--thus economizing on function evaluations.
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442 n.c. oc

BECKER (1911) showed how U(2h) could be combined with the T(hk), for
k 1, 2, ..., m, in such a way as to eliminate the terms in h2, h4, h2m from
the error. For example,

(28) S(h) (2U(2h) + T(2h))/3

(see also PIAGGIO (1918, 1920)). Since U(2h)= 2T(h)- T(2h), the resulting
methods are identical with Sheppard’s. Becker noted that the "semiconvergence"
of the Euler-Maclaurin series may limit m, and advised choosing m then h. He
made the important point that, although S(h), N(h), B(h) and the Newton-Cotes
7-point rule can be obtained in this fashion, the 9- and l 1-point Newton-Cotes
formulas cannot.

4. Numerical solution of differential equations. There are many numerical
methods which approximate the solution ao of a continuous problem (e.g., a
differential equation) by applying a "discretization process" with "mesh width"
h and obtaining the solution T(h) of the resulting discrete problem (see, e.g.,
Henrici (1962)). RICHARDSON (1910) observed that the use of central differences in
the discretization often leads to errors of the form

(29) T(h)- ao aah2 + a2h4 + a3h6 + ...,
where T(0) ao and the aj are independent of h. T and the aj will be vectors if
the solution has several components.

Richardson suggested eliminating the term in h2 by combining the approxi-
mations obtained with two different mesh widths, ho and

h2x T(ho) hT(h a)
(30) r(ho, ha) h2 h
(note that, if ho h and ha 2h, we obtain (4)). He applied this method, which he
called the deferred approach to the limit, to"

(a) vibration of a stretched string of beads;
(b) Laplace’s equation in a square--in this case ao 4(x, y), where V24

c2dp/cx2 + c2dp/@2 O, T and the aj (j > 0) will be functions of x and y, and
(30) can only be applied if T(ho) and T(ha) refer to the same point (x, y);

(c) vibration of a clamped plate;
(d) stresses in a masonry dam.

In (c) he also obtained T(ho, ha, h2) by solving

(31) T(h,) T(ho, ha, h2) + bah + bzh, k O, 1, 2

(compare (7)).
RUNGE (1912) suggested that (T(2h) T(h))/15 could be used as an estimate

of the error in T(h) when solving ordinary differential equations (ODE’s) approxi-
mately by means of the Runge-Kutta 4th order method (Runge (1895); Kutta
(1901)). In this case, if the OIE is y’= f(x, y), we have ao y(x) and T(h)

ao + O(h4).
Later RICHARDSON (1923) used (30) to improve numerical solutions of an

integral equation. In another paper, RICHARDSON (1925) noted that at discon-

D
ow

nl
oa

de
d 

11
/2

3/
14

 to
 1

29
.1

20
.2

42
.6

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 443

tinuities the series in (29) may not converge, but commented "there are, so to
speak, in the mathematical country, precipices and pit-shafts down which it
would be possible to fall, but that need not deter us from walking about."

Subsequently, RICHARDSON (1927) examined the deferred approach to the
limit in greater detail, noting in passing that it had also been considered by
BOGOLOUBOFF and KRYLOFF (1926). He showed that the method could be applied
to"

(a) improve Archimedes’ approximations to rc (see 2);
(b) accelerate the convergence of a sequence;
(c) obtain the second moment of grouped data;
(d) compute Fourier coefficients;
(e) solve a 6th order differential eigenvalue problem.

In each case he used pairs of approximations to eliminate h2 (as in (30)), a process
he named "h2-extrapolation, and in (e) he also combined three approximations
in such a way as to eliminate h2 and h4 (as in (31)), a process we shall name "(h2, h4)
extrapolation."

In (b) we have

and we assume that

(32)

and

T, ((2n + 1)/(2n 1))"

T, ao + a l/n + a2/n +

(33) lim T. ao.

But

which implies

T_, ((-2n + 1)/(-2n- 1))-" T,,

al a3 a2j+ O,

so we have an expansion of form (29) with T(h) T, and nh 1.
Richardson went on to:
(a) suggest rules for replacing the continuous problem by a suitable discrete

problem (using central differences);
(b) show how the deferred approach to the limit may be affected by the

presence of singularities and discontinuities;
(c) derive an admittedly laborious method for estimating how small h should

be to make the process valid.
In a companion paper, GAUNT (1927) investigated the numerical solution of

an nth order ODE, which can be written as a system of n first order ODE’s:

(34) _y’ f(x, y_), y_(xo) Y_o,

by using the midpoint method (or "method of interpenetrating lattices")"

(35) +1 Y-r-1 + 2h_f(xr, Y-r),
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444 D.C. JOYCE

where -Yr _Yr(h) is an approximation to the value of _y at x x Xo + rh. He
concluded that hZ-extrapolation can be applied to T_(hk) k(hk), where hk --* 0
and n oo in such a manner that nkh remains fixed, provided the first step is
taken according to a special formula. Taking the exact value--i.e., -Y1 _y(xo + h)
--.usually invalidates the process! He observed that "there would be no essential
difficulty in extending the expansion beyond the fourth power of h; but such a
refinement would have little practical value."

WILLFRS (1928) generalized Runge’s error estimate, suggesting (T(2h)
T(h))/(2p 1) as an estimate of the error in T(h) when a pth order method is

used for solving ODE’s.

5. Interpolation. A classical problem in numerical analysis is that of inter-

polation" given the values of a function f(x) at the points x Xo, x Xl, "",

x x,,, estimate f(), where is a specified point in the interval [mino_<k_, xk,

maxo _< _< xk]. If lies outside the interval, the problem is that of extrapolation.
The ruth order Lagrangean method estimates f(2), for distinct xk, by

(36) f(2; Xo, xl, x,,) f0,,...,m
k=0

where

(37)

and
jk jk

L f(xk) f(ff; xk)"

When m 1, we have linear interpolation"

(x X)fo -(Xo- x)A
(38) f(2) No,1

Xl )0

Lagrange’s method is very laborious to use, especially if we have to inter-
polate at several different points, or if we wish to include additional points and
hence obtain higher order approximations as checks. We can obtain the same
results while avoiding these difficulties by using Newton’s divided difference inter-

polationformula"

(39) fo,1

where

(40)

k-1

p(x) =_ 1-I (x x),
j=0

L -fo[Xo, x,]
.X: .X;0

[X: 1, X:2] [X:o, N1]
[Xo, x, x2]

X2 Xo

k= 1,2, ,m,
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EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 445

and

IX1, X2, "’’, Xk] [X0,X1, "’", Xk-1]
[Xo, x,..., x]

x xo

is the kth order divided difference.
If Xo X Xk, then

(41) [Xo,Xl, xk]
fk)(Xo)
k

When the points are equally spaced--i.e., x Xo + kh for k 1, 2, ..., m--and
Xo + ph, we obtain Newton’sforward difference interpolationformula"

(42) fo,1 ,=fo+PAfo+ ()AZfo+... + ()Akfo+... + (Pm}A"fo,
where Afo fl fo, A2fo f2 2fl + fo, etc.

JORDAN (1928a, b, 1950) attempted to avoid the use of differences and still
escape the labor of Lagrange’s method by expressing fo,1 ,,, for an even number
of equally spaced Xk, as a linear combination of linear interpolates, thus:

(43) fo,1 Vk
k--O 2k

where

Vo Uo, V U- Uo,

V2 U2 3U -+- 2Uo, etc.,

U (( + k + p)f,_ -( k p)f,++ 1)/(2k -+- 1)

for k 0, 1, ..., # (the linear interpolate between fu-k and fu+k+ 1), and
m 2# + (see also LIDSTONE (1932), WISHART (1932)).

However, as AITKEN (1932a) pointed out, the V are obtained most readily
as differences of increasing order of the series U2, U1, Uo, Uo, U1, U2,
(see Table 3), so we have not entirely avoided the use of differences!

TABLE 3

U
U1 --U2 AI- Ul U 2U + U
Uo --U + U

0 U U
U-Uo= V1uIU V U1 U V1 U 2UI + U

U2 U2- U

-U - 3U 2U
0 U 3U + 2U

U 3U + 2U V U2 3U + 2U V

D
ow

nl
oa

de
d 

11
/2

3/
14

 to
 1

29
.1

20
.2

42
.6

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



446 D.C. JOYCE

Aitken realized that the practical advantage of Jordan’s method lay in the
simplicity of the process of linear interpolation, and devised a method of "inter-
polation by iteration" (AITKEN (1932b)) which dispenses completely with the use
of differences and which is applicable to arbitrarily spaced data. He eliminated
IX0, X1, X2, X3] from

f0,1,2,3 fo,1,2 -- ( XO)( X1)( X2) )< [XO, X1, X2’ X3]

(easily verified from (39)) and

f0,1,2,3 f0,1,3 -[- ( XO)( X1)( X3) X [Xo, X1, X2, X3]

obtaining

(x3 N)fo,,2 -(x2 )f0,1,3(44) fo,,e,3
X3 X2

Thus f0,1,2,3 can be obtained by linear interpolation between fo,,2 and fo,,3, etc.
(compare (38)).

The successive interpolants can be tabulated in a triangular scheme in which
each member ofthe rth column is the value at x ofan interpolating polynomial
of degree r which coincides withf(x) at r + 1 points (see Table 4). Each element is
formed by linear interpolation between the element in the previous column and
same row and the element at the head of the previous column.

TABLE 4

Xo fo
X1 Ji J;,1
X2 f2 fo,2 f0,1,2
X3 f3 ,3 ,1,3 ,1,2,3

Xm-I fm-1 fO,m- fO,l,m-1 fo,1,2,m-1
xm f., fo,,. .g,l,m J;,1,2,m fo,1....,m

Since the interpolating polynomial of degree r through r + points is unique
(Henrici (1.964, p. 183)), each element in the Aitken table is identical with the value
obtained by Lagrange’s method using the same points. However, the labor has
been reduced considerably, and it is much easier to incorporate extra points,
computing approximations of higher order until convergence is obtained. Aitken
also applied his method to interpolation offunctions oftwo variables and to inverse
interpolation (see also KINCAID (1948)).

Aitken observed that, if the data are symmetrically placed, say Xo _+ ho,
xo+hl,’..,then

f(-; Xo h, xo + h)= ((xo + h if)f(if; xo h)

-(Xo hk 2)f(2; Xo + hk))/2h

is an even function of h. Consequently we can apply linear interpolation with
variable h2 to the functions

f(ff; h) _-- f(ff; x0 h, x0 + h).
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EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 447

Thus

(h2 (X Xo)2)f(X h2o) -(hg (ff Xo)2)f(ff h2i)
(45) f( h), h)

h2 hg

etc. Aitken suggested taking h,h2x, in increasing order and noted that, if
2 Xo 0, "the first quadratic approximation coincides with a process which has
been called by L. F. Richardson ’h2-extrapolation’, i.e.,

f(0; hg, h) hf(0; h)) hgf(0; h)
h hg

(compare (30)).
NEVILLE (1932a, 1934) proposed a process of "iterative interpolation" which

differed from Aitken’s in that every element in the rth column is obtained by linear
interpolation between two adjoining elements in the (r- 1)th column, leading
to a more symmetrical scheme (see Table 5). In this case we have, for example,

(X3 ),1,2 --(Xo )J;,2,3(46) f0,1,2,3
X3 Xo

(compare (44)). The elements in the leading diagonal are identical in the two
schemes, but the convergence behavior elsewhere, which depends on the ordering
of the Xk, will differ.

Xo fo
X1 L fo,1
X f2 fl,
X3 f3 f2,3

TABLE 5

Xm-1 fro-1 fm-2,m-1 Jn- 3,m- 2,m- fm-4,m-3,m-2,m-1
Xm fm ,fm-l,m fm-2,m-l,m fm-3,m-2,m-l,m fo,1,...,m

A great advantage ofNeville’s process is that it is easy to incorporate derivative
values by the limiting cases:

(47)
fk,k,k fk,k + 1/2( Xk)Zf"(Xk),

etc. Thus if we know f(xo), f(xl), f’(xl), f"(Xl), f(x2), f(x3), and f’(x3), we can
use the scheme in Table 6 to interpolate forf(ff), where the underlined elements are
obtained by using (47).

TABLE 6

Xo fo
x, f fo,1

X1 fl f0,1,1,1
X2 f2 fl,2 fl,l,2 f1,1,1,2 fO,l,l,l,2
X3 f3 Jl,3 fl,2,3 f1,1,2,3 f1,1,1,2,3 fo, 1,1,1,2,3

X3 f3 f3_3 f2,3,3 fl,2,3,3 f1,1,2,3,3 fl, 1,1,2,3,3 fo, 1,1,1,2,3,3

D
ow

nl
oa

de
d 

11
/2

3/
14

 to
 1

29
.1

20
.2

42
.6

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



448 D.C. JOYCE

6. Further developments. Between 1933 and 1955 there were many modifica-
tions, extensions and applications ofthe methods of 2 to 5. Some ofthese develop-
ments are reviewed in this section.

MILNF-TI-IOMSON (1933, p. 99) noticed that Boole’s rule can be obtained by
eliminating the term in h4 between two Simpson values:

(48) B(h) (16S(h)- S(2h))/15.

(RUNGE and KONIG (1924) had noted that

I S(h) (S(h) S(2h))/15

but had not suggested using this as a correction.) KOMMERELL (1935) proved that
all Milne’s approximations to (see 2) satisfy

r(h, h/2, h/2") < rc

and that

r(h, h/2, h/4) (16S(h/4) S(h/2))/15

(compare (48)).
HARTRF and WOMFaSLFY (1937) suggested solving partial differential

equations (PDE’s) of parabolic type with the help of finite difference methods and
improving the approximate solutions by hZ-extrapolation. They pointed out
that the latter was only valid for certain types of boundary conditions and could
then be applied locally, i.e., after advancing from x to x + 2h using h and 2h, or
globally, after covering the whole range using h and 2h.

LIDSTONE (1937) discussed Aitken’s method in detail (as did FELLER (1943)),
introducing the terms "linear cross mean" (for (44)) and "quadratic cross mean"
(for (45)). AITKEN (1938) showed how quadratic cross means (QCM’s) can be used
in numerical differentiation with symmetrically placed data. Differentiating
f(x; hg, h2) s times with respect to x and setting x , we obtain

f(s)(x; hg, h2) ((h2 X2)f (hg X2)f(] 2sX(f-) f-;)
(49)

s(s 1)(f- 2) ff- 2)))/(h h)),

where X - x0 and fq)= f(q)(X;h2r) for q s, s- 1, s- 2 and r 0, 1.
To approximate f()(X), s + tables are required (for f,f’,f",..., f()). The table
for f’ has

(50) f’(X; h2) (f(xo + h) f(xo h))/(2ha)

and the table for f(q)has zeros in the first [q/2] columns. The other elements are
constructed from relations like (49). Aitken also showed how QCM’s can be
used in inverse interpolation.

BICKLFY (1939) observed that the Newton-Cotes 7-point rule can be obtained
by combining W(h) (from (15)) and H(h)(from (16)). ZURMUI-IL (1940) used
(T(h)- T(2h))/15 as a correction in applying the method of Nystrom (1925) to
y" f(x, y, y’). BUCKNFa (1948) showed that, when a symmetric difference method
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EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 449

is used to obtain an approximate solution, A A(h), of the differential eigenvalue
(EV) problem

(r(x)y’(x))’ + (2p(x) + q(x))y O,

with y(a) y(b) 0, the error in A satisfies

(51) A(h)- 2 ah2 + O(h).

He noted that h2-extrapolation is valid in this case and that a more accurate
difference method will allow h4-extrapolation.

DUNCAN (1947, 1948a, b) proposed solving initial value (IV) problems in
ODE’s according to the following strategy:

(a) estimate the step, h, required to obtain the prescribed accuracy using
the chosen pth order discretization process;

(b) compute r(h)and r(ho), with ho > h(ho 2h, say);
(c) if the correction

(T(ho)- T(hl))hP
r(ho, hi) r(hx)

hP hg

is too large, compute T(h2) with h2 < h (h2 h1 say), and hence T(ho, h2),
T(hl h2) and T(ho, hi, h2).

Duncan used this strategy with Euler’s method (Euler (1768)),

(52) + r; + hf(x., v,),

for which p 1, and with the modified Euler method,

(53) Yr+l Yr -[- hf(xr+ 1/2, Yr Al- 1/2hf(xr, Yr)),

for which p 2. He also observed that a similar strategy can sometimes be applied
to problems involving PDE’s.

RUBBERT (1949) investigated the use in quadrature of "enclosing formulas"--
i.e., pairs of formulas of the same order of accuracy whose errors have leading
terms of opposite sign. For example, he paired S(h) with a method of Maclaurin
type (Kowalewski (1932)):

(54) K(h)= 1/4h{3fl/3 -k- 2f + 3f5/3 -1- 3f7/3 -- 2f3 + ...-1- 2fn_ -I- 3fn_l/3}.

Now

and

where a < i < b, so, if

S(h)- I 18(b a)h’fv(a)/3240,

K(h)- I -7(b- a)h’fiv(2)/3240,

fiv(l) X fiv(2) > 0,
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450 D.C. JOYCE

we have

(S(h)- I) x (K(h)- I) < 0;

i.e., S(h) and K(h) enclose the exact value I.
He proposed using (3K(h) + S(h))/4, which has a very small coefficient of h4

in its error, as an improved value (compare (27)). Similarly he paired the 3- and
4-point Gauss formulas (Stroud and Secrest (1966, p. 100)), G3 and G,, with the
4- and 5-point Lobatto formulas (Ibid., p. 318), L4 and L5, using (4G3 + 3L)/7
and (5G, + 4L5)/9 as improved values. In each case the leading term in the error
has been eliminated, since (n + 1)(G, I) -"--n(L,+l I) (see Filippi (1964)).
MILNE (1949) used a similar idea with predictor-corrector methods for IV problems
in ODE’s.

SAIVADORI (1949a, b) used central difference formulas to compute buckling
loads--i.e., solve linear differential EV problems. He observed that the approach
of the approximate solution, A(h), to the exact solution, 2, as h --. 0, was often
monotonic, sometimes oscillatory and sometimes one-sided but not monotonic,
but that in every case a decreasing sequence {hk} could be chosen such that
{A(hk)} was monotonic.

His experiments supported the hypothesis that, when central difference
approximations are used, the error in A is usually "of the hZP-type, i.e.,

(55) A(h) 2 al h2p nt- a2h2p+2 nt- a3h2p+4 +

(p 1, 2,..., depending on the order of approximation employed). Thus the
deferred approach to the limit can be used to obtain, for example,

(56) A(ho, hl, hm) czA(h).
k=0

When p 1, the e are defined by (20).
Salvadori tabulated the coefficients e for h2-, (h2, h4)-, h4- and (h4, h6)

extrapolation (for a variety of {rk}) and applied them successfully to buckling
problems in one and two dimensions. For boundary conditions involving a
derivative he used the same order approximation as for the DE (NEWMARI,: (! 949)
observed that, if a higher order approximation is used for the DE, odd powers of
h may appear).

Fox (1950) compared the "deferred approach to the limit" with the method of
"difference corrections" as ways of improving the approximate solutions of
elliptic PDE’s. HERRMANN (1951) used skew and triangular coordinates in com-
puting the deflections of a skew plate and obtained approximations from above
and below for extrapolation.

WANG (1951) and SALVADORI (1951a) attempted to prove that "the error in
the characteristic value of linear ODE’s with constant coefficients evaluated by
finite differences is of the h2-type. Salvadori noted that the experimental evidence
indicated that this was not usually true for equations with variable coefficients.
He noted that "the extrapolations can actually be used in connection with any
method of successive approximations in which the successive values of the un-

D
ow

nl
oa

de
d 

11
/2

3/
14

 to
 1

29
.1

20
.2

42
.6

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 451

known depend on an increasing integer n and the error is expandable into a
series of even negative powers of n."

In a conference paper (SLVAOORI (1951b)) and a textbook (SLVAOORI and
BARON (1952)) he applied the extrapolations to:

(a) numerical differentiation h2- and (h2, h4)-extrapolation of

(57) f’(ff; h)= (f(ff + h)- f(ff h))/(2h)

(compare (50));
(b) numerical integration" h2- and (h2, h4)-extrapolation of T(h) and the

product trapezium rule, h-extrapolation of S(h) and the product Simpson rule;
(c) boundary value (BV) and eigenvalue (EV) problems in ODE’s and PDE’s

(see also RAMASWAMY (1951)).
He noted the following points"

(a) It is not known in general whether the extrapolants are approximations
from above or below (see also BOLEV (1951)).

(b) It is unsafe to use the extrapolations without at least 3 approximate
values.

(c) The extrapolations should not be used when the successive approxima-
tions do not approach the true value monotonically, since in this case the higher
terms of the error series cannot be neglected.

(d) If the approach is oscillatory, the methods may be applied separately
to the approximations from above and below, and the results compared.

CtLVER (1952) used electrical resistance networks to solve the central dif-
ference approximations of Laplace’s equation and applied h2- and (hZ, h’)
extrapolation to the results in order to obtain high accuracy without using a
larger network (see also LIEBMANN (1950), who used hZ-extrapolation only).
He noted that the quality of the final results depends critically on the accuracy of
the original approximations and suggested a ratio test to determine whether the
higher terms are negligible. BLANCH (1953) investigated the use of extrapolation
in the numerical solution of parabolic PDE’s (see also BATTEN (1961), DOUGLAS
(1961)). FOX and GOODWIN (1953) applied hz- and (hZ, h)-extrapolation to
improve the approximate solutions, obtained by use of the trapezium rule, of
integral equations (IE’s) of various types.

TWEEOIE (1954) suggested a modification of the Aitken-Neville process to be
used when the numbers of points on either side of are equal or differ by one.
His scheme makes fullest use of the points nearest from the earliest stages and
uses them for interpolation rather than extrapolation (see Table 7, where
X0 < X < X2 < < X3 < X4 < X5). Usually there is less variation in the early
columns than in Aitken’s or Neville’s schemes.

TABLE 7

Xo fo
x1 L fo,3
x2 f2 L,3 fo,2,3
x3 f3 f2,3 L,2,3
x4 L f2,4 J,3,4
x5 f f2,s f2,3,5

f0,2,3,4
L,2,3,4 f0,1,2,3,4
fl,2,3,5 fl,2,3,4,5 ,1,2,3,4,5
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452 D.C. JOYCE

GORN (1954) noted that hP-extrapolation of the results of applying a pth order
discretization process to an IV problem in ODE’s can be used (globally or locally)
to provide an error estimate and/or an improved value (see also GORN and
MOORE (1953), GARFINKEL (1954), LOTKIN (1955), ROMANELLI (1960), PROTHERO
(1969)). A local error estimate can be used for step size control (see, e.g., FEHLBERG
(1969)). He described an algorithm which made use of extrapolation to provide
two enclosing solutions.

SALZFR (1954, 1956) used extrapolation to evaluate the Nth term or the
limit of a sequence. He assumed (like Richardson (32)) that

T. ao + a/n + a2/n2 -+- .’’,

where T is the nth element of the sequence, and approximated TN by Vi/"

Z-k (Xk rk
where the k are the Lagrangean coefficients (see (37)) for xk 1/k and 1IN
( 0 for limits). He tabulated the c for a variety of and m (WYNN (1956b)
used divided differences instead). By defining T to be the nth partial sum of a series,
the method can be used to sum (partially or completely) series. If the terms in the
series vary in sign or oscillate in size, the method is still applicable provided the
terms are grouped suitably.

Wasow (1955) pointed out that "except for domains with very special bound-
aries, the benefit to be expected from the use of Richardson’s idea in the numerical
solution of Dirichlet’s problem" (a general BV problem in PDE’s)’depends
decisively on the interpolation formula employed near the boundary." This is
not a problem for rectangular boundaries (thus Richardson and Salvadori did
not encounter it), but, when the boundary is curved, extrapolation may be value-
less unless use is made of a more refined interpolation formula than would other-
wise be necessary (see also HUBBARD (1966)).

KOPAL (1955) noted that, in discretization processes, as h --, 0 the discretiza-
tion error decreases, but the rounding error increases. He saw the deferred approach
to the limit as a way of reducing the discretization error without significantly
increasing either the rounding error or the amount of work, and applied it to the
EV problem in ODE’s.

7. Iterative linear extrapolation. ROMBERG (1955) appears to have been the
first to see that the error term elimination processes of 3 (above) can be effected
by iterative linear extrapolation. Let us define, for i, m 0, 1, 2,...,

(58) Tin T(hi, hi+ 1, hi+ m)

and

(59) Uim U(hi, hi + hi+m),

is the midpoint value U(h) (thisso that T is the trapezoidal value T(hi)and Uo
notation is more flexible than Romberg’s). Romberg showed that, when h+

2-Shi for s 1, 2, ..., m and 0, 1, 2, ..., we have for 0, 1, 2, ..., and
m= 1,2,3,...,

(60) Ti,,, r + r/m+__llm-1 --( Tin_l)/(4m- 1)
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EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 453

(for m 1, 2 this is equivalent to (21), (48)), and
’}r i +(61) V U/m+ 11 --1

t.
i,,m_l Urn_ 1)/(4rn 1),

and that for 1, 2, 3,... and m 0, 1,2,...,

(62} Tm (T/m-1 -1- U/m 1)/2

(for rn 0 this is equivalent to (24)).
The T/m and U/rn can be arranged in a triangular scheme (Table 8) similar to

Neville’s.

TABLE 8

ho To [113
Uo [231

hi T [621 T [60]
U [23? U [61]

h Tg [62? T [62]
U [23] U [61]

ha To [62] T2 [62]

T2 [60]
U2 [61]
T21 [62]

The table is built up row by row, from left to right, using the equations indicated
in brackets after each entry. Note that, for m > 0 and > 0, the T/rn are obtained
from (62) and not from (60), thus reducing the labor. Although this method is
equivalent to the methods of 3 (above) the coefficients k in (19) are not computed
explicitly after the first extrapolation; thus Romberg’s method has the same
advantages over the methods of 3 (above) that Neville’s process has over
Lagrange’s method of interpolation.

Romberg observed that the leading term in the error expansion of T has
the same order as that of U but the opposite sign. Thus, if the leading term is
dominant in each expansion, the true value, I, will be between T and U, and
T+ will usually be more accurate than either.

A disadvantage of using a sequence {hk rkh} in geometric progression is
that the number of function values used increases exponentially with increasing
order. Romberg noted that 12, although smaller than 16, has one more divisor,
thus allowing the elimination of an additional power of h2. Let us denote the
divisors of an integer n by {d0(n), d(n),..., dr(n)}, with do(n < d(n) <
< dv(n) n; then we have

{dk(12)} {1,2,3,4,6, 12}, {dk(16)} {1,2, 4, 8, 16}.
Now the function values required for T(h), T(h/2), T(h/3), T(h/4), T(h/6) are all
used in T(h/12); thus, by using r 1/dk(12) instead of rk 1/dk(16), we can
obtain an approximation of order two higher for 1/4 of the number of function
evaluations. Of course, the formulas equivalent to (60), (61) and (62) are more
complicated; nevertheless (as COREY (1906) pointed out (see 3)), there are
advantages in choosing r 1/dk(n for some number n which has a relatively
high number of divisors.

If function evaluation is difficult, Romberg suggested using extrapolations on
higher order methods, for example the pair

(63) T*(h) T(h) + A(h) T(h) + h(f f_ + f._ f.+ )
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454 D.C. JOYCE

and

(64) U*(h) =_ U(h)- 2A(h/2)

(Amble (1952)), which have errors of h4-type (compare (26)).
BOLTON and SCOINS (1956, 1957) made use of Neville’s process twice in

solving the EV problem for Schr6dinger’s equation in one and two dimensions.
Firstly, having used a central difference approximation to obtain the algebraic
EV problem

(65) A(A) _= [A All 0,

they solved for A A(h) by iterative inverse interpolation, improving estimates
Ao and A according to

AIAo AoA(66) A’ A Ao

and then obtaining Ao,,2 etc. Secondly, they improved the approximate eigen-
values A(hk) where hk link, nk an integer, using, for example,

h22A(ho, h) hA(h, h2)
(67) A(ho, hi, h2) h22 h
This second application of Neville’s process is equivalent to the methods of
Richardson (who solved linear equations (see 4 (above)) and Salvadori (who
obtained explicit coefficients (see 6 (above)), but rather more elegant.

Bolton and Scoins showed that, under certain conditions;

A(h) 2 + ah2 q- O(h4)
(compare (51)), with a usually negative, and hypothesized from symmetry that
the error in A(h) is of the h2-type, which justifies the use of extrapolation. They
pointed out that "since the numerical rounding errors quickly build up, it is
dangerous to extend the Neville table too far, particularly when the values of n
are close together" (they used {2, 3, 4,...}), and that the coarsest approximation,
A(1/2), may be misleading for extrapolation.

Ew and SCOINS (1956) investigated the approximate solution, by symmetric
difference methods, of the PDE’s of Laplace and Poisson. They found that under
certain conditions, if we use T(h) and U(h) to denote the approximations obtained
using "square" and "diagonal" grids, the error expansions are

T(h) ao ah2 + a2h4 + a3h6 +
and

U(h) a0 al h2 + a2h4 a3h6 q-

Thus extrapolation in h2 can be carried out using a modified form of Neville’s
process, with T and U values alternating in the first column.

8. Other developments. Little notice seems to have been taken of the advances
made by Romberg, Bolton and Scoins until 1961. In the intervening 5 years there
were some developments, mostly related to the use of extrapolation methods in
the solution of DE’s.
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EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 455

CRANDALL (1956) discussed the use of extrapolation to improve approximate
solutions of IV and BV problems in ODE’s and PDE’s. LISTER and ROBERTS (1956)
showed that extrapolation could be employed in the numerical solution of hyper-
bolic PDE’s (see also ROBERTS (1958), LISTER (1960)). HILDEBRAND (1956) observed
that h’-extrapolation does not improve Simpson’s rule approximations to, (1 + x2) dx. In this case, the S(h) values oscillate as h decreases.

DE VO6E.AERE (1957) generalized Gaunt’s special starting procedure (see 4
(above)) so that (h2, ha’, h2m)-extrapolation could be used to improve approxi-
mate solutions of

(68) y’ f(x, y), y(xo) Yo,

and

(69) y" f(x, y), Y(Xo) Yo, y’(xo) Y’o,

obtained by the midpoint method (35). The extrapolation will not usually be
valid if Runge-Kutta or Taylor series methods are used to take the first step, nor
if the exact value is used. However, his starting procedures require the values of
2m derivatives, which may not be easily obtainable.

Fox (1957, 1961, 1962) showed how the form of the error in the approximate
solution of a DE problem can be determined. Concerning ODE problems, he
observed that "if the rounding error is ignored, if the solution is sufficiently well-
behaved, and if the interval is small enough.., it seems likely that the error at
any point is expressible as a power series in h." His method, which is based on
introducing such expansions into the corresponding discrete problem and equating
coefficients of powers of h, is also applicable to PDE problems.

The error will usually be of the hZP-type if central difference methods are
used to approximate the DE and the boundary conditions. However, Fox pointed
out that, although

(70)

and

(71)

xy" y’ x 0

x2y" 2y 1.5x2 0

have the same solution if y(0)= y(1)= 0, when central difference methods are
used hZ-extrapolation seems valid for (71) but not for (70) (MAYERS (1964) showed
that the error for (70) has terms in h2 In h etc.). Thus "the validity of extrapolation
would seem to depend on the form of the DE as well as its solution" (see also
Fox and MAYERS (1968)).

Fox also noted that "consistent inaccuracy" may occur; i.e., successive
extrapolants may agree within e while having errors very much greater than e,
and that the usual extrapolations may not be valid if the boundary is curved or
there are discontinuities, singularities or awkward corners. FORSYTHE and WASOW
(1960, p.351) quote a conjecture of de Vogelaere’s that for the L-shaped membrane
eigenvalue problem, as h 0,

(72) A(h) 2 alh4"/3 + a:zh :z In h + a3h2 + a4h8/3 +
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456 D.C. JOYCE

OSBORNE (1960) used Fox’s technique to demonstrate that, when central
difference approximations are used in the EV problem for second order self-
adjoint ODE’s, the errors in A and T are of h2-type. He then solved for al, etc.
before correcting. Fox (1960) and SYLVESTER and FOLL (1960) also used extra-
polation in solving EV problems in ODE’s.

HENRICI (1960, 1962, 1963a, b) showed that, when a pth order "one-step"
discretization method is used to solve the ODE’s (34), under certain conditions
of continuity and differentiability, the error in the approximate solution has the
asymptotic behavior, as h --, 0,

(73) T(h)- ao ahp + O(hp+ 1)

with a independent of h and satisfying a DE. This result holds true for variable
step size (see also LEXI4ER (1966)). Henrici asserted that "from a mathematical
point of view this may be regarded as the first term of an asymptotic expansion"
of form (1) with 7i P + J 1. When a "multistep" method is used, a l(x) will
be dependent on h unless the method is "strongly stable" (i.e., there is only one
"essential root").

HUYXER (1961) proposed an iterative method of numerical differentiation
which, unlike Aitken’s (see 6), can be used with arbitrarily spaced data. The
equation corresponding to (49) is

f(s)(2; Xo, xl) ((Xl 2)f(s)(; Xo) (Xo )f(s(; Xl

(74) s(f(,-1(2; x0 f(s-1(2; xl)))/(Xl Xo),

and the tables are constructed in a similar way to Aitken’s (see also GERSHINSKY
and LEVINE (1964), LAURENT (1964b), LYNESS and MOLER (1966), KROGH (1970)).
THACItER (1962b) used an analogous method for repeated quadrature.

SALZER and KIMBRO (1961) showed that extrapolation in 1In2 can be used for
complete or partial summation of series provided the nth partial sum T, behaves
like an even function of n. Subsequently SALZER (1961) published an interpolation
formula for "nearly-odd" functions and applied it to the summation of even
functions.

9. Analysis of Romberg’s method. BAUER (1961a) seems to have been the
first to produce a rigorous error analysis of Romberg’s method. Using certain
periodic functions, he was able to prove that, if f(x) has 2m + 2 continuous
derivatives on [0, 1] (i.e.,f(x) C2m+2[0, l]), and hk 2 -k, then

f2. + 2)()/m+
(75) r., f(x) dx 2,.,.+ 1)

with 0 =< < 1. This implies that {T} converges superlinearly as m (in
fact, T,, ff(x) dx 2/(2"+ 2)()/(2"+ 2c2)"+ 1). He also obtained conditions
under which Tm and U,, will enclose the true value . f(x)dx, noting that this will
be true iff(2+ 2)(x) does not change sign in [0, 1], and pointed out that T can be
computed from

(76) T U’ + (1/24"- 1)(T 1- U_1)/(4"- 1)
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EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 457

Bauer observed that Romberg’s method has the following advantages over
Newton-Cotes methods:

(a) explicit weights are not required but are positive (some higher order
Newton-Cotes methods have negative weights);

(b) the order is increased very easily;
(c) the method is admirably suited for automatic computation.

Finally, he noted that it can easily be extended to integration in several dimensions.
RUTISHAUSER and STIEFEL (1961) and STIEFEL (1961) presented the following

results for I f(x)dx, h b a and r 2-:
(a) There exist continuous functions for which the Newton-Cotes values do

not converge with increasing order (Kusmin (1931), Polya (1933), Davis (1955,
1962)).

(b) Iff(x)is sufficiently differentiable andf’(a) - f’(b), then {T} converges
linearly to I with increasing (convergence factor 1/4).

(c) If we write T as a weighted sum of function values

(77) Z" I1/2wofo + w,fl +... + w._,L_, +
’=0

where n 2i+m, then wr > 0 for r 0, 1,..., n.

(d) If f(x) is periodic on [a, b] and regular-analytic in a strip including the
x-axis, then T{} converges superlinearly (Davis (1959)).

(e) Iff(x) Coa, b], then {T} converges to I.
(f) If f(x)is regular-analytic in a domain including [a, hi, then {T} con-

verges superlinearly.
(g) T integrates a polynomial of degree 2m + exactly (using 2" + points

to attain the same order as the (2m + 1)-point Newton-Cotes formula or (m + 1)-
point Gaussian formula).

They obtained for f(x) C2"+ 2[a, b],

(78) T I 2(b a)2"+ 3(2m + 2)f(2"+ 2)()/(2"+ 2rc2)’+ ’,
where a =< __< b and ’(2m + 2) is the Riemann zeta function (Whittaker and
Watson (1927, p. 265)). When a 0 and b 1, this reduces to (75), since ’(2m + 2)

22"+ 17"C2"+2’+
In a joint paper, BAUER, RUTISHAUSER and STIEFEL (1963) showed that, if we

write

(79) T ci,’,sTo,

then, for rk 2- k,
+"

(so) Z c,,..,s
s=i

(81) (-)z+"-*c. > 0,
+"

(82) 2 [i,’,s[ < 1.97,

s--i,i+ 1,...,i+m,

D
ow

nl
oa

de
d 

11
/2

3/
14

 to
 1

29
.1

20
.2

42
.6

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



458 D.C. JOYCE

and

(83) lim ci,, O.

Inequality (82) guarantees the numerical stability of the method, since, if the
maximum rounding error in the trapezoidal values is e, the rounding error in the
extrapolated values, neglecting the rounding error in the extrapolation process,
cannot exceed 2e. Relations (80), (82) and (83) allow a theorem of Toeplitz (1911)
to be applied, proving that, if T} converges, then all columns and diagonals of
the Romberg scheme will converge to the same limit (see also FOCK (1967)). This
limit will be I iff(x) is Riemann integrable.

They observed that, if we define

F(r) =_ r(rh)= ro,
the process can be viewed as Neville’s process extrapolation of {F(r2)} to F(0).
The convergence results proved for r 2- will hold for general {r} provided
there exists a constant p, less than 1, such that G+ 1/r < p for all k (see also
LaURNT (1963a, b), who investigated the general deferred approach to the limit,
and BULIRSCI-I (1964)). For instance, the choice

(84) {1, , 1/2, , , 1-18, } {rk," r2k 3-k, r2k + 1/23 -k, k => 0}
requires modified recurrence relations (to replace (60), (61) and (62)) and is more
susceptible to rounding error (since 3-’g+".,=i Ici,,,l can be as large as 3.5), but may
reduce computing time.

They proved that, for hk 2 -k, iff(x) e C2,,+ 2[0, 1], then

f2,, + 2)()m+(85) Tim f(x) dx 2(,,+ 2i)(,,+ )

with 0 __< _< (compare (75)). However, in certain cases (e.g., j’-oo e-a dx and

J’oo (1 + x2)- dx) the error in the trapezoidal rule is not of the he-type and
Romberg’s method may not improve the convergence.

BULIRSCH (1964) generalized (60) to

Ti+l 2hi+mTrnam--(86) T’ h{

and investigated the use of r 1/(1 + k) and the sequence

Q {1,,,-,,, {r,ro 1,r2_ 2- =2- k> 1}/’2k

as well as r 2-. He found that, under certain conditions

T.,, | f(x) dx 2 2(87) h2,. f(2,.+ 2hoh + ()
d0

(see also KANDZIA (1963), BULIRSCI-I and RUTISHaUSFa (1968)) and obtained the
analogous result in two dimensions"

(as) Tm f(x, y)dx dy hghi h2,,S,D
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EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 459

where S m-t-lBsBm_ sf(2m+2-2s’2s)(s, rls) He used (87) to compare errorA.as= 0

estimates and function evaluations for all three sequences and concluded that
overall, taking into account calculation expense, accuracy and stability, Q is best.
He noted that, although the sequence {rk 1/(1 + k)} does not satisfy the
condition" (rk+ 1/r =< p < for all k) and +=i ICi,m,sl increases without bound
as m increases, it may still be useful in practice if we do not need the last figures.
FILIPPI (1964, 1965a) also examined the error and convergence behavior of Rom-
berg’s method.

10. Integrals with singularities. Much work has been done since 1961 to
extend the applicability of extrapolation methods and improve the algorithms
used for implementing them. Some of these developments are reviewed in this
section and the following sections.

Fox (1961, 1962) observed that the Euler-Maclaurin summation formula
(18) and the corresponding formula for S(h) (see (6)) must be modified if any of the
derivatives of the integrand become infinite in [a, bl. In particular, if this occurs
at x a, (18) and (6) can be used for Iba+h f(x)dx and + 2h f(x) dx, respectively,
and the rest of the integral can be obtained by using a Taylor series expansion about
x a + h. When a 0, b 1 (which will be assumed in this section, unless other
values are specified) and f(x)= x In x, the asymptotic error expansion for T(h)
has a term in h2 In h as well as h2, h4, and that for S(h) has a term in h2, as well
as h4, h6 .... Iff(x) x /2, there is a term in h3/2 in both expansions.

NAVOT (1961, 1962, 1963) used a similar technique to Fox’s to extend the
Euler-Maclaurin summation formula for f(x)dx to the generalized trapezoidal
rule:

(89)

Rt"’f(x) f I1 <
nj=l 2h

Rt’’f(x) T(h),

where nh 1, applied to integrals with singularities. In particular, for

U(h) Rt"’lf(x)
and T(h) (with fo 0), he showed that, when f(x) xag(x), with 0 > fl > -1,
the expansions have terms in h /a, h2/,..., as well as h2, h4 and when
f(x) x In x g(x), there are terms in h + In h, h +a, h2 / a In h, h2 +,... (we
assume throughout this section that g(x) and its derivatives are continuous on
[0, ).

RUTISHAUSER (1963) observed that a modified Romberg method can be used
to eliminate the terms in h /2, h3/2, h 5/2, h 7/2, in the error expansion for

and that a modification of T(h) eliminates the first two terms before extrapolation.
BULIRSCH (1964) extended this to xag(x)dx, with 0 >/3 > 1.
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460 D.C. JOYCE

WATERMAN, Yos and ABODEELY (1964) obtained a generalized Euler-
Maclaurin summation formula for f(x)dx, where f(x)= w(x)g(x) and w(x) is
analytic on (0, 1], using Laplace transforms and contour integration. They con-
fined their attention to the modified trapezium rule (T(h) with fo 0), but noted
that other formulas can be obtained by linear combination of trapezoidal values.
The expansion they obtained for w(x)= x (with Re (fl)> -1) agreed with
Navot’s result, and that for fl- 0 reduced to the usual expansion (18). For
W(X) X1/2e 1/x, some of the terms in the expansion tend to zero like

exp(- x//4)nk).
MmER (1968) called this sort of term "uneliminable error" and pointed out that
it only affects the estimates with small n (large h).

LYNESS and NNUAM (1967) generalized the results described above to allow
more than one singularity and a general quadrature rule:

(90) Rf= wjR[l’]f.
j=0

They used generalized function theory to obtain the following error expansion
forf(x) x(1 x)(x), where fl and b are not integers and are greater than 1:

(91) R"’f f(x)dx ah + + a2h + + aah+ + a4h2+ +

Forf(x) x(1 x) In x g(x) they obtained the expansion

(92) R’f f(x) dx ah + In h + a2hx + + ah + + ah2+ In h + ....
(NINHAM (1966) showed how similar expansions could be used in evaluating the
"Hadamard finite part" of divergent integrals, with and/or 6 < -1.) In both
cases a modified form of Romberg’s method can be applied, although the latter
case is rather more complicated. When the singularities are inside the interval,
the coefficients in the expansion are dependent on h and a modification of Rom-
berg’s method is not really a practical proposition. Later NUAM and LNESS
(1969) investigated the situation where there are singularities in the complex plane
near the interval.

HUNTER (1967) suggested that singularities in .[ w(x)g(x)dx may be avoided
by setting x x(t), where x is a monotonic function of such that x(A)= a,
x(B) b, and w(x)dx W(t)dt, with W(t) having no singularities in [A,B].
For example:

(a) if a 0 and w(x) x/q, with p and q relatively prime, q > and p + q > 0,
then put x fq;

(b) if a=-1, b= 1 and w(x)=(1-x2)-/2, then x=cost leads to
g(cos t) dt and extrapolation is unnecessary;

(c) if a 0, b and w(x) x- /2(1 x)- /2, then put x sin2t.
Fox (1967) showed how Romberg’s method can be modified to cope with

integrands like x/2g(x), x In x g(x), x/2 In x g(x), x/2(1 x)/2 and x- /2 (see
also MmER (1968), FOX and MAYERS (1968)). If the integrand is infinite at either
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EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 461

end of the range, U(h) can be used instead of T(h) or S(h). Fox and HAYES (1970)
extended the method to integrands like (1- xl/4)’ and observed that Milne’s
rule,

(93) M(h) =-h{2yl- Y2 + 2y3 4- 2y -Y6 + + 2yn-1},

can be used instead of U(h). DONNELLY and HAYES (1970)evaluated the Hadamard
finite part of divergent integrals, applying extrapolation to approximations ob-
tained from M(h), U(h) and the modified versions of T(h) and S(h) (i.e., those with

fo 0).

11. Applications of extrapolation processes. Iterative extrapolation has
been applied to many problems in recent years. In this section some of these
applications are described.

BAtmR, RUTISI-IAUSER and STIEFEI (1963) noted that a modified form of the
Romberg process can be used to improve approximate solutions of the ODE
(68) obtained by Euler’s method (52). In this case the global truncation error
"can usually be represented by an asymptotic expansion" of form (1), with ,j j,
and the recursion formula for r 2-k, 0, 1, 2, ..., and m 1, 2, 3, ..., is

T/,, (2mTi+--m-1 Tm-1)/(2rn l).

The process will converge iff(x, y) is continuous in x and y, and f(x, y) satisfies
a Lipschitz condition in y. However, 3+" IC,m, can be as large as 8.25. LAUREYV
(1964b) noted that extrapolation can also be used with Runge-Kutta methods
(for which 7j J + 6, 6 > 0) and the trapezoidal method:

(94) Yr+l Yr + 1/2h{ f(xr+l, Y+ 1) 4- f(x,, Y)}

(for which 7j 2j). DAHLQUIST (1968) recommended using (94)"with repeated
Richardson extrapolation and a simple filtering during the first steps," to solve
"stiff’ systems of ODE’s (see also DAHLQUIST (1963a,b)).

RUTISrAUSFR (1963) used iterative extrapolation in h 2 to compute values of
transcendental functions from recurrence relations (see also HFNRICI (1964, p. 242),
FILIPPI (1966)) and derivatives from

(95) T --.f’(; h)= (f(2 + h) f(2 h))/(2h).

He noted that in the latter case rounding error can be reduced by using a more
slowly decreasing sequence {r} and modifying the recursion formulas. LAURENT
(1964b) investigated extrapolation of symmetric and one-sided initial approx-
imations for total and partial derivatives. FILIPPI (1965b), FILIPPI and ENGFLS
(1966a,b) and ENGELS (1968a,b) examined error and convergence behavior and
considered the use of several different {rk}, rational initial approximations and
rational extrapolation.

LYNESS and MCHUGH (1963) suggested using extrapolation with a symmetric
low order rule (e.g., the product midpoint rule) in multidimensional integration.
They tabulated the coefficients e for (h2, h, ...)-extrapolation with r 1(1 + k).
LAURENT (1963C, 1964a,b) applied Neville’s process to initial approximations
obtained from the product rules corresponding to T(h), U(h) and the "compound"

D
ow

nl
oa

de
d 

11
/2

3/
14

 to
 1

29
.1

20
.2

42
.6

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



462 D.C. JOYCE

n-point Gauss rule, r x G, (see Davis and Rabinowitz (1967, p. 24)). Others to use
extrapolation for multidimensional integration were ANOERS (1966), BURGFSS
(1967), MILLFR (1968), HOOGSON (1969) and BAIFR and HOOGSON (1970). LYNSS
and McHUGH (1970) introduced a "concise formalism" so as to obtain the remain-
der term of the N-dimensional Euler-Maclaurin summation formula (see also
SCHNHAGE (1970)).

LAURENT (1963b, 1964b) also investigated the application of extrapolation
methods to:

(a) BV and EV problems in ODE’s--using iterative (shooting") methods to
obtain the initial approximations;

(b) PDE problems--using central differences;
(c) the reduction of variance in Monte Carlo methods;
(d) the solution of IE’s--using the trapezium rule (see also MAYERS (1962),

LAL and GILLARD (1969), LINZ (1969), WACKER (1969), ATKINSON (1970), BAKER
(1971)).
DENNIS (1964) applied variational methods to EV problems in ODE’s and ob-
tained approximate solutions with errors of h4-type (see also GOODWIN (1965)).
He used a modified form of Neville’s process to carry out the (h4, h6, .)-extra-
polation. ANDERSSEN (1969) used variational methods and extrapolation to solve
parabolic PDE’s.

12. Asymptotic expansions for differential equations. GRAGG (1964, 1965a,b)
was able to show that, when a pth order one-step method is used for the numerical
solution of the ODE’s (34) under certain conditions of differentiability, the global
discretization error at x has the asymptotic expansion (as h 0 and n so
that x Xo + nh remains fixed)

(96) T(h)- ao ahv + a2hp+ -F -F a,hp+J- .-t- O(hP+J).

Here a0 y(x) and T and the aj will depend on x. Equation (96) is of form (1) with
7j P + j- (proved also by WALSTON and WADDFLL (1968)), which confirms
Henrici’s assertion (see 8 (above) and HENRICI (1965)).

When a stable convergent pth order linear multistep method is used, with
consistent starting functions having asymptotic expansions in powers of h, to
solve the linear ODE’s

(97) _y’= A(x)y_ + b(x),

with _y(xo)= _Yo, the global discretization error has a "pseudo-asymptotic" ex-
pansion of form (96) with the aj now dependent on h"

q

(98) aj a.i(x, h) z"Us,.i(x),
s=l

where z l, 22 Zq are the "essential roots," and the us,j(x are independent of h
and satisfy certain differential equations. In the case of a nonlinear ODE, the
situation is the same for J < 2p, but for J >= 2p the summation in (98) is over
a modified index set. Usually Z l,Z2,..., zq are the q’th roots of unity (for
some q’_>_ q), so that (hP, hp+ 1,...)-extrapolation can be applied for values of
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EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 463

nk (x- Xo)/hk which are divisible by q’. He also showed that a symmetric
multistep method will have an asymptotic expansion in powers of h2 if the starting
functions do (see 14 (below)).

LAURENT (1964b) obtained asymptotic expansions of the form (1) with
J 2 for the errors in:

(a) the approximate solution of the ODE (68) by Euler’s method (52);
(b) the central difference approximation to y"= f(x, y) with y(a)= A and

y(b) B (see also KF.I.LF.I (1968));
(C) the approximate solution of an IE using the trapezoidal rule;
(d) the central difference approximation of Poisson’s equation

aX2 y2 f(x, y)

on a square (see also VOLIOV (1965)).
The expansion for (a) has 7j j and the others have 7j 2j.

STETTER (1965b) extended Gragg’s theory to cover IE’s, PDE’s and BV
problems in ODE’s. He defined a general discretization, assumed the existence ofan
asymptotic expansion (with 7j p’ + j- 1, p’ > p) for the local discretization
error and showed that an asymptotic expansion of form (96) for the global dis-
cretization error exists if fairly general conditions on stability, convergence and
differentiability are satisfied (see also WALSH (1968)). He used his theorem to
obtain the coefficients aj when using Euler’s method (52) on y’ y, Yo 1, and
when using a central difference method on a second order nonlinear BV problem.

PEREYRA (1965a,b, 1966a,b, 1967a,b, 1968, 1969) modified Stetter’s theorem,
using general {7j}, and presented a generalization of the deferred approach to
the limit which he called "the method of successive extrapolations." BULIRSCH
(1966) showed that, under certain conditions, the errors in the approximate
eigenvector and eigenfunction of a general EV problem will have expansions of
form (1) with 7j 2j. HOFMANN (1967) investigated the Dirichlet and Neumann
problems of the Laplacian in a square domain and found that the {Tj} are deter-
mined by the exponents in the expansions of certain quadrature errors involving
the boundary value functions. WATT (1967, 1968a,b) restated Stetter’s theorem
using a new concept of the "inverse" discretization and applied it to a two-step
method for solving IV ODE problems.

WERNER (1968) used extrapolation to improve solutions of systems of hyper-
bolic PDE’s obtained by the method of "nebencharacteristics," observed sub-
stantial improvement and concluded that "all results confirm the validity of the
assumption of the existence of an asymptotic expansion in terms of the discretiza-
tion parameter." SIITH (1970) investigated the application of extrapolation to
hyperbolic PDE’s and proved the existence of asymptotic error expansions for
Massau’s method and a modified midpoint rule, analogous to Gragg’s method
(see 14 (below)).

KELLER (1969) showed that, when the "centered difference" method is used
2 4to solve the linear ODE s (97), subject to n linear constraints on [a, b], (h h ...,

2rnh )-extrapolation ’can be employed to get high order accuracy approximations
with nonuniform nets and piecewise smooth A(x) and b(x)." Later KELLER (1970)
obtained similar results for parabolic PDE’s.
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464 D.C. JOYCE

13. Polynomial and rational extrapolation. In the previous sections, the
extrapolation methods have all been based on (generalized) interpolating poly-
nomials and can be formalized as suggested by BULIRSCH and STOER (1964, 1965)"
for an approximation T(h) having an asymptotic error expansion of form (1) with
J => m, we define the (generalized) polynomial

(99) h’ + b2h’: 4- 4- b,,hTM’(h) =_ bo 4- b

by imposing the conditions

/(hk)(100) T(hk) k i,i + 1,...

T(0) is approximated by /,,(0) bo and we define

Ti,,, T(hi, hi+ 1,’", hi+m) =-- bo.
Constructing a linear operator L/ from

i+m

LinT Z cz,,,,,s T(hs),
s=i

(101)
Lih’j O,

and applying it to (99), we obtain

SO

LI 1,

bo + bjh
j=l

bo(Ll + b(Lh),
j=l

(102)

or

,i+m.

L ^i T

In the case ?j j?, Bulirsch and Stoer generalized (86) to"

T
Ti h Ti + h+am-1 -I

h-

Ti,, T +
+ Tm-1 m-1

(hi/h + m)

j 1,2,..., m,

Ti Ti+ tTi+m--1 4-, m-1- Tm-1)/(P "-- 1).

They derived an error bound for IT/,,- T(0)I when rk+l/r =< p < 1 and
7j =>- 7 > 0 and deduced that, if an error expansion of form (1) is not

ever, for r pk, with 0 < p < 1, they obtained

(103) T ,-1 T,,_,)/(1

or

i.e., Neville’s process extrapolation of {F(h,)= T(hk)} to F(0). Unless {G} is
restricted there is no such simple formula available when {7} is arbitrary. How-
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EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 465

possible for d greater than some do, then the error in Tm 0 like h( for m =< do
and like h’Jo+l for m > Jo. Thus there is little to be gained by computing more than

Jo columns. They proved that, if limi-.oo Tb T(0) and either 7 =.]7 and
pJ is convergent, thenrk+l/rk<p< lforallkorrk=pkandj=o

lim Tm T(0).

Then they suggested that, when 7 Jr, rational extrapolation as developed
by STOER (1961) could be used instead of polynomial extrapolation. In this case
T(0) is approximated by T/,, /.,(0), where

u,(h) =_ P.,(h)/Q,,(h),

(o41 G,Jhl-- ph’ Q.,(h) =- qh’
j=O j=O

,(hk) T(hk), k i, i+ 1,..., i+ # + v

(note that when v 0, we have polynomial extrapolation). The recursion for-
mulas analogous to (102) are rather complicated but they can be simplified by
choosing kt [m/2] and v m- [m/2] and writing Tu, T/,.. In this case the
formulas are

T

_
=0 i> 1,

(105) T T(hi) >= 1,

"l-’i + h+ T
T hi )m am- re>l,

hi (R)m h+,,,

or

where

T Ti +
+ Tm-1 m-1

(hi/hi+,.)(R)- l’

T_ T +

Ti+ Ti+
m-1 am-2

There is an obvious analogy with (102), but unlike all previous formulas, the
transformation in this case is nonlinear.

They proved that, under certain conditions, when this method is applied to
quadrature using trapezoidal values in the first column,

f2"+2)()G/qo(106) r., f(x) dx (-)hh+l h+mflu+,

with 0 =< __< (compare (87)). Tests using {rk} Q for quadrature indicated that
{T.,," # [m/Z], v m- [m/Z]} converges quicker than {Tm,o} or {To,m} (see
also KAPFER (1966)), but later BULIRSCH and STOER (1967b) observed that, because
the algorithm is more complicated, "this advantage is not necessarily reflected by
the computing time needed." When (105) was compared with (102) as a method
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466 D.C. JOYCE

of improving approximate solutions of y’ y, Y0 1, using Euler’s method with
h 2 -k, it was found to require fewer evaluations to attain a specified accuracy.
FILIPPI and ENGELS (1966a)applied rational extrapolation to numerical differ-
entiation.

14. Gragg’s method. When GRAGG (1964, 1965a,b) obtained his results
about asymptotic error expansions for symmetric multistep methods (see 12
(above)) he observed that knowledge about the derivatives off(x, y) is usually
required in order to obtain suitable starting functions, but that in two cases
nothing besides the starting value Y0 is needed. The first case is that of the trapezoi-
dal method, but unless we can solve the implicit difference equation (94) exactly at
each step, the expansion is restricted in length.

The second case is that of the midpoint method (35). If Yo -Y0 and Y1
Yo + hf(xo, Yo) are used as starting values, the error has a "pseudo-asymptotic"

expansion (as h 0 and n so that x Xo + nh remains fixed)"

h2T(h) ao a + a2h4 + + ajh2J + O(h2J+2),
where

T(h) Y,, ao y(x),

and

(107) aj aj(x, h)= uj(x) + (-)"vj(x),
with uj(x) and vj(x) independent of h. In this case extrapolation in h2 can be applied
with a sequence {h} such that n (x Xo)/h is either even for all k or odd for
all k.

Gragg suggested modifying the midpoint method in order to obtain two
approximate solutions analogous to (11) and (23). Using Y0 Yo and Z0 Y0
+ 1/2hf(xo, Yo) as starting values, we compute

(08) Y.+I Yr -1"- hf(xr + 1/2h, Z), Zr+ Z Jr- hf(xr + h, Yr+ 1)

for r O, 1, ..., n 1, and we define U(h) and T(h) by

(109) U(h) Y,, and T(h) Z, 1/2hf(x, Y,).

Iff(x, y) is independent of y, these reduce to (11) and (23). Finally G(h) is defined
by

G(h) (U(h) + T(h))/2.

U, T and G all have error expansions of the h2-type with coefficients independent
of h, so extrapolation in h2 can be applied with any sequence {h}. Note that
U, T and G are all functions of x as well as h. This can be emphasized by writing
G(x h) etc.

A "step-by-step" algorithm using extrapolation of the modified midpoint
method (110) to integrate an ODE (or system of ODE’s) from x a to x b can
be based on the following:
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EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 467

(a) choose a "global" step H, such that (b a)/H is integral, and a sequence
{ho,hl,"., hm} such that H/h is integral for k 0, 1,..., m;

(b) setx0=a, y0=y(a) andx=a+H;
(c) use (110) to obtain {T) G(a + H;hk)};
(d) use (102) or (105) with , 2 to obtain Tm G(a + H;ho,h1, ..., hm);
(e) setxo=a+H, yo= TOm andx=a+2H;
(f) use (110) and (102) or (105) to obtain G(a + 2H; ho, hi, ..., hm), etc.

Gragg observed that "this entire process is a Runge-Kutta (one-step) method"
which "guarantees the numerical stability (as h 0) ofthe step-by-step algorithm."
He also developed a similar method for solving the second order ODE (69).

Gragg pointed out that in G the leading unstable component of the discretiza-
tion error has been eliminated, from which STETTER (1968b) deduced that G is
always "asymptotically strongly stable." Stetter also noted that the extrapolation
process has a stabilizing effect since the solutions computed with the largest hk
have the least weight in the extrapolated value. Later STETTER (1969) investigated
the stability of the entire process and concluded that while the stability region is
not very large, this is nevertheless an improvement on the basic midpoint method
"the absolute stability region of which is empty." In papers to be published,
STETTER (1970) examines general symmetric linear two-step schemes and BUTCHER
(1970) mentions "a characterization.., for Runge-Kutta methods which for
appropriately smooth functions have a global truncation error with asymptotic
expansions in even powers of the step size."

Gragg compared the Gragg-Neville method (using (110) and (102) as above
with m 6 or 7) and the Gragg-Stoer method ((110) and (105) with m 6 or 7) with
a Runge-Kutta 4th order method and the Adams predictor-corrector pairs of
order 4, 5 and 6. BULIRSCH and STOER (1966a) carried out similar tests and observed
that the Gragg-Stoer method obtained a specified accuracy with fewer function
evaluations (see also CLARK (1968) and SKAPPEL (1969)). They suggested including
an automatic step size correction.

15. Modifications of Romberg’s method. Several suggestions have been
made recently concerning possible improvements and generalizations ofRomberg’s
method. Some of these are described in this section.

LAURENT (1963C, 1964a,b) observed that extrapolation can be applied to
initial approximations obtained from composite Gauss rules. For instance, we can
use the composite (p + 1)-point rule, which is exact for polynomials of degree
2p + 1, and set up a triangular scheme of approximations to f(x)dx with

Gm 0, m<p,

(111) Gip (n x Gp+)f,

G/,, (4mt-7i+-m-1 Gm-1)/(4m l), m > p,

where ?/i 2i r/and __> 0. Laurent noted that this "Gauss-Romberg" method
combines the precision and economy of Gaussian formulas with the simplicity of
iterative extrapolation (see also LYNESS (1970b)).

MEIR and SHARMA (1965) suggested using higher order Newton-Cotes
formulas to obtain the initial approximations. In particular, using Simpson’s rule
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468 D.C. JOYCE

with hk 1/(2 + 2k), they obtained the following expression for Es, the error
in S"

(112)

where

f(x) dx Cmm+ if(2m+ 2)(S)

2 2-2m+

m(m + 1)(2m + 1)(m!)2’

and 0 < s =< 1 (note that S 0, S/ S(hi), conforming with (111)). Comparing
(112) with

f(2"+ 2)(z)m+(113) Ez T.,, f(x) dx .)2((m + 1)’

where 0 =< z =< 1 and hk 1/(1 + k) (see (87)), they observed that

Es (2- 2-2m+ 1)(m + 1) 1
(114)

Ez m(2m + 1) m

and concluded that the decrease in error and in number of extrapolations more
than compensated for the increase in function evaluations (see also TURNBULL
(1967), MANOHAR and TURNBULL (1968)).

ELSNER (1966) showed how extrapolation of Newton-Cotes values can be
carried out in an elegant fashion. If C(h) is a Newton-Cotes composite rule of
"polynomial degree" 2p + l, the polynomial 12+,,(h) is defined by

2p +m(h) =- bo + blh2p+2 -{- b2h2p+4 d’- -’1- bmh2p+2m

C+,,,(hk) C(hk), k i, + 1,

Then the operator Urn, defined by (101) with 7j 2j, can be applied to

(116) (h) h-2p(h),

yielding

,i+m.

Hence

(117)

where

( 18)

and

A/,. "i Li(boh-2p)=-- LmAm -+- Z Lim(bjh2J)
j=l

Am/Pm,cip +

P _= Um(h-2p)

G+m bo

(see also SCHMIDT (1968), MILLER (1968), LYNESS (1970b)). A/m and P can be
computed by recursion formula (102).
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EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 469

Comparing the methods based on T(h) and S(h) (p 0 and respectively)
Elsner noted that, when {rk} Q is used, T,, is of order 2 higher than S-1 for
very nearly the same number of function evaluations. He concluded that it will
generally be better to use T(h), since the work involved in the extra extrapolations
is usually negligible in comparison. ROBINSON (1969) experimented with a
"Romberg-Weddle" method in which the initial approximations are obtained
from (15). Romberg-type methods based on general quadrature rules were in-
vestigated by BAKER (1969), HODGSON (1969), BAKER and HODGSON (1970) and
LYNESS (1970b).

KRASUN and PRAGER (1965) observed that rounding errors in Romberg’s
method could be reduced by forming a "skeleton table." In this table, the U are
obtained in the usual way (see Table 8), the T for m > 0 are obtained from (76),
the T/m for i> 0 are not computed for m less than some M, and the Tt are
obtained from (62); thus (60) is not used at all (see also FAIRWEATHER (1969)).

PRAGER (1965) suggested an "adaptive" Romberg method for computing
af(x) dx (see also ELLIOT and PRAGER (1965), DAVIS and RABINOWITZ (1967)).
The sequence {r 2 -k} is used and the convergence criterion is based on the
quantities

(119) D ITm_ TI, m 1,2,3,4.

The method proceeds as follows:
(a) Choose h(= ho, say) and a tolerance e.
(b) Compute Too and T for [.+hf(x)dx.
(c) If D1 < e, accept T and increase h to 1.5h; otherwise compute T2 and

if D2 < e, accept T2 and leave h unaltered; otherwise compute T and if D3 < e,
accept T and reduce h to 0.6h; otherwise compute T and if D < e, accept T4
and reduce h to 0.6h.

(d) If Dm was less than e for m 1, 2, 3 or 4, proceed with the next interval;
otherwise reduce h to 0.6h and attempt the integration over [a, a + 0.6h], etc.
The last interval may have to be adjusted in order to conclude at b. If more than,
say, 8(b- a)/ho steps have been taken without reaching b, an "error exit" is
made.

RABINOWITZ (1966) compared this adaptive routine with the usual Romberg
method and the adaptive Simpson method (McKeeman (1962, 1963a, b), McKeeman
and Tesler (1963)) and concluded that it "requires more information to be given
by the user and appears to be less efficient." Adaptive Romberg methods have
also been investigated by MILLER and BURKE (1969), MILLER (1970) and DE BOOR
(1970a, b). O’HARA and SMITh (1969) used the 9-point Romberg method in com-
bination with Boole’s rule (14) and two 7-point Clenshaw-Curtis quadratures
(Clenshaw and Curtis (1960)) in an adaptive algorithm.

HAVIE (1967) observed that the cosine transformation, applied by Smith (1965)
to the modified Simpson rule, can be used with Romberg’s method in the evaluation
of j’_+ f(x) dx, by defining

(1_20)
N

Tix =- h, , f(cos (rhi) sin (rhi) + i(.f(1) + f -1))
r=l

D
ow

nl
oa

de
d 

11
/2

3/
14

 to
 1

29
.1

20
.2

42
.6

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



470 D.C. JOYCE

and
N h(121) UI hi f(cos ((r 1/2)hi))sin ((r 1/2)hi) (f(1) + f(-1)),

’=1

where hi rc/2 i. Tim and U for m > 1 can be computed from (60), (61) and (62).
Havie noted that this algorithm will have an advantage "when dealing with inte-
grals where the integrands behave in a nonpolynomial way towards the ends of the
integration intervals," gave examples which supported this (see also HAVIE (1969b))
and indicated how the number of evaluations of sine and cosine can be kept to a
minimum. He also suggested that the way in which the Romberg algorithm is
applied can be modified (as suggested by Jagermann (1966) for the midpoint rule)
in order to avoid undesired effects due to the weight function w(x) in an integral
of the form f] w(x)g(x) dx.

LYNESS (1967, 1970a) and LYNESS and MOLER (1969) pointed out that when
the equations

(122) T(hk) bo / bh + b2h’ + + b,,h", k i, / 1,..., / m,

are solved in order to obtain T(= bo)as an approximation to Io ff(x)dx,
the values of b, b2, ..., b,, can also be computed as approximations to

(123) aj (-)J- flj(f(2j- ’)(1) f(2j- 1)(0)) j l, 2, "’", m

(the aj can be used in computing Fourier coefficients for f(x)). T/,,,,j(= bj) is
computed by the "generalized Romberg method," as follows"

(124)
T/,,,,j=0, j<0 or j> m,

T/,o, o T(hi) >= O,

and

(125) ri,m, h2 h2+,,
T/,m_ 1,j_ 1)

(126) RZ""l(f(x) cos 2rcnx) =- 1/2(RP"lf(x) R"’lf(x)),

and the alternating rectangular sum,

(127) RZ"’(f(x) sin 2nx) 1/2(R"’- 1/2f(x)- R"’f(x))

(where R""f(x) is defined by (89)) for computing the initial approximations (when
(126) and (127) are used, some adjustments are necessary), and obtained generaliza-
tions of the results of 9 (above). LYNESS (1968b) noted that (125) can also be
applied to the calculation of Stieltjes-type integrals.

LYNESS and DELVES (1967) observed that the error expansion for T(h) has
terms in h2, h6, h, for contour integration round a square, h2, h4, h8, h, hi4,
for contour integration round a triangle or hexagon, and h4, h8, h2, for the

j 0, 1, 2,..., m, and m >= (compare (74) and note that, when j 0, (125)
reduces to (86), since T/,,,,o T).

Lyness and Moler also investigated the use of the midpoint rule (23), the
alternating trapezoidal sum,
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EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 471

integral over a square of a harmonic function of two variables (see also MILLER
(1968)). They suggested the introduction ofa "noneliminating" step (when r p)
if h2m does not need to be eliminated, put T T_ . For integration round a
square, the scheme in Table 9 is obtained with T T], T T.

TABLE 9

To T T2

T W T T3 T
T30 T2 T22 T W T

The expression they obtained for the truncation error with r 2 -k reduces to
(18) if all the steps are noneliminating and to (85) if they are all eliminating.

16. Error estimates and asymptotic bounds. Relations like (85) and (87),
which express the error in an approximation in terms of the value of a derivative
at an unknown point, are not usually very helpful in practical computation,
although they can be used to compare the theoretical accuracy of different approx-
imations (as can the error bounds investigated by MARSAL (1965), STROUD (1965,
1966), MEINGUET (1966) and BAKER (1968)). Various techniques for obtaining
"asymptotic" bounds (or estimates) for the error, which have been developed in
recent years, are reviewed in this section.

ROMBERG (1955) used Taylor series expansions to show that T/,, and U/,, may
bracket the true value of the integral (see 7 (above)) and BAUER (1961a) obtained
conditions under which this will be true for i= 0 (see 9 (above)). However,
little use was made of this property until KUBIK (1965) produced an algorithm
based on theoretical results obtained by HAVIE (1966, 1967), who deduced from
the Euler-Maclaurin formula (18) and the second Euler formula (25) that, "under
rather general conditions.., the errors of T/m and U/,, are of opposite sign" in
which case

IT/,,+’ I

i.e.

(128)

T + U/,.
-I ]T II +]Um- I]

2

IT2 I[ <= T U[/2.

Thus, if the table is built up as Romberg suggested (see Table 8), error estimates
are obtained with very little additional calculation. However, Havie gave two
examples where T/,, and U/,, do not bracket the true result in the early part of the
table (i.e., when + m is small). He observed that the U-scheme should have
slightly faster convergence and "seems more advantageous whenf(a) 0/0," and
that the failure of Romberg’s method to improve the convergence ofthe trapezoidal
values for integrals like .[ e dx is shown up by the monotonic increase of
Ty’-j U’-Jl for j 0, 1, rn (i.e., along the rows).

STROM (1967) observed that Havie’s results can be used to show that

(129) ](3T+1 T)/2 II <= T/m+1 TI/2
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472 D.C. JOYCE

(proved, for m 1, by DAHLQUIST (1966)). He then proved that, iff(2m+ 2)(X) 0
in [0, 1], then 2T+1 T(= U)is "the largest lower bound (for I of(X)dx)
that can be obtained from the elements T+1 and T under the sole assumption
on the sign off(2"+ 2)(x) in [0, 1]." He suggested using automatically constructed
"majorants" to bound the error in (3T+1 Ti")/2.

Later HAVIE (1969a) expressed the errors in T and U in terms of Bernoulli
polynomials and their related periodic functions, obtaining (85) and

f(2" + 2)()O-)/m +(130) U f(x) dx 2"+ 2i)("+ 1)

where co 2 -(2m+ 1) and 0 =< r/ < (compare (25) and (85)). He deduced that,
iff(2"+ 2) is continuous in [0, 1] and iff(2"+ 1)(1) =/= f(2"+ 1)(0), then, for increasing
values of i, the errors in T and U will get the opposite sign. Observing that
T UI/2 may greatly overestimate the error in T+ 1, he suggested using the
asymptotic error estimate

(131) T2 I E’+1 (T/m U)
2(4"+1 1)’

with the closeness to unity of

(132) R+1 4,,+ 1F,,i+__" 1/Ei
as a measure of the quality of the estimate. LYNCH (1965, 1967) had proposed
using

(133) E2 (T T+ 1)/(4m+1 1)

with (132). From (62) we can deduce that

(T T2 1) T T + U)/2 T U)/2,
so the two estimates are identical. De BOOR (1970a,b) used (132) and (133) in an
adaptive quadrature algorithm.

BULIRSCH and STOFa (1965, 1966b, 1967a) showed that, when polynomial
or rational extrapolation is applied to any approximation, T(h), having an error
expansion of form (1) with 7j iT, the extrapolants satisfy

h+"(% + O(h))(134) T T(0) hihg+l +1

They used this result to demonstrate that, if is defined by

(135) U (1 + o0T+1 eTa,
with

(136) o 1 +
(hi/hi+re+l) 1’

and if %+ 0, then for fixed m,

(137) lim
T/" T(0)

,-,oo U=5 T(0)
1,D
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EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 473

and so, for greater than some io, Tm and tend monotonically from opposite
sides to the exact result, T(0) They noted that T and -iU are more likely to be
upper and lower bounds of T(0) than T/m+ and Vm+ 1, where

(138) Vm+1 zT+ ( 1)Tm

(NUhNN (1966) used V to show that, under certain conditions,

Tm +1 T(0)I Tm +1 Tirol)

For arbitrary {Tj} and r pk, 0 < /9 < 1, the above result (137) will hold for
polynomial extrapolation, i.e., Tm and will be asymptotic upper and lower
bounds, if

(139) e + 2/(p -"+1 1).

In this case, if -iUm is defined by

(140) 2Tmi i+ T

it can be regarded as the result of applying polynomial extrapolation to

(h) 2T(ph)- T(h),

and for quadrature, with p 1/2, we have the U-scheme of Romberg’s method.
Bulirsch and Stoer showed how to obtain upper and lower bounds for:
(a) the value of an integral, using rational extrapolation of trapezoidal values

(see also BULIRSCH and RUTISHAUSER (1968));
(b) the solution of an IV problem in ODE’s, using the Gragg-Stoer method;

and
(c) the EV of an ODE, using central differences and polynomial extrapolation

(see also BULIRSCH (1966)).
They noted that it is very difficult to say how large must be in order to ensure that
Tm and Um are upper and lower bounds, and suggested that, for practical purposes,
the extrapolation should be stopped "if a finite number of T and U decrease or
increase monotonically and if ITem- Uml is small enough" (this was used by
BULIRSCH and STOER (1967b) for quadrature).

SCHMIDT (1966) showed that for sufficiently large i, T(0) will lie between
T/,n and --iT,. and also between T/m and /m, where

(141)

and the T/,,} are obtained by polynomial extrapolation, with either J7 and
rk+ 1/rk <-_ p < or arbitrary {7j} and r p.

He also obtained analogous results for the e-algorithm (see, for example,
WYNN (1956a, 1963), BAUER (1965)), which is based on the assumption of an
asymptotic expansion, for an approximation xi of a quantity z, of the form

(142) x, Z Jr- 1//1 At- 2/ nt- Jr- Cj/5 "- 0(/5)
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474 D.C. JOYCE

(KAHANER (1969) and DE BOOR (1970b) observed that the e-algorithm can be used
to solve (1) for ao when the 7i are unknown and hk p’h). The e-algorithm com-

g, with > 0, fromputes the quantities em
O, eO Xi,

(143)
i+ i+

(only the {em} are improvements). In particular,

+ 1/(+ 81)

and, after substituting for el+1 and el, we obtain the "b2-process" of AITKEN
(1926)"

(Xi+ Xi)2
(144) e Xi+

Xi+ 2xi + Xi-

(see also OVRI-IOLT (1965, 1968), who discussed "Richardson-like" techniques).
Later SCHMIDV (1968) showed that, when yj J7 + 6 and r+ /r <= p < 1,

iterative extrapolation can be carried out according to

To T(hi), Ho h(,
T + T

Ti+ --m-1 m-1(145) Tm---am-1 " m >__ 1,
D/m

H + H
H/m L//+I m-1 m-1

..m_l + m>=l,
(hi/hi+m)- 1

where

Dim hHim+l/(h+mHim 1)

(note that if 6 0, then H 1 and (145) reduces to (102)). In this case,
defined by (135) with

1 + 2/(Dm+l 1),

and T are asymptotic upper and lower bounds; i.e., for sufficiently large i,

(146) I(T + Um)/2 T(O)I <= Tim
Schmidt observed that

T+ U)/2-(Tm

and hence

(147) Tm+l T(0)I < Tm+l TI.
ENGELS (1968a) investigated enclosing formulas for numerical differentiation,

approximating f’(ff), for example, by

Tio (f( + hi)- f(X hi))/(2hi)D
ow
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EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS 475

setting

(148) -i o0T)Uo (1 + o(f(.2 + flh)- f( flh,))/(2flh)

and using polynomial extrapolation to obtain T and -iUrn, which will enclose
f’() if z 2/(fl2 1) and the higher derivatives are sufficiently small.

17. Two generalizations of Neville’s process. LARKIN (1967a) generalized
Neville’s process to include rational interpolation, using three formulas"

(a) the "triangle rule" for polynomial interpolation"

(149) f/,m
( Xi)L+ 1,m-1 ( Xi+m)L,m-1

Xi+m Xi

(compare (86)), which is Neville’s process;
(b) the "triangle rule" for reciprocal-polynomial interpolation"

--XXi+m50) fi,m (, xi)/L+ 1,m-1 ( Xi+m)/L,m-1

(c) the "rhombus rule" for rational interpolation"

L,m L+ 1,m- 2 - Xi+m Xi

(151)
(" Xi)/(fi+ 1,m-1 of/+ 1,m-2)- (’ Xi+m)/(fi,m-1

(compare (105)).
Larkin suggested two algorithms: Ai, which uses (149) for the first columns

and then (151), and B, which uses (150) for the first columns and then (151).
It is thus possible to choose an algorithm to provide a rational interpolating
function with numerator and denominator of specified degrees. He noted that
algorithms suggested by WYNN (1956c, 1960) and STOER (196l) are included as
special cases. In a later paper, LARKIN (1967b) generalized Neville’s process even
further, developing a process for constructing polynomial and nonpolynomial
interpolating functions by means of simple recurrence relations. Special cases
include polynomials, reciprocal polynomials, rational functions and trigonometric
series (also investigated by HUNTER (1968)).

MILLER (1968) showed that Neville’s process can be viewed as "a process
for term-by-term elimination of error, expressed as a power series," and introduced
a matrix formulation based on the Taylor series expansion off(x) about ft. He
applied the process to integration (in one and two dimensions) and summation of
series and showed how it can be modified for the summation of series with al-
ternating signs, for the evaluation of limits and derivatives and for extrapolation
when the expansion has general term ajhj + (see 15 (above)). Then he showed how
to derive multipliers for obtaining individual elements in extrapolation schemes
without computing the others and concluded by investigating the behavior of
truncation error and rounding error, discussing the optimal choice of arguments.
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476 D.C. JOYCE

18. Algorithms. BAUER (1961a,b) appears to have been the first to publish
an algorithm for Romberg quadrature. His AL6OL procedure carried out the usual
Romberg process, with rk 2 -k, to a specified order. DtNII (1963) wrote a
FORTRAN routine which incorporated a relative error test (as suggested by
THACHER (1962a)) and required the specification of a minimum, as well as a
maximum, order. LAURENT (1963C, 1964b) gave an AL6OL procedure for numerical
integration in two dimensions. BVLIRSCI-I (1964) used {r} Q for quadrature
to a specified order, and GRAM (1964) corrected for rounding error, using r 2-and a relative error test.

BULIRSCH and STOER (1964) used rational extrapolation with {r} Q and
ELLIOT and PRAGER (1965) implemented the adaptive routine described in 15
(above). KtBI (1965) used polynomial extrapolation with rk 2 -, testing
ITm- U] and stopping when it was small enough, and BULIRSCH and STOER
(1967b) included a similar convergence criterion in an algorithm based on rational
extrapolation with {r} Q. HAVIE (1967) modified Kubik’s algorithm to allow
the use of the cosine transformation (see 15 (above)), and HILLSTROM (1968a)
wrote a FORTRAN subroutine which offered a choice of four convergence tests.

FAIRWEATHER (1969) made use of two devices designed to reduce rounding
error: the "skeleton table" suggested by KRASUN and PRAGER (1965) (see 15
(above)), and the procedure for evaluating the Uo introduced by RUTISHAUSER
(1967). WALICX (1970a,b) found experimentally that the latter has greater
effect. Other programs have been published by CONTE (1965), WEISCI-I (1966),
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (1967), MCCALLA (1967),
WILE (1967), CARNAHAN, LUTHER and WILIES (1969) and WAy6 (1969).

Tests and comparisons with other quadrature methods have been reported by
KAPFER (1966), HILLSTROM (1966, 1967, 1968b), FARKAS (1966), TOMPA (1967,
1969), HOPEWELL (1967), MIILOSO (1967), BABUSKA (1968a,b), Co)Y and
HILLSTROM (1968), O’HARA and SMIXI (1968, 1969), LYNESS (1968a, 1969a,b,c),
SMIXIJ and LYNESS (1969), ROBIySOY (1969), KAHANER (1969), AMBLE (1969),
BRAKHAGE and BROMBEER (1969), CASALETTO, PICKETT and RICE (1969), HAVIE
(1969b), MILLER (1970), CooI (1970), and OIVER (1971).

Published algorithms for the numerical solution of IV problems in ODE’s
include those of LAURENT (1964b), MCCALLA (1967) and ASWANI (1967), which
use Euler’s method, and that of BULIRSCH and STOER (1966a), which uses the
Gragg-Stoer method with automatic step-size correction and {r} Q (see 14
(above)). This last algorithm has been adapted for use as a FORTRAN function by
CLARK (1968) and CRANE and Fox (1969a,b). SITH and MCCALL (1970) applied
extrapolation to Massau’s method for hyperbolic PDE’s.

LAURENT (1964b) also gave AL6OL procedures for numerical differentiation
using polynomial extrapolation, and for extrapolation by the methods ofLagrange,
Neville and Newton (see 5 (above)). STAFFORD (1965) and BOOTHROYD (1966)
published interpolation algorithms based on the processes of Aitken and Neville.
WIYRCIJ (1969) and KROGH (1970) compared the efficiency of several schemes
for interpolation including Aitken’s and Neville’s.

19. Concluding remarks. As was pointed out at the beginning, this survey is
concerned mainly with extrapolation processes based on polynomial or rational
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functions. In the interests of brevity, not all cited papers have been discussed in
detail and there are, no doubt, some gaps in the bibliography. The reader in-
terested in other convergence acceleration techniques, such as the e-algorithm,
will find useful bibliographies in the papers of WYNN (1956c, 1963) and GRAY
and CIARI (1969).

It is noticeable that there has been a certain amount of rediscovery and it is
unfortunate that the papers of SI-IE’’ARI (1900), AITKEN (1932b, 1938), NEVILLE
(1934) and ROMBER (1955) have not had wider circulation. Romberg, in particular,
covered rather more ground than is generally believed, investigating sequences
other than {r 2-k}, and pointing out the usefulness of the U, both for
efficient computation and for error estimation.

Perhaps the three most useful developments of the last 15 years are:
(a) the modification of Romberg’s method to deal with integrals with

singularities (see 10 (above));
(b) the modification of the midpoint method to allow the use of (h2, h4, .-.)-

extrapolation in the solution of IV problems in ODE’s (see 14 (above)); and
(c) the exploitation of asymptotic upper and lower bounds (see 16 (above)).

Acknowledgment. The author is indebted to Dr. J. C. P. Miller, Dr. K.
Wright and the referees for valuable comments, to many of the cited authors
for providing copies of their papers, and to his wife and Dale Schrama for their
help in preparing this paper for publication.
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