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Preface

Ancient Mesopotamian mathematics is known from hundreds of texts
recorded on clay tablets in the cuneiform script. Some of the mathematical
cuneiform texts are quite large and contain many exercises or long tables
of numbers or measures. The great majority of these texts are Old Babylo-
nian, from the first half of the second millennium BCE.1 A few are
Kassite, from the latter half of the second millennium BCE, some are Late
Babylonian/Seleucid, from the latter half of the first millennium BCE, and
others are pre-Babylonian, from various periods within the third millen-
nium, or the last part of the fourth millennium. New clay tablets with math-
ematical cuneiform texts keep appearing from time to time, excavated in
the field, extracted from the archives of large museums in Europe,
America, and the Near East, or offered for sale in the antiquities market.
Therefore, the writing of the history of Mesopotamian mathematics is a
dynamic, never-ending process.

Egyptian mathematics, on the other hand, is known from a compara-
tively much smaller number of original documents, belonging to three dis-
tinct groups. The first group consists of texts from the earlier part of the
second millennium BCE, written in the hieratic script. It contains two
mathematical papyrus rolls, P.Rhind = P.BM 10057/8 (Peet, RMP (1923),
Chace, Bull, and Manning, RMP (1927-29), Robins & Shute, RMP

1. Among the oldest known OB mathematical texts are those from the southern cities Ur,
Uruk, and Larsa, before their destruction by Samsuiluna in 1739 BCE, and texts from Nip-
pur before its destruction in 1721 BCE. Other early texts are those from Eshnunna, before
1763, and those from Mari, destroyed by Hammurabi in 1757. The mathematical cuneiform
texts from northern sites, like Sippar, are later, and so are the mathematical texts from Susa.
The OB period ended in 1595 BCE. (All these dates are given in the Middle Chronology.)
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vi Unexpected Links Between Egyptian and Babylonian Mathematics

(1987)), and P.Moscow E 4676 (Struve, QSA 1 (1930)), the Mathematical
Leather Roll P.BM 10250 (Glanville, MLR (1927)), the papyrus fragments
P.Berlin 6619 (Schack-Schackenburg, ZAS 38 (1900)), and the Lahun
mathematical fragments, formerly known as the Kahun fragments (Grif-
fith, HPKG (1898), Imhausen and Ritter, UCLLP (2004)). There are also
two wooden tablets WT. Cairo 23567/8 and two ostraca.3 Texts belonging
to this first group, in the following referred to as "hieratic mathematical pa-
pyri", will be discussed in Chapter 2.

The second group of known Egyptian mathematical texts consists of
documents from the Hellenistic and Roman periods, mostly from the last
part of the first millennium BCE, written in the demotic script. The group
consists of one large papyrus, P.Cairo, and six smaller texts or fragments,
all published by Parker in JNES 18 (1959), Cent. 14 (1969), BMP (1972),
and JEA 61 (1975), plus several ostraca. A number of exercises from
Parker's "demotic mathematical papyri", will be discussed in Chapter 3.

The third group of known Egyptian mathematical texts consists of doc-
uments from the Hellenistic and Roman periods, that is from the last part
of the first millennium BCE and the first half of the first millennium CE,
written in Greek. A small subgroup including 6 ostraca, a papyrus roll, and
three papyrus fragments, all related in one way or another to Euclid's Ele-
ments, will not be considered here. However, the third group also includes

2. See the fascinating story of the development of the history of Mesopotamian mathe-
matics, as described by H0yrup in HSci 34 (1996). See also the annotated bibliography
Friberg, HMAP (1985), with an updated edition on CD-ROM (2000). Recently published
works on Mesopotamian mathematics not mentioned in those bibliographies are Chambon,
FIM 6 (2002), Damerow, ChV (2001), Englund, ChV (2001), Foster and Robson, ZA 94
(2004), Fowler and Robson, HM 25 (1998), Friberg, BaM 30 (1999), AfO AblAl (1999/
2000), BaM 31 (2000), ChV (2001), MCTSC (2005), CDLJ (2005/2), H0yrup, HM 29
(2002), UOS (2002), Jursa and Radner, AfO 42/43 (1995/96), Melville, UOS (2002), Muroi,
SCIAMVS 1 (2000), HSci 10 (2001), SCIAMVS 2 (2001), HSci 12 (2002), SCIAMVS 4
(2003), HSci 13 (2003), Nemet-Nejat, UOS (2002), Oelsner, ChV (2001), Proust, RHM 6
(2000), FIM 6 (2002), TMN (2004), Quillien, RHM 9 (2003), Robson, SCIAMVS 1 (2000),
UOS (2002), HMT (2003), SCIAMVS 5 (2004).

3. Cf. the timeline in Imhausen, AA (2003), Table 1: The majority of the Egyptian hier-
atic mathematical texts are from the time of the Middle Kingdom, Dyn. 11-12 (2119-1794/
93 BCE). Only P.Rhind is from the Second Intermediary Period, Dyn. 13-17 (1794/93-
1550 BCE), although the preface of P.Rhind states that the papyrus is a copy of a text from
the time of a king of the twelfth dynasty.
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texts that show almost no signs of having been influenced by high level
Greek mathematics. The most interesting examples of such "non-
Euclidean" Greek mathematical texts include a codex of six papyrus
leaves, P.Akhmim (Baillet, BMA (1892)), a large papyrus roll, P.Vindob.
G. 19996 (Gerstinger and Vogel, GLP 1 (1932)), six smaller papyri or
papyrus fragments, an ostracon, and a wooden tablet. These "Greek-
Egyptian mathematical documents" will be discussed in Chapter 4.

All the mentioned hieratic mathematical texts had already been pub-
lished by 1930, the demotic mathematical texts by 1975, and the Greek-
Egyptian mathematical texts by 1981. Since then not much has happened
in the study of Egyptian mathematics. The few books and papers that have
been written about "Egyptian mathematics" have been concerned exclu-
sively with the hieratic mathematical texts4 and have mostly reiterated the
interpretations and presentations of those texts that were offered already in
the original publications.5 Very little6 seems to have been written about the
demotic mathematical texts since they were published by Parker, and not
much about the Greek-Egyptian mathematical texts.

My original impetus to search for links between Egyptian and Babylo-
nian mathematics came from an observation that two small but particularly
interesting mathematical texts from the Old Babylonian city Mari have
clear Egyptian parallels, one in an exercise in the well known hieratic
Papyrus Rhind, the other in a relatively unknown Greek-Egyptian papyrus
fragment. The details will be presented below in Chapter 1.

My observation that there seems to exist clear links between Egyptian
and Babylonian mathematics is in conflict with the prevailing opinion in
formerly published works on Egyptian mathematics, namely that practi-
cally no such links exist. However, in view of the mentioned dynamic

4. Recently published works on the subject of hieratic mathematical texts are Caveing,
Essai (1994), Clagett, AES 3 (1999), Couchoud, ME (1993), Imhausen UOS (2002), HM
30 (2003), AA (2003), Ritter, EHS (1989), AHST (1995), HNWM (2000), UOS (2002),
Robins and Shute, RMP (1987).

5. Cf. H0yrup' s poignant statement in his review of Couchoud, ME (1993) in MR (1997),
that the book "presents the state of the art as it has looked without fundamental change since
the early 1930s".

6. Known to me are only Zauzich, BiOr 32 (1972), Kaplony-Heckel, OLZ 76 (1981),
Knorr, HM9 (1982), Fowler, MPA (1987 (1999)), Sec. 7.3(e), and Melville, HM3\ (2004).

7. See, in particular, Fowler, MPA (1987 (1999)), Sees. 7.1(d), 7.2, 7.3(c)-(e).
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character of the history of Mesopotamian mathematics, not least in the last
couple of decades, it appeared to me to be high time to take a renewed look
at Egyptian mathematics against an up-to-date background in the history
of Mesopotamian mathematics! That is the primary objective of this book.

My search for links between Egyptian and Babylonian mathematics has
been unexpectedly successful, in more ways than one. Not only has the
search turned up numerous possible candidates for such links, but the com-
parison of Egyptian and Babylonian mathematics has in many cases led to
a much better understanding of the nature of important Egyptian mathe-
matical texts and of particularly interesting exercises that they contain. In
addition, my careful examination of a great number of individual Egyptian
hieratic, demotic, and Greek mathematical exercises has made this book
into a useful survey of a substantial part of the whole corpus of Egyptian
mathematics.

Several of the techniques and concepts that I have developed in the
course of my intensive study of mathematical cuneiform texts during the
last 25 years have proven themselves to be eminently suitable also for a
study of Egyptian mathematical texts. An obvious example of a helpful
technique is the use of "conform" transliterations for detailed outlines of
mathematical texts.8 A particularly useful concept is that of a "mathemat-
ical recombination text", which is an appropriate name for a large mathe-
matical text with a somewhat chaotic collection of individual exercises.

The detailed comparison in this book of a large number of known
Egyptian and Mesopotamian mathematical texts from all periods has led
me to the conclusion that the level and extent of mathematical knowledge
must have been comparable in Egypt and in Mesopotamia in the earlier
part of the second millennium BCE, and that there are also unexpectedly
close connections between demotic and "non-Euclidean" Greek-Egyptian
mathematical texts from the Ptolemaic and Roman periods on one hand
and Old or Late Babylonian mathematical texts on the other.

8. Compare the conform transliterations of Babylonian mathematical cuneiform texts in
Figs. 1.1.2-3, 1.1.5-6, 1.2.1-2, 2.1.9-11, 2.1.17, 2.2.1, 2.2.3, 2.3.2, 3.1.8, 3.3.1, and 3.3.6
below with the similar conform transliterations (in mirror images because the Egyptian
direction of writing was from right to left) of hieratic mathematical texts in Figs. 1.1.7,
2.1.4, 2.1.7, 2.2.2, 2.2.5-.6, 2.3.3-5, and 3.1.3, and of demotic mathematical texts in Figs.
3.1.5, 3.1.9, 3.1.12, 3.2.1, 3.3.2-4, 3.5.1, 3.7.1, and 3.7.6.
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Chapter 1

Two Curious Mathematical Cuneiform Texts
from Old Babylonian Mari

Mari was the center of a small kingdom on the middle Euphrates, indepen-
dent until it was conquered by Hammurabi in 1757 BCE. Important for the
discussion below is that Mari's location in the north-western corner of
Mesopotamia may have allowed it to promote an exchange of ideas
between Mesopotamia and its neighbors to the west, maybe even between
Mesopotamia and cities along the coast of the Mediterranean, and ulti-
mately Egypt. Old Babylonian cuneiform texts from a royal archive at
Mari are in the process of being published by a team of French scholars.
Among already published cuneiform texts from Mari are several texts of
mathematical interest, in particular

a) some mathematical table texts published by D. Soubeyran in RA 78 (1984), among
them a text with 30 terms of a geometric progression (Sec. 1.2 a below),

b) a round hand tablet published by D. Charpin in MARI 1 (1993), inscribed with an
outline of a city wall and with numbers indicating the volumes of the four sides of
the city wall and the sizes of the four teams of workers needed to erect them,

c) a rectangular hand tablet published by M. Guichard in MARI 8 (1997), with 30
terms of a geometric progression expressed in three kinds of numbers (Sec. 1.1b),

d) three metrological texts published by G. Chambon in FlMar 6 (2002), among
them a clay cylinder of a rare type with a metrological list of weight measures.

The map in Fig. 1.1.1 below shows the location of Mari, as well as of
Ebla, another ancient city in Syria, and of Ugarit on the coast of the Med-
iterranean. Cuneiform texts with metrological tables of Old Babylonian
style have been found at Ugarit (Nougayrol, Ugaritica 5 (1968)), and in-
teresting mathematical cuneiform texts from the late third millennium
BCE have been found at Ebla (Friberg, VOr 6 (1986)).

1
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Fig. 1.1.1. A map of Mesopotamia and its neighbors.

1.1. M. 7857. A Fanciful Interpretation of a Geometric Progression

1.1 a. M. 7857. A text with three kinds of counting numbers

M. 7857, the mathematical text from Mari published by Guichard, was
poorly understood by him and described as "an account of ants". Actually,
the obverse of the clay tablet contains the computation of five terms of a
geometric progression, with the first term 99 and the common ratio 9. The
computation is carried out twice, first in sexagesimal place value numbers,
then in "mixed decimal-sexagesimal" numbers. These were the OB
learned and lay ways, respectively, of expressing numbers. The other side
of the clay tablet (the reverse) contains a fanciful reformulation of the
computation, expressed (not quite successfully) in the "centesimal" num-
bers used locally at Mari. (This interpretation of the text was discovered
independently by the present author and by C. Proust, FIM 6 (2002.)

In the Babylonian sexagesimal place value system, there are special
cuneiform number signs for the ones, from 1 to 9, and for the tens, from 10
to 50. In the OB (non-positional) mixed decimal-sexagesimal system, in



1.1. M. 7857. A Fanciful Interpretation of a Geometric Progression 3

the local variant used in texts from Mari, there are signs for the number
words 'a hundred' (me, abbreviation for metum), 'a thousand' (lim, pi.
limi), and 'a great' (Sum. gal), meaning either 'ten thousand' or, equiva-
lently, 'a hundred hundred'. Numbers below 100 are written as sexagesi-
mal numbers, with or without the word su-si 'sixty'. The Mari centesimal
place value system, on the other hand, operates in the same way as the
Babylonian sexagesimal place value system, but with the base 100 instead
of 60, and with cuneiform signs not only for the tens from 10 to 50, but also
for 60, 70, 80, and 90 (written with from six to nine oblique wedges).

'iv3\9'r\\sii-miV9 7 /2-1 risu-uVla-tum

rl 2 5°i/7gal2^W^U V9ku-ul-la-bu
\s~y ' ^ ' \ 8 me 1 3° 1 musen.h i

- A ^ M w ' \ \ 1 3° 9 n a

\ \Ju-si4ga^fiX^n^°9 \ . . - ^ 3 gal 7 me 1 ° 9 ^ /

Fig. 1.1.2. M. 7857. An OB mathematical text from Mari, in conform transliteration.

A "conform transliteration" of the text of M. 7857 is presented in Fig.
1.1.2, within an outline of the clay tablet. In such a conform transliteration,
the cuneiform signs are replaced by their numerical or phonetic values,
placed in the same positions as the original cuneiform signs. The notations
1°, 2°, •••, 9° are used as conform transliterations of the cuneiform signs for
the tens, from 10 to 90.

As the figure shows, the surface of the clay tablet is damaged, pieces of
it are missing near the corners, and there are traces of a previous, incom-
pletely erased inscription. Anyway, most of the text is preserved, and the
lost parts of the text can be reconstructed (grey numbers and letters).

Below is given a standard transliteration of the text in the two columns
on the obverse of M. 7857 (within the frame), together with a direct trans-
lation (underneath the frame). In the standard transliteration, zeros are
inserted where needed. Reconstructed parts of the text are placed within
straight brackets in the transliteration, but are written with italics in the
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translation. The exclamation marks indicate corrections: 28 in line 6
should be 25, and 1 99 in line 1 should be 1 39 (= 99), an interesting error.

M. 7857

obv. 1 [1 3]9 || 1 99
2 [1]4 51 || 8 me 131
3 [2] 13 39 || 8/1-W/19
4 20 02 51 || 7 gal 2 li-im 1 me 1 11
5 erasure
6 [3] 28 39
7 [1] su-si 4 gal 9 [li-mi 5 me 39]

1 39 || 1 3!9
7451 || 8 hundred 131

2 1 3 39 jj 8 thousand 19
20 02 51 ji 7 great 2 thousand 1 hundred 1 11

erasure
3 00 25!39

1 sixty 4 great 9 thousand 5 hundred 39

The computations producing the numbers in the two columns on the
obverse can be explained as follows:

1 39 || 99

14 51 (=9-139) || 891 (=9-99)
2 13 39 (=9-14 51) || 8,019 (=9-891)

20 02 51 (=9 -2 13 39) jj 72,171 (=9-8,019)
3 00 25 39 (=9-20 02 51) j| 649,539 (=9-72,171)

There is only a single column of text on the reverse of M. 7857:

edge se
rev. 1 64 95 [39] /

2 7 21 71 su-ub-la-tum /
3 [80] 19 ku-ul-ba-bu/
4 8 me 1 31 musen.ha /
5 1 39 na /
6 73 gal 7 me 19

64 95 39 b a r l e y- c o r n s

7 2171 ears of barley
8019 ants
8 hundred 131 birds
139 people(?)
73 great 7 hundred 19
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The one who wrote the text, probably a school boy, was clearly con-
fused by the bewildering variety of number systems. In line 1 on the ob-
verse he hesitated between writing 99 as 1 39 in the mixed decimal-
sexagesimal system or as 99 in the centesimal system, and ended up writ-
ing 1 99. In lines 4-6 on the reverse, he forgot that he was supposed to use
the centesimal place value system and reverted to the mixed decimal-
sexagesimal system used in the right column on the obverse.

The switching to the centesimal number system on the reverse is not the
only difference between the reverse and the obverse on M. 7857. On the
obverse the terms of the geometric progression increase from 99 to 94 • 99
= 649,539, while on the reverse the recorded numbers decrease from
649,539 in line 1 to 99 in line 5. In addition, the numbers of the geometric
progression have been given a fanciful interpretation, with a series of
appended Sumerian or Akkadian (Babylonian) words. Finally, the number
recorded in line 6 on the reverse is the sum of the five terms of the geomet-
ric progression, while there is no sum recorded on the obverse. Indeed, in
the centesimal system (with the mistakes on the reverse corrected), the
sum can be computed as follows:

64 95 39 barley-corns (Sum. se)
7 2171 ears of barley (Akk. subldtum)

80 19 ants (Akk. kulbabu)
8 91 birds (Sum. musen.ba)

+ 99 people (Sum. na?; the translation is problematic)
73 07 19 diverse items

It is tempting to try to reconstruct a whimsical story that can have
accompanied the text on the reverse. It may have gone like this:

There were 645, 539 barley corns, 9 barley-corns on each ear of barley, 9 ears of bar-
ley eaten by each ant, 9 ants swallowed by each bird, and 9 birds caught by each man.
How many were there altogether?

1.1b. OB texts with ascending or descending geometric progressions

There is no known OB cuneiform text that is a direct parallel to the Mari
text M. 7857. There are, however, quite a few known OB clay tablets on
which are recorded ascending or descending geometric progressions of
various kinds. The simplest examples of texts with ascending geometric
progressions are inscribed with a small number of terms, usually 10, of a
"table of powers" (a geometric progression in which the common ratio is
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equal to the first term). One such text is 1st. O 3826 (Neugebauer MKT1
(1935), 77) inscribed with the first 10 powers of 9, followed by 5 powers
of 1 40, from the 6th to the 10th power. Another example is BM 22706, in
Nissen, Damerow, and Englund, ABk (1993), 150 (10 powers of 1 40, fol-
lowed by 10 powers of 5).

The most recently published text of this kind is IM 73355, in Arnaud,
TL (1994) (10 powers of 3 45, followed by 10 powers of 16, the sexagesi-
mal reciprocal of 3 45). See Fig. 1.1.3 below.

. obv.
( 3 4°5 a.ra 3 4V)

2 1"4 3 4"5
3 a.ra 5"2 4" 4 j 4 1
4 a.ra 3 1 "7 4"5 1"4 3> 4"5
5 a.ra 1"2 2"1 3",4 3"7! 4"4 3 4'!
6 a.ra 4" 6 2" f 5'"U 5"! 3" 1"4 3~4°:i
7 a.ra 2 5" 5 4; "8" T i> 4"3 8 Tl 4"4 3~4° 5
8 a.ra 1" 5J 1 4 > : ^ T 5 2" 6 4" 6 2"5 1"5 1"4 J 4°5
9 a.ra 4" 4!4^V"4 6'4" 2"4 4 4 7 7 . 4 3 4°5
10 a.ra 2/T2 4" 5 3"b 4'1 3" TV 3"7! 5"6 1"4 3 4°5

" P6 7 ajl 1°6
2 ; - -4- -r iu6
3 ! a.ra'1 1 8 1"6
4 !"a.n)"\~T°8 1°2 1°6
5 !"a."r:r \~~4 5"! Vb 1"6
6 !_a.i-i'i \ 1 1"7 4" 2" 1̂ 6
7 fa.ra " "'T2" 4"2 4" 5 2°4 1'6

8 r'a.ra ^ 5 3 ° 12° 4 2° 4 6 T 8 P^l
9 \V.rf\rS~2° 2! r 5! 4° 3 3°2! V6
10 |a."r^2"3 3° 3 5° 8 5° 1 3° 6 3° 6 l°o

/

ti. in d Nisaba

M d Ija. i;'i

Na-wi-ir
in. sar

N /

Fig. 1.1.3. IM 73355. Two OB tables of powers, for 3 45 and for its reciprocal 16.
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The text of IM 73355 can be translated as:

3 45 times 3 45/ 14 3 45 3 45 • 3 45 = 14 03 45
times 52 44 3 45 3 45 • 14 03 45 = 52 44 03 45
times 3 17 45 14 3 45 3 45-52440345 = 317140345
etc. etc.

In the text, a.ra is Sumerian for 'times', literal meaning possibly 'steps'.
After the two tables of powers on IM 73355 there follows a brief subscript:

'By the life of (the god) Nisaba and (the god) Haia. Nawir wrote it.'

Note that all the powers of 3 45 are sexagesimal numbers with the "trailing
part" 3 45, while all the powers of 16 are numbers with the trailing part 16.
For emphasis, all the powers of 3 45 are written with the trailing part 3 45
in each line of the table written close to the right edge of the tablet. All the
powers of 16 are written in a similar way, with the trailing part 16 in each
line of the table written close to the right edge of the tablet.

There are two known examples of OB clay tablets on which are record-
ed a finite number of terms of a descending geometric progression, both in
Friberg, MCTSC (2005). One of them is MS 3037 (op. cit., Fig. 1.4.1), on
which is recorded, in descending order, the first 12 powers of 12. The other
is MS 2242 (Fig. 1.1.4 below), with the first 6 powers of 3 45, in descend-
ing order. It is likely that these two texts were answers to assignments,
namely, to find the factorization of a given many-place regular sexagesi-
mal number through successive elimination, one at a time, of factors visi-
ble as the trailing parts of the successively computed sexagesimal
numbers. (See the discussion of "regular sexagesimal numbers" and of
"the trailing part algorithm" in Friberg, RIA 7 (1990), Sees. 5.2 b and 5.3.)

• obv.

V fn^Tf J 3 cm

Fig. 1.1.4. MS 2242, obv. (rev. blank). An OB descending table of six powers of 3 45.



8 Unexpected Links Between Egyptian and Babylonian Mathematics

1.1 c. A Late Babylonian text using the trailing part algorithm

In the discussion above of the descending table of powers on the OB clay
tablets MS 3037 and MS 2242 it was suggested that the computations in
those texts were applications of a certain trailing part algorithm. Repeated
applications of the same trailing part algorithm can be found also in a Late
Babylonian (LB) text, the round clay tablet W 23021 (Friberg, BaM 30
(1999), BaM 31 (2000)). In W 23021, the trailing part algorithm is used to
compute the reciprocals of eight "many-place" regular sexagesimal num-
bers, all between 52 40 29 37 46 40 and 49 00 07 12.

S r i ' ' //WA^:%: S4-53--
,3-2 !*•"• ^"W^y^ **•** :

v6 3*°5 * y / / m ^ x-V

\ »« * 4 1- 6 r 8 7 # " m , 4' 2 V V J ^ 3. 6 y J -V 5 ,
\ 2 8 5- 6 15 ^ | | | , 4 . / •„ r , V5 /

\ ! 4 15-2 3- / « ..^3^ /

\ 3 * 2 3 4 5 4z^\ ' ' " 3"

Fig. 1.1.5. W 23021. A LB text with eight applications of the trailing part algorithm.

1.1 d. The sum of a geometric progression in an Old Babylonian text

MS 1844 is a massive OB round hand tablet with what appears to be the
numerical solution algorithm for an inheritance problem (Friberg, MCTSC
(2005), Fig. 7.4.2). The tablet is inscribed with 6 terms of a decreasing
geometric progression with the last term 2, and with the constant ratio be-
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tween the terms equal to 1 - 1/7. The constant ratio is described with the
following words in a somewhat cryptic subscript in the last line of the text:

igi 7.gal.bi tur.se for a 7th-part less.

The sum of the geometric progression is inscribed in the first line of the
text. It is, for a certain reason, given in the following curious form:

23 15 20 36

12 08 53 20.

There is a numerical error in the number recorded in line 3. It is easy to
check that this error is propagated upwards, to the numbers recorded in
lines 1 and 2. This means that the numbers in the algorithm table were
computed in reverse order, beginning with the number '2' in line 8.

obv.

/ 2 3 1 Y~2 8 >y3_2°

/ 5 ^ 2 4°1 3°2 3° 5 3°3 2 ? \ ~

/ 3 4"v 2 I" 8 3 :> 2" __J^__

/ 3~T r~T~~r V
1 2—4" 3 l JZL

\ 5^ 7v̂  p £ Bi fGE se ' T

\ y/ 3 cm
>V y S I I I I

Fig. 1.1.6. MS 1844. An OB computation of the sum of a geometric progression.

The reason for the reverse order of computation is obvious. Since 7 is
not a regular sexagesimal number, Babylonian mathematicians would
have found it difficult to count with a number like 1-1/7. On the other
hand, it is known through explicit examples (see Sec. 3.1 e below) that
they were familiar with a counting rule of the type

if b = a-a-\ll1/7, then a = b + b-1/6.
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The correctness of this counting rule is obvious, at least in the case when
a is a multiple of 7. Indeed,

if a = nl7 and b = a-a- 1/7, then
b = n l - n = n-66, and b + b- 1/6 = n- 6 + n = n l = a.

In view of this simple counting rule, the requirement that each number
in the algorithm table shall be equal to the number in the preceding line,
diminished by 1/7 of its value, can be replaced by the equivalent require-
ment that each number in the table shall be equal to number below it, in-
creased by 1/6 of its value. This reformulation of the requirement is a great
simplification, since 6 is a regular sexagesimal number with the reciprocal
10. (In modern notations, this means that 1/6 = 10/60.) Therefore, increas-
ing a given number by 1/6 of its value is equivalent to multiplying the giv-
en number by 1 10 in Babylonian relative (floating) place value notation,
or by l;10 in absolute place value notation. So it would be easier for the
author of the text to count upwards, multiplying with the factor '1 10' in
each step of the algorithm, than to count downwards, subtracting seventh
parts. That is also precisely what he did.

1.1 e. The sum of a geometric progression in a Seleucid text

AO 6484 (Neugebauer, MKT 1 (1935), 96) is a mathematical cuneiform
text of mixed content from the Seleucid period, the last third of the first
millennium BCE. The first exercise in that text shows through an example
how to compute the sum of a geometric progression:

AO 6484 # 1

1 ta 1 en 10 gar a.na 2-ma ba\-it gar.gar-ma 8 [32 gar]
2 [ I t a8 321a-ma]/re-/ie8 31

8 31a-«a8 32tab-mal7 0 3 [ - ]

From 1 to 10 set, always by 2 surpass, heap (add together), then 8 32 set.
1 from 8 32 subtract, then 8 31 remains.
The 8 31 to 8 32 repeat (add on), then 17 03 - .

The phrasing is quite obscure, and the translation above is only tenta-
tive. Anyway, what is going on here seems to be that 10 numbers are given.
Each number is twice the one before it, and the first number is 1. What is
then the sum of the 10 numbers, from 1 to (29 = 512=) 8 32?
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This means that the 10 numbers form a geometric progression with the
first term 1 and the common ratio 2. How the sum S of the 10 terms is com-
puted in the text can possibly be explained (in modern terms) as follows:

5 = 1 + 2 + - + 8 32.
2 5 = 2 + 4+ ••• + 8 32+17 04 = 5+17 0 4 - 1 .
5 =17 04 - 1 = 8 32 + (8 32 - 1).

1.1 f. P.Rhind #19: a parallel to M. 7857 in a hieratic papyrus

The largest and best known Egyptian hieratic mathematical papyrus is
P.Rhind. The only exercise in that text concerned with the sum of a geo-
metric progression is P.Rhind#19. In Fig. 1.1.7 below is shown a copy of
the original hieratic text of that exercise, borrowed from Chase, et al. RMP
(1929), together with a conform transliteration. The conform translation is
in the form of a mirror image of the hieratic text, which is written from
right to left. Moreover, since the decimal numbers in the hieratic text are
written with non-positional number notations, it is appropriate to let this be
apparent also in the conform translation. The way this is done in Fig. 1.1.7,
and in the following, is by use of subscripts, 't' for tens, 'h' for hundreds,
'th' for thousands, and 'tth' for ten thousands.

The text in column ii of P.Rhind # 79 can be explained as follows:

houses 7 7 (= 1 • 7)
cats 4 t9 49 (=7-7)
mice 3 h4,3 343 (=49-7)
emmer 2^ 3h 1 2,401! (= 343 • 7)
heqats ltth

 6th 8 h 7 + 16.807 (= 2.401 • 71
t o tal ltth 9th 6 h 7 1 9 j 6 0 7 (_ 2?801 • 7)

Column i contains the computation 7 • 2,801 = 19,607. In the usual
binary arithmetic of P.Rhind, the product is computed as follows:

7-2,801 = ( 1 + 2 + 4)-2,801= 1 2,801
2 5,602
4 +11.204

total 19,607

The computation can be explained as follows:

Presumably , it w a s k n o w n beforehand that 1 + 7 + ••• + 2,401 = 2 ,801 .
Consequent ly , 7 + • + 16,807 = 7 ( 1 + 7 + - + 2,401) = 7 • 2,801 = 19,607.
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Essentially, P.Rhindtt 79 is the computation of the sum of a geometric pro-
gression of five terms with the first term 7 and the common ratio 7. How-
ever, this computation has been given a fanciful interpretation, reminding
very much of the fanciful interpretation in M. 7857 of the sum of another
geometric progression. One can try to reconstruct the whimsical story as-
sociated with the text of P.Rhind # 79. It may have gone like this:

There were 7 houses, in each house 7 cats, each cat caught 7 mice, each mouse ate 7
bags of emmer, and each bag contained 7 heqat. How many were there altogether?

b _ : ._ : : : : _ j

! a house inventory (?) houses: 7 \

I „ , cats: 4t 9 !
• ' 2th »h 1 l \
\ mice: 3h 4( 3 I
! 2 5 t h 6 h 2 ;
i ears: 2th 4f, 1 ;

| 4 1 « h l t h 2 h 4 heqat l t t h 6 t h 8 h 7 !

j total: I t t h9 t h6h7 totai: I t t h9 t h6h7 I

Fig. 1.1.7. P.Rhind #19. Col. /: The sum, computed as 7 times 2,801.
Col. H: The five terms and their sum.

1.1 g. Summary. The Mesopotamian roots of a Mother Goose riddle

The mathematical cuneiform text M. 7857 from Mari (Fig. 1.1.2) seems to
be a crucial link in a chain of related texts that begins with some OB algo-
rithm texts and ends with a nursery rhyme still familiar today. The OB
algorithm texts in question are several known examples of tables of
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powers, either ascending like the one on IM 73355 (Fig. 1.1.3) or descend-
ing like the one on MS 2242 (Fig. 1.1.4). In Mesopotamia proper, the last
manifestation of a text of this kind is W 23021, a Late Babylonian round
clay tablet from Uruk (Fig. 1.1.5) with eight applications of the trailing
part algorithm.

In addition to such OB and LB purely abstract and numerical tables of
powers there is also MS 1844 (Fig. 1.1.6 above), an OB example of
"applied" or "practical" mathematics, where a descending geometric pro-
gression and its sum are interpreted as the progressively smaller shares of
a given sum of silver divided between seven partners or brothers.

In OB Mari, in the north-western periphery of Mesopotamia, the text
genre seems to have been transformed into something else, according to
the testimony of M. 7857. In that text, which features both ascending and
descending geometric progressions, counting with Babylonian sexagesi-
mal numbers is replaced by counting with decimal-sexagesimal or even
centesimal numbers. Moreover, what starts out on the obverse of the clay
tablet as a no-nonsense abstract computation of a geometric progression
with five terms is turned on the reverse into a whimsical computation with
barley-corns, ears, ants, birds, and people, and a totally nonsensical sum-
mation of those five disparate categories.

A similar whimsical interpretation of a geometric progression with five
terms can be found in the hieratic P.Rhind# 19 (Fig. 1.1.7 above), which
even, just like M. 7857, ends with a meaningless summation, this time of
houses, cats, mice, ears, and grains. Although both the objects counted
and the numbers are different in the two exercises, the texts are so similar
in spirit that it is inconceivable that they were devised independently.

As is well known, another appearance of the text genre is in Leonardo
Pisano's 13th century treatise Liber abaci (fol. 138 recto), in a problem
which starts with the words Septem uetule uadunt romam '7 old women go
to Rome', and ends asking for summa omnium predictorum 'the sum of all
those mentioned above' (old women, mules, sacks, breads, knives, and
sheaths).

For a survey of further appearances of the text genre, see Tropfke, GE
(1980), Sec. 4.2.4.2.1.

The final reappearance of the same topic, with an added twist, is the
Mother Goose riddle "As I was going to St. Ives, I met a man with seven
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wives. Each wife had seven sacs, each sack had seven cats, each cat had
seven kits. Kits, cats, sacks, and wives, how many were going to St. Ives?"

Note that, just as in P.Rhind # 79, both the first term and the common
ratio are 7 in the Liber abaci problem and in the Mother Goose riddle,
although the number of terms is not the same in the three texts.

1.1. M. 8631. Another Curious Mathematical Text from OB Mari

1.1 a. M. 8631. A fanciful interpretation of 30 doublings

M. 8631 (Fig. 2.1.1) is a fragment of an OB mathematical text from
Mari, published by Soubeyran in RA 78 (1984), together with some multi-
plication tables and a table of squares.

obv. rev.

1 §e-tumse-te6-tam l-ti-tam ii-si-m i | 3 gu l°4ma.na 1° 5" gin _2_sf_14_f
2 se Una \i4pa-ni- _ _ j T ^ I I 6~,~~2~ g ^ ^ Y\ 3" gin_ 4}e JM|2 2 k d m

4—SS. a«—f gjr-/ ! f2 gu 5'6 ma.na 4"3 3' gin »_^ _l)4 -
fg-% ^^[3~I^- ' 2'5 au 53 3' ma.na 6 3" gm \}J^

| i '^^^^S^I I l ' « e 4 t 3 8" 3 '3 2' " ^ f r e •&> 4SC

I I-I 3'gin S_ie_Ui--1---r-o'Uaff I —A™«^rrSSfiiB"!'( l5e

I 3 ' « " f3 - gin l-ejf.̂ '̂-ybBv ! ^ 5 ^ ^ 5 ma*a|e ^

I 3 ma.na 2 gin _8_ Se_ _ . _ H - ^ ; k w ^ j g i & g S n
I 6ma.na 4_gm JI6 S e - - - u 4 i ' - r i t e i p i 2 ft-m 7 3° 7B gu2' ma.na 2 3' gin
I r 2 " m l n a Y g i n j S } ^ L l l e 3 ' ^ * 4 Se
I 2-4"ma.na r6_3'.gjn A "^ B - - | ' ^ « u4 3-.ka»
I 4"S 2' majia 2_3" £«> S_s_e_U4_ _ - ^ ^ y a <—5 —

M &ti~£i™™±y^'L II6le f.4^ -̂— '

Fig. 1.1.1. M. 8631. An initial capital of 2 barley-corns, doubled 29 times.

The text on M. 8631 begins with the following introductory phrase in
line 1 of the obverse:

1 le-tum <a-na> se-teg-tam l-ti-tam u-si-ma
1 ba r l ey -co rn (to) a s ingle ba r l ey -corn I added , then •••
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Here barleycorn (Sum. se, Akk. uttetum) is written as a Sumerian logo-
gram se followed by an Akkadian phonetic complement -turn. The corre-
sponding inflected form is uttetam, written as se followed by the
Akkadian phonetic complement -te6-tam. Similarly, 1-ti-tam is an inflect-
ed form (feminine, accusative) of the Akkadian word istenum 'one', writ-
ten as the digit 1 (also a Sumerian logogram!) followed by an Akkadian
phonetic complement. The Akkadian verb hiding behind the inflected
form u-si-(ma) is (wjasdbum 'to add (something) to (something)'.

The meaning of the whole phrase is, as shown by the ensuing text, that
an initial capital of 1 barley-corn is doubled each day for a month of 30
days. The barley-corn (appr. 0.05 g) was the smallest unit in the Sumerian/
Old Babylonian system of weight measures. The relation of the barley-
corn to the higher units of the system can be described by the following
chain of equations:

1 gii (talent, man's-load) = 60 ma.na,
1 ma.na (mina, c. 500 g) = 60 gin,
1/3 gin (shekel) = 60 se (barley-corns).

The curious form of the third equation, which defines the size of the bar-
ley-corn, is due to the fact that originally (in the Early Dynastic Ilia period
in Mesopotamia in the third millennium BCE) the barley-corns and a unit
equal to 60 barley-corns belonged to a system of weights suitable for the
weighing of small quantities of some precious metal (silver or gold), while
the higher units belonged to another system of weights, suitable for mea-
suring a less valuable metal like copper, or other heavy objects. (See
Friberg JCS 51 (1999), 133, Friberg, CDU (2005)). Since at that time sil-
ver was 180 times more valuable than copper, 1 barley-corn of silver was
worth as much as 1 shekel of copper.

It is likely that the author of M. 8631 started his work by constructing
a preliminary table in abstract numbers for a geometric progression of sex-
agesimal place value numbers with the first term 20 (because 1 barley-corn
= 1/3 of 1/60 shekel = ;00 20 shekel) and the common ratio 2.
Here follows first a standard transliteration of the 21 lines of text on the
obverse of M. 8631, with an explanation of how the successive weight
numbers may have been computed. Reconstructed parts of the text are as
usual within brackets in the transliteration, but in italics in the translation.
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M.8631,o*v.

1 se-tum se-(e6-tam \-ti-tam u-si-ma/
1 2 se i-na u4pa-ni-e I

4 se u4 2.kam /
8 se U4 3.kam /

16 se u4 4.kam /
5 igi.6.gal 2se u4 5.kam /

[3'] gin 4se u4 6.kam /
[3" gin 8se u4] 7.[kam] /

[13 'g in 16 se u4 8.kam] /
[ 2 6" gin 2 se u4 9.kam] /

10 [ 5 3" gin 4 s e u4 lO.kam] /
[11 3'gin 8se u4 l l . k a m ] /
[ 3'ma.na 23"g in 16se u4 12.kam] /
[3"ma.na 5 2 'gin 2se u4 13.kam]/

[12 'ma.na 1 gin 4se u4 14.kam] /
15 [ 3ma.na 2gin 8se u4 15.kam]/

[ 6ma.na 4gin 16se u4 16.kam] /
[12 ma.na 8 gin igi.6.gal 2se u4 17.kam]/
[24ma.na 16 3'gin 4se u4 18.kam] /
[48 2 'ma.na 2 3" gin 8se u4 19.kam] /

20 [1 gu 37 5/6 ma.na 3' gin 16 se u4 2O.kam] /

1 barley-corn to a single barley-corn I added, then
2 b.c. in the first day (= ;00 40 shekel)
4 b.c. the 2nd day (= ;0120 sh.)
8 b.c. the 3rd day (= ;02 40 sh.)
16 b.c. the 4th day (= ;05 20 sh.)
1/6 shekel 2 b.c. the 5th day (=;10 40sh.)
1/3 shekel 4 b.c. the 6th day (= ;21 20 sh.)
2/3 shekel 8 b.c. the 1th day (= ;42 40 sh.)
1 1/3 shekels 16 b.c. etc. (= 1 ;25 20 sh.)
2 5/6 shekels 2 b.c. (=2;50 40sh.)
J 2/3 shekels 4 b.c. (= 5;41 20 sh.)
77 1/3 shekels 8 b.c. (= 11 ;22 40 sh.)
1/3 mina 2 2/3 shekels 16 b.c. (= 22;45 20 sh.)
2/3 minas 5 1/2 shekels 2 b.c (= 45;30 40 sh.)
/ 1/2 minas 1 shekels 4 b.c. (= 1 31 ;01 20 sh.)
3 minas 2 shekels 8 b.c. (= 3 02;02 40 sh.)
6 minas 4 shekels 16 b.c. (= 6 04;05 20 sh.)
12 minas 8 1/6 shekels 2 b.c. (= 12 08;10 40 sh.)
24 minas 16 1/3 shekels 4 b.c. (= 24 16;21 20 sh.)
48 1/2 minas 2 2/3 shekels 8 b.c. (= 48 32;42 40 sh.)
; talent 37 minas 5 1/3 shekels 16 b.c. (= 1 37 05;25 20 sh.)
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In the transliteration above, the following notations are used for the
four Sumerian/Old Babylonian "basic fractions": 3' (= 1/3), 2' (= 1/2), 3"
(= 2/3), and 6" (= 5/6). These notations are intended to turn the readers'
attention to the fact that special Sumerian/Old Babylonian cuneiform signs
existed only for these fractions. All other fractions were of the form igi n
'the opposite of n' (= \lri), n being a regular sexagesimal number. (A sex-
agesimal number n is called "regular" if there exists another sexagesimal
number ri, such that n and ri is a "pair of reciprocals" in the sense that n • ri
= ' 1 ' in floating sexagesimal place value notation, that is if n • ri = a power
of 60.) Fractions of the form n/m do not appear in OB cuneiform texts.

On the reverse of M. 8631 there were, originally, ten more lines for
days 21 through 30. In the same way as in the case of the text on the
obverse, the computation of the weight numbers in those ten lines on the
reverse can be explained as follows, by use of sexagesimal arithmetic:

3 talents Uminas 105/6sh. 2 b.c. day 21 (= 3 14 10;50 40 sh.)
6 talents 28 1/3minas 12/3 sh. 4 b.c. day 22 (= 6 28 21;41 20 sh.)

12 talents 56 2/3 minus 31/3sh. 8 b.c. day 23 (=12 56 43;22 40 sh.)
25 talents 53 1/3 minus 62/3 sh. 16 b.c. day 24 (= 25 53 26;45 20 sh.)
51 talents 46 5/6 minus 31/2sh. 2 b.c. day 25 (= 51 46 53;30 40 sh.)

143 talents 33 2/3 minus 7sh. 4 b.c. day 26 (= 1 43 33 47;01 20 sh.)
3 27 talents 7 1/2 minus 4sh. 8 b.c. day 27 (= 3 27 07 34;02 40 sh.)
6 54 talents 15minas 8sh. 16 b.c. day 28 (= 6 54 15 08;05 20 sh.)

1348talents 30minus 16l/6sh. 2 b.c. day 29 (= 13 48 30 16;1040sh.)
27 37 talents 1/2 mina 21/3sh. 4 b.c. day 30 (= 27 37 00 32;21 20 sh.)

As noticed already in Soubeyran's original publication of M. 8631,
there are some surprising notations in the last two lines of the cuneiform
text. Thus, the weight numbers recorded for days 29-30 are

1 li-im 3 me48ggu 30 [ma.na 16 gin]/igi.6.gal 2 se
2 li-im 1 37g gu 2' ma.na 2 3' gin / 4 se

(The subscripts in the numbers 48g and 7 37g before gu 'talent' are
meant to be reminders of the fact that in the OB cuneiform script the digits
1 through 9 are written with horizontal wedges when preceding the cune-
iform sign for the weight unit gu (or the capacity unit gur), but with ver-
tical wedges in most other circumstances.)

What is remarkable here is that in the line for day 29 the weight number
'13 48 talents' is written as '1 thousand 3 hundred 48 talents', that is with
the OB notation for 'a thousand' used to denote 'ten sixties', and with the
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OB sign for 'a hundred' used to represent 'sixty'. Similarly in the line for
day 30 the weight number '23 37 talents' is written as '2 thousand 7 37 tal-
ents', again with the normal notation for 'a thousand' used to represent 'ten
sixties'. It is not clear if these curious deviations from the OB norm were
mistakes or if they were intentional. Anyway, just like the use of mixed
decimal-sexagesimal and centesimal numbers alongside with sexagesimal
numbers in M. 7857, so the use of decimal notation for sexagesimal num-
bers in M. 8631 testifies that the scribes in Mari were not comfortable with
the use of sexagesimal numbers, and that they, possibly for that reason,
were experimenting with new ways of writing numbers in cuneiform.

1.2 b. The Old Babylonian doubling and halving algorithm

The 30 weight numbers recorded in the Mari text M. 8631 form a geomet-
ric progression of a special kind, 30 successive doublings of an initial
weight number. Indirect parallels are several well known OB algorithm
tables in which an initial regular sexagesimal number is doubled a number
of times. The best known example of such a text is UM 29.13.21 (Neuge-
bauer and Sachs, MCT (1945), 13; Friberg, MCTSC (2005), App. 3), a
small fragment of a large table text from Nippur with several applications
of the OB "doubling and halving algorithm" (Sachs, JCS 1 (1947), Friberg,
RIA 7 (1990) Sec. 5.3 b). A reconstruction of most of that text is possible.
A conform transliteration of the reconstructed text within an outline of the
clay tablet is shown in Fig 1.2.2 below.

The doubling and halving algorithm is based on the observation that if
n and n' are a pair of reciprocals, then 2 • n and 1/2 • n' are another pair of
reciprocals. Successive doublings of n and halvings of n' will produce a
never ending sequence of pairs of reciprocals. In the first application of
this algorithm in UM 29.13.21, a table with 30 pairs, the first pair is chosen
as n = 2 05 (the 3rd power of 5) and n' = 28 48 (the 3rd power of 12). The
other 29 pairs can be characterized as 29 doublings of the initial number 2
05, together with the corresponding reciprocals, 29 successive halvings of
the initial reciprocal number 28 48. Thus, the table proceeds from

2 05/ igi.bi28 48
(2 05, its reciprocal is 28 48)

in line 1 to
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1 25 20 X 58 09 11 06 40 / igi.bi 41 42 49 22 21 12 39 22 30
(1 25 20 X 58 09 11 06 40, its reciprocal is 41 42 49 22 21 12 39 22 30)

in line 30. The cuneiform sign represented here by an X is a separation
sign, probably introduced in line 20 of the algorithm table as a kind of sign
for zero. The scribe's inability to handle this zero correctly in lines 21-30
led to an error in line 30, where the number written 1 25 20 X 58 09 11 06
40 should rightly be 1 25 20+58 09 11 06 40 = 1 26 18 09 11 06 40.
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Fig. 1.2.2. UM 29.13.21. Five applications of the OB doubling and halving algorithm.

1.2 c. P.IFAO 88: A parallel to M. 8631 in a Greek-Egyptian papyrus

P.IFAO 88 is a Greek-Egyptian papyrus fragment of unknown date and
origin (IFAO = Institut Frangais d'Archeologie Orientale du Caire), pub-
lished by Boyaval in ZPE 7 (1971), in the form of a murky photograph
accompanied by an only partly successful interpretation. Improved inter-
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pretations were presented later, by Rea in ZPE 8 (1971), and by Boyaval
himself in ZPE 14 (1974).

The inscription on P.IFAO 88 consists of Greek alphabetic number
signs for decimal numbers, in the usual Greek non-positional decimal
number notation, with a, (3, y, ••• for 1, 2,3, —, i, K, X, ••• for 10,20, 30,
- , p, a, T, - for 100, 200, 300, - , and a ' , £ ' y ' , - for 1,000, 2,000,
3,000, •••. From line 14 on, numbers smaller than 6,000 are preceded by a
special sign, presumably standing for drachma, a small Greek unit of
weight. Referring to a suggestion by Youtie, Boyaval (op. cit., 1974) reads
the sign as x a , meaning XOC(XKOU) 'copper (drachma)'. Multiples of 6,000
are counted separately and are preceded by another special sign, known to
represent the talent. Customarily, 1 talent = 6,000 drachmas.

The use of the talent and the copper drachma as monetary units is a clue
to the date of the text. Those units were used in Egypt in the Ptolemaic and
early Roman periods. Boyaval (op. cit., 1974) dates the text to not later
than the 1st century CE.

In this connection it may be worth mentioning that Greek multiplica-
tion tables for fractions, such as, for instance , those on the first three
pages of the mathematical papyrus codex P.Akhmim (Baillet, PMA
(1892); 7th c. CE; Sec. 4.5 below), or on the obverse of the mathematical
wooden tablet Michael 62 (Crawford, Aeg. 33 (1953); 6th? c. CE; Sec. 4.6
below), begin by listing the fraction in question applied to 6,000, 'the num-
ber' (dpi8noc), as in the following examples:

3" to 'the number' 4,000 3' to 'the number' 2,000
of 1 the 3" 3" of 1 the 3' 31

of 2 1 3' of 2 3"
of 3 2 of3 1

of 1 (myriad) 6,666 3" of 1 (myriad) 3,333 3".

About this, Crawford (op. cit., 227) has the following to say:

"The number 6,000, the fraction of which figures in the first or second place in all
versions of the tables, can only be, as has been recognized, the number of drachmae
in the talent. The implication is that the tradition of starting the tables in this way
dates from a time when money was always counted in drachmae and talents; in fact
it must have been firmly established before the introduction of the gold-standard

9. Cf. the catalogue of published tables in Fowler, MPA (1987; 1999), Sec. 7.5.
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coinage. Now when this tablet (Michael. 62) and P.Akhmim were written and prob-
ably even when P.Mich. 621 was written (if it is the 4th Century), monetary values
were normally reckoned in nomismatia and keratia We may therefore be con-
fident that tables in this particular form go back at least to the 3rd Century A. D. They
may of course be much earlier still."

Thus, in Michael. 62, which contains multiplication tables on the obverse
beginning with fractions of 6,000 (drachmas), the problem texts on the re-
verse nevertheless count in terms of nomismatia and keratia. (See the text
of Michael. 62 # 2 in Sec. 4.6 below.)
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Fig. 1.2.3. P.IFAO 88. An initial capital of 5 copper drachmas, doubled 29 times.
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The lines of P.1FA0 88 are numbered, making it easy to determine the
original extent of the text. Thus, the line numbering begins with a, p, y (=
1, 2, 3) in the left column and continues with KT), K8, X (= 28, 29, 30) in
the right column. The end result in line 30 is repeated in a final line without
line number.

It is easy to see that the recorded numbers form a geometric progression
of 30 terms, with the first term equal to 5 (copper drachmas) and with the
common ratio 2. In other words, the geometric progression has been given
an interpretation as an initial weight of 5 copper drachmas, doubled 29
times. The regular form of a geometric progression makes it easy to recon-
struct the missing parts of the text, as shown in Fig. 1.2.3.

What makes the text particularly interesting is that there seems to be a
trivial error in the non-preserved line 20, namely 336 talents instead of 436
talents, possibly due to the fact that the two Greek letters T = 300 and Y =
400 can be mistaken for each other. The effect of the error is avalanching
through lines 21-30. The end result, in line 30, is given as

34 myriad 4,992 talents 2,560 drachmas (=344,992 talents 2,560 drachmas =
2,069,954,560 drachmas)

(Remember that 1 myriad = a hundred hundred = 10,000, 1 talent = 6,000
drachmas.) The correct result should be 210 • 100 talents = 10 myriads
2,400 talents more than that, or altogether

44 myriad 7,392 talents 2,560 drachmas (= 447,392 talents 2,560 drachmas =
2,684,354,560 drachmas).

Note: In the hand copy above of P.IFAO 88, reconstructed parts of the text
are grey. In the transliteration reconstructed parts are written in italics.

1.2 d. Summary. The Mesopotamian roots of a well known legend

Much like M. 7857, the Mari text M. 8631 (Fig. 1.2.1) seems to be a crucial
link in a chain of related texts beginning with an important category of OB
algorithm tables and possibly ending with a legend that is still well known
today. The OB texts in question are various applications of doubling or
doubling-and-halving algorithms, notably the fragment UM. 29.13.21
(Fig. 1.2.2) from Nippur (see the map in Fig. 1.1.1) which begins with 30
doublings and halvings of the pair of reciprocals (2 05, 28 48).

In M. 8631, a table of 30 doublings was imaginatively reinterpreted as
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the growth of an initially given capital (1 barley-corn) over a month of 30
days, with a daily doubling of the capital.

Then follows a large gap in the supposed chain of related texts, because
there is no known hieratic or even demotic Egyptian text mentioning 30
doublings. Instead, there is the Greek-Egyptian P.IFAO 88 (Fig. 1.2.3)
with its 30 lines of doublings of an initial amount of 5 drachmas, where the
final amount is expressed in terms of myriads of talents. There is no
explicit mention of days in that text, only line numbers. Note, by the way,
that the Sumerian/Old Babylonian talent of 60 • 60 shekels (60 shekels =
1 mina) clearly is the ancestor of the Greek talent of 60 • 100 drachmas
(100 drachmas = 1 mina). Hence, the assumption of a connection between
a Greek-Egyptian papyrus and a clay tablet from OB Mari is not as far-
fetched as it may seem at first sight. (The circumstance that the Greek
'myriad' = 100 • 100 is a decimal number unit formed in the same way as
the Mari 'great' is interesting but may have no historical significance.)

Another appearance of the theme is in the form of the legend about the
reward granted by some Indian king to the inventor of the game of chess,
who demanded one grain of rice on the first square of a chess board and
then twice as much on each consecutive square. *1 It may be noted, in this
connection, that the ancient Egyptian game of Senet had a game board with
10 • 3 = 30 squares. So, maybe, the missing link in the chain is a hieratic
mathematical text that simply has not happened to be preserved.

10. Note, for comparison, that the standard interest rate in OB mathematical texts was 1/
5 or 1/3 of the capital, not per day but per year or per transaction. See, for instance, the
mixed theme text YBC 4698 (Fig. 2.1.17) § 1 (## 1-2), where the interest on 1 gur of barley
(1 gur = 5 00 sila = appr. 300 liters) is given as 1 barig (= 1 00 sila) in the first example,
and as 1 barig 4 ban (= 1 40 sila) in the second example. However, there are no known OB
"interest tables" for the growth of a capital, based on standard interest rates. On the other
hand, there is a known Neo-Sumerian table for the regular growth of a herd of cows and
bulls during a period of 10 years (AO 5499: see Nissen/Damerow/Englund, ABk (1993),
Figs. 76-79).

11. A variant of this legend, mentioned by ReainZ/'E 8 (1971), is "the tale of the crafty
blacksmith who offered to shoe the king's horse at one penny for the first nail, twopence
for the second, fourpence for the third, and so on till all the nails were in. Since a horse
needs twenty-eight or thirty (!) nails to keep its shoes in place, the result was a formidable
accumulation". For an extensive survey of appearances of the theme, see Tropfke GE
(1980), Sec. 4.2.4.2.2.
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Fig. 1.2.4. P.IFAO88.



Chapter 2

Hieratic Mathematical Papyri and Cuneiform
Mathematical Texts

The fact that there seems to be a definite connection between an OB math-
ematical text from Mari and P.Rhind # 79 (Fig. 1.1.7 above) suggests that
it may be worthwhile to start searching for more connections between OB
and Egyptian mathematics, in particular further OB parallels to exercises
in P.Rhind. In this connection, it is important to point out that the original
version of P.Rhind may have been somewhat older than the OB mathemat-
ical texts from Mari, which were all written before the fall of Mari in 1757
BCE. Indeed, although P.Rhind itself is dated in a preface to the time of a
king of the Fifteenth Dynasty, during the Hyksos period, the preface also
says that the papyrus is a copy of an older text from the time of what
appears to be the sixth king of the Twelfth Dynasty, who reigned in the
second half of the nineteenth century BCE. On the other hand, as will be
shown below, P.Rhind # 79 is an interpolated exercise in P.Rhind. There-
fore, it may well be of a later date than the main part of the papyrus.

No serious attempt to make a comparison between Egyptian hieratic
mathematical papyri and OB mathematical cuneiform texts has been pub-
lished before, although in H0yrup, LWS (2002), 321 the practical division
problem P.Rhind # 37 is compared with the OB text IM 53957 (Baqir,
Sumer 7 (1951), 37). H0yrup's conclusion in that particular case is that
"The coincidences are too numerous to be accidental.". More about this
example below, in the discussion of P.Rhind, "Theme E". However, later
in the same book {op. cit., 405), H0yrup returns to the question and states
emphatically that

25
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"Apart from the family likeness between the filling problems in IM 53957 and Rhind
Mathematical Papyrus # 37, no evidence suggests the slightest connection between
OB mathematics and 'classical' (Pharaonic) Egyptian mathematics as found in Mid-
dle and New Kingdom papyri - nor between the surveyors' tradition and classical
Egyptian mathematics." 12

In spite of H0yrup's pessimistic attitude, it is not difficult to find further
parallels between Egyptian and Babylonian mathematics. As a matter of
fact, one important first result of an endeavor to look for parallels between
Egyptian and Babylonian mathematical texts is the realization that the well
known hieratic mathematical papyri P.Rhind and P.Moscow must both be
"recombination texts" of a type represented by several large and well
known Old or Late Babylonian mathematical texts. (Recombination text is
a suitable name for some enterprising teacher's more or less systematic
compilation in one text of a set of whole or partial copies of older texts that
happened to be available to him.)

The fact that P.Rhind is a recombination text will be demonstrated in
Sec. 2.1 a below, where the complicated and only partly well organized
structure of the text is highlighted in a detailed table of contents. It is pos-
sible to discern eleven different themes to which most of the individual
exercises in P.Rhind belong. Of these, at least five have OB parallels.
These five themes will be discussed in Sec. 2.1 b-f.

The table of contents for P.Moscow in Sec. 2.2 a closely follows the
division of the text into nine paragraphs suggested in Struve's initial edi-
tion of the papyrus. Babylonian parallels to exercises belonging to four of
these paragraphs are discussed in Sec. 2.2 b-e.

Babylonian parallels to mathematical exercises in three small hieratic
papyrus fragments (P.Berlin 6619, P. UC32160 (= Kahun IV.3), and P. UC
32161 (= Kahun XLV.l) are discussed in Sec. 2.3.

In the conclusion in Sec. 2.4 there is, in addition to a summary of the
results obtained in Chapter 2, also an attempt to explain why there are so
many explicit computations in P.Rhind, but none in P.Moscow.13

12.A similar statement can be found in Ritter, MPIWG 103 (1998), p. 13.
13. New interpretations are offered in Chapter 2 for the following texts: BM 34800 (Sec.

2.1 b), P.Rhind # 53, IM 43996, NCBT 1913 (Sec. 2.1 d), YBC 4698 ## 3.4 (Sec. 2.1 e-
0, IM 121613 # 1 (Sec. 2.2 b), P. Mosc. # 10 (Sec. 2.2 e), BM 86194 ## 5,22 (Sec. 2.3 a),
P.UC32161 (Sec. 2.3 b).
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2.1. Themes in P.Rhind, a Hieratic Mathematical Papyrus Roll

2.1 a. P.Rhind, a hieratic mathematical recombination text

In the search for parallels between exercises in P.Rhind and Babylonian
mathematical exercises, the following table of contents for P.Rhind will
prove to be useful. In the table, an effort has been made to bring related
problems together into paragraphs, even in the cases when the problems
are not consecutive in the papyrus. Note that in the established numbering,
the exercises in P.Rhind ## 33-34, for instance, have been numbered in-
correctly precisely for the reason that they are intimately connected with
## 31-32. Actually, they appear in the papyrus after ## 37-38.

P.Rhind (BM 10057 + 10058): Contents.

obv. Title page
§ 1 2/ra table, for n odd, between 3 and 101
§ 2 n/10 table, for n between 1 and 9
§ 3 Applications of the rc/10 table: divide n loaves between 10 men,

for n= 1,2, 6, 7, 8, 9 ##1-6
§ 4 a Multiplication problem: a • ft =?,

for a = 1 2' 4' (7/4) and b = 4' 28 (2/7) u #7
§ 5 a Multiplication problem: a • b =?, for a = 1 3" 3' (= 2) and b = 4' # 8
§ 4 b-h Multiplication problems: a • b =?,

for a = 1 2' 4' (= 7/4) and b =
b) T14 (= 4/7), c) 4'28 (= 2/7), d) 7 (= 2/7), e) 14 (=1/14) ##9-12
f)16TT2(=l/14), g) 28 (=1/28), h) 32 224 (= 1/28) ##13-15

§ 5 b-f Multiplication problems: a • ft =?,
for a = 1 3" 3' (= 2) and ft = b) 2', c) 3', d) 6', e) 12, f) 24 ## 16-20

ft/an& space
§ 6 a-b Completion problems: Complete a to 1,

fora)fl = 3" 15 (=11/15), b) a = 3" 30 (= 21/30) ##21-22
§ 7 Completion problem: Complete a to 3" (= 30/45),

14. As mentioned above, in OB cuneiform texts special cuneiform signs are used for the
Babylonian basic fractions 3' (= 1/3), 2' (= 1/2), 3" (= 2/3), and 6" (= 5/6). In a similar way,
special notations are used in hieratic mathematical papyri for the hieratic basic fractions 6'
(= 1/6), 4' (= 1/4), 3' (= 1/3), 2' (= 1/2), and 3" (= 2/3). All other fractions, not counting frac-
tions of measures, are written as "parts" (also called "unit fractions") with dots over the
numbers. In order to distinguish basic fractions from parts, the parts will be transliterated
in this paper as 5 (= the 5th part), 7 (= the 7th part), 8 (= the 8th part), etc.
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fora = 48103045(=232'4'8/45) #23
blank space
§ 8 a - c Division problems: a) 1 7 • a = 19, b ) 1 2 ' - a = 1 6 ##24-25

c ) 1 4 ' a = 1 5 , 1 3 ' a = 21 ##26-27

§ 9 a-b Iterated division problems: a) (1-3') • 1 3" • a = 10,

b) 3' • 1 3' • 1 3" • a = 10 (incomplete) ## 28-29

§ 8 d-f Division problems:

d ) 3 " T 0 a = 1 0 , e ) l 3 " 2 ' 7 - a = 33, f) 1 3' 4 • a = 2 ##30-32

§ 10 a-d Applied division problems:

a)33'-a=\heqat, b) 3 31 5 • a = 1 (heqat) ##35-36

c) 3 3' (3' • 3') 9 • a = 1 heqat, d) 3 7 • a = 1 heqat ## 37-38

§ 8 g - h Division problems: g) 1 3 " 3 ' 7 a = 37, h ) 1 2 ' 4 ' a = 1 0 ##"33-34"

§ 11 a Unequal sharing: 100 loaves for 10 men;

6 small shares equal to 4 large shares # 39

§ 12 a Arithmetic progression: 100 loaves for 5 men # 40

large blank space
§ 13 a-c Round granary: content in khar and quadruple heqat ## 41-43|
§ 14 a-c Square granary: content in khar and quadruple heqat ## 44-46|
§ 15 Table of fractions of a large capacity measure, 100 quadruple heqat # 47|
§16 Areas of a square and its inscribed circle #48|
§ 17 a-d Areas of four fields, a) a rectangle, b) a circle, c) a triangle ## 49-511

d) a cut-off triangle (trapezoid) # 52|
§ 18 a Applied division problem: a) one tenth of 7 setat

removed from 10 fields # "54"|
§ 19 Three-striped triangle with an almost round area number

(incomplete exercise) # 53 a|
§ 20 Rectangle with an almost round area number (incomplete exercise) # 53 b|
§ 18 b Applied division problem: one fifth of 3 setat removed from 5 fields # 55|
§ 21 a-e Inclination of a pyramid ## 56-59b
§ 22 Inclination of a cone(?) # 60
rev.
§ 23 Table and rule for computing 2/3 of a fraction # 61
§ 24 Combined price for equal amounts of gold, silver, and lead;

relative prices: 12, 6, 3 #62
§ 11 b Unequal sharing: 700 loaves for 4 men in given proportions;

relative rations 3", 2', 3', 4' # 63
§ 12 b Arithmetic progression: 10 heqat of barley for 10 men;

common difference %\{ 1/8 heqat) #64
§ 11 c Unequal sharing: 100 loaves for 10 men, 3 with double rations # 65|
§ 25 Applied division problem: 10 heqat of fat for a year, share per day # 66|
§ 26 Fraction of a herd of cattle (3" • 3' of 70 animals) # 671
§ 27 Equal sharing: 100 great quadruple heqat of grain,
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4 teams of 12, 8, 6, and 4 men # 68|
§ 28 a-b Baking number: a) 3 2'j, heqat of flour, 80 loaves,

b) 7 2'h 4'h 8'h heqat, 100 loaves ## 69-70|
§ 29 Brewing number of beer, diluted with water # 71|
§ 30 a-b Two baking numbers, a) 100 loaves, b) 100 loaves ## 72-73|
§ 31 House inventory: the sum of a geometric progression

(houses, cats, mice, •••) # "79")
§ 30 c-d Two baking numbers, c) 1000 loaves, d) 155 loaves ##74-75|
§ 32 Three baking numbers, 1000 loaves # 76|
§ 33 a-b Baking and brewing numbers: loaves in exchange for beer ## 77-78|
§ 34 a-b Tables for converting heqat fractions into hinu# # 80-811
§ 35 a-b Feed for geese, daily and monthly rates ## 82-83
§ 36 Feed for oxen, monthly rate # 84
large blank space; end of the mathematical part of the manuscript

"Enigmatic writing" # 85
Account (upside down, placed at the end of the papyrus) # 86
Diary entries # 87

(The marks to the right of ## 41-55 and ## 65-81 are there as a reminder that the layout of
the parts of the papyrus where these exercises occur is shown in Figs. 1.6.3-4 below.)

A coarser division of the problems into a variety of themes:

A The 2/n table, the n/10 table, and applications of the n/10 table §§ 1-3
B Multiplication problems §§ 4-5
C Subtraction problems (completions) §§ 6-7
D Tables of fractions of capacity measures §§15,34
E Division problems §§ 8-10
F Equal or unequal sharing problems §§11-12,27
G Plane and solid geometry problems §§13-14,16-22
H Baking and brewing numbers §§ 28-30, 32-33
I Combined price problem § 24
J The sum of a geometric progression § 31
K Feed for geese or oxen §§ 35-36
L Various other problems §§ 23,25-26

The first four of these themes (A-D) have no direct Babylonian paral-
lels because they are exclusively about counting with either typically
Egyptian sums of parts or fractions of Egyptian capacity measures. There
are also no Babylonian parallels to the odd themes K-L. Theme J (§ 31)
consists of the single problem # 79, discussed in Sec. 1.1 g above. OB
parallels to exercises belonging to the remaining six themes (E-I) will be
discussed below.
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2.1 b. Theme E: division problems {P.Rhind ## 24-38)

It is not difficult to find Babylonian parallels to the division problems in §
8, but that does not mean much, in view of how simple most of those divi-
sion problems are. Somewhat more interesting are the "iterated" division
problems in P.Rhind § 9, the two problems ## 28-29. The text of P.Rhind
is clearly corrupt here. The beginning of # 29 is missing, but the incom-
plete exercise is brought together with # 28 so that ## 28-29 together look
like a complete exercise (Peet, RMP (1923), 63). (In the reproduction
below of the hand copy in Chase, et ah, RMP (1929), red signs in the orig-
inal are shown as grey. In the transliterations, red signs are shown as bold.)

The preserved part of P.Rhind # 29 contains only the last part of the
solution, and a verification. Here is a (mirror image) conform translation
ofthetextof#29:

l 10
4' 2 2'
TO 1
sum 13 21

3" 9sum 22 2' 3" 20
3' 7 2'sum 30 3' 10

In the first three lines, the following product is computed:

1 4 ' T O - 1 0 = 1 0 + 2 2 ' + 1 = 13 2'.

This is last part of the solution to the lost question. Verification:
13 2' + 3" of 13 2' = 13 2' + 9 = 22 2', 22 2' + 3' of 22 2' = 22 2' + 7 2' = 30,
3' of 30 = 2' of 3" of 30 = 2" of 20 = 10.

(For some reason 1/3 of a number was normally computed in hieratic
mathematical texts as 1/2 of 2/3 of that number.)

! - - - - - - - - i 5 - - - - - ~ ^ - ^ - - ™ ~ V S |

jA/ -7 \%^y ^ 3 ^ |
Fig. 2.1.1. P.Rhind ## 28-29. Two incomplete exercises written closely together.
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The verification in # 29 allows the following reconstruction of the lost
question:

3" of a quantity is added to the quantity, 3' of the sum is added to the sum,
3'of that is 10.
What is the quantity?

In modern terms:

a • 1 3 " = b , b \ y = c , c • 3 ' = 1 0 , a = ?

The way in which the solution was obtained can be explained as follows:

[Suppose the quantity is 27 (= 3 • 3 • 3).
Then 27 + 3" • 27 = 27 + 18 = 45, 45 + 3' • 45 = 45 + 15 0 60, 60 • 3" = 20.
Now, 20 goes 1 4' TO times into 27.
Therefore, if the quantity is 1 4' TO the result will be 1.]
Hence, if the quantity is 1 4' 10 times 10 = 10 + 2 2' + 1 = 13 2',
then the result will be 10, as required.

This is, of course, an application of the rule of false value, often used in
OB mathematical texts. (See. Friberg, RIA 7 (1990) Sec. 5.7 d.)

The verification in # 29 can be explained like this:

According to the computation, the quantity is 13 2' = a.
Therefore, a + 3" • a = 13 21 + 3"- 13 21 = 13 2' + 9 = 22 2' = b,
so that b + 3' • b = 22 2' + 3' • 22 2' = 22 2' + 7 2' = 30 = c,
and finally c • 3' = 30 • 3' = 10, as required.

Here is a translation of # 28:

3" is what goes in, 31 is what goes out, 10 remains. /
Make 10 of this 10, it becomes 1. The remainder is 9. /
3" of it, 6, is going into it, sum 15.
3' of it is 5. /
See, 5 is going out, the remainder is 10. /
The doing as it becomes.

Line 1 in # 28 contains the question, which is a concise way of stating
that if 2/3 of a quantity is added to the quantity, and if 1/3 of the sum is
subtracted from the sum, then 10 remains. In modern terms:

a\y = b, fc-(l-3')=10, a=?
Line 2 contains a verbal description of the solution, namely that the

unknown quantity is (1 - 1/10) times the given remainder 10, and lines 3-
4 contain the verification. The solution method can be explained (as in the
case of # 29) as an application of the rule of false:
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[Suppose the quantity is 9 (= 3 • 3).
Then 9 + 3" • 9 = 9 + 6= 15, and 1 5 - 3 ' • 15 = 1 5 - 5 = 10.
Now, 10 goes 1-10 times into 9.
Therefore, if the quantity is 1 - 10, the result will be 1.]
Hence, if the quantity is 1 -TO times 1 0 = 1 0 - 1 = 9 ,
then the result will be 10, as required.

(Note that, apparently, in this exercise 9 divided by 10 is not represented
by 3" 5 30, a sum of parts, as in the 10 • n table in P.Rhind and in P.Rhind
# 6, but by 1 - TO, a difference!)

The verification in # 28 can be explained like the verification of # 29:

According to the computation, the quantity is 9 = a.
Therefore, a + 3" • a = 9 + 3" • 9 = 9 + 6 = 15 = b,
so that b - y • b = 15 - 3' • 15 =15 - 5 = 10, as required.

A parallel to P.Rhind ## 28-29 is the OB text YBC 4652 (Neugebauer
and Sachs, MCT (1945),100; Melville, HM 29 (2002)), a cuneiform text
belonging to the Goetze/H0yrup/Friberg Group 2 a, and therefore possibly
from Ur and contemporaneous with the mathematical texts from Mari.
(See Friberg, RA 94 (2000), 162, 173.) YBC 4652 is a well organized
"theme text", the theme being 21 iterated division exercises. Here is an
example:

YBC 4652 # 9

1 na4 i.pa ki.la nu.na.tag
igi.7.gal ba.zi igi.l l.gal bi.dab /

2 [igi l]3.gal ba.zi i.la 1 ma.na
sag na4 en.nam /

3 1 ma.na 9 2' gin 2 2' se

A (weight) stone I found, it was not marked.
A 7th-part I tore off, an 1 lth-part I joined,
a \3th-part I tore off. I weighed it: 1 mina.
The original stone was what?
1 mina 9 1/2 shekels 2 1/2 barley-corns.

The question here can be reformulated, in modern terms, as:

a ( l - l / 1 3 ) = b, fc-(l + l / l l ) = c, c • (1 - 1/7) = 1 mina, a =?

The answer is given, but not the solution procedure. It would almost cer-
tainly have started, as in other similar situations in OB mathematical texts,
by assuming a suitable false value:
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Suppose that a = l • 11 • 13 = 16 41(1,001).
Then a - 1/13) • a= 16 41 - 1 17 = 15 24 (=7- 11-12) = 6,
so that b + 1/11 b= 15 24 +124 =16 48 = (7 12- 12) = c,
and finally c - 1/7 • c = 16 48 - 2 24 = 14 24 = (6 • 12 • 12).
The reciprocal of 14 24 is ;00 04 10 (= ;05 • ;05 • ;10).
Therefore, if the wanted result is 1, then the corrected value of a is
a = ;00 04 10 • 16 41 = l;09 30 50.
Since the wanted result is, actually, 1 mina,
the true value of a is a = l;09 30 50 mina = 1 mina 9 2' shekels 2 2' barley-corns.
(Remember that 1 barley-corn = ;00 20 shekel.)

The problem type was still around a millennium and a half later, as
shown by the Late Babylonian/Seleucid fragment BM 34800 (Sachs,
LBAT( 1955) #1647).

| .,-'•'" "_">-"rigar-flS^^H j
] ( \ S'-sti i-na lggur set pi i$-djy >*,.'. \
| I I jgar-an-ni-ma lggur gur^ («/;/'( ;
i ina 1 5-.VM i '1 //^.(ipi gur 1°2 sila nim 4°8 l. mul.^) /''''• i > ~ 3 ^ \
| //tff 4°8 3' i'H I Ti /i^-TS niin- ma 3°2 i.mui4 P ' ib en r ? k -
\ ina 3°2 2 • 5«;/ 1" 2 4 ^ 1 °24°8/«a3°2 nim- ma 1]°9S1°2 i 1°6 4° 1°6 4 V '
\sdpi ina l%\2 2 9,X'a9s3°6OTalo9sl

o2nim-m49s3°6 i a-na\\k^
; ina 9S3° 6 X'./5-Aii 5'4?3\6 5 4°53°6 ina 9S3° 6 1°4 4 /
!nim-wa3 ;i' ;2'4 i.mu'ig)(;3 5° 2°4 1°5 3°7 3° mumr-j
\5-su gur an<) i 5 3"7 | ' ka-mall°8 7 3° ta 7
\p-di^ se_l_''?• j gur 3U, sc 7)2 ' sila gur? -^J

! \ /

Fig. 2.1.2. BM 34800. A Late Babylonian/Seleucid repeated division problem.

Most of the question is lost in this text, as well as a large part of the
solution procedure. Therefore, no interpretation has been suggested
before. However, there seems to be references to various parts of the ques-
tion in the solution procedure, all preceded by the phrase sd pi 'as
instructed'. These repeated references make it possibly to reconstruct the
question. Apparently, it was formulated more or less as follows:

A granary. Its barley I don't know.
I removed a 5th of it, then I removed a 3rd of it, then I removed two 5ths of it,
then I removed half of it, then I removed three 5ths of it, and 1 gur remained.
What was the original barley?
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Fig. 2.1.3. BM 34800. Hand copy of the fragment.

BM 34800

1' [ ] x x x gar-an-ni-ma I
2' [ ] 5-sii ina lg gur sapi

is-di [se - ] /
3' [ ] gar-an-ni-ma l g gur gur7

4' [sdpi]/[ina 1 5-sit 12]
[ina 1 p]i gur 12 si la n im 48 i.rnu

5' [sdpi] I [ina 48 3' 16]
[16 ina] 48 nim-ma 32 i.mu

6' la pi I [ina 32 2 • 5-su 12 48]
12 48 ina 32 nim-ma 19 12 i<.mu> /

7 [sdpi ina 19 12 2' 9 36]
9 36 ina 19 12 nim-ma 9 36 i<.mu> /

8' [<ldpi> ina 9 3 6 3 * 5-lii 5 45 36]
9' 5 45 36 ina 9 36 / [nim-ma 3 50 24 i.mu]

[igi] 3 50 24 15 37 30/
10' [5 sd lg gur ana 15 37 30 r]a-ma 1 18 07 30 /

[is-di se 15g gur 3bg] 7 2' sila
gur7

x x x you set it for me, then
its 5th from 1 gur, as instructed.

The base of the barley •••
— you set it for me, then 1 gur, the granary.

As instructed, from 1 its 5th, 12.
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From 1 barig 12 sila lift, 48 it gives.
As instructed, from 48 the third, 16.
16from 48 lift, 32 it gives.
As instructed, from 32, 2 • its 5th, 12 48.
12 48 from 32 lift, then 19 12 it <gives>.
As instructed, from 19 12 the half, 9 36.
9 36 from 19 12 lift, then 9 36 it <gives>.
<As instructed,> from 9 36, 3 • its 5th, 5 45 36.
5 45 36 from 9 36 lift, then 3 50 24 it gives.
The opposite of 3 50 24 (is) 15 37 30.
5 of I gur to 15 37 30 go, then 1 18 07 30.
The base of the barley, 15 gur 3(barig) 7 1/2 sila,
the granary.

In modern notations, the question can be rephrased as follows:

a (1-1/5) = 6, 6-( l -3 ' ) = c, c-(l-2/5) = rf, d • (I - 1/2) = e,
e- (1-3/5) = 100 gur = 5 00 sila. a =?

(Unfortunately, it is not clear how the fractions 1/3, 1/5, 2/5, and 3/5 were
expressed in this text.)

Just as in P.Rhind##2S-29, the solution procedure in BM 34800 makes
use of the rule of false value, in (essentially) the following way:

Suppose the original barley was 1 barig (= 1 00 sila).

Then a 5th less is 1 00 s. - 12 s. = 48 <s.> (= 4/5 • 1 00).

A 3rd less is 48 - 16 = 32 (= 4/5 - 2 / 3 - 1 00).

Two 5ths less is 32 - 12;48 = 19;12 (= 4/5 • 2/3 - 3 / 5 - 1 00).

Aha l f l e s s i s 19 ;12-9 ;36 = 9;36(=4/5 • 2/3 • 3/5 - 1 / 2 - 1 00).

Three 5ths less is 9;36 - 5;45 36 = 3;50 24 (= 4/5 • 2/3 • 3/5 • 1/2 - 2 / 5 - 1 00).

The reciprocal of 3;5O 24 is ;15 37 30 (= 5/4 • 3/2 • 5/3 • 2 • 5/2 • ;01).

Hence, if the original barley were 15;37 30 sila, the final barley would be 1 sila.

However, the final barley should be 1 gur = 5 00 sila.

Therefore, the original barley in the granary was

5 00 • 15;37 30 sila = 1 1 8 07;30 sila = 15 gur 3 barig 7 1/2 sila.

The applied division problems in P.Rhind § 10 (## 35-38) are also in-
teresting. The first one, # 35, for instance, begins with the question

I went down into the heqat 3 times, 3' of me to me, and I was full. Who says it?

This is an eccentric way of asking for the size of an unknown measuring
vessel if it is known that 1 heqat is 3 1/3 times larger. The answer is com-
puted in # 35 in three different ways, first in terms of ordinary sums of
parts (abstract numbers), then in terms of multiples of the ro = 1/320 of
1 heqat, and finally in terms ofbinary fractions of 1 heqat, for which there
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existed special hieratic signs, and for which it may be useful to employ the
following special notations: 2'h, 4'h, 8'h, 16'h, 32'h, 64'h (= 5 ro). 15

The computation, employing the rule of false value, can be explained
as follows:

Suppose the unknown size of the vessel is 1. Then 3 3' times that is 3 3'.
Now, 3 3' goes 5 10 times in 1.
(In modern terms, the reciprocal of 3 3' = 10/3 is 3/10 = 1/5 1/10.)
Therefore, the vessel contains 5 10 (of a heqat).
This is the same as 5 TO • 320 ro = 96 ro.
Finally, since 64'j,= 5 ro, 32'j, = 10 ro, etc.,
96 ro = (80 + 10 + 5 + 1) ro = 4'h 32'h 64'h 1 ro.

In the third of the applied division problems, P.Rhind# 37, the heqat is
3 3' (3' • 3') 1/9 times larger than the unknown vessel. According to
H0yrup, LWS (2002), 321, this is the only occurrence of an "ascending
continued fraction" in the rich Egyptian record. That is one of several rea-
sons why he concludes that there must be a factual relation between
P.Rhind# 37 and the OB mathematical exercise IM 53957 (Baqir, Sumer
7 (1951), 37), where the question is phrased as follows:

If [someone] asks (you) thus:
To 3" of my 3" I appended 100 sila and my 3".
1 gur was completed.
The tallum-vessel of my grain is corresponding to what?

2.1 c. Theme F: sharing problems {P.Rhind ## 39-40, 63-65, 68)

It is not difficult to find OB parallels to the problems in § 11 and § 27 of
P.Rhind, but that does not mean much in view of the simple nature of the
problems occurring there. The problems about sharing in arithmetic pro-
gression in P.Rhind § 12 (## 40 and 64) are more interesting.

The question in P.Rhind # 64 is

Method of dividing the excesses. If it is said to you: 10h heqat of barley for 10 men,
the excess of each man to his second, in barley, it is 8'h.

15. These hieratic signs for the binary heqat fractions have traditionally been interpreted
as the hieratic versions of the originally hieroglyphic "Horus eye fractions". That this in-
terpretation is false is convincingly demonstrated in the fascinating essay Ritter, UOS
(2002).
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The usual sign for ' 1' is used here as a sign for 10 heqat (10h)! Later on in
this exercise, a dot (lh) is used as a sign for 1 heqat, and the mentioned spe-
cial number signs denote binary fractions of the heqat. (See Gardiner, EG
(1927) § 266, for a survey of Egyptian notations for capacity measures.)
What the obscurely phrased question means is that 10 men share 10 heqat
of barley in an arithmetic progression, with the constant difference be-
tween the shares equal to 1/8 heqat (8'^).

The solution proceeds (essentially) as follows:

The average share is IOJ/10 = lh. The largest share is equal to the average share plus
9 times half the difference, that is lj, + 9 • 16'h = lh 2\ 16'h. Hence, the 10 shares are,
in decreasing order, lh 2'i,16'h, lh 4'h 8'j, 16'j,, etc.

The shares are ordered with the biggest share first. This is also the way in
which shares in an arithmetic progression normally are ordered in OB
mathematical texts. (See, for instance, MS 1844 in Fig. 1.1.6 above.)

An OB (imperfect) parallel to the arithmetic progression exercise in
P.Rhind #64 is exercise # 1 in Str. 362 (Neugebauer, MKT1 (1935), 239)
a small cuneiform text of mixed content, (probably) from Uruk. In Str. 362
# 1 the question is formulated as follows:

10 brothers, 13" mina of silver. Brother over brother is always going above, how
much he is always going above I do not know. The share of the 8th brother is 6
shekels. Brother over brother, how much is he always going above?

The solution procedure is (essentially) the following:

The average share is 1 40/10 = 10 (shekels). Double the average share minus double
the 8th share is 20 - 12 = 8. Hence, the common difference is 8/5 = 1 ;36 (shekel).

The solution procedure is obviously based on the observation that the dif-
ference between the average share and the 8th share is 5 times half the
common difference.

The question in P.Rhind § 12 a (# 40) is phrased as follows:

100 loaves for 5 men. 7 of the 3 above to the 2 men below.
What is the difference (between the shares)?

The solution procedure is clearly corrupt, with the initial part missing. It
begins by saying that the difference is 5 2', and then immediately assumes
that the five shares are 23, 17 2', 12, 6 2', and 1. The sum of these assumed
shares is found to be 60, instead of the required 100. The necessary correc-
tion factor is obviously equal to 100/60 = 1 3". Consequently, the true
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value of the first share is 23 + 3" • 23 = 38 3', the second share is 17 2' +
3"- 17 2'= 29 6', and so on.

The preserved part of the solution is a straightforward application of the
rule of false value. The missing argument can probably be reconstructed in
(essentially) the following form. (The alternative reconstructions sug-
gested in Chase, etal.,RMP 1 (1927), 102, Gillings, MTP (1982), 170, and
Couchoud, ME (1993), 157, are not convincing.)

Assume that the smallest share is 1 (loaf)-

Then the sum of the three largest shares is 3 plus 9 differences, while 7 times the sum

of the two smallest shares is 14 plus 7 differences. If the two sums are equal, then 11

is equal to 2 differences.

Therefore, the (common) difference is 5 2'. The largest share is then 1 plus 4 - 5 2 ' =

23, the next one is 23 - 5 2' = 17 2', etc.

Two OB parallels to the arithmetic progression exercise in P.Rhind #
40 are YBC 9856 (Neugebauer and Sachs, MCT (1945), 99) and VAT
8522 # 2 (Neugebauer, MKT1 (1935), 368). These difficult texts were first
adequately explained in Muroi, HSci 34 (1988).

YBC 9856 consists of a brief and obscurely phrased question followed
by an answer but no solution procedure. Here is a tentative translation:

1 mina of silver, his 5 brothers. Two-thirds the small brothers.
May brother constantly be above brother.
1 4, 2 8, 3 12, 4 16, 5 20.

Apparently what this means is that five shares form an arithmetic progres-
sion with the sum 1 mina. In addition, the shares of the four younger broth-
ers is 2/3 of all five shares. The missing solution procedure can be
reconstructed in (essentially) the following form:

Assume that the smallest share is 1. Then the sum of all the five shares is 5 plus 10
differences, while 1 1/2 times the sum of the four smallest shares is 6 plus 9 differ-
ences. If the two sums are equal, then 1 is equal to 1 difference.
Therefore, if smallest share is 1, then the five shares are 1, 2, 3, 4, 5, and, the sum is
15, instead of the prescribed 1 mina. Hence, the correction factor is 4 shekels, and
the five shares are 4, 8, 12, 16, and 20 shekels.

VAT 8522 # 2 consists of a partly preserved text, followed by a badly
organized scribbled solution procedure. Here is a tentative translation of
the text with the missing parts reconstructed:

5 brothers, 6" [mina 9 shekels of silver]. Half of [the big brother the small brother
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took], and 4 30 (a strange error for 45) the 5 brothers divided. A third-part of what
the big brother over the next brother was above may brother over brother be constant-
ly above. How much silver did they take?

The scribbled solution suggests that the problem was solved in (essential-
ly) the following way:

Of the equally divided 45 (shekels), each brother receives 9 shekels. The remaining
parts of the shares have to be computed so that the following conditions are satisfied:
1) the constant difference between the four younger brothers is 1/3 of the difference
between the two largest shares,
2) the smallest share is one half of the largest share,
3) the sum of the five shares is 59 - 45 = 14 shekels of silver.
These three conditions are taken care of, one at a time, in the following three steps
of the computation:
1) Assume that the smallest share is 1 and that the constant difference is 1. Then the
shares are 5, 4, 3, 2, 1. However, since the first difference should be 3 times bigger,
the shares must be, instead, 7, 4, 3, 2, 1.
2) Since the largest share should be only twice the smallest share, let the smallest
share be 1 + a instead of 1. Then the largest share is 7 + a and must be equal to 2 •
(1+ a). Hence, a = 5, and the five shares are 12, 9, 8, 7, and 6.
3) The sum of 12,9, 8, 7, and 6 is 42 instead of the prescribed 14 shekels. Hence, the
correction factor is ;20 shekel, and the five shares are 4, 3,2;40,2;20, and 2 shekels.
Add to this the equal shares of 9 shekels, and the total shares of the 5 brothers are 13,
12, ll;40, ll;20, and 11 shekels.

The problem type continued to be popular. The next time it surfaces is
in the Chinese mathematical classic Jiu Zhang Suan Shu (Nine Chapters
on Mathematics), which was written at some time towards the end of the
first millennium BCE. The text of JZSS 6:18 (Shen, Crossley, and Lun,
NCMA (1999), 333-336) can be translated as follows:

Now given 5 persons are to share 5 coins.
Let the sum of the two greater (shares) be equal that of the three lesser.
Tell: How much does each get?
Answer: A gets 1 2/6 coins; B, 1 1/6 coins; C, 1 coin; D, 5/6 coin; and E, 4/6 coin.

The solution procedure is similar to the one used in P.Rhind # 40 and in
VAT 8522 # 2:

Method: Lay down the cone-shaped rates (an arithmetic progression) for the distri-
bution. The sum of the two greater is 9, while that of the three lesser is 6. 6 is less
than 9 (by) 3. Add 3 to each of the rates for the shares. Take the sum as divisor. Mul-
tiply the coins to be shared by each of the shares for each dividend. Divide, giving
the coins required.
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2.1 d. Theme G: geometry problems (P.Rhind ## 41-46,48-60)

The areas of four basic plane geometric figures are computed in P.Rhind
§ 17 (## 49-52). The linear dimensions of the figures are given in multiples
of 1 khet = 100 cubits. This means that the geometric figures were thought
of as actual fields, not as tiny figures drawn on papyrus. In accordance with
this interpretation of geometric figures, the word used for the size of the
surface of a plane figure was Ih.t 'field'.

The situation is similar in OB mathematical texts, where the basic plane
geometric figures normally have linear dimensions in tens or sixties of
ln inda = 12 cubits (= appr. 6 meters), and where the word used for the
size of the surface of a figure is asa5 (or gan) 'field'

Areas in exercises in P.Rhind are normally expressed as multiples of
1 setat = 1 square khet. Other units of area measure that are used in com-
putations of areas are the 'cubit strip' = 1 cubit • 1 khet, and the 'thousand-
cubit-strip' = 1,000 cubits • 1 khet= 10 setat.

Take, for instance, P.Rhind § 17 c (# 51), where the area of a triangle
of length (or long side) 10 khet and width (or short side) 4 khet is computed
(essentially) as follows. (The literal meanings of the words used for 'trian-
gle', 'length', and 'width' are 'sharp', 'quay', and 'mouth')

1/2 • 400 = 200 (half the width in cubits)
1,000 (the length in cubits)
2,000 (the length times half the width in cubit-strips)
2 (the area in thousand-cubit-strips).

Instead of interpreting the result '2' as 2 thousand-cubit-strips, one may in-
terpret it as '20 setaf, written with a special sign 20s. There are, as a matter
of fact, special signs for 1 through 9 setat. It is convenient to use special
notations also in transliterations of those signs, say ls, 2S, •••, 9S.

A major difference between hieratic and OB mathematics is that they
use different methods to compute the area of a circle. The hieratic "circle
area rule" is explicitly exhibited in P.Rhind § 16 (# 48). The drawing
accompanying this text shows a crudely drawn circle (looks like an octa-
gon), with its circumscribed square. (The copy of the hieratic text in Fig.
2.1.4 below is borrowed from Chase, et al, RMP 2 (1929).) The diameter
of the circle is given as 9 {khet), as indicated by the number 9 recorded
inside the circle, along a horizontal diameter. The text consists of two com-
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putations, one showing that 8 • (8 setai) = 64 setat, the other that 9 •
(9 setat) = 81 setat. Clearly, what this means is that a circle of diameter 9
khet has (approximately) the area 64 setat, while a square of side 9 khet has
the area 91 setat.

! • 8S

! " 1 8 s I

j ** 16s 4 3 6 S I
! 4 3 2S \ 8 72S i

| \ 8 6 4S dmd 8 l s | (dmd='sum')

Fig. 2.1.4. P.Rhind # 48. The areas of a circle and its circumscribed square.

The reasoning behind this Egyptian approximate value for the area of a
circle is not known. The tentative explanation illustrated in Fig. 2.1.5 be-
low is an elaboration by Gillings, MTP (1982), 144, of an idea due to
Neugebauer, QSB 1 (1931), 429. The figure makes it clear that the area of
a circle of diameter 9, say, is approximately equal to the area of a square
of side 9 minus the area of 4 half-squares of side 3 (= the combined area
of 2 rectangles with the sides 1 and 9), which again is approximately as
much as the area of a square of side 8.
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3 3 3 1 8

ON O\

L A [iL=,
Fig. 2.1.5. Possibly the naive geometric derivation of the Egyptian circle area rule.

The possibility cannot be excluded that this is the way in which the
Egyptians found their area rule. It may not be by accident that the circle in
P.Rhind # 48 looks like an octagon and has the diameter 9!

P.Rhind § 17 b (# 50) is illustrated by a drawing of a circle, inside of
which are written the signs for 9 khet. The text of the exercise is the Egyp-
tian circle area rule in explicit verbal form:

Example of making a round field of 9 khet. What is the amount of it as field?
You take away 9 of it, 1, the remainder is 8.
You make the multiplication, 8 times 8, it becomes 64.
The amount of it, as field, is 60 4S.

In quasi-modern notations, this means that the area of a circle of diameter
d is given by the equation

A = sq.(d-d/9).

(The abbreviation sq. stands, here and in the following, for 'the square of.
It would be too anachronistic to write (d - d/9)2.)

In an OB table of constants the following constants for circles are men-
tioned:

5 igi.gub sa gur 5, the constant of a circle BR 2
20 dal id gur 20, the transversal of a circle BR 3
10 [pi]-ir-ku id gur 10, the cross-line of a circle BR4

(The following notations are used here and in the following for cited OB
tables of constants: BR = TMS 3, Bruins and Rutten, TMS (1961), text 3,
NSd = YBC 5022, Neugebauer and Sachs, MCT (1945), text Ud, NSe =
YBC 7243, Neugebauer and Sachs, MCT (1945), text Ue.)
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What this means is, as shown by various applications of the constants,
that if A is the area of the circle, a the arc (circumference), d the diameter,
and p the radius orthogonal to the diameter, then

A = ;05 • sq. a, d = ;20 • a, p = ;10 • a.

In other words, A = 1112- sq. c, d = 1/3 • a, and p = 1/6 • a. Thus, the con-
stants ;05, ;20, and ;10 are somewhat crude, but very convenient, approx-
imations to what we would call 1/4JT, 1/JT, and 1/2JI.

There are similar constants for semicircles in OB tables of constants.
(See, for instance, Muroi, SK 143 (1994).)

15 gan [u4.sakar] 15 crescent-field NSe2
10 gan u4.[sakar ki.2] 10 crescent-field # 2 NSe 3
45 sa gan u^sakar ki.3 45 of a crescent-field # 3 NSd 54
40 dal saus-ka4-ri 40 the transversal of a crescent BR 8
20 pi-ir-ku saiis-ka4-ri 20 the cross-line of a crescent BR 9

What this means is that if a is the arc (the semi-circumference) of a semi-
circle, then there are three ways of computing the area, namely as

A = 1/4 • a • d, or A = 1/6 • sq. a, or A = 3/4 • d • p.

Moreover, the diameter and the radius orthogonal to the diameter are

d = 2/3- a and p= 1/3 a.

It is not known, of course, how OB "mathematicians" found these con-
stants and how they demonstrated their validity to their students. It is like-
ly, however, that they used naive geometric demonstrations of the kind
shown in Fig. 1.3.5 below (in the case of the semicircle):

a = appr. 1 00 a

J = 40 dJ2 dl2

The circumference of a semicircle The area of a semicircle approximated
approximated by half the circum- by the area of half a (regular) polygon
ference of a (regular) '6-side'. with many equal sides.

Fig. 2.1.6. Possible naive derivations of the OB constants for semicircles.
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The Egyptian circle area rule is used in three problems in of P.Rhind
§ 13 (## 41-43) dealing with the contents of cylindrical granaries. In
P.Rhind #41, the diameter of the granary is 9, and the height is 10 (cubits).
The volume is computed as V= {sq. (9 — 1/9 • 9)} • 10 = 640 (cubic cubits).
Then this result is multiplied by 1 1/2, so that the volume is expressed
instead in the volume unit khar.

V = 640 cubic cubits • 1 1/2 khar I cubic cubit = 960 khar.

Finally, the volume is divided by 20, so that the content of the granary be-
comes expressed in capacity measure:

C = 960 khar • 1/20 of a 100-quadruple-/ie<?a? / khar = 48 lOO-quadruple-fe^a/i.

(It is clear from this computation that 1 heqat is equal to 1/30 of a cubic
cubit. With 1 cubit = appr. 52 cm., it follows that 1 heqat = appr. 4.7 liters.)

In P.Rhind #42, both the diameter and the height are 10 (cubits), which
makes the computation messier. In P.Rhind # 43, the diameter is 6 and the
height 9 (cubits). The solution method in this example differs from the
straightforward method in the two preceding examples. Unfortunately, the
text is corrupt, but a parallel text discussed below (P. UC 32160 = Kahun
IV.3 # 1; Fig. 2.3.3) shows what should have been written in # 43.

Three problems in P.Rhind § 14 (## 44-46) are concerned with rectan-
gular granaries. In # 44, first the volume of a granary with length, width,
and height all equal to 10 (cubits) is computed, and then the content is
computed in 100-quadruple-heqats. A naive drawing of the granary shows
only a rectangle with three numbers 10, one at one side, one on top, and
one inside. In # 45, the problem is reversed (# 46 is similar, with different
numbers). The content is given, and the question asked is "Of it, how much
by how much?" The reversed problem should rightly lead to a cubic equa-
tion, but the student who tried to solve this problem preferred a simpler,
less correct method, proceeding as if he knew already that the square bot-
tom of the granary had the side 10 (cubits).

The four exercises in P.Rhind § 17 (## 49-52), concerned with the areas
of plane geometric figures, are followed by P.Rhind § 18 (## 54-55), two
exercises about subtracting equal pieces of land with a given total area
from a given number of fields. This requires the conversion of ordinary
fractions into the special setat fractions. Thus, in # 54 one tenth of 7 setat
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is converted to setat fractions and multiples of the cubit-strip = 1/100 setat
as follows:

TO • 7 = 2' 5,
2' 5 • 1 setat = 2's 8's mh 12'(l/2 + 1/5 = 70/100 = 1/2 +1/8 + 7 1/2 /100)

P.Rhind # 54 is very short and leaves place for a second exercise imme-
diately to the left of it on the papyrus. This is the puzzling exercise P.Rhind
# 53, or, more correctly, P.Rhind # 53 a-b, which is illustrated by a draw-
ing of a triangle divided into three stripes by two transversals parallel to
the short side of the triangle. (See the layout of a section of P.Rhind in Fig.
2.4.3 below.)

Three different stumbling blocks have thwarted all earlier attempts to
understand what is going on in this exercise. (Only Robins and Shute
explicitly admit (RMP (1987), 477) that they do not understand what is
going on, with the words "No. 53 is also concerned with triangles but
unfortunately, through faulty copying, is now incomprehensible.")

First, it has not been observed that the two columns of computations
directly under the drawing of the striped triangle belong to a different
problem (here called # 53 b, while the problem associated with the draw-
ing will be called # 53 a).

Secondly, it has not been clear that six dashes along two of the parallel
lines in the triangle are not number notations. (See the drawing in Neuge-
bauer, QSB1 (1931), 449, and Neugebauer's commentary (ibid.), 421, that
"DaB die Figur alle Teilgebiete durch ein Dreieck umschlieBt, paBt offen-
bar nicht zu den angegebenen MaBen (z. B. Basis = erste Querlinie = 6)".
Chase, et al. write (RMP (1927), 94): "In his figure the author puts down
6 as the length of both of these lines, but in his calculations he seems to
take 4 1/2 for the base." Similarly, Couchoud writes (ME (1993), 60), with
regard to the middle part of the triangle, that "il s'agit d'un trapeze ayant
une base de 6 et un sommet de 2 1/4" and makes a copy of the drawing
where two of the parallel sides are indicated as having the common length
6. Most recently, Clagett, AES 3 (1999), 382-383, compounded the mis-
take, misinterpreting 3 1/4 and 5 as the heights of two sections of the
striped triangle, and changing the drawing of # 53 a into a strange drawing
of a figure composed of a triangle, a trapezoid, and a rectangle.) Instead,
the dashes along the two parallel lines probably indicate that the lengths
of these lines are unknown.
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Finally, insufficient attention has been paid to the fact that in Egyptian
as well as in Babylonian mathematical texts, the values of number signs
are context dependent, and that numbers recorded in the interior of some
part of a geometric figure usually denote the area of that part of the figure.
Thus, the numbers written inside the two trapezoidal parts of the triangle
are to be understood as the area numbers 50s (50 setat or 5 thousand-cubit
strips) and 30s 4's (30 1/4 setat), not as the ordinary numbers 5 and 3 1/4!
(Cf. P.Rhind#48 (Fig. 1.3.3 above), where, for instance, 64 setatis written
as 6 followed by a special sign 4S for 4 setat.)

With these clarifications, it is possible to show that the exercise is a
cleverly composed geometric-arithmetic problem, and that the data were
chosen by the author of the problem, with some difficulty, so that the three
partial areas, the area numbers 50 setat, 30 1/4 setat, and 7 1/2 1/4 1/8
setat, would be close to round area numbers, namely 50, 30, and 8 setat.

(In the reproduction below of the hand copy in Chase, et ah, RMP
(1929), red signs in the original are shown as grey.)

UrC^y^'' ^7 s i4s I
|\2 9S i 0 . f l s 4 ' s 8 ' s 1 0 m h

 2 's 3 2 's ;
! 2's 2S4'S _ • \ 4' 1 2'S4'S !
i 4' i g's 10. fm hb.t hr tl m rht dmd 1S5 2'S4'S!
I \ ?' 7 ?' 4' 8' i

Fig. 2.1.7. P.Rhind # 53 a-b. A combination of two unrelated and incomplete exercises.
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The only preserved part of the text of the exercise illustrated by the
drawing of the striped triangle is the following computation recorded near
the tip of the triangle:

\ 2 14 ,

2', 3 2',

\ 4', 12', 4',

sum ls 5 2',4'j setat

2's 7, Ts 4', 8', setat

There are several errors of notation in this brief text, in particular that 15
setat is written with a curved line (meaning setat) over the digit '1'instead
of over the digit '5 ' . Nevertheless, it is clear that what is computed is 1/2 •
2 4' (khet) • 7 (khet) =1/2-15 2' 4' setat = 7 2' 4' 8' setat. This is the area of
the small triangle near the tip of the triangle. The computed area, the length
7, and the width 2 4' of the small triangle are all written as red digits in the
drawing (reproduced as grey in Fig. 2.1.7), the sign for 7 a bit off-center.
Note that, as could be expected, the whole triangle must be sized as a fairly
large field, with sides measured in hundreds of cubits. Note also that, pre-
cisely as in OB mathematical texts, what looks in the drawing like the
length 7 of the side of the small triangle must be understood instead as the
length of the height of that triangle.

The interpretation suggested here is that P.Rhind # 53 a is an assign-
ment, where the student was given the drawing of the triangle together
with four given numbers: the two sub-areas Aj = 50 setat and A2 = 30 4'
setat, the second transversal d2 = 2 4' (khet), and the length of the small
triangle, /3 = 7 (khet). His task was to compute the lengths of the two par-
allel lines marked with dashes, namely the front 5 of the triangle and the
first transversal d\. (See again Fig. 2.1.7 below.) He started his work with
the computation of the area A3 of the small triangle. Then he quit, or else
the remainder of his solution procedure has been lost. However, it is not
difficult to complete his work for him. This will be done here.The solution
can be based on the idea of using the "growth factor"/of the triangle and
the naive-geometric observation that in a striped triangle like the one in
Fig. 2.1.7 below the whole triangle and its sub-triangles are similar trian-
gles. The value of/can be computed as the ratio of the given sides of the

1 7 s
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small triangle (see Fig. 2.18 for the notations used here):

/ = d2lh = 2 4' / 7 = 4' 14 (= 9/28), 1/f = 3 9 (= 28/9).

For the next step of the computation, the following equation is needed:

sq. dx = dv (l2 + h) •/= (A2 + A3) • 2 •/

where

A2 + A3 = 30 4's (given) + 7 2's 4's 8's (computed) = 38 8's.

Therefore, the length d\ of the first transversal is given by the equation

sq. dx = (A2 + A3) • 2 • /= 38 8 • 2 • 4' 14 = 24 2' U2 (setat) = appr. 25 (setat).

It follows that

dx = appr. 5 (Mel)-

Similarly, the short side s of the whole triangle is given by the equation

sq. 5 = (A, + A2 + A3) • 2 • /= 88 8 • 2 • 4' 14 = 56 2' 7 TT2 (s«af)-

It follows that

s = appr. 7 2' (tter)-

Therefore, the length of the whole triangle must be

l = s- 1//= 7 2' • 3 9 = 23 3' (khet).

* AX *$ A2 •¥TA7^r=>

Given: Computed:
A1 = 50s A3 = 7S21

S4'S8^
A2=30 s4' s / = ^2/Z3 = 4'14
d2 = 2 4' (khet) dx = appr. 5 (khet)
h=l (khet) s = appr. 7 2' (Mef)

/1 + /2+/3=appr.23 3 ' ( j tM

Fig. 2.1.8. Given and computed numbers in P.Rhind # 53 a.

It is easy to find OB parallels to P.Rhind # 53 a, in particular Str. 364
(Neugebauer, MKT1 (1935), 248), which is a well organized theme text
from Uruk, where the theme is problems for striped triangles leading to
quadratic equations. (See Friberg, RIA 7 (1990) Sec. 5.4 i, and Friberg,
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MCTSC (2005), Fig. 10.2.12.) A more specifically parallel text is IM
43996, of which a photo was published in Bruins, CCPV1, Part 3 (1964),
pi. 2. This is an OB square hand tablet with a geometric assignment on the
obverse in the form of a drawing, showing a striped triangle with two
transversals and associated numbers (see Fig. 2.1.9 below). The given
numbers are the measures of the three sub-areas, the two transversals, and
the first segment of the length (or height):

A, = 9 22;30(sq. ninda), A2 = 20 37;30 (sq. ninda), A3 = 10 00 (sq. ninda),
d] = 17;30 (ninda), d2 = 10 (ninda), lx = 30 (ninda).

The two remaining segments of the length were originally given, too, but
were then erased by the tip of a finger, indicating that the unknown num-
bers should be computed by the student, in the same way as the unknown
numbers to be computed by the student were marked by dashes in P.Rhind
# 53 a. (Faint traces remain of the number 1 30, the size of the second seg-
ment of the length.)

obv.

Fig. 2.1.9. IM 43996. An OB hand tablet with a geometric assignment.

The solution to the assignment presented on the obverse of EVI 43996
is not explicitly given but is easy to reconstruct. Probably the first step was
to compute the size of the short side s of the whole triangle as follows (the
notations are the same as in the drawing in Fig. 2.1.8 above):

sq. s - (sq. d2) • (A} + A2 + A3)/A3
= sq. 10 (ninda) • 40 00 / 10 00 = sq. 10 (ninda) • 4 = sq. 20 (ninda),
hence s = 20 (ninda).

(Note the number 20 near the left edge of the tablet, which can be a left-
over from the construction of the problem.) The next step probably was to
compute the growth rate/, as follows:
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f= (s - drfm = (20 - 17;30)/30 = 2;30/30 = ;05 = 1/12.

After that, it was easy to compute the lengths of the unknown segments:

/3 = d2 • 1//= 10 (ninda) • 12 = 2 00 (ninda),
and l2 + h = d1- 1//= 17;30 (ninda) • 12 = 3 30 (ninda),
so that l2 - 1 30 (ninda).

The number 4 and its reciprocal 15, near the upper edge of the tablet, are
probably left-overs from the construction of the problem, too, when the
growth rate/was computed as sll = 20 • 1/4(00) = 20 • (;00) 15 = ;05.

On the reverse of the tablet, the answer to the assignment is given in the
form of a drawing of the striped triangle, with all the numerical data
recorded, except the length of the front. The inscription on the reverse
seems to have been done when the clay of the tablet was nearly dry.

As so often in the case of other OB mathematical texts, there is more to
say also in this case about the teacher's actual construction of the problem.
The given areas of the two sub-trapezoids, 9 22;30 and 20 37;30 are rela-
tively close to two round area numbers, 10 00 and 20 00. Suppose that it
was the teacher's intention to construct a striped triangle where the three
sub-areas were proportional to 1,2, and 1, for instance exactly 10 00, 20
00, and 10 00 sq. ninda. He would then soon realize that for this to happen
it was necessary to let the front (the short side) and the two transversals be
proportional to 2, sqr. 3 (the square root of 3), and 1, say, for instance, 20,
10 • sqr. 3, and 10. Sure enough, the standard OB approximation to sqr. 3
is 7/4 = 1;45, and 10 • 1;45 = 17;30, the value he chose for the length of the
first transversal. The three segments of the length of the triangle would
then have to be proportional to 20 - 17;30 = 2;30, 17;30 - 10 = 7;30, and
10, so he chose to let them be 30, 1 30, and 2 00. Then, the three sub-areas
would be

Aj = 30 • (20 + 17;30)/2 = 9 22;30,
A2 = 1 30 • (17;30 + 10)/2 = 20 37;3O,
A3 = 10-2 00/2= 10 00.

In other words, the whole construction of the data in IM 43996 can be ex-
plained as a consequence of the teacher's decision to try to let the three
sub-areas be proportional to 1, 2, 1.

All this suggests that it may be a good idea to turn back to P.Rhind #53
a, to see how the data for that problem were constructed! What is immedi-
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ately clear is that the first sub-area, 50 setat, is a round area number, and
that the second sub-area, 30 1/4 setat, is very close to a round area number.
As for the length of the whole triangle, it is 23 1/3 (khet), a length number
that can be analyzed as 7 • 3 1/3 = (1 + 1/6) • 20 (khet). This is interesting,
because there are several examples of drawings of geometric figures on
OB mathematical hand tablets where one of the sides of the figure can be
expressed as (1 + 1/6) times a round length number. Two such examples
will be discussed below. The first example is NCBT 1913 (Neugebauer
and Sachs, MCT (1945), 10):

obv.

I 5° 8 2° ,• \
/ 6 4' 2 *' 6 4 \

/) a s a b i e n . » a m \ 6 3" gin

t s i b i U 2 « 4 i & S a 5 rev. empty

Fig. 2.1.10. NCBT 1913. Computation of the area of a square, an almost round number.

This is a round hand tablet (a lentil) where the text begins with the com-
putation of the square of the number 58 20, which can be assumed to mean
58;20 ninda. The computed number is 56 42 46 40, obviously meaning 56
42;46 40 sq. ninda, because the text continues with the two lines

a.sa.bi en.nam / a.sa.bi l ^ j 2jje 4 ^ 2 3" sar 6 3" gin,

that is, in English translation,

Its field (= area) is what? / Its field is l(bur) 2(ese) 4(iku) 2 3" sar 6 3" gin.

The OB area units figuring here are, with their Sumerian names,
1 bur = 3 ese, 1 ese = 6 iku, 1 iku = 1 40 (100) sar, 1 sar = 1 sq. ninda, and
1 gin (shekel) = 1/60 sar.

The given value s = 58;20 ninda for the side of the square can be analyzed
as follows:

s = 58;20 n. = 7 • 8;20 n. = (1 + 1/6) • 50 n.
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Another interesting feature of NCBT 1913 is that the computed area num-
ber 56 42;46 40 sq. ninda is relatively close to the round area number
1 00 00 sq. ninda = 12 ese = 2 bur.

A second example of a similar kind is given by the square hand tablet
YBC 7290 (Neugebauer and Sachs, MCT (1945), 44. It has on the obverse
a drawing of a trapezoid, around which are recorded the lengths s^ = 2 20
and s2 - 2 (00) of the short sides, and the length / = 2 20 of the long side,
and inside which is recorded the area number A = 5 03 20. These data can
be analyzed as follows:

/ = 2 20 n. = 7 • 20 n. = (1 + 1/6) • 2 00 n.,
(.5, + s2)/2 = 2 10 n. = 13 • 10 n. = (1 + 1/12) • 2 00 n.,
A = 5 03 20 sq. n. = appr. 5 00 00 sq. n. = 10 bur.

obv.

k—^__22°

2 2° 5 3 2 ^ 2

^ rev.: a small drawing
of a trapezoid

Fig. 2.1.11. YBC 7290. A trapezoid with an almost round area number.

A sexagesimal area number that is close to a round area number and
that can befactorized as the product of a regular sexagesimal area num-
ber and one or two small non-regular numbers, such as 7 or 11 or 13, can
be called an "almost round area number". (In YBC 7290, A = 5 03 20 sq.
n. = 7 • 13 • 3 20 sq. n.) The history of the use of almost round numbers in
mathematical texts goes all the way back to the end of the fourth millen-
nium BCE, the time of the earliest known written records. The "proto-
cuneiform" texts of the proto-literate period in Mesopotamia are inscribed
clay tablets from the strata Uruk IV-Uruk III. Two examples are shown in
Fig. 2.1.12 below, borrowed from Friberg, AfO 44/45 (1997/98).
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It is easy to read these early texts, due to the amazing circumstance that
the systems of length and area measures known from OB mathematical
texts are (essentially) identical with the corresponding systems of mea-
sures used in the proto-cuneiform texts. A trivial difference is that the
proto-cuneiform number signs were inscribed with a round stylus, while
ordinary cuneiform number signs are written with a sharpened stylus. The
direction of writing had also changed, so that, for instance, the vertical
number signs in W 14148 (Fig. 2.1.12 left) had been replaced in the OB
period by rotated, horizontal number signs. (See Fig. A4.10 in Friberg,
MCTSC (2005), App. 6, which shows the historical development of the
"factor diagram" for Mesopotamian area numbers.)

obv.

/ ., obv.

• • • • • 1 ^X"^'"'~--

v7v7 v7 ^~-^-_\fe_/_j^ii--^
V. '

rev. empty
rev. empty

Fig. 2.1.12. W 14148, and W 20044, 28, two proto-cuneiform field texts from Uruk.

Thus, the inscription on W 14148 can be immediately understood as an
area number with the interesting factorization:

A = 6bur 1 ese 3 iku = 6 1/2 bur = (1 + 1/12) • 6 bur.

At the same time, this area number is close to a round area number:

A = 6bur 1 ese 3 iku = 19 1/2 ese = appr. 20 ese.

Hence, the number recorded on W 14148 is an almost round area number.

In a similar way, it does not take much imagination to see what is re-
corded on W 20044,28 (Fig. 2.1.12 right), namely four length numbers for
a field, two for sides "along" and two for sides "across". Apparently, the
field in question is in the form of a trapezoid, with the sides
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h=h= l(ges) 50 n., sx =l(ges) 10 n., s2 = l(ges) n.,

and the area

A = l(ges) 50 n. • (l(ges) 10 + l(ges))/2 n. = l(ges) 50 • l(ges) 5 sq. n.
= 1 sar 59(ges) 10 sq. n. = 4 bur - 1/2 iku.

(Note that the proto-cuneiform length numbers are written with non-po-
sitional sexagesimal numbers, as multiples of an un-named length unit,
clearly the ninda. In the transcription above, the signs for 60 and 60 • 60
are written, for convenience, by use of the Sumerian words for 'sixty' and
'sixty times sixty', which are ges and sar.)

It is now easy to see that the area A of the trapezoid with the sides given
in W 20044, 28can be analyzed in the following two ways:

a)A = (l + 1/10) (1 + 1/12) • 10 ese, and b)A = appr. 12 ese.

In other words, the area of the trapezoid is an almost round area number.

The occurrence of almost round area numbers in several proto-cunei-
form texts was explained in Friberg, AfO 44/45 (1997/98) (see now also
Friberg, MCTSC (2005), Sec. 1.1 c) as a consequence of the existence of a
"proto-literate field expansion procedure" used (for some unknown rea-
son) to construct fields of approximately a given area and with sides in ap-
proximately a given ratio. The simplest way to explain how the procedure
operates is to work through the details of its application in an explicit ex-
ample.As it happens, P.Rhind # 53 a can serve as just such an example!

^ _ ^ ^ 7S2'S4'S8'S

~~\ ' " \ _ u = 23 3' (khef)
£ 5°s "> 3°s 4 ' j f [ l ! r r > , = 7 2 ' (khet)

I 7 A, + / U + A , = 88. 8'
^ •— Q TI 1 Z J i S

8

Fig. 2.1.13. The full set of parameters for the striped triangle in P.Rhind# 53 a.

Suppose that a teacher wanted to construct a triangle with the area 88
{setat) and with its growth rate (that is, the ratio between its sides) equal to
5 10 (= 3/10). (His ulterior motive was, apparently, to divide the resulting
triangle into three stripes with the area of the second stripe equal to 2' 10
(= 3/5 )of the area of the first stripe, and with the area of the third stripe
equal to 1/10 of the combined area of the two first stripes.) If the teacher
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knew how to work with "metric algebra" of the kind which is richly repre-
sented in OB mathematical texts (cf. also P.Moscow ## 6-7, 17; Sec. 2.2 c
below), he could have solved his construction problem as follows:

If 1/2 • 1 • s = A = 88 (setat) and sll = / = 5 10,
then sq. 5 = 2 - i 4 - / = 5 3 - 5 {setat),
so that s = appr. 7 4', and / = appr. 24 6'.

However, if the teacher was not familiar with metric algebra, or if he chose
not work that way, he could instead use the following procedure:

Start with a smaller initial triangle with the sides in the right ratio,
say one with the length /j = 20 {khet) and the short side s^ = 6 {khet).
The area A] = 60 {setat), which is 28 {setat) less than the target area A = 88 {setat).
The area deficit 28 {setat) is nearly 1/2 ofAv

In order to eliminate nearly half this deficit, increase .$! by 1/4 of its length.
The front then increases from j j = 6 {khet) to s = 6 + 1/4 • 6 {khet) = 7 2' {khet),
and the area increases from Ai = 60 {setat) to A2 = 60 + 1/4 • 60 {setat) = 75 {setat).
The new area deficit is 13 {setat), which is about 1/6 of A2.
In order to eliminate most of this deficit, increase l\ by 1/6 of its length.
The length then increases from /) = 20 {khet) to / = 20 + 1/6 • 20 {khet) = 23 3' {khet),
and the area increases from A2 = 75 {setat) to A = 75 + 1/6 • 75 {setat) = 87 2' {setat).

(The purpose of the procedure seems to have been not exclusively to solve
a metric algebra problem relatively accurately, but rather to find a geomet-
ric figure with interesting, and not too simple data, to be used in the con-
struction of a series of mathematical assignments.)

5j = 6 khet
' -_________^ lx = 20 khet

s, A! = 60 setat^^^J^^=- Ax = 60 setat
• deficit 28 setat

h
" ----------_________̂ ^ 5 = 72 ' khet

. _c " -—. /, = 20 khet
s A7 = 75 setat ____-^=1 '

2 ^________- Ax = 15 setat
~~~ deficit 13 setat
h

— — 5 = 72 ' khet
_ _ ^ / = 23 3' khet

s A = 87 2' setat ^ Z=> A { = 8 7 T setat
___- " deficit 2' setat

Fig. 2.1.14. The field expansion procedure in the case of P.Rhind # 53 a.



56 Unexpected Links Between Egyptian and Babylonian Mathematics

After having determined the sides of the triangle in this way, the teacher
continued his construction by dividing the length 23 3' of the triangle into
three segment of lengths 8, 8 3', and 7, obviously with the intention of
dividing the triangle into three parts with sub-areas (approximately) equal
to 50, 30, and 8. (The construction was not completely successful, due to
the necessary approximations. This is why the sum of the three sub-areas
differs slightly from the area of the whole triangle.)

After this lengthy discussion of # 53 a, it remains to explain the mean-
ing of P.Rhind # 53 b, consisting of the following computations in the two
columns of text immediately under the drawing of the triangle (Fig. 2.1.7):

\ 1 4S 2' s sum 5S 2' s 8's
\ 2 9S TOofit l s

4 ' s 8 ' s 10 cubit(-strips)
2' s 2S 4 ' s 10 of it taken away, then this is the amount.

(\) 4' 1 8'g

There are two simple notational errors here: in the first column, 2's should
be 2'. In the second column, 1 8's should be ls 8's.

Apparently, what is going on here is that first the following area num-
ber is computed:

3 41 (khet) • 4 2' (khet) = (4S 2's +9S+ l s 8's) = 14S 2's 8's

In the text, the sum 14S 2's 8's is incorrectly written more like 5S 2's 8's. This
is either a simple copying error, or an error caused by the following kind
of incorrect addition in two steps:

4S + 9S + l s = 1 3S + l s = 5S (with 1 = 10s misread as ls).

Next, 1/10 is computed, strangely enough not of the incorrect value
5S 2's 8's, but of the correct value 14S 2's 8's.Finally, it is stated that this
tenth of the area is to be subtracted (presumably from the area).

It is clear that what is computed here, in the first part of the procedure,
is the area of a rectangle. It is also clear that that area is an almost round
area number, since

I = 42'khet = (! + !/&)• 4khet,
s = 3 4' khet = (1 + 1/12) • 3 khet,

A= 14S2'S8'S =appr. 15S.

The construction of the data for the rectangle in question by use of the field
expansion procedure is shown in Fig. 2.1.15 below.
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1 4 « ' 'A '
2 S '

_Ai I (1+1/8) •A1 ^ g I (1+1/12) Aj S

12 setat \, l327sem i H i 14 2'8 I

.11 i setat

s t = 3 khet Sj = 3 khet s = (1+1/12) • 3 khet
= 3 4' khet

Fig. 2.1.15. The field expansion procedure in the case of P.Rhind # 53 b.

Suppose that a student was asked to find a rectangle with the area (close
to) 15 setat and the short side (approximately) equal to 2' 4' (3/4) times the
long side. He could then start with a rectangle with the sides 4 and 3 khet
as a first approximation and use the field expansion procedure as in Fig.
2.1.15. Alternatively, he could use metric algebra to solve the system of
equations I • s = 15, 5 = 2' 4' • /. In the latter case, the result would be

s q . 5 = 1 5 • 2 ' 4 ' = 1 1 4 ' , s = s q r . 1 1 4 ' = a p p r . 3 4 ' 8 " , / = 3 4 ' 8 7 2 ' 4 ' - = 4 2 ' .

Thus, the use of metric algebra would yield nearly the same result as the
field expansion procedure!

P.Rhind # 53 b is only a fragment of a geometric exercise. The question
is missing, so there is no way of knowing why the preserved part of the text
states that 1/10 of the area should be subtracted from it. There may be some
connection with the subtraction problems in § 18 (DMP ## 54-55).

Four problems in P.Rhind § 21 (## 56-59) are concerned with the
seked, the inclination of the sides of a pyramid, measured as the ratio of
half the width to the height, and expressed as palms or fingers per cubit.
(In OB mathematical texts, the inclination of a wall, or the side of a canal,
etc., is sometimes called the 'feed'. It is measured, like the seked, as the
increase or decrease of the width for each cubit of vertical descent, and is
expressed in ninda, cubits, or fingers per cubit.) In P.Rhind # 56, the
height of a pyramid is 250 (cubits), the width of the square base 360
(cubits), and the seked 7 • 180/250 = 5 25 (fingers per cubit). In P.Rhind
# 57, where the reverse problem is considered, the width of the base and
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the seked are given, and the height of the pyramid is computed. The draw-
ings illustrating P.Rhind ## 56-59 show upright pictures of pyramids (see
Fig. 2.1.16 below, left). This is in contrast to OB mathematical texts,
where pictures of mud walls are rotated to the left. (See, most recently,
Friberg, MCTSC (2005), Fig. 10.2.1, an outline of the clay tablet MS 3052,
an interesting OB mathematical recombination text, where the first four
exercises are illustrated by drawings of trapezoids and triangles, meant to
represent rotated cross sections of mud walls.)

A 3i

Fig. 2.1.16. Drawings accompanying P.Rhind ## 56 and 60. A pyramid and a cone(?).

The single problem in P.Rhind § 22 (# 60) is concerned with the seked
of a 'pillar', probably meaning a circular cone, with the diameter 15
(cubits) at the base and the height 30 (cubits). Until recently, no OB math-
ematical texts were known that mentioned cones. However, now BM
96954 + BM 102366 + SE 93, three fragments of a large clay tablet from
Sippar, have been published. Several of the exercises in that text seem to
be dealing with whole or truncated cones. All three fragments are pub-
lished in hand copy, transliteration, and (incomplete) translation in
Robson, MMTC (1999) App. 3, but with no explanations or commentaries
offered in the case of the exercises dealing with cones. Instead, improved
transliterations and translations, and extensive commentaries to the exer-
cises in BM 96954+ dealing with whole or truncated cones, can be found
in Sec. 4.8e below. See, in particular, Fig. 4.8.5.
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2.1 e. Theme H: baking or brewing numbers (P.Rhind ## 69-78)

In this group of exercises, the basic notion is the pesu of (loaves of) bread.
The meaning of this term is somewhat elusive. Thus Chase, et al., RMP 1
(1927), 106, write that thepesu is "the number of loaves that one heqat will
make". Gillings, MTP (1982), 129, says that thepesu "is a measure of the
strengths of beer or bread, after either of them is made", and Robins and
Shute, RMP (1987), claim that "The bread might be more or less aerated
or otherwise expanded, and the beer more or less dilute; — . Hence the
pesu unit, which measures lack of quality ••• ."

In P.Rhind # 69, the first of this group of exercises, for instance, the
question is stated as follows:

Flour, 3h 2'f, heqat, made into 80 (units of) bread.
Let me know the amount of a unit of it in flour, let me know their pesu.

The answer, obtained through division of 80 by 3 2', is that the pesu is 22
3" 7 21 (units of 'bread' per heqat). Other values of thepesu mentioned in
this group of exercises are 12 3" 42T26 (# 70), 10 and 45 (#72), 10 and 15
(# 73), 5, 10, and 20 (# 74), 10, 20, and 30 (# 76), 5 (# 77), and 10 (# 78).
In P.Rhind ## 71 and 77-78 it is also supposed to be known that two jars
of beer of normal strength can be made out of 1 heqat of grain or flour,
which gives the beer a pesu equal to 2. It is also assumed to be known that
if the beer is diluted, then its pesu will be greater.

In Chase, et al, RMP 2 (1929) # 72, foot-note 4, it is mentioned that
"From later texts it appears that the full form of the phrase reads 'loaves
which in the baking are so many from the heqat\ or 'a des (jar) of beer of
a brewing: X from the heqaf". Hence, it may be appropriate to talk about
the "baking number" of bread or the "brewing number" of beer, as an
attempt to translate the term pesu.

Most of the pesu exercises are mathematically uninteresting, involving
nothing more advanced than simple divisions. An exception is P.Rhind #
76, which begins like this:

Another (question). Bread of 10, 1000, exchanged for a number of bread of 20 and
30. Let him hear.

What this vaguely phrased question means is that flour enough to make
1,000 units of bread of pesu 10 is to be used to make instead equal numbers



60 Unexpected Links Between Egyptian and Babylonian Mathematics

of units of bread of two different pesu values, 20 and 30. The solution pro-
cedure begins with two computations. The first computation shows that 20
30 = 2 2' • 30, so that the flour needed to make 1 unit of pesu 20 and one
unit of pesu 30 together is as much as that needed to make 2 1/2 units of
pesu 30. The next computation is the division 30 / 2 2' = 12, showing that
while 30 units of pesu 30 can be made out of 1 heqat of flour, only a 2 1/2
times smaller number, that is 12, units of pesu 20, and 12 of pesu 30 can
be made out of 1 heqat. The result can be described by saying that if 20 and
30 are two given baking numbers, then 12 is the corresponding "combined
baking number".

The solution procedure continues by stating that making 1,000 units of
pesu 10 needs 100 heqat of flour, and that 100 heqat of flour is enough to
make 1,200 units of pesu 12. Hence there is flour enough to make 1,200
units of pesu 20 and 1,200 of pesu 30. For verification, it is checked that
1,200 units of pesu 20 takes 60 heqat of flour, written as 2' 10h, meaning
1/2 • 100 + {heqat), and that 1,200 units of pesu 30 takes 40 heqat, written
as 4' \% 5h meaning 1/4 • 100 + 15 {heqat).

An indirect parallel to P.Rhind # 76 can be found in the OB mathemat-
ical recombination text YBC 4698 (Neugebauer, MKT 3 (1937), pi. 5), an
unprovenanced text belonging to Group 2 b (Friberg, RA 94 (2000), 164),
hence possibly a text from Ur. See Fig. 2.1.17 below.

Here is a transliteration and translation of the brief third exercise in this
text, merely a question without solution procedure or answer:

YBC 4698 § 2 a (# 3).

3 sila.ta i.sag / lb4n 2sila.ta i.gis /
1 gin ku.babbar si /
i.gis it i.sag / ib.si8-ma sam

3 sila good oil, 12 sila plain oil (per shekel),
1 shekel of silver is given.
Plain oil and good oil make equal and buy.

This is an example of a "combined market rate problem" (see Friberg, RIA
7 (1990) Sec. 5.6 i; and Friberg, MCTSC (2005), Sec. 7.2).
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obv. rev.
##1-5 ##6-9 ##13-17 ##10-14

(jlaUeaTna 1. Se gur 3" ie gut §4a § 7 ( ganba 3 ku6.a sila . Tg« ) § 4 e

lbE5e a.na maS .1 ! .»• « « - t a " ' ° ; 1 " 5 M 2 3" sila H. la . ta Urn-"
- • masen.nam V e t a b u r r a Se gar.gawm, 4 g l ^ • sUa bur.ta
' ! ! ; $ = = = = ku.diri en.nam ku6.a gar.gar-ma r ' d i r i en.narn

g ib S ^ S ^ ^ T V " 7 2'ginku.b.dit | e.6
 n e ku6.a.ne f y j ^ J ^

U«*taa-n a m = = = : : : : S , 54b ku6.a ib.si.-ma =====f^r § 4 f

b "nkub. s i 8sila.tabur.ta ^ H W * 1 , * ! ^ : §5

... .^sf :f=f - •• ??Fi &£#«.
, ma.naku.b. s. 2 s;la fe ^ fi_ ( a g u | k i n g a , r a 2 s ^ ^ ^ S »
an.b.r d g»»W» 7

ennamUm-ma guSkin gat. ta l ^ - ^ f ^ A 5
I i U w ^ J ! 5 - en.na.but.ta , na ^ ta ^ ^ T ^ 1 - ^ »«

^ ^ n a _ sam 8_J2la___-== m a . x gat.gat-mc I ib. si, giS-""
' — ~ " —̂  • 1 ma.na j sin I g a n b a ^ ^ j ^ j ^

dub 3. kam.ma

Fig. 2.1.17. YBC 4698. A recombination text dealing with prices and market rates.

OB texts with solutions to combined market rate problems are usually
in the form of a small hand tablet with a tabular array, in which the market
rates (units per shekel) for several commodities are listed in col. i, the cor-
responding unit prices (shekels per unit) in col. ii, the prices paid for N
units of each commodity in col. Hi, and the number N of units bought, the
same for all commodities, in col. iv. The number N is computed so that the
combined price paid will be a given amount of silver. Eight examples are
listed in Neugebauer and Sachs, MCT (1945), 1, without explanations.

In the case of YBC 4698 # 3, there are two market rates, 3 and 12 sila
(liters) per shekel, and the given amount of silver is 1 shekel. It can be
shown that the solution to this problem is that the price for 2;24 sila of
good oil is ;48 shekel, and the price for 2;24 sila of plain oil is ;12 shekel,
so that the combined price for 2;24 sila of each kind is 1 shekel.

There are no known OB parallels to the pesu problems in P.Rhind ##
69-78. The reason for the absence of such problems in the corpus of OB
mathematical texts may be that such OB texts with baking number prob-
lems were relatively uncommon and that no examples of clay tablets with
such problems have happened to be excavated. It is unlikely that such
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problems were no longer relevant in the society of the OB period.

It is interesting that (inverted) baking and brewing numbers seem to
have been so important in the proto-literate period in Mesopotamia that
among the very few known "metro-mathematical" school texts from this
period there is one that teaches how to operate with just such numbers. The
text in question is MSVO 4, 66 (Englund, MSVO 4 (1996), Friberg, JCS 51
(1999), 112), an important proto-cuneiform so-called bread-and-beer text
from Larsa (or possibly Uruk), dating from the Uruk III period, around
3000 BCE. See the hand copies in Figs. 2.1.18-19 below.

The obverse of this text contains two registers (horizontal columns) of
text. In the upper part of the first register, large numbers of rations of var-
ious sizes of bread are listed, together with their costs per unit in (barley)
flour. The proto-cuneiform sign for 'bread' seems to be a picture of a
beveled-rim bowl, of the kind which has been excavated in great numbers,
and which, according to Nissen, Damerow, Englund, ABk (1993), 14, can
be suspected of having been used for "half a daily barley ration". (See the
photo {op. cit.), Fig. 11.) In the lower part of the first register are recorded
separately the total costs for bread rations of each size. Thus, for instance,
in the first text box in the first register (text box i:l), 1 • 60 large bread
rations, at a cost of 1 M each of barley flour, have together a cost of 60 • M
= 2 d of barley flour. In the next text box (i:2), 1 • 120 bread rations at a
cost of 1/2 M = m2 each of barley flour have together a total cost of 120 •
m2 = 2 d. And so on. (The names of the units of the proto-literate system
of capacity measure are not known. For convenience, they can be given
names such as M, c, d, etc. The relative sizes of these units are fixed by the
following equations:

1D = 3C, l C = 1 0 d , l d = 6c, l c = 5M.

More about that below.) In the second register, large numbers of jars of
three kinds of beer are listed, together with the corresponding total costs in
barley flour. (The cost per jar in each case is assumed to be known.)

By convention, the reverse of a text like this contained the summaries,
or totals. In the present case, the lower register of the reverse contains the
totals of the various kinds of rations, together with the corresponding totals
of the costs. The upper register contains the grand total of the costs, plus
an extra item.
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• * i:5 i A t 3 i:2 iA obv.

jpOTjHa

\ ••• SS8 A9! b

« : 4 j«:3 " : 2 " : 1

Fig. 2.1.18. MSVO 4, 66, obv. A proto-literate bread-and-beer text (Uruk III).
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Fig. 2.1.19. MSKO 4, 66, rev. The totals of the bread-and-beer text.

That MSVO 4, 66 is a school text is suggested by the unusual circum-
stance that text box ivA on the reverse and text boxes iA and ii:3 on the
reverse have been left empty. These are the places where in normal admin-
istrative texts non-numerical information was recorded, such as personal
names, titles of officials, place names, etc.

The text is remarkable because it makes use of notations for numbers
belonging to four different proto-cuneiform number systems, namely
(non-positional) sexagesimal numbers (used to count jars of beer),
bisexagesimal numbers (used to count bread rations), and two variants of
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capacity numbers (dotted numbers used for quantities of flour, and slashed
numbers used for quantities of malt). In the sexagesimal number system,
there are signs for 1, 10, 60, 10 • 60, etc. In the bisexagesimal system there
are also signs for 2 • 60, 10 • 2 • 60, etc., but no sign for 10 • 60. The signs
used for capacity numbers are exhibited in the "factor-diagram" below,
which also gives information about both relative sizes and (conjectured)
absolute sizes of the main capacity units. Since it is not known what the
original names were for those units, they have here been given mnemo-
technically appropriate names, such as 'c' for a cup-shaped sign, 'd' for a
disk-shaped sign, ' C for a big cup-shaped sign, etc. (No Sumerian names
are known for the proto-cuneiform capacity units, for the reason that a dif-
ferent system of capacity measures was used in Sumerian cuneiform texts.)

m2

C D d C M >/Da

Qpc): — ^ - L - # ^ • _«- 0 _ L - <| ^ | 1/2M

3D 60 c 6 c 5M 1/5 c \ m 6

(appr. 25 1.) r£Ti

1/6 M

Fig. 2.1.20. Factor diagram for the proto-cuneiform system of capacity numbers.

As mentioned, there is an account of the cost in flour for large numbers
of bread rations of various sizes in the first register on the obverse of
MSVO 4, 66. It is, of course, much more likely that the rations were of dif-
ferent sizes, than that the loaves of bread were of different sizes, (in a sim-
ilar way, it is possible that some of the pesu problems concerned with
bread in theme H of P.Rhind ought to be reinterpreted as problems about
bread rations of different sizes rather than as problems about loaves of dif-
ferent sizes!) The proto-cuneiform bread rations in MSVO 4, 66 come in
six different sizes, 1 M (probably = appr. 5 liters, comparable with the
Egyptian heqat), m2 = 1/2 M, m3 = 1/3 M, m4 = 1/4 M, m5 = 1/5 M, and
bread) = 1/6 M. In MSVO 4, 66, there are relatively small numbers of
rations of the larger sizes, but 6,000 rations of the smallest size (bread)).
An obvious interpretation is that the great number of small bread) rations
were for ordinary workers, while the much smaller numbers of larger
rations were for various categories of overseers and officials.
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In the second register on the obverse, there is an account of the cost in
flour for large numbers of jars of beer. The beer comes in three different
strengths: the cost in flour for 3 • 60 jars of beer2 is 6 d = 6 • 30 M. Conse-
quently, the cost in flour for 1 jar of beer2 is 1 M. It can be shown in a sim-
ilar way that the cost in flour for 1 jar of beer3 is 1 m3 = 1/3 M.

The numbers appearing in MSVO 4, 66 were not randomly chosen.
Instead, they were the result of laborious computations. (For details, see
Friberg, JCS 51 (1999).) Thus, for instance, the total expense of flour for
all bread and beer rations, recorded in text box it 1 on the reverse, is

l C 2 D 9 d 4 c l M = 2 C - l c 4 M = appr. 2 C = 2 • 3 • 10 • 6 • 5 M = 30 • 60 M.

In other words, the total expense is very close to a large and round capac-
ity number. The total cost for just the bread rations of all sizes is given in
text boxes i: 1-2 on the reverse:

l D l d 5 c + l C 3 d 2 c = l C l D 5 d l c = appr. 1 C 1 D 5 d = 22 1/2 • 60 M,
which is 3/4 of 2 C.

The total cost for all the jars of beer, given in text box /: 2 on the reverse, is

1 D 4 d 3 c 1 M = appr. 1 D 5 d = 7 1/2 • 60 M,
which is 1/4 of 2 C.

And so on. As a matter of fact, the computations are so complex that there
can be no doubt that learning to account for the cost of bread and beer
rations was an important part of the mathematical education given to the
young scribes in the scribe schools that must have existed in large cities
like Uruk in the proto-literate period.

In the pre-Sargonic and Sargonic periods in Mesopotamia, around the
middle of the third millennium BCE, bread or bread rations of different
sizes were still mentioned in cuneiform texts (see the discussion in Blome,
Or 34/35 (1928), now referred to by the somewhat obscure phrase

n ninda ba.an.ne.m.du8 n bread (rations), the ban divided(?) in m (parts).

Here, the ban is a Sumerian capacity measure, equal to 6 or 10 sila
(depending on from where and from which period the text is), hence about
twice as much as an Egyptian heqat.

A good example is the Sargonic text fragment Thureau-Dangin, RTC
(1903) # 125, = 1st. O. 236. In the last column of that text, on the reverse,
the following totals of various kinds of ninda 'bread (rations)' are listed:
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[ ]
Total 36 ninda.gu, <the ban> divided(?) in 30. / Its flour 1 ban 2 sila (= 12 sila).
Total 12 sag.ninda, <the ban> divided(?) in 20. / Its flour 6 sila.
Total 2 sag.ninda, <the ban> divided(?) in 7 <2'>, /
and total 3 sag.ninda,<the ban> divided in 15. / Their strong flour 4 2/3 <sila>.

It is easy to check that the computations of the cost in flour are correct. It
is interesting to note that in this Sargonic text, just as in the proto-cunei-
form text MSVO 4, 66, there are many small rations and few big rations (36
of the smallest, 30.du8 , and only 2 of the biggest, 7 2'.du8).

iv iii rev.

i

[su.nigln]36n1nd,gu30.du8 W | ^ ^ f i |

zi.bi 1 (ban) 2 sila ffffjp _-Q~ \\ ̂  * g g ^ ^ H ^ I

su.nigin 12 sag.ninda 20.du8 | | f QCP Zflp^$H&^jlJ( pp ^_ tffi «T%,

zi.bi 6 sila SSIlZ^I^--^^^^S
sU.mgin 2 sag.ninda 7 <2'>.du8 L p C P ^ j > M ^ ^ - ^ ^

su.nigin 3 sag.ninda 15.du8 ^{ IXP a^4(^<'^^ S B - ^ f i J

zi.kal.bi4 3" <sila> 5 j ^ ^ ^ ̂ ^V^L^L

^ . i I, i . i • i - nrn...uT n _i — - i i . i u L L i . i u i i i • " *

Computations:

36 • 1/30 ban = 1 ban 2 sila

12- 1/20 ban = 6 sila

2 • 1/(7 1/2) ban = 2 3" sila

3 • 1/15 ban = 2 sila

Fig. 2.1.21. 1st. O 236. Bread (rations) of various sizes, and the cost in flour.

The notation ninda.gu 30 du 8 in this text is a direct parallel to 'bread
of pesu 30' in P.Rhind. Similarly, the other kinds of bread mentioned in
1st. O 236 are parallels to bread of pesu 20, 15, and 7 1/2.
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2.1 f. Theme I: a combined price problem {P.Rhind # 62)

This problem is about buying a bag filled with <equal> amounts of three
precious metals, gold, silver, and lead, for a given total price of 84 sha 'ty.
The price of gold is 12 sha 'ty per deben, that of silver 6 sha 'ty per deben,
and that of lead 3 sha 'ty per deben. This problem resembles the combined
pesu problem in # 76 but is mathematically simpler. In spite of its simplic-
ity, it is interesting because it is so artificial. Why would anyone want to
buy equal amounts of gold, silver, and lead? (Compare with the demotic
mathematical text P.carlsberg 30 # 2, a small fragment of an exercise,
which, according to the reconstruction in Sec. 3.5 b below, is a system of
four linear equations for four unknowns, called 'silver', 'gold', 'copper,
and 'lead'.)

The solution algorithm in # 62 proceeds, essentially, as follows:

The sum of 12, 6, and 3 sha'ty for 1 deben of gold, 1 deben of silver, and 1 deben of
lead is 21 sha'ty.
This goes 4 times in 84 sha'ty, so 4 {deben) is what is given of each metal.
The amount of gold is 4 times 12 = 48 (sha 'ty), that of silver is 24 (sha 'ty), and that
of lead is 12 (sha'ty). Sum 84 (sha'ty).

An OB (imperfectly) parallel text is YBC 4698 # 4, where iron (at that
time rare and very expensive) and gold are to be exchanged for silver:

YBC 4698 § 3 a (# 4). (See Fig. 2.1.17 above.)

1 3O.bi an.bar / 9.bi guskin / Its 1 30 iron, its 9 gold.
1 ma.na ku.babbar si / 1 mina of silver is given,
an.bar it guskin / Iron and gold,
1 gin-ma sam 1 shekel, then buy.

The text is vaguely formulated and without any known OB parallel.
The question seems to be that if iron and gold are 90 (sic!) and 9 times
more valuable than silver, and if 1 shekel of iron and gold together is
bought for 1 mina of silver, what are then the amounts of iron and gold,
respectively? The question can be reformulated (in modern terms) as a sys-
tem of linear equations. If a shekels is the weight of the iron and g shekels
the weight of the gold, then these equations are:

a + g= 1, 1 3 0 a + 9 • g= 1 00 .

Systems of linear equations of the same type are known from the pair of
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OB problem texts VAT 8389 and VAT 8391. There, such systems of equa-
tions are solved by use of a variant of the rule of false value. (See Friberg,
MCTSC (2005), Sec. 11.2 m: Fig. 11.2.14 left. See also Sec. 3.5 b below.)
The first step of the solution procedure is to find a partial solution, satisfy-
ing only the first of the two given equations. Thus, in the case of YBC 4698
# 4, the first step is to give a and g the initial false values

a* = g*=;30.

If these values are tried in the second equation the result is that

1 3 0 a * + 9 g * = 49;30,
which gives a deficit of 10;30 compared to the wanted value 1 00.

To decrease the deficit, g* is increased and a* decreased by the small
amount ;01. The result is that the deficit is decreased by a corresponding
amount, namely

;01 • (1 30 -9 )= 1;21 (a regular sexagesimal number with the reciprocal ;44 2640).

Hence, the whole deficit can be eliminated if g* is increased and a* de-
creased by the larger amount

;01 • 10;30- 1/1;21 = ;10 30 • ;44 26 40= ;07 46 40.

Therefore, the correct solution is that

a = ;37 46 40, g = ;22 13 20.

More precisely, the answer to the stated question is that the correct
amounts of iron and gold are

1/2 shekel 23 1/3 barley-corns of iron and 1/3 shekel 6 2/3 barley-corns of gold.

Note: YBC 4698 (Fig. 2.1.17 above) is a recombination text with a mixed
bag of exercises with the common topic "prices and market rates", all
probably directly or indirectly borrowed from several original, well orga-
nized large theme texts. YBC 4698 # 3 has already been mentioned. It is a
combined market rate exercise, where equal quantities of two kinds of oil
are bought for a given amount of silver. YBC 4698 # 4 is the exercise
where unequal quantities of iron and gold with a given total weight are ex-
changed for a given amount of silver. It is likely that the original theme text
from which YBC 4698 # 4 was borrowed contained also exercises where
equal quantities of iron and gold (or some other combination of metals)
were bought for a given amount of silver. An exercise of that kind would
be a direct parallel to the combined price problem in P.Rhind § 24.
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2.2. Themes in P.Moscow, a Smaller Hieratic Mathematical Papyrus

2.2 a. P.Moscow. Another Egyptian mathematical recombination text

P.Moscow E 4676 is a hieratic mathematical text written on a long but nar-
row papyrus roll. It can be dated to the 13th Dynasty. Hence it is older than
P.Rhind, but possibly younger than the text of which P.Rhind claims to be
a copy. In the following table of contents for P.Moscow, the ordering of
the exercises into nine paragraphs of related exercises is the same as in the
original edition of the papyrus, in Struve, QSA 1 (1930).

P.Moscow: Contents.

§ 1 A cedar mast (a damaged exercise; its meaning not clear) # 3
§ 2 a-j Baking and brewing numbers ## 5, 8-9, 12-13, 15-16, 20, 22, 24
§3 Mixed baking numbers #21
§ 4 a Two work norms for pieces of wood # 11
§ 4 b Combined work norms (for making sandals) # 23
§ 5 a-b Division exercises: a) 1 2'• a + 4 = 10, b) a + 2 a = 9 ##19,25
§ 6 The area of a band of cloth? # 18
§ 7 a-c Metric algebra: two rectangles and a triangle ## 6-7, 17
§ 8 The volume of a truncated pyramid # 14
§ 9 a-b The area of a) a triangle, b) a semicircle? ##4, 10

Exercises from four of these paragraphs are of interest in the present
discussion, namely § 4 b (combined work norms), § 7 a-c (metric algebra),
§ 8 (the volume of a truncated pyramid), § 9 b (the area of a semicircle?).

2.2 b. P.Moscow # 23: A combined work norm

According to Couchoud, ME (1993), 171, the question in this exercise can
be explained as follows:

A shoemaker can cut 10 pairs of sandals in a day, or he can finish 5 pairs in a day.

If he both cuts and finishes, how many pairs can he make in a day?

The solution is (essentially) the following:

To make 10 pairs takes him 3 days (1 for the cutting, 2 for the finishing).

Since 3 goes 3 3' times in 10, he can make 3 3' pairs in a day.

For OB parallels to this exercise, see the general discussion of "com-
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bined work norms" in Friberg, RIA 7 (1990) Sec. 5.6 h. Detailed discus-
sions of specific examples can be found in Friberg, ChV (2001) Sec. 6:
Combined work norms for work with bricks or mud, and § 8: Combined
work norms for excavations or for the maintenance of canals. Most
recently, combined work norms were discussed in Friberg, MCTSC
(2005), Sec. 7.3 b, in the commentary to MS 2221. On the obverse of that
text (see Fig. 2.2.1) are computed the "carrying numbers" for three kinds
of bricks, and for mud or earth. On the reverse, there is a tabular array:

MS 2221 rev.

1 Tl2 I 148 I 9
120 16 148 6 45
2 40 32 148 3!22 30

The numbers recorded in this tabular array are the data for a combined
work norm problem. It is helpful to note that the three numbers 9,6 45. and
3 22 30 in the last column of the array are the carrying numbers computed
on the obverse of the tablet. Here follows an expanded form of the tabular
array, with detailed information about what is counted in each case:

carrying 9 • 60 1/5 of 1/5 of carrying numbers
bricks over 30 n. the time the bricks

1 man-day ;12 man-day 148 bricks 9 sixties-30 n.
l;20 man-day ;16 man-day 148 bricks 6;45 sixties-30 n.
2;40 man-days ;32 man-day 148 bricks 3;22 30 sixties-30 n.

The three carrying numbers 9, 6 45, and 3 22 30 have to be interpreted
as 9 00, 6 45, and 3 22;30 bricks • 30 ninda. What they mean is that car-
rying 9 00 rectangular bricks, or 6 45 half square bricks, or 3 22 1/2 square
bricks over a standard distance of 30 ninda (180 meters) is the daily work
norm for one man. Inversely, it takes a man 1 day to carry 9 00 rectangular
bricks the standard distance, it takes him l;20 = 1 1/3 day to carry as many
half square bricks the same distance, and it takes him 2;40 = 2 1/3 days to
carry as many square bricks. The numbers 1, 1 20, and 2 40 are recorded
in the first column of the tabular array.

To carry 9 00 bricks of each kind over the standard distance of 30
ninda takes a man 1 + l;20 + 2;40 = 5 days. Therefore, in one day a man
can carry 9 00/5 = 1 48 bricks of each kind 30 ninda, if he spends 1/5 =12/
60 of the day carrying rectangular bricks, l;20/5 = 16/60 of the day carry-
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ing half square bricks, and 2;40/5 = 32/60 of the day carrying square
bricks. This is the explanation for the numbers 1 48 in the third column of
the array, and for the numbers 12, 16, and 32 in the second column.

, f ' t *"T-~ . ££*A ^^ (l 3°2 ~" N

^ | | H ^ H 9 H 3 H M H H H H \ > erased
VR^^^BB^^^&YrBBr^^^&M V .''used J
• - -:Wv-.tU^r.^"-*"-." V__ '

3 cm

i i

Fig. 2.2.1. MS 2221, rev.: A combined work norm for carrying three kinds of bricks.

2.2 c. P.Moscow ## 6-7,17: Metric algebra
In these three exercises, the area and the ratio of the width to the length are
given for either a rectangle or a triangle. In all three cases, the solution pro-
cedure is the same: The length is computed by use of the rule of false value,
and when the length is known, it is easy to compute also the width. The
most interesting of the three exercises is P.Moscow # 17.

i ^>*u r 4:

i - 4 t 2 ^ 4 i
! \2 st \ \ ;
'^J ^ t Jr2 !-4 tjimdlh k n b t j ^ w _ _ _ J

Fig. 2.2.2. P.Moscow # 17 (detail). A triangle with two sets of associated numbers.

Here is a rough translation of the text of # 17 (cf. Couchoud, EM
(1993), 48, Imhausen, AA (2003), 334):

Method of calculating a triangle. If it is said to you:

A triangle of 20s in field, and as for what you set as length you have 3' T5 as width.

You double the 20s, it makes 40. You count with 3' T5 to find 1. It makes 2 2' times.
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You count 40 times 2 2', it makes 100. You count the comer (square root), it makes 10.

Look, this 10 is the length.

You count 3' 15 of 10, it makes 4. Look, this 4 is the width.

You have found correctly.

What this means is that if the area A = I • w of a triangle is 20 setat = 2,000
cubit strips, and if the ratio of the width to the length is wll -f= 3' 15 (=
2/5), then 2 A = 40 {setat), and 1//= 2 2' (= 5/2). Hence,

sq. /=1//-2 A = 2 2'-40 = 100, so that / = 10, and w = 3' T5 • 10 = 4.

The steps of the computation are repeated in the drawing, where the
number '2' = 2 thcs (2 1,000-cubit-strips) = 20s (20 setat) inside the triangle
indicates the area. The numbers 1 and 3' 15 written near the sides of the
triangle indicate the relative lengths (false values for the length and the
width), while the numbers l t (= 10) and 4 beside them indicate the true
length and the true width. There is (probably) a brief note that 2 times the
area = 4t (- 40), and, finally, the explicit computation of 2 2' • 40 = 100 and
ofsqr. 100 = 10.

An OB round hand tablet with a close parallel to the drawing in P.Mos-
cow # 17 is YBC 11126. Its drawing of a trapezoid was published in Neu-
gebauer and Sachs, MCT (1945), 44.

/15 fT^fr^]7 3 01
X ^ ^ 22 30 1

\ ^ ; il 15/
\ ^ 30 ; /

\ T \ 73() /
Fig. 2.2.3. YBC 11126. A trapezoid with two sets of associated numbers.

In this text, there is a drawing of a trapezoid. The area of the trapezoid is
indicated by the number 1 41 15 written inside the trapezoid. The false
lengths 1, 15, and 7 30, written along the sides of the trapezoid probably
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were meant to indicate that the "upper front" sa and the "lower front" sk of
the trapezoid were equal to ;15 (1/4) and ;07 30 (1/8) of the length /, re-
spectively. Consequently, the true length of / could be computed in the fol-
lowing way:

If the false length is 1 00, then the false fronts are 15 and 7;30.

Hence, he false area is 1 00 • (15 + 7;30)/2 = 22 30/2 = 11 15.

The true area is 141 15, which is 9 times more, and 9 is the square of 3.

Therefore, the true length is 3 • 100 = 3 00, and

the true fronts are 3 • 15 = 45 and 3 • 7;30 = 22;30.

It is possible that the erasures on the tablet conceal some details of this
computation. Anyway, after the computation, the true values ' 3 ' , '45', and
'22 30' were recorded on the tablet close to the false values ' 1', '7 30', and
'15', just as in P.Moscow # 17 (Fig. 2.2.2) the true values 10 and 4 are re-
corded close to the false values 1 and 3' 15.

Another OB parallel to P.Moscow # 17 is exercise # 1 in the large theme
text IM 121613 (Friberg and Al-Rawi (forthcoming)).

IM 121613 # 1.

1 3" us sag.ki
16§e asas a.sa-lamab-ni

2 us u sag.ki / mi-nu
za.e

3 1 us 40 3"-su I su-ta-ki-il-ma
40 a.sa sa-ar-ra-am ta-mar I

4 igi 40 a.sa sa-ar-ri-im dug

5 a-na 10 a.sa / gi.na i-si-ma 15 ta-mar
ba.sig-e 15 su-li-ma 30 ta-mar

6 30 a-na 1 u 40 / ma-ni-a-tim i-ta-as-si-ma
7 30 us u 20 sag.ki / ta-mar

ki-a-am ne-pe-sum

2/3 of the length (is) the front.
1 ese (is) a field I built.
Length and front (are) what?
You:
1, the length, (and) 40, its 2/3, let eat each other, then
40, the false field, you see.
The opposite of 40, the false field, resolve,
to 10, the true field, raise (it), then 15 you see.
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The equalside of 15 let come up, 30 you see.
30 to 1 and 40, your numbers, always raise, then
30, the length, and 20, the front, you see.
Such is your doing.

In this exercise, the front s of a rectangle is 2/3 of the length /, while the
area of the rectangle is 1 ese 'rope' (= 10 00 sq. ninda). The solution pro-
cedure is essentially the same as the solution procedure in P.Moscow # 17.
First, it is assumed that the length is 1 and the front ;40. Then the corre-
sponding 'false' area is ;40. To get the true area one has to multiply this
false area by 15 00 (sq. ninda), the "quadratic correction factor". The
square root of this quadratic correction factor is the "linear correction fac-
tor" 30 (ninda). Therefore, the (true) length is 1 • 30 (ninda) = 30 (nin-
da), and the (true) front is ;40 • 30 (ninda) = 20 (ninda).

It has been shown by H0yrup (see, most recently, H0yrup, LWS (2002))
that OB mathematicians used geometric models in order to visualize and
explain what we would call abstract or algebraic manipulations with qua-
dratic equations or, as here, rectangular-linear systems of equations. Con-
ceivably, the geometric model for the solution procedure in IM 121613 #
1 may have been something like this:

1 • / igi 1 • 1 • / = /

a
~ o

~ A = / - s = lOOOsq. n. II ^

* A'=l-;40=;40 § # i f " <$^V d-

I 2 . •*>.»# °
?- <•' ,V £

in

Fig. 2.2.4. A geometric model for the solution procedure in IM 121613 # 1. 16

2.2 d. P.Moscow # 14: The volume of a truncated pyramid

This famous exercise contains a correct computation of the volume of a
truncated pyramid. In the text, a miniature drawing of a trapezoid appears
instead of the (unknown) Egyptian name for a truncated pyramid. A larger
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trapezoid of the same shape appears below the text, in a drawing illustrat-
ing the exercise. The pyramid has a square base of side a - '4', a square
top of side b = '2', and the height '6'. In the text of the exercise, the volume
is computed as follows:

V= (sq. a + 2 • a + sq. b) • 3' • h = (16 + 8 + 4) • 2 = 28 • 2 = 56.

(The mistake of doubling a instead of multiplying a with b = 2 is a kind of
harmless error that can be encountered also in OB mathematical texts.)

In the drawing below the text, the computation is repeated. First, the
given numbers, 2 for the side of the top, 6 for the height, and 4 for the side
of the base are recorded above, inside, and below the trapezoid represent-
ing the truncated pyramid. (The inaccurate, two-dimensional picture of the
three-dimensional truncated pyramid can be compared with equally inept
pictures of three-dimensional objects in OB mathematical texts. See Frib-
erg, RIA 7 (1990) Sec. 5.5 e.) The computation begins with the words
'square 4' after the number 2 above the drawing, with the words 'square
16' below the number 4 below the drawing, and with the multiplication
2-4 = 8 next to 4 and its square. The sum of 4, 16, and 8 is recorded as
'sum 28' to the right. In the last part of the computation, beside the draw-
ing, there are two multiplications, h/3 = (6 •) 3' = 2, and V= 2 • 28 = 56.

Note that it is not clear what the intended size of the pyramid actually
was. If the lengths were measured in cubits, then the pyramid was very
small, with a side at the base of only 4 cubits (appr. 2 meters) and a height

16. Cf. the following insightful commentary by Peet, BJRL 15(1931), 421 to the exercise
P.Moscow # 6, long before the invention of the terms "naive geometry" and "metric alge-
bra": "Here we are to find the sides of a rectangle of area 12, given that one side is 3/4 of

the other. Stated in the form of an equation this would be 3/4 x2 = 12, where the sides are x
and 3/4 x. The Egyptian, however, uses no x and approaches the question graphically (Fig.
1). He sees that had the figure been a square whose side is the longer of the two sides of the
given rectangle it would be 4/3 times as large, 4/3 being the reciprocal of 3/4. Such a square
he proceeds to construct. To get the reciprocal of 3/4 he divides unity by it; result 1 1/3.
Then he multiplies the given area 12 by 1 1/3, getting 16 for the area of the square. The
square root of this, namely 4, will be the longer side required, and the other will be got by
taking 3/4 of this. / This solution involves no algebra, nor even the use of a trial number,
and the only assumption made is that if we have a rectangle, and we multiply one of its sides
by k, leaving the other side constant, the area will also be multiplied by k—a theorem which
follows at once from the formula for the area of a rectangle, i.e., from the conception of a
square measure."



76 Unexpected Links Between Egyptian and Babylonian Mathematics

of 6 cubits (appr. 3 meters). However, if the lengths were measured in khet
(= 100 cubits), then the pyramid was very big, with a side at the base of
400 cubits (appr. 200 meters) and a height of 600 cubits (appr. 300
meters)! This can be compared with Khufu's pyramid, for which the side
at the base is 230 meters and the height (originally) 145 meters.

Fig. 2.2.5. P.Moscow # 14 (detail). A truncated pyramid, with associated numbers.

Since the publication of P.Moscow by Struve in 1930, a great number
of authors have tried to explain how it was possible for Egyptian mathe-
maticians to find the correct expression for the volume of a truncated
pyramid, all of them assuming that this expression was not known in Baby-
lonian mathematics. (See, for instance, Clagett, AES 3 (1999), 83-90 and
Figs. IV.9A-F.)

The situation has now been reversed, with the publication of three sub-
stantial fragments (BM 96954 + BM 102366 + SE 93) of a large OB text
from Sippar with mixed problems about both whole and truncated pyra-
mids and cones. (See Friberg, PCHM 6 (1996), Robson, MMTC (1999),
App. 3, and for details Sec. 4.8 f below.) In that text, § 1 originally con-
tained 14 exercises concerned with a roof-like "ridge pyramid" with a rect-
angular base, four sloping sides of equal inclinations, and a linear "ridge"
instead of a single vertex. The ridge pyramid is called a 'granary' and is of
a considerable size. Its rectangular base has a length of 10 ninda (60
meters) and a front of 6 ninda, the ridge is 4 ninda long, and the height
measures 48 cubits (24 meters). The circular cones considered in § 4 are
even more impressive, with a height of 1 00 (= 60) cubits and a circumfer-
ence at the base equal to 30 ninda. The volumes of all pyramids and cones
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appearing in the text are correctly computed. In § 1, the grain content of
the ridge pyramid is also correctly computed, in terms of a sila measure
chosen so that 1 volume-sar (=1 sq. ninda • 1 cubit) contains 1 30 (= 90)
gur of 5 00 (= 300) sila. This is a special sila measure, about 2/3 liter,
with the "storing number" 7 30 (00), apparently used only in connection
with granaries.

In the first preserved exercise of BM 96954+, the ridge pyramid with
the dimensions mentioned above is truncated at mid-height. The computa-
tion of the volume and grain content of the truncated ridge pyramid begins
with the computation of the growth rate of the sides, which is found to be

/= 6 ninda/48 cubits = ;07 30 ninda/cubit.

Next, it is shown that the rectangular top of the truncated pyramid has a
length of 7 ninda and a front of 3 ninda. Only a few words of the actual
computation of the volume of the truncated ridge pyramid are preserved,
yet it is clear how that volume must have been computed (see again Sec.
4.8e below). The correct expression for the volume of a truncated ridge
pyramid can easily be deduced from the well known expression for the
volume of a pyramid with a square base. It is as follows:

Let / and s be the length and front of the rectangular base of a truncated ridge pyramid,

let T and s' be the length and front of its rectangular top, and let h' be its height.

Then the volume is [(/ • s + V • s') + (I • s' + I' • s)/2] • h'/3.

It is easy to check that this complicated expression is reduced to the famil-
iar expression for the volume of a truncated pyramid in the special case
when I = s and / ' = s'.

Much more can be said about this subject. The reader is referred to
Friberg, PCHM 6 (1996) for an exhaustive survey of computations involv-
ing pyramids and cones in ancient Babylonian, Greek, Chinese, and Indian
mathematical texts, and, in particular, for a discussion of proofs or deriva-
tions of the correct expression for the volume of a pyramid in an OB math-
ematical text (TMS 14), in Euclid's Elements, Book XII, and in Liu Hui's
commentary to Jiu Zhang Suan Shu, Book 5.

2.2 e. P.Moscow # 10: The area of a semicircle(?)
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Here is a rough translation of the text of this puzzling exercise:

Method of calculating a basket. /
If he says to you: A basket <with 9>? of mouth / and 4 2' of X.
Oh, / let me know its field.
You calculate / 9 of 9 because as for the basket / it is 2' of a Y. It becomes 1. /
You calculate the remainder as 8. / You calculate 9 of 8, / it becomes 3" 6' Ti3.
You calculate / the remainder of this 8 after / this 3" 6' T8. It becomes 7 9./
You calculate 7 9 times 4 2'. / It becomes 32. Look, this is its field! /
You have found correctly.

There are several unfortunate circumstances that make it difficult to
establish the exact meaning of this text: a) There seems to be a number
missing in line 2; it is tentatively restored here as 9' (following a sugges-
tion in Peet, JEA 17 (1931)). b) The correct translation of the word here
called X is not known, c) The word here called Y is only partly preserved.
It seems to end with a determinative for a round object, d) It is not clear
which object is referred to by the term nbt 'basket'.

All these uncertainties have led to conflicting opinions about the mean-
ing of the text. See Clagett; AES 3 (1999), 91-93 and 231-234, footnotes
18 and 19, for an account of various interpretation attempts, all accompa-
nied by their respective arguments and counter-arguments. Thus, it has
been suggested that the 'basket' is a hemisphere (half an egg), or a semi-
cylinder, or the round top of a cylinder (a granary). In either case, it would
have been an astonishing feat of an Egyptian mathematician to be able to
find a correct expression for the area of such a curved surface.

The simplest interpretation, that the 'basket' in P.Moscow # 10 may be
a semicircle was one of two alternative interpretations suggested in Peet
{op. cit.). This suggestion has been uniformly rejected by other commen-
tators. See, for instance, Clagett's objection {op. cit.), 234, footnote 19: "I
have not taken seriously his (i. e. Peet's) reconstruction of the problem as
determining the area of a semicircle, since a semicircle as a flat surface can
hardly be considered as a "basket" ••• ". Still, an Egyptian picture of a bas-
ket would evidently be a semicircle (since three-dimensional objects were
depicted as two-dimensional, as for instance the truncated pyramid in
P.Moscow # 14), and the hieratic or hieroglyphic representations of the
word 'basket' were pictures of semicircles followed by a phonetic comple-
ment. See lines 1-3 of the text in Fig. 2.2.6 below.17
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(A photo of the text and a hieroglyphic transliteration can be found in
Struve, QSA 1 (1930).)

; tp n irt nbt

mi dd n.k ̂ nbt m tp r= ;

; r 4 2' m cdw hJw

; di.krh.i vtjt^ s ir-hivi

.' ir.k 9 n \iV' jit ntt ir nbt
2' pw n iijr | hpr 1

; ..; \.^J "l W..̂  ,..;

Fig. 2.2.6. P.Moscow # 10 (detail). Three instances of the word nbt 'basket'.

The computation of the area of the 'basket' in P.Moscow # 10 proceeds
as follows:

l /9of9=l, 9 - 1 = 8 .

1/9 of 8 = 3" & 18, 8-3"6'T8 = 79.
7 9 • 4 2' = 32.

Thus, if the object of the exercise was to compute the area of a semicircle
of diameter d - 9 (khet) and "thickness" (or whichever term is used) d/2 =
4 1/2 (khet), then it is clear that the area of the semicircle was computed as

A = [d • (1 - 1/9) • (1 - 1/9)] • d/2.

Note that an alternative way of expressing the area of a semicircle would
be as one half of the expression for the area of a circle used in P.Rhind ##
41-43 and 48, that is, as

17. Hoffmann, ZAS 123 (1996) is thinking along the same lines, when he writes "In the
demotic mathematical texts, however, the word denotes a circle segment, that is a two-di-
mensional object. It is likely that the changed meaning of the word is due to the form of the
nb-sign in the hieroglyphic script: it shows the basket seen from the side, which makes it
look like a circle segment." (My translation.) See P.Cairo # 36, where the word for 'circle
segment' (outside an inscribed equilateral triangle) is spdt nby, 'triangle basket', P.Cairo
# 37, where the word for 'circle segment' (outside an inscribed square) is nby 'basket', and
P.Cairo # 38, where the chord forming the side of a circle segment is called hr nby 'over
the basket'. (Cf. the glossary in Kaplony-Heckel's review, OLZ76 (1981) of Parker, DMP
(1972).)
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A = [d • (1 - 1/9)] • [d • (1 - 1/9)] • 1/2.

The two expressions are, of course, mathematically equivalent, but the one
used in P.Moscow # 10 has the advantage of letting the thickness (height)
of the semicircle play a role in the computation.

d

\ d-tprl 'mouth'

\ dl2 /
\ / d/2=cd(w) (?)

nbt 'basket' ^ \ ^ ^ ^ ^ /

Fig. 2.2.7. Suggested explanation of three terms used in P.Moscow #10.

Several items in OB tables of constants show that Babylonian mathe-
maticians knew three different ways of computing the area of a semicircle
(cf. the excerpts from the OB tables of constants NSd and NSe in Sec. 2.1
d above):

A = ;10 • sq. a (where a is the arc of the semicircle)
A = ;15 • a • d{where d is the tallu 'transversal' of the semicircle, d = ;40 • a)
A = ;45 • d • p(where p is the pirku 'crossline' of the semicircle, p = ;20 • a)

(In the OB table of constants BR = Bruins and Rutten, TMS 3 (1961),
three constants are listed for each one of a series of different geometric fig-
ures, one constant for the area, one for the dal or tallu 'transversal', and
one for the pirku 'crossline'. The crossline is in all cases orthogonal to the
transversal.) Note that in Babylonian mathematics the 'crossline' was not
thought of as a radius in general, but as the half-diameter orthogonal to the
diameter.

It is not known how the arc of a circle or semicircle was related to the
diameter in Egyptian "hieratic" mathematics.

Semicircles appear in two OB mathematical texts, successfully inter-
preted for the first time in Muroi, SG 143 (1994). Thus, Muroi showed that
in MLC 1354 (Neugebauer and Sachs, MCT (1945), 56), an exercise illus-
trated by a drawing of a semicircle, the arc a of the semicircle was com-
puted as the solution to the strange quadratic equation

;15 • a • (;40 • a - 5) = 1 52;30 = a . s a l u l , 'the false area'(« = 30)
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The other text discussed in Muroi (op. cit.) is BM 85210, a fragment of a
very long exercise, in which the following three constants for a semicircle
are repeatedly mentioned:

igi.6.gal the reciprocal of 6 (=; 10)
15 igi.gub.ba 15, the constant
1 30 bal gan.u^sakar l;30, the ratio of a crescent-field'(the reciprocal of ;40).

The first two of these are constants for the area of a semicircle, the third
stands for the arc of a semicircle as a multiple of the diameter.

2.3. Hieratic Mathematical Papyrus Fragments

2.3 a. P.Berlin 6619 # 1: Metric algebra

P.Berlin 6619 (Schack-Schackenburg, ZAS 38 (1900)) consists of two
papyrus fragments, of about the same age as P.Moscow. Here is a rough
summary of the exercise on the obverse of the larger of the two fragments
(cf. the suggested reconstructions of the text in Couchoud, ME (1993), 132
and Imhausen, AA (2003), 358, and see the copy of the text in Clagett, AES
3 (1999), 416):

Two quantities are given, one is 2' 4' of the other.
The sum of the squares with these quantities as side is 100.
Which are the quantisties?
Take a square with 1 as its side. Then the other square has 2' 4' as its side.
The area of the first square is 1, and the area of the second square is 2' 16.
The sum of the areas is 1 2' T6 (in the text by mistake written as 1 2' 4' JE).
The corner (= the square root) of this sum is 1 4', and the corner of 100 is 10.
You divide this 10 with this 1 4'.
The result is 8, the first quantity.
You multiply 8 with 2' 4', the result is 6, the other quantity.

Clearly, what is going on here is that the rule of false value is used in order
to compute the solution to the following quadratic-linear system of equa-
tions:

sq. a + sq. b = 100, b = a • 2' 4'.

The solution is found to be a = 8, b = 6, which is correct, since sq. 8 + sq.
6 = 64 + 36 = 100.

This exercise is interesting in several ways. It shows that Egyptian stu-
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dents of mathematics were supposed to be able to compute square roots
(actually squaresides, that is sides of squares). In the present case, the
square roots can have been computed by use of the OB squareside rule, in-
correctly known under the name of "Heron's rule", although frequently
used in OB mathematics long before the time of Heron:

sqr. 1 2' T6 = appr. 1 + 2' 16 / (2 • 1) = appr. 1 4'.

Verification: 1 4' • 1 41 = 1 4' + 4' T6 = 1 2' T6.

The choice of data in the exercise is interesting, because it shows that
Egyptian mathematicians knew that sq. 6 + sq. 8 = sq. 10. Besides, what
can be the origin of a mathematical problem of this type, other than an
application of the "diagonal rule" which says that the square on the diag-
onal of a rectangle is equal to the sum of the squares on the length and the
width of the rectangle. This rule was well known and thoroughly under-
stood in OB mathematics. See the thorough discussion in Friberg, MCTSC
(2004), App. 7 of the famous table text Plimpton 322 and of other appli-
cations of the diagonal rule in OB mathematical texts. (Euclid's Elements
1:47 is a Greek reformulation of this OB rule in terms of the sides of a right-
angled triangle.)

false length 1
1 false width 2'4' (=3/4)

: false length squared 1
1 false width squared 2'16_(=9/16)

~~y sum of false squares 1 2'16 (=_25/16)
12 ^ \ " / false diagonal sqs. 1 2'16 = 1 4'
™ " y / \ ^ true diagonal sqs. 100=10

_. k— pj correction factor 10/(1 4') = 8
^ V f o ^ true length 8-1 = 8

N-'tN * true width 8 • 2 '4 '= 6

Fig. 2.3.1. A geometric model for the metric algebra problem in P. Be din 6619 # 1.

As mentioned already, it has been shown by H0yrup (see, for instance,
H0yrup, LWS (2002) Sec. IV) that OB mathematicians used geometric
models for their visualization of quadratic equations. If Egyptian mathe-
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maticians relied on geometric models, too, then their model for the prob-
lem in P.Berlin 6619 # 1 may have been a figure like the one in Fig. 2.3.1.

An OB parallel to P.Berlin 6619 # 1 is exercise # 13 in BM 13901
(Neugebauer, MKT3 (1937), 1]) a large OB theme text with 24 exercises:

BM 13901 # 13.

1 a.sa sita mi-it-l^a-ra-ti-ia ak-mur-ma
28 20/

2 mi-it-har-tum ra-bi-a-at mi-ha-ar-tim I
3 4 it 1 ta-la-pa-at
4 4 u 4 tu-us-ta-kal 16 /

1 u 1 tu-us-ta-ka\ <1>
1 u 16 ta-ka-mar-ma 1 7 /

5 igi 17 u-la ip-pa-ta-ar
6 mi-nam a-na 17 lu-us-ku-un I sa 28 20 i-na-di-nam

1 4 O . e l O i b . s i 8 /
7 10 a-/ja 4 ta-na-si-ma 40 mi-it-har-tum is-ti-a-at I
8 10 a-na 1 ta-na-si-ma. 10 mi-it-har-tum sa-ni-tum

The fields of my two equalsides I added together: 28 20.
Equalside is a fourth of equalside.
4 and 1 you write down.
4 and 4 you let eat each other, 16.
1 and 1 you let eat each other, <1>.
1 and 16 you add together: 17.
The opposite of 17 does not resolve.
What to 17 shall I set, so that 28 20 it will give me?
1 40, (which) makes 10 equalsided.
10 to 4 you raise: 40, one equalside.
10 to 1 you raise: 10, the second equalside.

In this exercise, the rule of false value is used to compute the solution
to the system of equations

sq. a + sq. b = 28 20, b = a/4.

If a = 4, then b = 1, and the sum of the squares of 4 and 1 is 17. Since 17
is not a regular sexagesimal number, its reciprocal cannot be computed.
Nevertheless, 17 goes 1 40 times into 28 20, and sqr. 1 40 = 10. Hence, the
true values of a and b are 10 times the false values 4 and 1.

This solution procedure is identical with the one in P.Berlin 6619 # 1.

Another OB parallel to P.Berlin 6619 # 1 is the reverse of the round
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hand tablet UET 6/2 274 (Friberg, RA 94 (2000) § 2e), with numbers
arranged in several rows and four columns.

A n 3 3° i-2 rs \ ^ ^ f nr^<r?f \
( » ] 3- r5 r r ^ \ff

Fig. 2.3.2. UET 6/2 214, rev. A tabular array for a quadratic-linear system of equations.

This tabular array of numbers gives in a brief but translucent form the
solution algorithm for the following quadratic-linear system of equations:

sq. a + sq. b - 12 30 (00), b = all.

The solution procedure begins in col. i with the false values a = l,b =
1. These false values satisfy the second equation, but not the first, since sq.
a = 49, sq. b = 1, as noted in col. ii, so that sq. a + sq. b = 50, instead of 12
30. The false value 50 is noted in the lower right part of the array, and
beside it is noted its reciprocal, 1 12 (actually ;01 12). The next step in the
solution algorithm is to multiply 12 30 (00) by ;01 12, which is the same
as dividing 12 30 (00) by 50. The result is 15 (00). The squareside of 15
(00) is 30, which is the "correction factor" in this application of the rule of
false value. The two numbers 15 and 30 are recorded at the bottom of the
tabular array.

Next, the false values 7 and 1 are multiplied with the correction factor
30. The result is the true values, 7 • 30 = 3 30 and 1 • 30 = 30, recorded in
col. Hi. This is the solution to the stated system of equations. However, the
procedure continues with a verification of the result. Thus, in col. iv are
recorded the squares 12 15 (00) and 15 (00) of the computed values. It is
now easy to verify that their sum is 12 30, as required. The sum is recorded
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at the top of the array.

2.3 b. P.UC32160 (= Kahun IV.3)#1:A cylindrical granary

PMC 32160 (=Kahun IV.3) (Griffith, HPKG (1898); Imhausen and Ritter,
UCLLP (2004)) is a papyrus fragment with two mathematical exercises,
both in the form of calculations without any accompanying text. The first
exercise (Fig. 2.3.3 below) begins with a drawing of a circle, with the num-
bers 12 and 8 inscribed above and beside it, and with the number 1,365 3'
inside it. Under the drawing, the text continues with a series of computa-
tions:

a) 13' 12 =16, b) 16 16 = 256, c) 5 3'• 256= 1,365 3'.

Presumably, the number 5 3' appearing out of nowhere in c) must be un-
derstood as 3" • 8. Since the result of the whole computation is the product
of a square and a third number, it seems to be motivated to conjecture that
the exercise is the computation of a volume. If so, the drawing of a circle
suggests that what is computed here is the content of a cylindrical granary
with a circular base (cf. Gillings, MTP (1982), 151). Now, in P.Rhind##
41-42, the content C of a cylinder of diameter d and height h, expressed in
khar (= 2/3 cubic cubit), is computed as follows:

C = s q . (d-9d)h- 12 '

(V = sq. (d - 9 • d) • h is the volume of the circular cylinder)

The computation in P. UC 32160 # 1 makes use, instead, of a modified
equation for the content:

C = sq.(d+y-d)-(T-h).

The two equations for C are mathematically equivalent. Indeed, since
sq. 8/9 • 3/2 = 32/27, and also sq. 4/3 • 2/3 = 32/27, both can be replaced
by an equation with a single constant:

C = s q . d-h-32/27.

Since fractions of the type 32/27 were not allowed in hieratic mathematical
texts, the constant 32/27 had to be replaced by something more legitimate,
either sq. (1 - 9) • 1 2' or sq. (1 + 3') -3" . The first alternative had the ad-
vantage of letting the volume be computed as an intermediate result, while
the second alternative led to slightly less laborious computations.
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The unexpected fact that some Egyptian mathematician was capable of
manipulating an equation in this nonchalant, yet competent way tends to
support the interpretation of P.Moscow # 1 0 suggested above (see Sec.
2.2e), namely that the equation A = [d • (1 - 1/9) • (1 - 1/9)] • d/2 for the
area of a semicircle was derived from the equation A - sq. [d • (1 - 1/9)]
for the area of a circle!

i / ^ i s ? V# 2h5t6 I
| {lth3h6\ 8

 2 5h lt 2 I
i * - 2 3 / \4 lth2t4 |
! 3" 8 !
; \3'(!) 8t 5 3' !
; 3' 4 !
! dmd lth 3h6t5 3' ]
i dmd It 6 ;

i \« i t 6 i
I \ It lh 6 t i

j \ 5 8t |

; dmd 2h 5 t 6 !

Fig. 2.3.3. P. UC 32160 (Kahun IV.3) # 1. The content of a cylindrical granary.

OB mathematicians were capable of manipulating equations in a simi-
lar way. An interesting example is offered by the large OB recombination
text BM 85194 (Neugebauer; MKT1 (1935), 142; see the outline of the text
below, in Fig. 2.4.1). This is a text with a rather indiscriminate accumula-
tion of mathematical exercises from a number of different sources. In § 22
(## 34-35) of that text, the content of a circular cylinder is computed in the
obvious way, but in § 12 (## 22 and 24) of the same text an alternative
method is used. Here is a (corrected) transliteration and translation of BM
85194 #35:

BM 85194 #35.

1 1 sila dug7 lOsu.si am-su-ur
2 us en.nam / al-li-lik (al-li-ik !)

za.e
10 nigin 1 40 ta-mar
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3 1 40 / a-na 5 gur i-si 8 20 ta-mar
4 igi 8 20 dug.a/ 7 12 ta-mar

igi 6 40 a-na 1 12 i-ft /
5 1 04 48 us ta-mar ne-pe-sum

1 (00) sila (is) ajar7, 10, fingers, it goes around.
The length, what did I go?
You:
10 square, 1 40 you see.
1 40 to 5, (of) the circle, raise, 8 20 you see.
The opposite of 8 20 resolve, 7 12 you see.
The opposite of 6 40 to 7 12 raise,
1 04 48, the length, you see. The doing.

This is a somewhat difficult text. What it means is that the content of a
jar(?) or pipe(?), assumed to be in the form of a circular cylinder, is 1(00)
sila (= 1 barig). The sila here is what may be called a "cylinder sila".
(See Friberg, BaM 28 (1997) § 7 d.) The cylinder sila is such that 6 40 (00)
sila together have a volume of 1 sar = 1 sq. ninda • 1 cubit. (The constant
'6 40' is the storing number for the cylinder sila.) The circumference a =
'10' of the cylinder is also known. Somewhat misleadingly, the word 'fin-
ger' is added after the number ' 10' in order to show that the circumference
is ;10 (= 1/6) ninda and not 10 ninda. Actually, ;10 ninda = 2 cubits = 1
00 fingers. The 'length' (or height?) h is computed by use of the following
equation for the content C of a cylinder:

C= ;05 • sq. a • h • 6 40 (00) s i la /sar .

Hence, in Babylonian "relative" sexagesimal numbers without zeros,

h = C • 1/(5 • sq. a) • 1/6 40.

Consequently, as in the text of BM 85194 # 35,

when a =10 and C- 1, then

h = 1/(5 • sq. 10) • 1/6 40 = 1/8 20 • 1/6 40 = 7 12 • 9 = 1 04 48.

The precise answer, which is not given in the text, is that h = 1 ;04 48 cubit.

Now consider, instead, the following exercise from the same clay
tablet:
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BM 85194 # 22.

1 gis ri.ba.ga (ba.ri.ga!) 4 dal lbg se
bur (gur) it gur en.nam /

2 za.e
dal nigin 16 ta-mar

3 igi 16 dug.a / 3 45 ta-mar
3 45 bur ne-pe-sum

A barig vessel. 4 the transversal, l(barig) of barley.
The depth and the arc are what?
You:
The transversal square, 16 you see.
The opposite of 16 resolve, 3 45 you see.
3 45 the depth. The doing.

Here, precisely as in # 35, a circular cylinder has the given content
1 (00) si la, and the object of the exercise is to compute the height of the
cylinder, called the 'depth'. Instead of the circumference a, the diameter d
is given, d = '4' (meaning ;04 ninda). Neither the circle constant '5 ' nor
the storing number '6 40' for the cylinder sila is mentioned. That is be-
cause here the complicated equation used in exercise # 35 for the content
C of a circular cylinder has been transformed into a simpler equation. In-
deed, since the circumference a = (appr.) 3 • d, and since 9 • 6 40 = 1 (00
00), it follows that

C = ;05 • sq. a • h • 6 40 (00) sila/sar = ;05 • sq. (3 d) • h • 6 40 (00) sila/sar
= sq. d-ft-5(00 00)sila/sar.

Here, as normally in OB mathematical texts, it is assumed that the cubit is
used as the unit of length for the vertical dimension, in particular for the
height h of the cylinder. However, in BM 85194, it is silently assumed that
the height is expressed as a multiple of the ninda, 12 times larger than
the cubit. Therefore the mentioned equation for C has now changed into

C = s q . d- 12 / t - 5 ( 0 0 0 0 ) s i l a / s a r = sq. dk- 1 (00 0 0 0 0 ) s i l a / s a r ,

w h e r e k is t he n e w v a l u e for the he igh t .

Hence, in Babylonian relative sexagesimal numbers without zeros,

k = C • 1/ sq. d.

Consequently, as in the text of BM 85194 # 22,

when d = A and C=\, then k= 1/16 = 3 45 (ninda).
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The precise answer, which is not given in the text, is that h = ;03 45 ninda
(= ;45 cubits).

2.3 c. P.UC 32160 # 2: An arithmetic progression with 10 terms

The second exercise on the papyrus fragment P. UC 32160 (= Kahun IV. 3)
is shown in Fig. 2.3.4 below (the photographic detail is borrowed from
Griffith, HPKG (1898)):

; . lh lt _ \« 3'12 • ^J^^&ZpfWji
i\. lt3 3"12_ 2 3" 6' ! i\pH~*&lfi*1''€e$i
:\. l t 2 3^6'12 4 i y : ^ . f J i T O T l l j f , ^

:\. lt 1 6' 12 ^ 3 3' : ^ ^ ^ I f i W ^ -
! \. lt 3' 12 _ dmd 3 3" 121 ^fz^f^sS^L S j

i\* 6 6' 12 : "^^rf-*^^9rQ«J|"%^

Fig. 2.3.4. P.t/C 52760 (= /faftun /V. 3) # 2. An arithmetic progression.

Just like P. UC 32160 # 1, this is a computation without any accompa-
nying text. A correct interpretation of the exercise was first published in
Cantor, OLZ 1 (1898).

In the first column are listed 10 terms of a decreasing arithmetic pro-
gression, headed by the numbers 100 and 10. The second column contains
the explicit multiplication 9 • 31 12 = 3 3" 12. Apparently, the whole com-
putation is the solution to a question of the following kind:

100 (units) are divided among 10 (men). Each one gets 3" 6' more than the next. Which

are the shares?

The first step of the solution was probably to compute the average share,
100/10 = 10. Next, the biggest share could be computed as the average
share plus 9 times half the constant difference, that is as

10 + 9 • 3' T2 = 10 + 3 3" T2 = 13 3" TX
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The other shares could then be computed, one by one, through subtraction
of the constant difference.

A closely related exercise is P.Rhind # 64 (see above, Sec. 2.1 c),
where 10 heqat of barley is divided among 10 men, with a constant differ-
ence of 1/8 heqat. As mentioned in the discussion of that text, an OB par-
allel text is Str. 362 # 1 .

In the opinion of Imhausen and Ritter, UCLLP (2004), 85-86,

"The organization of each calculation into double columns shows that they are the car-

rying out of mathematical operations in some solution algorithm, now lost. Such 'work-

ings' are common in other mathematical papyri, either individually following each step

of the algorithm or collected together, as here at the end of a problem."

However, rather than being "mathematical operations" in some lost solu-
tion algorithms, P. UC 32160 ## 1-2 are probably Egyptian counterparts to
the well known OB category of mathematical so called "hand tablets",
brief numerical outlines of solution procedures, written either by students
listening to a teacher's detailed exposition of the solution algorithm for a
mathematical problem, or by students getting their assignments from the
teacher. Cf. Fig. 2.4.2 below.

2.3 d. P.UC 32161 (= Kahun XLV. 1): A list of large numbers

P. UC 32161 (= Kahun XLV.l) (Griffith, HPKG (1898); Imhausen and Rit-
ter, UCLLP (2004)) is a small, extremely badly preserved papyrus frag-
ment, inscribed with a list of eight long decimal numbers, all of them
ending with at least one fraction. A mirror image conform transliteration
of the fragment is shown in Fig. 2.3.5 below. (The conform transliteration
is based on the color photo in Imhausen and Ritter {op. cit.). Actually, the
fragment is even more damaged than what can be shown here.)

No attempt has previously been made to explain the eight numbers, of
which none appears to be wholly preserved. Note that if the beginnings of
the eight numbers were originally vertically aligned, then the beginning of
the first number is missing.

Many examples of OB hand tablets inscribed with one or several very
long numbers are known. See Friberg, MCTSC (2005), Sec. 1.4-5, a
detailed discussion of OB hand tablets with "many-place" sexagesimal
numbers. The first step in a successful attempt to understand the meaning
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of a given many-place sexagesimal number is normally to look for its fac-
torization into a product of prime numbers. Will the same method work in
the case of the "many-digit" decimal numbers recorded on P. UC 321611

! xmiit <&h 2tth f̂ jh lh 5 t 7 3'~) j x,925,157 3'

\ r-̂ fitftXtth \8fli 4h / ^ S - a ^ 1 ; 7x8,453 3'

• S U«,Vh3t3V]^y \ ; 7x9,533 3'
| 5hth W a ^ 8 3^ljB y • 50x,x98 3" S IB
! / p4hth 7 l%,x0^r^ ' ^ ° CJ 47x,x42 3"
| C^Jhth ^ A x h X ^ J , | 44x,xx3 6
[ |^_2hthS>tth 2^gu xt x ^ c I i 292,xxx x

1 ^lilii-A^tth ^ I T ^ h ^t A^-+^ i XXX,XXX YZ.

Fig. 2.3.5. P.UC32161 (= Kahun XLVI. 1). Eight many-digit decimal numbers.

The first of the eight number ends in 3' = 1/3. Therefore, the number
must be 1/3 of an integer:

x,925,157 y = 3' • (3 • x,925,157 + 1) = 3' • (x • 3,000,000 + 2,775,472).

The even number 2,775,472 must have 2 as a factor. As it turns out, it has
also 24 = 16 as a factor:

2,775,472=16-173,467.

It is not difficult to find out that 7 is a further factor. More precisely,

925,157 3' = 3' • 16 • 7 • 24,781, where 24,781 is a prime number.

(Actually, 24,781 is the 2,740th odd prime number according to, for in-
stance, Weil's on-line table of the first 28,915 odd primes.)

Obviously, the number 3,000,000 has 16 as a factor, but not 7. There-
fore, the final result is that

x,925,157 3' = 3' • (x • 3,000,000 + 2,775,472) = 3' • 16 • (x • 187,500 + 173,467).

Although the second and third numbers are damaged, they can be
treated in a similar way:

7x8,453 3' = 3' • (2,125,360 + x • 30,000) = 3' • 16 • 5 • (26,567 + x • 375),

7x9,533 3' = 3' • (2,128.600 + x • 30,000) = 3' • 8 • 25 • (10,643 + x • 150).



92 Unexpected Links Between Egyptian and Babylonian Mathematics

Even the fifth number, with two missing digits, yields to some extent to the
same kind of analysis:

47,xx42 3" = 3' • (1,410,128 + xx • 100) = 3' • 4 • (352,532 + xx • 25).

The final result of this inspection of the list of numbers on P. UC 32161 is
that the three first and best preserved numbers are of the form 3' • 8 • some
integer, while the fifth number is of the form 3' • 4 times some integer,
which is even if xx is even. Consequently:

The first three, and possibly also the fifth number on P. UC 32161 were originally of

the form 3' • 8 • some integer.

At least three of the other four numbers were obviously not of this form.

The second statement follows from the trivial observation that a number of
the form 3' • 8 times some integer cannot end in any kind of fractions other
than either 3' or 3".

It can hardly be a coincidence that the first three of the eight numbers
recorded on the fragment P. UC 32161 are products of the factor 3' • 8 = 2
3"(= 8/3) and various integers. Apart from that, it is difficult to say any-
thing more about the meaning of those numbers, obviously due to the fact
that they are all damaged in one way or another. One can only speculate
that they may have been the data for a series of assignments of mathemat-
ical exercises.

2.4. Conclusion

New thoughts about the nature of P.Rhind

The detailed discussion in sections 2.1-3 above of selected exercises in
P.Rhind, P.Moscow, and the hieratic mathematical papyrus fragments,
allow some novel conclusions to be drawn about the nature of these manu-
scripts, and about the nature of hieratic Egyptian mathematics in general.

Take a look, for instance, at the table of contents for P.Rhind (see Sec.
2.1 a above). The 84 exercises of the papyrus can be organized into 36
paragraphs belonging to 12 disparate themes. Compare with the corre-
sponding table of contents (in Fig. 2.4.1 below) for the mathematical text
BM 85194, one of several known large mathematical cuneiform texts from
Sippar (late OB). Its 35 exercises can be organized into 22 paragraphs
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belonging to various themes, such as

Volumes of large objects §§ 1-4, 8, 10, 14, 16
Contents of cylindrical vessels §§ 12, 22
Circle segments §§ 11, 17
etc., etc.

BM 85194 is an example of what has here been called a "recombination
text". The reason for this designation is the following deliberation. OB
mathematical cuneiform texts can be divided into a number of different
categories with respect to their interior organization and for what purpose
they (probably) were written. It is likely that OB mathematics had its ori-
gin in the activities of a relatively small number of particularly gifted but
anonymous teachers of mathematics from several important Mesopota-
mian cities. Building upon old ideas inherited from the pre-BabyIonian
mathematics of the 3rd millennium, but also exploiting their own new
ideas, these clever teachers composed various "theme texts". By that is
meant cuneiform texts with long series of closely related exercises (prob-
lems with or without explicit solution procedures and answers), often
beginning with simple computations and then continuing with permuta-
tions of the data and other variations and expansions of the theme. Exam-
ples in Neugebauer and Sachs, MCT (1945), for instance, are text O (10
problems for 5 types of bricks), text R (22 linear equations for weight
stones), texts K and L (40 problems for a small canal), and so on. Text A
(the famous table text Plimpton 322) is also such a theme text, with its 17
different sets of data for a certain type of quadratic equations (see Friberg,
HM 8 (1981) and Friberg, MCTSC (2005), App. 7). The original combined
multiplication table with its up to 42 different head numbers (op. cit., App.
2), and the original combined metrological table with its sub-tables for
capacity, weight, area, and length measures (op. cit., App. 5), are other
special types of theme texts.

Theme texts were, of course, a great teaching tool, but they seem to
have been used frequently also as rich sources of writing exercises or
mathematical assignments, by teachers who wanted to give their students
related but non-identical examples to work with. That is probably why
there exist in the various collections of clay tablets so many small cunei-
form tablets with single multiplication tables for different head numbers,
so many different brief excerpts of metrological tables for measures of
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capacity, or weight, or area, or length, and that is why there exist so many
small clay tablets with only one or a few related mathematical exercises.18

Apparently, now and then a teacher who was not in possession of one
of the original theme texts wanted to make his own substitute for a theme
text, a collection of exercises to be used as a new source of individual
assignments. He then collected as many small mathematical cuneiform
texts as he could find, sorted them in some way as well as he could, and
copied them onto one or several large clay tablets. This is the most likely
explanation for the existence of large mathematical cuneiform texts con-
taining many exercises that can be organized into a fairly great number of
more or less closely related paragraphs. There are many known Old, and
Late, Babylonian examples of such mathematical recombination texts, in
addition to BM 85194, the text shown in Fig. 2.4.2.

A look at the table of contents for P.Rhind ought to make it clear that
that papyrus is a mathematical recombination text of the same general type
as BM 85194. Cf. Peet, BJRL 15 (1931), 439, footnote 1:

"The arrangement of Rhind itself is logically far from perfect, and while we may be

prepared to find excuses for this in the supposition that the collection was culled, some-

what at random, from other mathematical treatises, we cannot submit to its being held

up as a model of consistent and logical arrangements."

18. Cf. the detailed discussion in Proust, TMN (2004), of the corpus of OB mathematical
cuneiform texts from Nippur. According to Proust, at the elementary level of the education
in the Old Babylonian scribe schools at Nippur, four series of metrological and mathemat-
ical table texts were studied in the following order: a) metrological lists, b) metrological
tables c) arithmetic tables (the table of reciprocals, the various multiplication tables, and
the table of squares), d) the tables of square sides and cube sides. All other mathematical
cuneiform texts are relegated by Proust to the category of exercises at an advanced level.
The students learned to write small sections of the mentioned table texts, one at a time, care-
fully recording them on the obverse of medium size clay tablets of "type II", and using the
reverse of the same tablets to rehearse previously learned sections. Small clay tablets of
"type 3", on the other hand, are inscribed on both obverse and reverse with a single section
of either a mathematical table text or of a mathematical problem text. Proust does not make
it clear what role tablets of type 3 played in the OB mathematical curriculum, but vaguely
suggests that they may have been used for examinations of the skills of advanced students.
She also points out that tablets of type 3 are particularly wanted by collectors and museums,
and that for that reason tablets of type 3 are unproportionately well represented in private
collections and certain museum collections. Thus, for instance, the majority of the tablets
from the Sch0yen collection discussed in Friberg, MCTSC (2005) are of type III.
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BM 85194 obv. rev.
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§ 1 Volume of a sloping ramp arammu # 1
§ 2 Volume of a cross-shaped fundament kigurru ## 2-3
§ 3 Volume of a ringwall with sloping sides uru.ki # 4
§4 Volume of a city wall with sloping sides bad ##5,18
§5 A water clock? »5dib.dib ##6-8
§ 6 Area of some (unidentified) object sankuttul # 9
§7 Dimensions of another unidentified object im.la ##10-13
§8 Volume of a truncated cone gi.sa ##14-15
§ 9 Bricks around the sides of a circular well sig4.al.ur5.ra pii #16,19
§ 10 Volumes of upper and lower parts of a wall bad # 17
§11 Length and width of a circle segment giir ##20-21
§12 Volume of a cylindrical vessel, simplified bariga, ban ##22,24
§ 13 Workdays spent cutting cloth subdtu # 23
§14 Extension of a sloping ramp uru.ki nakir ^Marduk ##25-26
§15 Seeding in furrows ab.si'n #27
§16 Volume of an excavated truncated pyramid diritu #28
§17 Area of a circle segment g£n.U4.sakar #29
§18 Loading a boat si5ma #30
§19 ?? (damaged text) pdrum #31
§ 20 Barley ? (damaged text) utfetu # 32
§21 Equation for a rectangle (corrupt) us, sag, a.sa #33
§ 22 Volume of a cylindrical vessel, standard pisannu, dug ## 34-35

Fig. 2.4.1. BM 85194. An OB mathematical recombination text with mixed content.
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In P.Rhind, the various paragraphs can be interpreted as longer or
briefer excerpts from a great variety of theme texts. The 2/n table at the
beginning of the papyrus, with its 50 exercises, is an example of ^complete
theme text copied into the recombination text. All other themes or individ-
ual paragraphs in P.Rhind comprise from only one to a few exercises.
Paragraphs with relatively large numbers of exercises are § 3 (n loaves for
10 men; 6 examples), §§ 4-5 (multiplication problems; 14 examples), § 8
(division problems; 8 examples), and the elementary stereometric exer-
cises in § 21 (inclination of pyramids; 5 examples). Well-structured para-
graphs are, for instance, §§ 13-14 (round and square granaries), and § 17
(areas of the four basic geometric figures). Many of the problems on the
reverse belong to Theme H (baking or brewing numbers). They may all be
excerpts from a single large theme text. However, other paragraphs consist
of only one or a couple of examples, such as §§ 6-7 (subtraction problems),
§ 9 (iterated division problems), § 12 (arithmetic progressions), § 20
(applied division problems), and so on. In a couple of cases, the modern
numbering of the exercises in the papyrus has been manipulated, to make
it appear that the text is more well organized than it really is (## 33-34, 54,
and 79).

On a larger scale, at least the obverse of P.Rhind is fairly well orga-
nized. (In the following discussion of the internal structure of P.Rhind,
some of the ideas have been borrowed from the close examination of the
organization of the papyrus in Spalinger, SAAK 17 (1990).) Thus, it
appears that the 2/n table in § 1 is accompanied by simple applications in
the form of division and multiplication problems in Themes A-B (§§ 2-5).
Then follows a blank space, separating these trivial exercises from the
completion problems in Theme C. A second blank space separates the
completion problems from the division and sharing problems in Themes
E-F. Then comes a really big blank space separating the arithmetic exer-
cises in Themes A-F from the geometric exercises in Theme G, which fill
out the rest of the obverse of the papyrus. The text on the reverse seems to
be less well organized. In particular, there are no blank spaces separating
groups of exercises on the reverse.

The table of contents for P.Moscow with its 25 exercises and 9 para-
graphs (see Sec. 2.2 a) shows that also P.Moscow is an Egyptian mathe-
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matical recombination text. Now, if P.Rhind and P.Moscow are compared
with each other, it is easy to note an obvious and important difference be-
tween the two texts, namely that most of the exercises in P.Rhind, but none
of the exercises in P.Moscow, are accompanied by detailed computations.
The detailed computations in P.Rhind are often preceded by remarks like
"The doing as it occurs", "The working out of it", etc. Only the exercises
## 57, 59, 71-72, and 78, in P.Rhind lack such detailed computations. In
Clagett, AES 3 (1999), 209, the fact that there are no detailed computations
in P.Moscow is explained as follows:

"This (the complete lack of system in the Moscow papyrus) leads to the conclusion that

the author of the Moscow Papyrus was a student whose training had progressed far

enough for the teacher to present various problems to be solved in order to test the skill

of the student. The student was apparently not required to present in tabular form, like

that found in the Rhind Papyrus, the steps by which the multiplications were carried

out, i. e. the doublings, halvings, taking of 2/3 and/or 1/3, and decemplex-multiplica-

tions, but rather just to give the results of such multiplications."

A comparison with OB mathematical texts shows that Clagett's expla-
nation misses the point, as there are never any detailed computations (such
as explicit multiplications) present in mathematical cuneiform texts. The
obvious reason for this is that there simply was not space enough on a clay
tablet for extensive computations. The situation cannot have been very dif-
ferent for an Egyptian teacher or advanced student of mathematics who
recorded collections of mathematical exercises on expensive rolls or sheets
of papyrus. Therefore, it is likely that texts like P.Moscow were the norm,
while P.Rhind with its many explicit and detailed computations was an
exception. It is also likely that Egyptian school boys wrote their mathemat-
ical "brief notes" on small scraps of reused papyrus, or pot shards, or what-
ever material they could find.

Three of the hieratic mathematical papyrus fragments probably show
what mathematical brief notes written by Egyptian school boys normally
may have looked like, namely P. UC 32159: a 2/n table, for n from 3 to 21,
P. UC 32161: a list of large numbers, and P. UC 32160 with a) the compu-
tation of the content of a cylinder, b) a problem for an arithmetic progres-
sion. (Compare with OB mathematical "hand tablets", such as the round
clay tablets from Ur discussed in Friberg, RA 94 (2000), or the square clay
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tablets with multiplication, squaring, and division exercises discussed in
Friberg, MCTSC (2005), Sec. 1.) Three interpolated exercises in P.Rhind,
possibly late additions to the document, namely # 48 (the area of a circle
vs. the area of a square), # 53 a-b (a striped triangle and a rectangle with an
almost round area number), and # 79 (a "house inventory"), look very
much like such school boys' mathematical brief notes. Also # 61 (a general
rule for taking 3" of a part n, followed by a multiplication table for frac-
tions) is a similar brief note at the beginning of the reverse of P.Rhind. Cf.
the following comment in Chase, et al., RMP 2 (1929), pi. 83:19

"The table and rule ••• are not a part of the text. They are somewhat more hastily writ-

ten and were evidently jotted down for reference in the blank margin to the right of the

point where the text on the verso was to begin."

The outline below of P. UC 31260 is based on a color photo of the text
in Imhausen and Ritter, UCLLP (2004). The outline clearly suggests that
P.UC 31260 is an example of an Egyptian school boy's mathematical
notes, rather than being a "fragment" of a larger mathematical text!

\ — " * \4 llh2,4 \- 1, 2 12 I

n y 4 l) ' \ . 1, 3 12 dmd 3 3- 12 I

I \ 1 , lh 6, \ . 7 12 (^
/ \5 8, V- 6 6' 12 \

I drnd 2h 5, 6 I

Fig. 2.4.2. P. UC 32160. Mathematical brief notes of an Egyptian school boy.

Now, if P.Rhind is a recombination text, that is a compilation of a sub-
stantial number of students' brief notes or excerpts from longer theme
texts, then the fact that almost all the exercises in P.Rhind are accompanied
by explicit computations can only be explained in the following way: The

19. In the preface to P.Rhind it is stated that the text is a copy of an older text from the
time of the sixth king of the Twelfth Dynasty, in the Middle Kingdom. The interpolated ex-
ercises may, of course, have been added to the copy, not to the original. Also other parts of
the text may be late additions. See, for instance, Spalinger, SAAK 14 (1987), a paper about
the "grain system of Dynasty 18", where it is claimed that some of the exercises in P.Rhind
must be late additions because they use a late kind of capacity units.
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author of the papyrus wanted to use it primarily in order to teach his stu-
dents how to perform detailed computations. That may be what is meant
by the first words of the Introduction: "Accurate (lit. Head of) reckoning"!
Therefore, he added explicit computations to most of the problems he had
compilated. How far he went in this respect can be illustrated by, for
instance, the solution to the division exercise f-a=\ {heqat),f= 3 3' (3'-3')
9, in exercise # 37. The explicit computations in that exercise are the fol-
lowing:

a) the addition / = 3 + 3' + 31 • 3' + 9 = 3 21 T8 (= 32/9)
b) the division 1//= 4' 32 {heqat) (= 9/32) the answer as a sum of parts
c) the details of the counting in b) summation of parts
d) the multiplication 3 3' (3' • 3') 9 • 4' 32 {heqat) = 1 {heqat) verification of b)
e) the details of the counting in d) summation of parts
f) the multiplication 4' 32 • 320 (TO) = 90 (TO) the answer as a multiple of the ro
g) the multiplication 3 3' (3' • 3') 9 • 90 (TO) = 320 (TO) verification of f)
h) the conversion 90 {ro) = A'h 32'h the answer in heqat fractions
i) the multiplication 3 3' (3' • 3') 9 • A'h 32'h = 1 {heqat) verification of h)

Note that the answer is given in three different forms: in b) as 4' 32, a sum
of parts, in f) as 90 ro, and in h) as 4'h 32'h, in binary heqat fractions. The
details of the computations in d) and i) are not identical. Thus, for instance,

3' • 4' 32 = T2 96, but 3' • 4'h 32'h = 16'h 32'h(l/3 • 90 ro = 30 ro = 16'h 32'h)

A detailed outline of the layout of two sections of P.Rhind is shown in
Figs. 2.4.3-4 below. An effort has been made to demonstrate how most of
the exercises begin with the statement of the problem (the question), and
then continue with a series of computations (the solution procedure and the
answer). This is done by splitting the rectangular outlines of individual
exercises into sub-rectangles, one for the statement of the problem, one for
the solution procedure, and as many as needed for the various detailed
computations associated with the solution procedure.
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From the outline in Fig. 2.4.3, it is evident that in the original layout of
the papyrus there was a blank space separating the granary problems in ##
41-47 from the area problems in ## 49-52. Then someone, almost certainly
not the author of the main part of the papyrus, interpolated # 48 as a brief
explanation of the computations in ## 41-43 of the areas of the circular
bases of the round granaries. Similarly, it is clear from the same outline
that the incomplete exercises ## 53 a-b were inserted into an empty space
to the left of the short text of # 54 by someone who did not really under-
stand what he was doing. Furthermore, it is clear from the outline in Fig.
2.4.4 that the interesting "house inventory" # 79 was inserted, totally out
of context, into another empty space, to the left of the short text of the flour
and bread exercise # 70. (A much more suitable place for the house inven-
tory exercise with its geometric progression would have been in the large
blank space after the arithmetic progression exercise # 40!)

Summary: Comparison of hieratic Egyptian and O8 mathematics

Here is a brief summary of the results obtained above, in Sec. 1.1 and Sec.
2.1-3. Altogether, at least 10 clear parallels have been found between ex-
ercises in hieratic mathematical papyri or fragments, and exercises in OB
mathematical cuneiform texts. The exercises in question have all been cho-
sen as examples of artificial, as opposed to practical, mathematical prob-
lems, because the existence of parallel practical problems is only natural
and does not prove anything. (Examples of practical problems are arith-
metic exercises of various kinds, sharing problems, computations of areas
or volumes, or of inclinations of pyramids, work norm problems, and bak-
ing or brewing problems.)

\.P.Rhind#19IIM. 7857.
Fanciful interpretations of the sum of 5 terms of a geometric progression.

2. P.Rhind ## 28-29 // YBC 4652 # 9.

Repeated division problems.

3. P.Rhind # 64 & P.UC 32160 # 2 // Str. 362 # 1.

Arithmetic progressions with given common differences.

4. P.Rhind # 40 // YBC 9856 & VAT 8522 # 2.

Arithmetic progressions with given ratios of terms "above" to terms "below".

5. P.Rhind # 53 a // Str 364 & IM 43996.

Complicated problems for striped triangles.
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6. P.Rhind #53 a-b // NCBT 1913 & YBC 7290.

Almost round area numbers.

7. P.Rhind # 72 // YBC 4698 # 6.

Combined market rate problems.

8. P.Moscow # 14 // BM 96954+.

Correct computations of volumes of truncated pyramids.

9. P.Moscow # 17 // YBC 11126 & IM 121613 #1.

Equations for geometric figures with given area and side ratio.

10. P.Berlin 6619 # 1 // BM 13901 # 13.

Quadratic-linear systems of equations for two squares.

The conclusion that can be drawn from the existence of so many paral-
lels of a non-trivial nature between hieratic and cuneiform mathematical
texts is that Middle Egyptian and OB mathematics must have influenced
each other in decisive ways. The many obvious similarities cannot be ex-
plained away as due to convergent but independent development. More-
over, there is really no reason to doubt that the level and extent of
mathematical knowledge were nearly identical in Egypt and Mesopotamia
at the time when the Egyptian hieratic and OB mathematical texts were
written. The burden of proof ought to be on those who say that this was not
the case!

It is unfortunate that the level of difficulty is relatively low in the ma-
jority of the problems in P.Rhind and P.Moscow, in comparison with the
level of the most advanced of the OB mathematical texts. However, one
must bear in mind 1) that it is natural that the very few known Egyptian
mathematical texts cannot be favorably compared with the hundreds of
known OB mathematical texts, and 2) that, as was pointed out above,
P.Rhind seems to have been a mathematical recombination text, compilat-
ed and supplied with extremely explicit computations primarily for the
purpose of demonstrating elementary calculation techniques, rather than
mathematical problem types. Nevertheless, it is clearly indicated by the
existence of exercises such as P.Rhind ## 40 and 53 a, P.Moscow ## 14
and 17, and P.Berlin 6619 # 1, that in the early part of the second millen-
nium BCE Egyptian mathematics was just as advanced as Babylonian
mathematics!

It should further be noted that the implication of this conclusion is that
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probably the true extent of Middle Kingdom Egyptian mathematics is not,
by far, as well known as it might appear to be. How can it be, by the way,
when even the true extent of the much better documented Old Babylonian
mathematics is unknown? Indeed, past experience has shown that each
time a new larger cuneiform mathematical text is published, it can be
counted on to expand the horizon of the known corpus of Mesopotamian
mathematics! For the most recent examples of this phenomenon, see the
six new cuneiform problem texts in Friberg, MCTSC (2005), Chs. 10-11.



Chapter 3

Demotic Mathematical Papyri and Cuneiform
Mathematical Texts

In Parker, DMP (1972) were published five Egyptian mathematical papyri
written in the demotic script, namely the large P.Cairo J. E. 89127-30,
89137-43, verso (consisting of 11 fragments), and the four fragments P.Br.
Museum 10399, 10520, 10794, and P.Carlsberg 30. (A preliminary sum-
mary of the contents of P. Cairo and the four fragments was published al-
ready in Parker, Cent. 14 (1969).) Two other fragments published by
Parker are P.Griffith Inst. IE. 7, in JNES 18 (1959), and P.Heidelberg 663,
in JEA 61 (1975). The dates given below for the various demotic mathe-
matical papyri are, with one exception, the ones suggested by Parker. All
translations of the texts are also, essentially, the ones given by Parker.

In this paper, the mentioned demotic mathematical texts will be
searched for traces of possible links with Babylonian mathematics. In the
process, some of Parker's interpretations and explanations of the texts will
be made considerably more precise and detailed.20

3.1. Themes in F.Cairo (Ptolemaic, the 3rd C. BCE)

3.1 a. P.Cairo, a hieratic mathematical recombination text

20. New interpretations are offered in Chapter 3 for the following texts: P.Cairo § 1
(Sec. 3.1 c), § 2 (Sec. 3.1 d), § 7 (Sec. 3.1 g), § 12 (Sec. 3.1 k), P.BM 10399 § 1 (Sec. 3.2
a), P.BM 10520 § 5 (Sec. 3.3 e), P.Carlsberg 30 # 2 (Sec. 3.5 b), P.Heidelberg 663
(Sec. 3.7), VAT 7531 and VAT 7621 (Sec. 3.7 c).

105
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The famous legal code of Hermopolis West is inscribed on the obverse
(recto) of P.Cairo J. E. 89127-30, 89137-43. The mathematical text is in-
scribed on the reverse (verso). It is the oldest of all known demotic math-
ematical texts, dated to the 3rd c. BCE. That means that it is contemporary
with some of the Seleucid mathematical cuneiform texts from Mesopota-
mia. A look at its table of contents, below, shows that P. Cairo is a mathe-
matical recombination text of the same kind as P.Rhind. It begins with
arithmetic exercises, but there are also various kinds of metric algebra
exercises (quadratic equations, etc.), and geometric exercises for both two-
and three-dimensional objects. (A detailed discussion of some interesting
aspects of P.Cairo can be found in Friberg, BaM28 (1997)/9 b.)

P.Cairo J. E. 89127-30, 89137-43, verso: Contents.
[Destroyed] # 1

§ 1 a-b Division problems:
a) 100/(17 3") = 5 35/53; #2
b) 100/(15 3") = 6 18/47 (binomial fractions) # 3

§ 2 a-c Completion problems:
a) 6" TO20120 210 + 280=1 # 4
b) 6" TO 20 120 240 480 510+8160= 1 #5
c) a general rule # 6

§ 3 a The area and the side ratio of a sail given.
a)/i = sqr. (1000- 1 2') c. = appr. 38 3" 20 c , w = 3"-h #7

§ 4 a-e Changing the shape of a piece of cloth, keeping the area.
a) 7 c. -5 c. = ( 7 - l ) c . • 5 6" c. #8

b) 6 c. • 4 c. = (6 - 1) c. • 4 4/5 c. = 5 c. • 4 3" TO 30 a #9
c)6c. • 1 2'c. = (6 -2 ' )c . • (1 2' + (l 2')/ll)c. #10
d)6c. -4 c. = 8c. ( 4 - l ) c . #11
e)6c. -3 c. = 12c. • (3 - 1 2') c. #12

§ 5 Pieces of cloth, and silver. Unclear problem.
Ratio: 131/60 = 3'15 (7 2'T0)/131 #13

§ 4 f 0 21 c. • 5 c. = (21 - l)c. -5 4'c. #14
§ 3 b-c b) Identical with a); #15

c)/i = sqr. (100- 13'T5)c. = appr. 11 6" c , w = 3"3070-/i #16
§ 4 g g)21c. •5c. = 2 6 4 ' - ( 5 - l ) c . #17
§ 3 d d)/i = sqr. (100- 10) = appr. 312'T0 30, w = ft/10 = appr. 3 6' #18
§ 6 Interest on 50(?) pieces of silver (badly preserved problem) #19

[Destroyed] ##20-22
§7 A linear equation:

f - a = 2\ / = 2 ' + 2 ' - 2 ' + 2 ' - 2 ' - 2 ' = 1 6 " 3 0 T 2 0 ) a = 5T5 # 2 3
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§ 8 a-h A pole against a wall, d, s given, (s, h,d) =

a) 2-(3,4, 5) #24
b) (20, 21,29)/2 #25
c) 2- (4, 3, 5) # 26

d-h,d given, (s, h,d) =
d) 2 • (3, 4, 5) # 27
e) (20,21,29)/2 #28
f) 2- (4, 3, 5) # 29

d-h,s given. (5, h,d) =
g) 2 • (3, 4, 5) # 30
h) (20,21,29)/2 #31

§ 9 a-b The diameter d = sqr. (A + A/3) of a circle with given area
a)A = 100sq. c. #32
b)A = 10sq. c. #33

§ 10 a-b The sides of a rectangle with given area and diagonal.
a)A = 60 ,d=13 #34
b)A = 60, d=\5 #35

§ 11 a An equilateral triangle (side 12 c.) inscribed in a circle.
The areas of the triangle and the segments. # 36

§ 12 A square inscribed in a circle (diameter 30 c) .
The areas of the square and the segments. # 37

§ 11 b An equilateral triangle (side 10 c.) inscribed in a circle.
The areas of the triangle and the segments. # 38

§ 13 A square pyramid. Height, 300 c , side of the base, 500 c ,
find the height of a face. # 39

§ 14 A square pyramid. Height, 10 c , a side of the base, 10 c ,
find the volume. # 40

§ 15 A quadratic-linear system of equations:
sq. (a + b) = 140 sq. c , alb = 5/2. Solution: a = 8 3' TO 60. # "32"

§ 16 A rectangular-linear system of equations:
a • b = 100 sq. c, a-b = 21 c. Solution: a - 25, b = 4. # "33"

3.1 b. P.Cairo § 8 {DMP ## 24-31). A pole against a wall

In a note about "The position of demotic texts in the history of Egyptian
mathematics", Parker makes the important remark (DMP (1972), 5) that
the existence of a Babylonian influence on Egyptian mathematics in the
third century BCE, or earlier, is clearly documented by exercises ## 24-31
(§ 8 a-h) in P.Cairo. All these exercises are variants on a single theme,
which, in modern notations, can be described as follows:

A pole of length d is leaning against a wall. If its top slides down a certain distance
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p, then its base slides out from the wall a corresponding distance s, and a right trian-
gle is formed with the sides J, h, and d, where h = d-p. Two of the parameters s, d,
and p are known. Find the remaining parameter.

P (p=d-h)

\

1. s and d given: p = d- sqs. (sq. d- sq. s)

2. d and p given: s = sqs. (sq. rf-sq. (d-p))

3. /> and 5 given: d = (sq. j + sq. p)l{2p)

s

Fig. 3.1.1. P.Cairo § 8 (DMP ## 24-31). A pole leaning against a wall.

What Parker had found was that the OB mathematical exercise BM
85196 # 9 (Neugebauer, MKT 2 (1935), 53) is essentially identical with
P.Cairo § 8 d (DMP # 27), and that the Seleucid mathematical exercise
BM 34568 # 12 (Neugebauer, MKT 3 (1937), 22) is essentially identical
with P.Cairo § 8 g {DMP # 30). It is interesting that the demotic papyrus
contains all possible variants on the theme, while the OB and Seleucid par-
allels are incomplete, with only one variant each.

The "pole against a wall" theme is an artificial problem type. Its pres-
ence in both a demotic Egyptian and two Babylonian mathematical texts is
a first example of possible links between Egyptian and Babylonian math-
ematics in the late first millennium BCE. However, this is not the only ex-
ample, as will be shown below, in a systematic survey of the consecutive
paragraphs of P. Cairo. Cf. the following statement by H0yrup, in LWS
(2002), 405:

"In demotic mathematical papyri from the Ptolemaic and Roman period, however,
the presence of material with roots in Mesopotamia is indubitable."

In this connection, H0yrup discusses, as examples, P.Carlsberg 30 #1 and
P.Cairo § 10 (DMP ## 34-35).)
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3.1 c. P.Cairo § 1 (DMP ## 2-3). Two closely related division problems

Here an attempt will be made to describe what is going on in P.Cairo § 1
b (DMP # 3), which is relatively well preserved. Apparently, the given task
is to find out how many times 15 3" goes into 100. The computation begins
with the observation that 100 - 6 = 94, and that 6 goes 15 3" times into 96.
Next, it is noted that 15 3" = 47 • 3', and that 47 goes 2 6 47 times into 100,
where clearly 6 47 stands for (what might be understood as) the common
fraction 6/47. (Cf. the discussion in Parker, DMP, 8-9.) The final answer
is 3 • 2 6 47 = 6 18 47. The result is then verified, as follows:

15 3" • 618 47 = (10 + 5 + 3") • 6 i ! 47 = 63 39 47 + 31 2' 19_i: 47 + 12 47
= 99 2'23 2'47 =100.

In modern terms, the computation in DMP # 2 can be explained as follows:

100/(15 3") = 100/(47/3) = (100/47) -3 = 2 6/47 -3 = 6 18/47.

P.Cairo § 1 a (DMP # 2) is not well preserved but can be fully recon-
structed, as pointed out by Parker, because of its close similarity to DMP
# 3. The given task is to find out how many times 17 3" goes in 100. The
computation begins with the observation that 100 + 6 = 106, and that 6
goes 17 3" times into 106. Next, it is noted that 17 3" = 53 • 3', and that 53
goes 1 47 53 times in 100. The final answer is 3 • 1 47 53 = 5 35 53. Again,
the result is verified, as follows:

17 3" • 5 35 53 = (2 + 10 + 5 + 3") • 5 35 53
= 1117 53 + 56 2' 52! 53 + 28 16 53 + 3 3" _5T_ 53 = 99 61446' 53 = 99 6' 6" = 100.

(The signs 6' and 6", meaning 1/6 and 5/6, will be discussed below, in con-
nection with P.Cairo § 2 in Sec. 3.1c.)

Nothing like this way of counting is known from any Babylonian math-
ematical texts. However, the circumstance that in exercise DMP # 3 the
number 94 is presented as 100 - 6, and that in the damaged exercise DMP
# 2 the number 106 (probably) is presented as 100 + 6, suggests a geomet-
ric explanation of the computations in P.Cairo § 1, as in Fig. 3.1.2 below.

A likely interpretation (cf. the discussion below of P.Cairo § 4) is that
the two division problems in DMP ## 2-3 are the computations needed to
solve the following pair of metric algebra problems:

a) Consider a rectangle with the area 100 (cubits) and the width 6. If the long side is
increased by 1 and the short side is decreased so much that the area will still be 100,
what is then the new short side?
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b) Consider again a rectangle with the area 100 and the width 6. If the long side is
decreased by 1 and the short side is increased so much that the area will still be 100,
what is then the new short side?

a) 6 b) — 6 1 8 / 4 7

v v

vo 100 % ^ vc 100 * £

S - " ^
\ \ v

I ~mMM
5 35/53

16 3" • 6 = 100 = 17 3" • 5 35/53 16 3" • 6 = 100 = 15 3" • 6 18/47

Fig. 3.1.2. P.Cairo § 1 (DMP ## 2-3). A geometric explanation of two division problems.

Fowler, MPA (1987 (1999)), 7.3(e), 7.4(a), contains a detailed discus-
sion of "the evidence for the proposal that early Greek mathematicians
conceived and used manipulations of common fractions". In his argu-
ments, which aim to refute that proposal, Fowler also discusses the occur-
rence of what might be understood as the use of common fractions in a
number of demotic mathematical texts, mentioning Parker, DMP (1972)
##2,3,10,13,51, and 72. These are the exercises P.Cairo§§ 1,4,5, P.BM
10399 § 3, and P.Carlsberg 30. According to Fowler (op. cit.), 264 (262),

"the evidence of calculations in the papyri displays almost unanimous evidence
against this proposal. The very few instances there that can be cited as illustrating no-
tions for common fractions appear, on closer scrutiny, more probably to be abbrevi-
ations of unresolved descriptions of divisions that are still conceived as sums of unit
fractions, and all can be more naturally explained as relaxations of stylistic conven-
tions about how these divisions should be evaluated and expressed."

It is doubtful that Fowler's conclusion is correct in the case of the men-
tioned examples from the demotic mathematical texts. (As for the case of
Greek mathematical papyri, see the discussion of P.Akhmim in § 4.5 d.)
What is clear is that the author of some of the exercises in P.Cairo operated
smoothly with what may be called "binomial" fractions, precisely as if he
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were operating with common fractions. Consider the following operations:

10- 61847= 6013047= 63 2947 P. Cairo § 1 a(DMP#3)
5- 61847= 309047= 31 2' 19 2' 47

3"- 61847= 4 1247

sum: 63 39 47 + 31 2' 19 2' 47 + 4 12 47 = 98 2170 2' 47 = 99 2' 23 2' 47 = 100

and

2-53553= 107053 = 111753 P.Cairo § lb(DMP #2)
10-53553= 5035053 = 562'5_2;53 (2'-53 = 26 2')
5-53553= 25175 53 = 2816 53

3" • 5 35 53 = 33'23i!53 = 33"5_X53 (31 • 53 = 17 3")

sum: 1117 53 + 56 2' 5_2; 53 + 2816 53 + 3 3" 5_3153 = 99 6' 44_& 53 = 100
(6" • 53 = 44 6')

The arithmetical operations in these examples are, on one hand multiplica-
tions of binomial fractions with integers or basic fractions, on the other
hand additions of binomial fractions. Note that while in common fractions
of the modern type the numerator always is an integer, in these Egyptian
binomial fractions the numerator is allowed to be an integer plus a basic
fraction (6" = 5/6, 3" = 2/3, 2' = 1/2, 31 = 1/3, 4' = 1/4, or 6' = 1/6).

It is not unlikely that counting with binomial fractions as in P. Cairo § 1
was a late development with its roots in the well known counting with "red
auxiliaries" in P Rhind. An example is P.Rhind # 23, a "completion prob-
lem" (cf. P. Cairo § 2 below). The hand copy below is copied from Chase,
et al, RMP (1929), pi. 46. The transliteration is a mirror image of the text.

41 8 ft 3, 4t 5 4 k m m 3" 4' 8 9 Tt 3t 4, 4t 5 3'

4 V | % \ UK 9 4 tmw?hhr=fjrj 3" M % 2 ' 5
 2

4. 12'1 8 X 1.5 j«j 1
8

Fig. 3.1.3. P.Rhind #23. A completion problem. An example of the use of red auxiliaries,
shown here as grey in the hieratic text and in bold style in the transliteration.
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The question in this exercise is formulated as follows:

4' 8" TO 30 45. Complete it to 3".

The solution procedure is very brief. It starts by writing red auxiliaries
under the given number:

4' 8 TO 30 45
1141 5 2 '8 4 2' 121 1

Then it concludes directly, without further motivation, that

Therefore, 9 40 is to be added to it. It makes 3".

Finally the verification, again by use of red auxiliaries,
4' 8 9 TO 30 40 45 3'
114' 5 2 '8 5 4 2' 12 ' 18 1 15 It makes 1.

If the author of P.Rhind # 23 had operated with binomial fractions instead
of with red auxiliaries, and if he had been more careful with the details, the
solution could have proceeded as follows:21

a) 4' 8 TO 30 45 = 114' 5 2' 8 4 2' 12' 145 = 23 2' 4' 8 45,
giving a deficit of 6.8 45, since 3" = 30 45.

b )68 = 5 + 9-8 , sothat 6JS45 = 9 + 8 • 5 = 9 40.
c) 4'8 TO 30 45+ 9 40+ 3'= 3'4'8 9 TO 30 30 45

= 15 11 4' 5 21 8 5 4 2' 1 2' 1 8 1 45 = 45 45 = 1.

3.1 d. P.Cairo § 2 (DMP ## 4-6). Completion problems

(Cf. P.Rhind §§ 6-7 (## 21-23).) The question in § 2 b (DMP # 5) is posed
as follows, according to the correction in Zauzich, BiOr 32 (1975):

If it is said to you: 6" TO 20 T20 240 480 510, what remainder will complete 1 ?

The given answer can be understood as the following series of computa-
tions:

480=16-30, 510=17-30, 1 7 - 1 6 = 1 , 510 • T6 = 8T60.

The strangely formulated details of the last step of the computation can be
explained as follows:

5T0" + 5T60=16-8T60+l -8160=17-8160 = 480, because 17-480 = 8160.

21. Compare step b) with pMoscow # 20, where 2 3" divided by 20 is given as 5 of 3".
The explanation may be that the division was carried out as follows: 2 3" = 4 • 3", so that 2
3" -20 = 4 -3" -20 = 5 -3" .
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The following tentative explanation of what is going on here is based on
the observation that while the author of P.Cairo, living in Hellenistic
Egypt, nominally counted with traditional sums of parts (traditional Egyp-
tian), and with what looks very much like common fractions (a late Egyp-
tian invention??), he may also have operated covertly with sexagesimal
fractions (Babylonian)!

Take a renewed look at the given fraction 6" TO 20120 240 480 510 in
P.Cairo § 2 b (DMP # 5).22 In this fraction, the basic fraction 6" and the
parts 10, 20, 120, 240, and 480 can be equated with the sexagesimal frac-
tions ;50, ;06, ;03, ;00 30, ;00 15 and ;00 07 30, while the final fraction 510
cannot be written as a sexagesimal fraction, for the reason that 510 = 17 •
30, and 17 is a non-regular sexagesimal number. The purpose of the exer-
cise was to 'complete 6" 10 20 T20 240 480 5l0 to 1'. This task was
accomplished through the addition of the small "remainder" 8160:

6" TCi 20 120 240 480 5T0 + 8160 = 6" 10 50 T20 240 480 + 480 = 1.

In a similar way, in the simpler, but partly destroyed exercise P. Cairo § 2 a
(DMP # 4), the (reconstructed) computation can be explained as follows:

[6" TO 20120 2T0] + 280 = 6" 10 20 T20 + T20 = 1.

One can carry this analysis one step further by asking: How did the au-
thor of the text originally construct the strange numbers 6" TO 20 120 210
and 6" 10 20 T20 240 480 5TU? There is a surprising answer to this ques-
tion. Remember that in the discussion of the exercises P.Rhind ## 53 a-b
(§ 2.1 d, Theme G), it was shown that they can be explained with referenc-
es to "almost round numbers", an idea that can be traced back to the earli-
est written records, proto-cuneiform texts from the late Uruk period in
Mesopotamia. An example is provided by the incomplete exercise

22. The initial fraction, meaning 5/6, is written in the text of P.Cairo with a special sign,
here reproduced as 6". Note that in hieratic texts, there were special signs for the "basic
fractions" 2/3,1/2, 1/3, 1/4, 1/6, while 5/6 could be written as a ligature of the signs for 2/
3 and 1/6. In P.Cairo there are special signs for the mentioned fractions, and for 5/6. See
Parker. DMP (1972), 8 and 86, and Sethe, ZZ (1916), 100, where it is mentioned that the
special sign for 5/6 was used already in the Persian period. In Babylonian cuneiform texts
there were, in a similar way, special signs for the basic fractions 5/6, 2/3,1/2, and 1/3. Thus,
the use of a special sign for 5/6 in P.Cairo may be due to a Babylonian influence. In the
present paper, the basic fractions 5/6, 2/3, 1/2, 1/3, 1/4, and 1/6 are transliterated as 5", 3",
2', 4', and 6', respectively, while (n-th) parts are transliterated with an overbar as 5, 6, 7, etc.
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P.Rhind # 53 b, where the almost round area number 14 2' 8' (setat) can
be explained as the result of an approximation procedure with the "start
number" 12 (setat) and the "target number" 15 (setat).

In a similar way, it is possible that 6" TO 20 T20 2lO and 6" 10 20 120
240 480 510 can be understood as "almost sexagesimal fractions",
obtained through an approximation procedure where simple sexagesimal
fractions are start and target numbers. In both cases, the start and target
numbers may have been 6" 10 20 = ;59 and 1, respectively. The successive
steps of the construction of the first of the two almost sexagesimal num-
bers, the one in P.Cairo § 2 a, can have been the following:

a) 6" TO 20 = ;59 deficit 60 = ;01,
b)6"T020 + 2'-60 = 6"T020T20 = ;5930 deficit T20 = ;0030,
c)6"T020T20 + 4 - 7 T 2 0 = 6"S0T20210 deficit 3 • 7 • 120 = 280.

The parallel process possibly used for the construction of the second
almost sexagesimal number, the one in P.Cairo § 2 b, would have been
somewhat more complicated:

a)6"10 20 = ;59 deficit 60 = ;01,
b) 6" TO 20+ 2'-60 = 6" TO 20720 = ;59 30 deficit 120=;0030,
c)6"T0 20T20 + 2 'T20 = 6"T0 20T20 240 = ;59 45 deficit 240=;0015,
d) 6" TO 20 T20 240 + 2'• 240 = 6" TO 20 T20 240 480

= ;59 52 30 deficit 480=;00 07 30,
e) 6" TO 20120 240 480 + 16 • T7 • 480

= 6" TO 20120 240 480 5T0 deficit T7-480 = 8T60.

Exercises like these would have taught the students how to find sexag-
esimal fractions that are close approximations to given non-sexagesimal
fractions. This would be useful, for instance, when computing approxima-
tions to square roots by the method shown in P.BM 1052 § 6 (below).

For those who cannot readily accept the idea of a hidden use of count-
ing with sexagesimal fractions in P. Cairo § 2 a-b, here is an alternative ex-
planation in terms of what looks surprisingly much like counting with
common fractions. In § 2 b, for instance, the more complicated case, the
construction of the given number can have proceeded as follows:

a) 6" TO 20 = (50 + 6 + 3 ) - 6 0 = 5 9 - 6 0 deficit 60,

b ) 6 " T 0 2 0 + T20 = ( 2 - 5 9 + l ) T 2 0 = 1 1 9 - T 2 0 deficit T20,

c ) 6 " T 0 20T20 + 240 = ( 2 ' 119 + 1) • 240 = 239 • 240 deficit 240,

d) 6" TO 20 T20 240+ 480 = ( 2 - 2 3 9 + 1 ) - 4 8 0 = 479 -480 deficit 480,
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e) 6" TO20 120240480 + 510 = (579+ 16 • 17) • 480 deficit T7-480= 8l60.

3.1 e. P.Cairo § 3 (DMP ## 7,15-16,18). A rectangular sail

These exercises are all of the following type:

A rectangular sail has a given area A = h • w and a given side ratio hlw =/.
Find h and w.

This is a rather simple metric algebra problem, with the solution

sq.h=fA, h = sqr.(f-A).

The square root approximations appearing in these exercises are:
DMP ## 7 and 15: sqr. 1500 = 38 3" 20 (38,43),
DMP #16: sqr. 140= 11 6" (ll;50),
DMP# I8:sqr. 1000 = 31 2' TO 30"(31;38).

A possible reconstruction of the details of the complicated computation of
the accurate approximation sqr. 1000 = 312' 10 30 is proposed in Friberg,
BaM 28 (1997), 38. (The approximation can also have been obtained sim-
ply through trial and error.)

Parallel hieratic exercises are P.Moscow § 7 (## 6, 7, 17). Moreover, as
mentioned in the discussion of P.Moscow § 7 in Sec. 1.4 c, IM 121613 #
1 and YBC 11126 are parallel OB exercises.

3.1 f. P.Cairo § 4 (DMP ## 8-12,14,17). Reshaping a rectangular cloth

The exercises in this paragraph are all of the following type (cf. the discus-
sion of P.Cairo § 2 in Sec. 3.1 d):

A rectangular sail has a given height h and a given width w,
hence a given area A = h- w.
The height (or the width) is decreased by a fraction 1/n of its measure.
By what fraction Mm must the width (or the height) be increased to compensate for
the resulting change of area?

Here are, for instance, the successive steps of § 4 a {DMP # 8):

1. A hair-cloth, 7 cubits in height, 5 cubits in width, hence 35 cloth cubits (in area).
2. Take 1 cubit off its height and add (correspondingly) to its width.
3. What is then added to its width?
4. To make you know it, namely: The height is 7 cubits. Subtract 1 cubit, its 7.
5. You shall say: (Its) 7 is taken off, 6 cubits remain. The (new) height is 6 cubits.
6. Now, its area taken off makes 5 cloth cubits.
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1. You shall say: 5 is what fraction of 6? Result: 6".
8. Add it to 5. Result: 5 6". The width is 5 6" (cubits).
9. You shall count 5 6", 6 times.

Result 35 cloth cubits, which will make the (given) number.

5 6" c.
5 c. 6" c.

^ A = 7 • 5 = 35 (sq. cubits)

^ | ^ b = l -7 = 1 (cubit), B = 1 • 5 = 5 (cubits)

» 35sq.c. ^ * /i* = 7 - l = 6(cubits)

5 c. § \ B = 5 = 6 • 6" (sq. cubits)

r^^r^^_^^^r^ ^ j w * = 5 + 6" (cubits)

w*
w w • n - 1

^ 7 A = h • w = h* • w*

*& r b = hn, B = bw = An

•* A ^ ,| h* = h - b = b-(n-l)

^ S: B = fc- w = A*- w • w - 1

w

Fig. 3.1.4. Above: P.Cairo § 4 a (ZWP # 8). Reshaping a rectangular cloth.
Below: The general idea.

In the 7 exercises of § 4, the following values of the parameters appear:

DMP# h w h*(orw*) n m w* (or h*)

8 7 c. 5 c. h* = h—\c. 7 6 w* = 5 6"c.
9 6 c. 4 c. h* = h—\c. 6 5 w* = 4 3"10 30c.
10 6 c. 12'c. h* = h — 2'c. 12 11 w* = 12' 1 2' 11 c.
11 6 c. 4 c. w* = w—1 c. 3 4 /i* = 3c.
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12 6 c. 3 c. w* = w— 12 'c . 1 2 h* = \2c.
14 21c. 5 c. h* = h— l c . 21 20 w* = 5 4 'c .
17 21c. 5 c. w* = w— l c . 5 4 /**=26 4 'c .

The following computation in two steps in DMP # 10 was observed by
Parker DMP (1972), 22:

1 2' • lTT = 2 '-3 3 11 = 1 2 ' H i l l .

It is clear from this table that the original from which the exercises in
P.Cairo § 4 were borrowed must have been a well structured "theme text".
This is shown by the way in which the first two exercises are particularly
simple, with only 1 (cubit) subtracted from the height. In the third exercise,
1/2 (cubit) is subtracted, and in the fourth and fifth exercises 2 and 6 are
added. In the last couple of exercises, 1 is subtracted from the height in one
case but from the width in the second case.

The idea behind the exercises in § 4 is illustrated by the diagram in Fig.
3.1.4, below. Apparently, the purpose of the exercises was to use a geo-
metric model to demonstrate the following general "reciprocity rule" by a
number of explicit examples:

T h e r e c i p r o c a l o f l - n i s l + n - 1 .
T h e r e c i p r o c a l o f l + w i s l - w + 1 .

Cf. the examples in P.Cairo § 1, and in P.BM 10399 § 3 (discussed in Sec.
3.2 c below).

OB mathematicians, too, were familiar with this rule. This is shown by
some interesting passages, previously badly understood, in two texts from
Uruk, VAT 7532 (H0yrup, LWS (2002), 209) and VAT 7535 (Neu-
gebauer, MKT1 (1935), 303). In VAT 7532, the sides of a trapezoidal field
are measured with a measuring stick, a 'reed', of unknown length. After
the read has been laid out 1 00 (= 60) times along the length of the field,
the top 1/6 of the reed drops off. The broken reed is then laid out 112 times
along the remainder of the length of the field. And so on. The question is

sag gi en.nam The head (original length) of the reed is what?

The first step of the solution procedure is to compute the length of the field
as a multiple of (the length of) the broken reed:
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VAT 7532, obv. 8-11.

gi sa la ti-du-u I 1 begar
igi.6.gal-£« du-sub-ma 50 te-zi-ib I
igi 50 dug-ma 1 12
a-na 1 5«-i/ nim-ma / 1 12
a-na <1 12> dah-ma 2 24 us lul in.si

The reed that you do not know, 1 may you set,
its 6th-part break off, 50 you leave.
The opposite of 50 release, then 1 12,
to 1 sixty lift, then 1 12.
To <1 12> join, then 2 24, the false length, it gives.

This means that if the assumed length of the whole reed is 1, then the
false length of the broken reed is 1 - 1/6 = ;50. Since the reciprocal of ;50
is 1;12, the length of the whole reed is 1;12 times the length of the broken
reed. Hence, the length of the field is 1 12 + 1;12 • 60 = 1 12 + 1 12 = 2 24
times the (unknown) length r* of the broken reed. This is what is meant
when it is said that 2 24 is the "false length" of the field.

Towards the end of the solution algorithm, the answer is obtained that
the length r* of the broken reed is 25 (meaning ;25 ninda). It remains to
find the length r of the whole reed. This time, the computation does not
involve the reciprocal of ;50. Instead, it goes like this:

VAT 7532, rev. 6-8.

as-sum igi.6.gal re-sa-am it}-h,a-as-bu I
6 lu-pu-ut-ma 1 su-ut-bi 5 te-zi-ib I
<igi.5 dug-ma 12>
<a-na 25 nim 5 in.si>
5 a-na 25 dah-ma
2'ninda sag gi in.si

Since a 6th-part at first was broken off,
6 write down, then 1 remove, 5 you leave.
<The opposite of 5 release, then 12.>
<To 25 lift, 5 it gives.>
5 to 25 join, then
1/2 ninda, the original reed, it gives.

Thus, instead of computing the whole reed as r = 1;12 • r* = 1;12 • 25
= 30 (meaning ;30 ninda), the text proceeds as follows:

( 1 - 1 / 6 ) •>•=/•*, 6 - 1 = 5 , 1/5 = ;12, ;12 • r* = ;12 • 25 = 5,
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(1 + 1/5)-r* = 25+ 5 = 30 = r.

The words in the text within brackets < ••• > were omitted by the scribe, but

they are present in parallel instances in VAT 7535, presented below with

several improved readings of difficult passages:

VAT 7535, obv. 23-26.

as-sum i-na re-si-in I igi.5.gal.bi-i« ih-ha-as-bu
5 lu-pu-ut-ma I 1 su-ut-bi 4 si.ni.tum
igi.4 du8-ma 15 [in.s]i /
a-na 20 [nim 5 in.si]
[5 a-na] 20 dab 25 sag gi

Since at first a 5th-part was broken off,
5 write down, then 1 remove, 4 the remainder.
The opposite of 4 release, then 15 it gives.
To 20 lift, 5 it gives.
5 to 20 join, then 25, the original reed.

VAT 7535, rev. 21-24.

as-sum igi.5.gal.bi-[iw] gaz /
5 lu-pu-ut-ma 1 su-ut-bi 4
igi.4 dug-ma /15
a-na 20 nim 5 in.si
5 a-na 20 dah-ma / 25 sag gi in.si

Since a 5th-part was broken off,
5 write down, then 1 remove, 4.
The opposite of 4 release, then 15.
To 20 lift, 5 it gives.
5 to 20 join, then 25, the original reed it gives.

Clearly, in these two examples the computation makes explicit use of

the observation that

the reciprocal of 1 - 1/5 is 1 + 1/(5 - 1) = 1 + 1/4.

Another OB mathematical text related to P.Cairo § 4 is MS 5112 § 9

(Friberg, MCTSC (2005), Sec. 11.2 1), an exercise in a large mathematical

recombination text with metric algebra as its topic. The question in that

exercise is stated as follows:
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MS 5112 § 9

us sag gu7.gu7-nja
50 a.sa
i-na us 30 ninda [zi-ma]
a-n[a] sag / 5 ninda dah-/Jia 50 a.sa
us sag en.nam
etc.

The length (and) the front (I made) eat (each other), then
50, the field.
From the length 30 ninda (/) tore out, then
to the front 5 ninda (I) added, then 50, the field.
The length (and) the front are what?
etc.

This question can be rephrased as follows:

A rectangle has the area 50 (00 sq. n.).
The length of the rectangle is diminished by 10 n., and the front augmented by 5 n.
The new area is again 50 (00 sq. n.). What are the (original and changed) values of
the length and the front?

The solution algorithm is based on the observation that if I is the length and
s the front (the short side) of the original rectangle, and if /* is the
diminished length, then first a piece of area 30 • 5 is removed from the orig-
inal rectangle, then a piece of area 5 • /* is added to the shortened rectangle.
Since the area of the added piece is assumed to be equal to the area of the
removed piece, it follows that u* = 30/5 • s. Therefore,

/ • /* = 30/5 • / -s = 30/5 • 50 (00) (sq. n.) = 5 (00 00) (sq. n.), u - u* = 30 n.

This is a rectangular-linear system of equations for the unknowns / and /*,
in the text called us pa-nu 'the earlier length' and us egir 'the later
length'. The solution to this system of equations is

« = 2 30n., «* = 2 00n.

From this it follows immediately that 'the earlier front' s and 'the later
front' s* must be

5 = 50 00sq. n. /2 30n. = 20n., and s* = 50 00sq. n. /2 00n. = 25 n.
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3.1 g. P.Cairo § 7 (DMP # 23). Shares in a geometric progression

The question in this exercise seems to be phrased more or less in the fol-
lowing way:

Four ••• are what have attained to one broken7 (= one half?).
The question gives the 1 st.
The 2nd gives 2' of the question of the 1st.
The 3rd gives 2' of the question [of] the 2nd.
The 4th gives 2' of the question <of> the 3rd.
The numbers that the fractions have given make its 2'. What is that which has been
given to one tgsl

The solution procedure goes like this:

The way of doing it. Namely.
The first 1, the second 2', the third 4', the fourth 8, total 1 6" 30 120.
You shall cause that 1 6" 30120 makes the number 8, result 15.
You shall take T5, its 2' amounts to 30. You shall reckon 30, 8 times, result 5 T5.
You shall say: The 1st 5 T5, the 2nd TO 30, the 3rd T5, the 4th 30. The total again.

Parker, who could not explain what is going on here, simply wrote

"Instead of the usual concrete problem, this appears to be merely some sort of math-
ematical exercise involving the continuous halving of a given number or fraction. A
few key words, which might perhaps explain the purpose of the operation, are either
missing or untranslatable with certainty."

In particular, it is not known what the meaning is of the word tgs. (Parker
points out that it has the 'writing determinative'.) However, a likely inter-
pretation is that P. Cairo § 7 is some kind of sharing problem, where 1/2 of
some valuable commodity is shared between four tgs, in a decreasing geo-
metric progression with the factor 1/2. If the shares are called a, b, c, d,
then the problem can be explained (in modern terms) as the following sim-
ple system of linear equations:

a-2' = b, b • 2' = c, c • 2' = d, a + b+c+d-2.
The solution procedure, which apparently makes use of the rule of false

value, starts as follows:23

a) (Let) the 1st = 1. (Then) the 2nd = 2', the 3rd = 4', the 4th = 8.

What then follows is more obscure. The "obvious" way to proceed would

23. Cf. Sec. 2.1 b-c, for a number of examples of applications of the rule of false value,
both in pRhind and in Old and Late Babylonian mathematical texts.
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be to divide the given sum 2' of the four shares by the sum 1 2' 4' 8 of the
false shares in order to find the necessary "correction factor". Then the
false shares times the correction factor would give the true shares.

This goal could have been obtained as follows:

b) The sum of the false shares is 1 2' 4' 8.
c) 1 2'4'8 = (8 + 4 + 2+ 1)-8 = 15-8. Therefore, 1 2 '4 '8-T5 = 8~.
d)2'-15=30, and 8 • 30 = 4 • TT= 2 • TO 30 = 5 T5T
e) Therefore, 1 2' 4' 8 • 5 T5 = 2'. Hence, the correction factor is 5 T5.
f) Consequently, the four shares are

515, 2 ' - 5 1 5 = 1 0 30, 21-1030=15, and 2' 15 = 30.
g) The total is correct, since

5 15 + TO 30 + TT+ 30 = (6 + 2 + 3 + 1 + 2 + 1) • 30 = 15 • 30 = 2'.

This is close to the actual procedure in the text. However, a complicating
factor is the seemingly unmotivated introduction of the sum of parts
1 6" 30 120 as the sum of the false shares, instead of the obvious sum
1 2' 4' 8. Here is, therefore, an alternative explanation of the solution
procedure in P.Cairo § 7 (DMP # 23), in terms of a hidden counting with
sexagesimal fractions:

b) The sum of the false shares is
1 2' 4' 8 = 1 + ;30 +;15 + ;07 30 = 1 ;52 30 = 1 + ;50 + ;02 + ;00 30 = 1 6" 30120.

c)16"30 120=l;52 30=15- ;07 30=15-8 .
Therefore, 1 6" 30 T20 15 = ;07 30 = 8.

d)2'-T5-=30, and 8 • 30 = 8 • ;02 = ;16 = ;12+;04 = 515:
e) Therefore, 1 6" 30120 • 5 15 = 2'.

Hence, the correction factor is 5 15 = ;12 + ;04 = ;16.
f) Consequently, the four shares are

5T5 = ;16, 2'-5 15 = T0 30 = ;08, 2' 10 30=15 = ;04, and 2' • 15 = 30 = ;02.
g) The total is correct, since ;16 + ;08 + ;04 + ;02 = ;30 = 2'.

An OB parallel text is MS 2830, obv. (Friberg, MCTSC (2005), Sec. 7.4
a), a small theme text with five exercises, where 4 brothers share given
amounts of silver in various kinds of geometric progressions. Another OB
parallel text is the round "hand tablet" MS 1844 (Friberg {op. cit.), Sec. 7.4
b) where 7 brothers7 share an amount of silver7 in a geometric progression,
with each brother getting 1/7 times less than his nearest older brother.

3.1 h. P.Cairo § 9 (DMP ## 32-33). Diameter of a circle with given area

As is well known, the complicated rule for the computation of the area of
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a circle known from P.Rhind # 48 is no longer used in the demotic
mathematical papyri. An example is shown below:

P.Cairo § 9 a (DMP# 32).

A plot that makes 100 square cubits, being a square.
It is said to you: Let it make a plot that makes 100 square cubits and is round.
What is the diameter? Look, this is what it is like:
You add the 3' of 100 to it, it makes 133 3'.
Let it be a squareside, it makes 11 2' 20.
You shall say: 11 2' 20 is the diameter of the plot that makes 100 square cubits.
Look, this is what it is like:
You count with 112' 20, 3 times, it makes 34 2' 10 20. It is what it is round.
Namely: Its 3' is 11 2' 20, its 4' is 8 2' 10 20 120.
You shall count 11 2' 20, 8 2' 10 20 120 times, it makes 100 square cubits again.

In this exercise, the area A of a circular field is 100 sq. cubits. The diameter
d is computed as

d= sqr. (A + 3' • A) = sqr. {(1 + 3') • A)

Hence, sq. d = (1 + 3') • A. The corresponding rule for the computation of
the area of a circle is

^circle = ( ' - 4') sq.d.

Next, the circumference a of the circle is computed as

a = 3 • d.

For verification by reversal, the obtained value of a is used to compute the
area A:

Ac i r c l e = ( 3 ' - a ) - ( 4 ' - a ) ( = 4 ' - r f - a ) .

Consequently, in the latter part of the 1st millennium BCE, the Egyp-
tians had adopted the Babylonian rule for the computation of the circum-
ference of a circle, as 3 times the diameter. They had also adopted two new
rules for the computation of the area of a circle, both essentially identical
with the Babylonian rule A = ;05 • sq. a, where ;05 = 1/12 = 1/3 • 1/4.

The square root 11 2' 20 can possibly have been computed in P.Cairo
§ 9 a by use of a simple method like this:

sqr. 133 3' = sqr. (sq. 11 + 37/3) = appr. 11 + 37/66 = 11 21 22 66
= appr. 11 2'20 (= 11;33).

(See Friberg, BaM 28 (1997), Sec. 8: "On Babylonian square root approx-
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imations" and Sec. 9: "Indian, Egyptian, and Greek square root approxi-
mations", for a detailed discussion of ancient accurate methods for the
computation of square roots.) On the other hand, 11 2' 20 is a quite accu-
rate approximation to sqr. 133 3', since sq. 11 2' 20 = 133 4' TO 20 400.
Therefore, another possibility is that the square root was computed in the
following, more competent way, by use of a very accurate approximation
to sqr. 3 (cf. Friberg {op. cit.), 324):

sqr. 133 3' = sqr. (400/3) = 20/3 • sqr. 3 = appr. 20/3 • 26/15 = 6;40 • 1;44 = 11;33 20
= 11 2' 20 (ISO).

The value used in the text for 4' • a is 8 2' 10 20 120, probably computed
sexagesimally as follows:

4' • a = 41 • 34 2' TO 20 = 4' • 34;39 = 8;39 45 = 8;30 + ;06 + ;03 + ;00 30 + ;00 15 =
8 2'TO 20120(240).

(Note that without the hidden use of sexagesimal fractions, 4' • a could
have been computed in a more straightforward manner as

4' • a = 4' • 34 2' TO 20 = 8 2' 8 40 80.)

If the final multiplication of 11 2' 20 with 8 2' TO 20 T20 is actually carried
out, the result will be very close to 100, as claimed in the text, since

11 2'20 • 8 2' TO 20 T20 = 11 ;33 • 8;39 30 = 1 40;00 13 30 = 100 (300 3600 7200).

Fig. 3.1.5. P.Cairo (DMP # 32): circle with diameter 11 2' 20, circumference 34 2' 3TS 20.

(The photographic detail to the right in Fig. 3.1.5 is copied from Parker,
DMP (1972), pi. 11.)
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3.1 i. P.Cairo § 10 (DMP ## 34-35). Metric algebra

The two exercises in this paragraph are of the following type:

A rectangular field has a given area A = h- w and a given diagonal d. Find h and w.

This is a metric algebra problem, with a solution in the following form:
h + w= sqr. (sq. d + 2A), h-w = sqr. (sq. d-2 A), w = [(h + w)-(h-w)}/2,
h = {h + w)-w.

In P.Cairo § 10 a {DMP # 34), the given values are A = 60 sq. cubits, d =
13 cubits, while the computed values are w = 5 and h=\2. Consequently,
the three rectangle parameters d, h, w together form an exact "diagonal tri-
ple" 13, 12, 5of integers. lnP.Cairo§ 10b (DMP #35), on the other hand,
the given values are A = 60 sq. cubits and d = 15 cubits, so that the com-
puted values are only approximations:

h + w = sqr. 345 = appr. 18 2' 12, h-w = sqr. 105 = 104',
w = appr. 4 6', h = appr. 14 3' 12.

A geometric interpretation of the solution algorithm for the metric algebra
problems in P. Cairo § 10 is presented in Fig. 3.1.6 below. (It is known that
geometric methods similar to this one were employed by both OB and Late
Babylonian mathematicians to solve metric algebra problems. See
H0yrup, LWS (2002) and Friberg, BaM 28 (1997) § 1, respectively.)

r r ~~ ~ \ ri \\ . \\ \ > *
, \ \ V s \ S

\ \ \ - i

\ , ^ - U \ n __!--'
W * Vj2 m

sq. h + sq. w = sq. d sq. d + 2 A = sq. m

h • w = A sq. d-2A = sq. n

h-m/2 + nil, w = m/2- nil

Fig.3.1.6. P.Cairo% 10 (DMP ## 34-35). A metric algebra problem.
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An OB parallel text is Db2-146 = IM 67118 from Eshnunna (H0yrup,
LWS (2002), 257, 406; Friberg, MCTSC (2005), Sec. 10.1 b), where the
length 1 and front 5 of a rectangle with given area A and given diagonal d
are computed as follows:

/ - 5 = sqr. (sq. d - 2 A), (/ + S)I2 = sqr. (sq. (I - s)/2 + A),
l = (l + S)I2 + (/ - s)/2, s = (l + S)I2 - (I - s)/2.

In IM 67118, the given values are d = 1 15, A = 45 (00), and the computed
values are / = 1 (00), 5 = 45. Consequently, in this text, too, the three rect-
angle parameters d, I, s together form an exact "diagonal triple" of integers,
d,l,s=\ 15, 1 00, 45 = 15 • (5, 4, 3).

Another OB parallel text is MS 3971 § 2 (Friberg (op. cit.)), where the
length / and front s of a rectangle with given area A and given diagonal d
are computed as follows:

l + s = sqr. (sq.d + 2A), (I- S)I2 = sqr. (sq. (/ + s)/2 - A),

/ = (/ + S)I2 + (l-S)I2, s = (l + S)I2-{I-S)I2.

Both the given and the computed values are the same as in IM 67118.

3.1 j . P.Cairo § 11 (DMP ## 36,38). An equilateral triangle in a circle

In P.Cairo § 11 a (DMP # 36) an equilateral triangle of side 5 = 1 2 (divine)
cubits is inscribed in a circle. The area of the circle is determined in a num-
ber of steps:

1) The height of the equilateral triangle is
h = sqr. (sq. 12 - sq. 6) c. = Vl08 c. = appr. 10 3' 20 120 (10;23 30) c.

2) The area of the equilateral triangle is
A = 6 c. • sqr. 108 c. = appr. 62 3' 60 (1 02;21) sq. c.

3) The diameter (height) of a circle segment is
p = y- sqr. 108 = appr. 3 3' TO 60 120180 (3;27 50) c.

4) The area of a circle segment is
B = appr. p • (s + p)l2 = 3 3' 10 60 T20 180 c. • 7 3" 20 T20 240 360 (7;43 55) c.
= 26 6" TO (26;56) sq. c.

5) The area of the circle is
A + 3 B = appr. 143 TO 20 (2 23;09) sq. c.

In the fourth step, the recorded number 26 6" 10 (26;56) is the result of a
small miscalculation. The correct result should be 3;27 50 • 7;43 55 =
26;46 57 20 50, rounded off to 26;46 = 26 3" TO.
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To check the result, the area of the circle is then computed in a different
way:

6) The diameter of the circle is
d=h+p = appr. 13 6" 45 (13;51 20) c.

7) The circumference of the circle is
a = appr. 3 • d = 41 2' T5 (41 ;34) c.

8) The area of the circle is
A = appr. (3' • a) • (4' • a) = 13 6" 45 c. • 10 3' 20 T20 a

= 143 6" TO 30" (2 23;58) sq. c.
9) The difference between the results in steps 5 and 8 is

143 6" TO 30 sq. c. - 143 TO 20 sq. c. = 3" TO 20 (;49).

The exercise ends with some badly preserved calculations apparently
meant to result in an improved value for the diameter of one of the seg-
ments:

10) ZZ —
p = 3 3' 15 35 49 c. This is not a sexagesimal number!

Here are some pertinent observations:
A. Three drawings in the papyrus illustrate P. Cairo § 11 a (DMP # 36),

showing the equilateral triangle inscribed in a circle, the triangle with its
height, and one of the three circle segments. The number recorded inside
the drawing of the segment is the height of the segment.

V/ \J / \^ / 3 3'ro~6or2"orlb\

Fig. 3.1.7. Three drawings in the demotic P.Cairo § 11 a (DMP # 36).

In these three drawings the triangles and the circle segment are all
standing upright on their bases. In the drawing in the middle, the height of
the triangle is shown at a right angle to the base. This is precisely the way
in which isosceles or equilateral triangles and their heights are drawn in the
Late Babylonian mathematical text W 23291 §§ 4 a-c (Friberg, BaM 28
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(1997), 283-286). In OB mathematical texts, on the other hand, triangles
are always drawn with the 'front' pointing to the left. Similarly, circle seg-
ments are normally drawn with the arc pointing to the left and the chord
vertical. (See the hand copies of MS 2049, obv. and BM 85194 § 11 (##
20-21) in Friberg, MCTSC (2005), Sec. 11.1 a. See also the outline of BM
85194 in Fig. 2.4.1.) In Middle Egyptian mathematical texts, like P.Rhind
and P.Moscow, triangles are oriented with the short side pointing either to
the left or to the right. Thus, in this respect, P.Cairo is more closely related
to Late Babylonian mathematics than to OB or hieratic Egyptian
mathematics.

Another way in which P.Cairo is more closely related to Late Babylo-
nian mathematics than to OB or hieratic Egyptian mathematics is that it
measures lengths in cubits, and areas in square cubits, or, in § 4, in "cloth-
cubits", which may be the same. In OB mathematical texts, lengths are
measured in ninda, and areas in square ninda or related area measures.
In hieratic mathematical texts, lengths are measured in khet =100 cubits,
and areas in setat - square khet. In Late Babylonian mathematical texts, on
the other hand, such as W 23291 (Friberg BaM 28 (1997)) and W 23291-
x (Friberg, etal, BaM 21 (1990)), lengths are normally measured in cubits,
and areas either in the related "reed measure", or in "seed measure".
Lengths can also be measured in ninda, probably in an effort to keep up the
tradition from the OB period.24

B. In P.Cairo § 11 a (DMP # 36), just as in P.Cairo § 9 a (DMP # 32),
the circumference a is equal to 3 • d, where d is the diameter, and the area
A of a circle is equal to (3' • a) • (4' • a). Apparently, all calculations are
carried out by use of sexagesimal arithmetic, although the results of the
computations are expressed in terms of sums of parts. An exception is the
improved computation in the last part of the exercise. It is unfortunate that
that part of the text is so damaged that it is not clear what is going on there.

C. In P.Cairo § 11 a {DMP # 36), an equilateral triangle with the side
12 cubits is inscribed in a circle, and it is shown, as the result of a compu-

24. In the demotic mathematical text P.Heidelberg 663 (below, Sec. 3.7) and in Greek
mathematical papyri (see Sec. 4.1), lengths are measured in khet or schoinia, both = 100 (or
96) cubits, and areas in setat (square khet) or arouras (square schoinia), while in the
pseudo-Heronic work Geometrica, lengths and areas are measured in feet and (square) feet.
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tation, that the area of that circle is approximately equal to 143 IS 20
(2 23;09) sq. cubits, or 143 6" 10 30 (2 23;58) sq. cubits, both values close
to 144 (2 24) sq. cubits, that is, to sq. (12 cubits). This is no coincidence,
since (in modern notations)

The height of an equilateral triangle with the side s is h = V312 • s.
The diameter of the circumscribed circle is d = 4/3 • h = 2/3 • V3 • s.
The area of the circumscribed circle is A = appr. 3/4 • sq. d = sq. s.

D. In P. Cairo § 11 a (DMP # 36), the following "segment area rule" is used
to compute the area of one of the three circular segments outside the equi-
lateral triangle:

^segm. = P ' 0 + pV2,
where s is the base of the segment, p the height of the segment.

This is not the correct equation for the area of a general circle segment, yet
it yields the correct result in this particular case, as indicated by the fact
that the result of the computations in steps 1-5 of the computation agrees
almost perfectly with the result of the computations in steps 6-8!

In modern notations, but still with JI = appr. 3 and V3 = appr. 7/4, the
true equation for the area of the segment is

^segm. = (^circle — "tr iangle)^

= (sq. s-s/2- ft)/3 = (1 - V3 /4)/3 • sq. s = appr. 3/16 • sq. s.

Since

p = d-h=m-h=l/6V3s,

the false equation for the area of the segment gives instead

^ s e g m . = P'(S + p)/2

- 1/6 • V3 • 1/12 • (6 + V3) sq.s = (V3 + l/2)/12 • sq. s = appr. 3/16 • sq. s.

Thus the true and false equations for the area of a segment cut off by an
equilateral triangle yield exactly the same result, at least when it is
assumed that JC - appr. 3 and V3 = appr. 7/4.

The only Late Babylonian parallels to P.Cairo § 11 (DMP ## 36, 38)
are W 23291 § 4 c (Friberg, BaM 28 (1997), 286) and VAT 7848 § 1
(Friberg, BaM 28 (1997), 302-304), where the areas of equilateral triangles
are computed by use of the very accurate approximation V3IA = appr. ;26,
orV3 = appr. 1;44 (26/15).

An OB parallel is MS 3051 (Friberg, MCTSC (2005), Sec. 8.2 b), a
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square hand tablet with a drawing and some numbers on the obverse. The
reverse is empty, except for a weakly drawn circle. The drawing on the ob-
verse represents an equilateral triangle inscribed in a circle. The equilateral
triangle is oriented with one of its sides pointing to the left, in agreement
with the OB convention that the 'front' of a triangle should point to the left.

obv.

o /f^<\ i f o df^KS i

2' ' <.<•

4 i f r
4 3' TT<^

Fig. 3.1.8. MS 3051. An equilateral triangle inscribed in a circle.

The equilateral triangle divides the circumference of the circle in three
equal parts. In the drawing on MS 3051, they are all marked with the num-
ber '20', obviously meaning '20 ninda'. That means that the whole cir-
cumference of the circle is 1 00 (ninda), hence that the diameter is 20
(ninda). It follows that the height of the equilateral triangle is 15. Some-
what misleadingly, the number '15' is recorded along one of the sides of
the triangle. Other numbers recorded in the drawing are '1 52 30' inside
the triangle and '1 02 30' inside each of the three circle segments.

The student who wrote his solution to an assignment on MS 3051 made
himself guilty of a serious error when he tried to compute the area A of the
equilateral triangle and the area B of each of the three segments. The num-
bers he actually recorded on his hand tablet can be analyzed as follows:

"/t"=152;30=15- 15/2, and "B" = 1 02;30 = (5 00- 1 52;30)/3.

The mistake he made, absentmindedly thinking about more exciting things
than his mathematical assignment, was to use the value '15' both for the
height and the side of the equilateral triangle!
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3.1 k. P.Cairo § 12 (DMP # 37). A square inscribed in a circle

In P.Cairo § 12 (DMP # 37) a square is inscribed in a circle with given di-
ameter d = 30 cubits and given area /I = 675 square cubits (= 3/4 • sq. 30).
In the first step of the computation, the area of the square is computed as
half the square of the diagonal of the square (= the diameter of the circle):

1) The area of the square is /4square
 = (S1- 30 c.)/2 = 450 sq. c.

The computation continues like this:

2) The side of the square is
s = sqr. 450sq. c. =21 5 60(21;13)c.

3) The height of a circle segment is
p = (d - s)/2 = 4 3120120 (4;23 30) c.

4) The area of a circle segment is
B = appr. p • (s + p)/2

= 4 3' 20 120 c. • 12 3" 10 30 240 (12;23 30) c.
= 56 4' (56; 15) sq. c. (actually 56; 13 53 52 30, but rounded off).

5) The area of the circle is
A + 4 B = appr. (540 + 4-56 4') sq. c. = 675 sq. c.

Thus, the sum of the areas of the five parts of the circle is precisely equal
to the area of the circle.

% ' »" I t • ' i *

Fig. 3.1.9. P.Cairo § 12 (DMP # 37). A square inscribed in a circle and a circle segment.

In the drawings illustrating the exercise, two numbers are recorded,
21 5 60 = the side s of the square and 4 3' 20 120 - the height p of one of
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the segments. (The photographic detail to the right in Fig. 3.1.9 is copied
from Parker, DMP (1972), pi. 14.)

Note that in P.Cairo § 12 the same segment area rule as in P.Cairo §
11 is used to compute the area of a circular segment:

Asegm. =p-(s + p)/2,

where s is the base of the segment, p the height of the segment.

Although this is not the correct equation for the area of a general circle seg-
ment, it obviously yields the correct result in the case of P.Cairo § 12, as
indicated by the fact that the result of the computations in step 5 of the
computation above agrees with the given value for the area of the circle.

As in the case of the segments cut off by an equilateral triangle, also in
the present case the result of an application of the true equation for the area
of a segment can be compared with the result of an application of the false
equation, using modern notations. Let s again be the base of a segment cut
off by the square, and letp be the height of that segment. Then the diameter
d of the circle = the diagonal of the square = V2 • s. Therefore, the true
equation gives

^segm. = (^circle "^square)74 = ( 3 / 4 ' 2 " ] ) / 4 - Sq. 5 = 1/8 ' sq. S (if Jt = appr. 3).

On the other hand, since

p = (d-s)/2 = (V2-\)/2-s,

the false equation gives

A s e g m = p • (s + p)/2 = (V2 - l)/2 • (V2 + l)/4 • sq. s = VS • sq. s.

Thus, in this case, too, the false equation gives the same result as the true
equation!

It is interesting to know that segment area rule works just as well also
in the case of a semicircle. In that case, the base 5 of the segment is the
diameter of the circle, and the height of the segment is the radius of the cir-
cle. Thus, the true equation is

^segm. = 1 / 2 ' 3 / 4 • sq- d= 3/4 • p • d (if n = appr. 3),

in agreement with the false equation, which gives

Asegm.=p-(d + p)/2 = 3/4-p-d.

Thus, even in this third case, the false equation gives the same result as the
true equation!
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The reason why the segment area rule works so well in the three cases
considered is that it can be associated with the idea of approximating the
area of a segment with the area of a trapezoid of roughly the same shape,
a kind of "quadrature of the circle segment" (cf. the well known explana-
tion of the hieratic circle area rule, as in Fig. 2.1.5 in Sec. 2.1 d).

p
 P P .

( ) f \ / ) f 1\ / \ \ / / \ /
Fig. 3.1.10. Explanation of the apparent accuracy of the segment area rule.

Note that an application of the segment area rule in the case of a semi-
circle appears explicitly in the Greek mathematical papyrus P.Vindob. G
26740 # 5. (See Sec. 4.3 c and Fig. 4.3.1.) In Babylonian mathematics, the
use of the rule is not documented. However, one of the three constants for
the area of a semicircle listed in OB tables of constants is

45 lagan u4.sakar ki.3 NSd54
45, the 3rd (constant) of a crescent-field

(See Sec. 2.1 d.) The meaning of this constant is, obviously, that

A = 3/4 • p • d, where d is the 'transversal' (dal) of the circle,
and p is the orthogonal 'cross-line' ipirkum).

BM 85194 # 29, is an isolated exercise in a large OB recombination
text (outlined in Fig. 2.4.1). There the area of a circle segment is computed
in the case when the arc is 1 (00) and the base 50. Unfortunately, the text
of that exercise is so corrupt that no conclusion can safely be drawn about
what the original author of the exercise tried to do. (See the detailed, in-
conclusive discussion in Neugebauer, MKT1 (1935), 188-190.)

The same segment area rule as in P. Cairo can be found also in the early
Chinese mathematical manual Jiu Zhang Suan Shu 1:35-36 (Shen,
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Crossley, and Lun, NCMA (1999), 123-128). In Hero's Metrica I: 30, the
segment area rule is attributed to 'the ancients', and is shown to be inade-
quate when the improved Archimedean approximation 3 1/7 is used for n.
Therefore, Hero suggests various corrected forms of the rule. For details,
see Heath, //GM 2 (1921 (1981)), 330.

TMS 3 = BR (Bruins and Rutten, TMS (1961), text 3, is an OB table of
mathematical constants. Six of the items are constants for two kinds of
double circle segments:

13 20 igi.gub sd a.sa se constant of a grain-field BR 16
5640 dal sd a.sa se transversal of a grain-field BR 17
23 20 pi-ir-ku sd a.sa se cross-line of a grain-field BR 18

16 52 30 igi.gub sd igi.gU4 constant of an ox-eye BR 19
52 30 dal sd igi.gu4 transversal of an ox-eye BR 20
30 pi-ir-ku sd igi.gu4 cross-line of an ox-eye BR21

For each one of the two figures the constant stands for the area, the
transversal for the longest straight line inside the figure, and the cross-
line for the longest straight line inside the figure, at a right angle to the
transversal. In both figures, the longest component of the boundary (in cas-
es like these the arc ) is supposed to have the length 1 , probably thought
of as 1 (00).

V y \J-'''
a.sa se 'grain-field' igi-gu4 'ox-eye'

Fig. 3.1.11. Two kinds of double circle segments in an OB table of constants.

The given constants are correctly computed when the approximations
used are JT. = appr. 3, V2 = appr. 1;25 = 17/12, and V3 = appr. 1;45 = 7/4.

Indeed, in the figure to the left, if a = 1 00, then the circumference of
the circle is 4 00, the diameter D of the circle is approximately 1 20, and
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d = 1 20/2 • V2 = appr. 56;40 = 10 • 17/3. Finally, p = D-d=\20- 56;40
= 23;20, and the area of the grain-field can be computed as

^grain-field = (^circle " ^square)72 = aPPl"- (1 20 00 - 53 20)/2 = 13 20.

In the figure to the right, if a = 1 00, then the circumference of the circle is
3 00, the diameter D of the circle is appr. 1 00, and p = DI2 - appr. 30.
Furthermore, d = p-V3 = appr. 52;30 = 7/8, and

^ox-eye = (^circle -^triangle) ' 2/3 = appr. (45 00 - 26; 15 • 45) = 16 52;30.

Thus, it is clear that there existed OB precursors to P.Cairo / 11-12
(DMP ## 36-38).

A more direct OB parallel to P.Cairo § 12 (DMP # 37) is MS 3050
(Friberg, MCTSC (2005), Sec. 8.2 c), a thick and round clay tablet with a
drawing of a square with diagonals, inscribed in a circle.

obv.

Fig. 3.1.12. MS 3050. An OB round hand tablet with a a square inscribed in a circle.

This is a school boy's hand tablet with various scribbled numbers,
apparently giving only the beginning of a correct solution to whatever
problem had been assigned to the school boy. It is likely that the diameter
of the circle was given as 1(00). In that case, the area of the circle would
be approximately 45 (00), and the area of each quarter circle 11 15. This
would explain why the number '11 15' is recorded in each of the four
quadrants. The number '22 30' can be explained as the area of half the cir-
cle, and the number '45' as the area of the whole circle. Similarly, the num-
bers ' 15 and '7 30' can be explained as the areas of a quarter square and a
half square, respectively. Unfortunately, there is no trace of a number
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'3 45' to indicate the area of a segment (3 45 = 11 1 5 - 7 30), and there is
no obvious explanation for the numbers '16 40' and '26'.

3.1.1. P.Cairo §§ 13-14 (DMP ## 39-40). Pyramids with a square base

Precursors to these exercises exist both in the hieratic P.Rhind and P.Mos-
cow and in the OB text BM 96954+. (See Sec. 2.2 d and Sec. 4.8 e.)

3.1 m. P.Cairo §§ 15-16 (## "32-33"). Metric algebra

In the main edition of P.Cairo, published in Parker, DMP (1972), the text
was described as 40 exercises in 19 columns (A-S) on the reverses of 11
papyrus fragments. Parker, Cent. 14 (1969) contains a preliminary descrip-
tion of the text, giving brief explanations of 37 exercises in 20 of the col-
umns. A comparison of the two descriptions of the document seems to
indicate that exercises DMP## 13-22 in columns H-L were still not under-
stood by Parker in 1969, and therefore not mentioned then. On the other
hand, at least two of the exercises mentioned in Parker (1969)are not
present in Parker (1972), namely the ones here called §§ 15-16 (## "32"
and "33"). Parker describes them quite briefly in the following way:

# "32"

"The area of a square is decreased by 40 square cubits to make a rectangle of
100 square cubits.
Determine the sides: result, 11 5/6 by 8 1/3 1/10 1/60."

# "33"

"Apparently an area of 100 square cubits has one side larger than the other by
21 cubits.
Determine the sides: result 25 by 4."

These are clearly metric algebra problems, but no details of any likely
solution procedures were presented in Parker (op. cit.). However, such so-
lution procedures, based on geometric considerations in the Old Babyloni-
an style, are not difficult to find.

Take, for instance, the problem posed in "#32". It can be rephrased (in
modern terms) as a couple of rectangular equations (cf. Fig. 3.1.13, left):

A = h- w= 100 sq. c.

h • (h - w) = 40 sq. c.

This is a simple problem with the following obvious solution:
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sq. h = (100 + 40) sq. c = 140 sq. c.

h = sqs. 140 c. = appr. (12 - 4/24) c. = 11 6" c. (= 11,50 c.)

wlh = 100/140 = 5/7

w = appr. 5 • 1/7 • 11;50 c. = appr. 5 • ;08 34 • 11;50 c. = appr. 8;27 c. = 8 3' TO 60 c.

(Without the use of covert counting with sexagesimal numbers, the answer
would have been instead that w = 8 3' T4 2T.)

h lOOsq.c 40sq.c \
h A i

1 (h-w)/2

! A.

w h-w w (h + w)/2

A = h • w = 100 sq. c. A = h • w = 100 sq. c.
h- {h- w) = 40sq. c. h-w = 21

Fig. 3.1.13. P.Cairo §§ 15-16 (DMP ## "32-33"). Geometric interpretations.

The problem posed in "#33" can be rephrased (in modern terms) as a c
rectangular-linear system of equations:

A = h • w = 100 sq. c.

h-w = 21. c.

This is a problem of a type that appears in both Old and Late Babylonian
mathematics. It can be solved as follows (cf. Fig. 3.1.13, right):

sq. (h + W)I2 = (sq. 21/2 + 100) sq. c. = 210 4' c.

(h + W)I2 = sqs. 210 4' c. = 14 21 c.

A = (14 2'+ 10 2')c. = 25c.

w = (14 2 ' - 10 2')c. = 4c.

3.2. RBritish Museum 10399 (Ptolemaic, Later than P.Cairo)

The exercises of this text (Parker, DMP (1972) ## 42-51) belong to three
distinct topics: circle geometry (DMP #41), truncated cones (DMP ## 42-
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45) and reciprocals of numbers of the type 1 + \ln (DMP## 46-51).

3.2 a. P.BM 10399 § 1 (DMP # 41). A circle-and-chord problem

There is not much left of the question in this exercise, but more of the so-
lution procedure:

1. The way of doing it.
2. You shall carry 7 into 13, result 1 6" 42.
3. You shall count 1 6" 42 to 1 6" 42 times, result 3 22 49.
4. You shall count 3 22 49 to 7 times, result 24 and 7.
5. You shall add 7 to 24 and 7, result 31 and 7.
6. You shall take - 24 7, result - (the rest is lost)

Parker admits defeat, with the words "Because of the fragmentary condi-
tion of the papyrus it is impossible to state the problem." Nevertheless, it
is not difficult to find an explanation for the computations in this exercise,
and there is also a plausible candidate for the type of problem that leads to
this kind of computations. Indeed, in modern notations, the steps of the so-
lution procedure are:25

2. 13/7 = 1 5/6 1/42 (this step is superfluous)
3. sq. 13/7 = 3 22/49
4. sq. 13/7-7 = 24 1/7
5. sq. 13/7 -7 + 7 = 31 1/7 etc.

Computations somewhat like these are known to occur, for instance, in OB
problems for chords in a circle. An example of such a problem is TMS 1
(Bruins and Rutten, TMS (1961). See Fig. 3.2.1, left. In Fig. 3.2.1, right, is
illustrated a problem where the front s and the length h of a symmetric tri-
angle inscribed in a circle are given. This is the most likely interpretation
of the drawing on TMS 1, where h (called us sag.kak ga-am-ru 'the
whole length of the triangle') = 40, and s/2 (called 2' sag '1/2 the front')
= 30. The values of r (the radius of the circle) and q (the distance from the
front of the triangle to the center of the circle) can then be found as the
solutions to a quadratic-linear system of equations:

sq. r - sq. q = sq. s/2, r+ q = h.

This is one of the Babylonian standard forms for a quadratic-linear system

25. Knorr, HM9 (1982) observed that the squaring in line 3 can be explained as the result
of actually counting with common fractions. Thus, sq. 1 6" 42 = sq. 13 7 = 169 49 = 3 22 49.
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of equations. (See, for instance, Friberg, RIA 7 (1990) Sec. 5.7 c, type
B3a). The solution, obtained by use of metric algebra, is

p = r-q = (sq.s/2)/h, r=(h + p)/2, q = (h-p)/2.

In the case of TMS 1, in particular,

s/2 = 30, fc = 40, sothat p= 15 00/40 = 22;30, r = 31;15, q = 8;45.

These values for/? and q are explicitly indicated in the drawing on TMS 1.

obv.
s -* " "" ~" "* "" *~ ™ "* s

l / f-a . . - 7 W"&sagbH.ga-am-mA 7 - ^
) / / ' X / ^ l^ I Q ' s ^ \

\ 'is / ® /S , * — *' ' \ Ĵ '' /^^ I

Fig. 3.2.1. TMS 1. Metric algebra. A circle-and-chord problem.

In Fig. 3.2.2, left, is shown the opposite case, when s/2 (half the length
of the chord) and p = r- q (the height of the circle segment cut off by the
chord) are known, and h has to be computed. This case can be reduced to
a quadratic-linear system of equations of the following kind (Friberg, RIA
7 (1990) Sec. 5.7 c, type B3b):

sq. r- sq. q = sq. s/2, r-q = p.

The solution, obtained through an application of the conjugate rule is:

h = r+q = (sq. s/2)/p, r=(h + p)/2, q = (h-p)!2.

Thus, if the length s of the chord, and the height p of the circle segment cut

26. In the Late Babylonian mathematical recombination text W 23291 § 1 f (Friberg,
BaM 28 (1997)), the "seed measure" and the width of a square band (a region bounded by
two concentric and parallel squares) are given. The problem to find the sides of the bound-
ing squares is equivalent to a quadratic-linear system of equations of type B3a.
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off by the chord are both known, then the following computation rule can
be used to find the length of the diameter:

d = h + p = (sq. s/2)/p + p.

This rule for the computation of the diameter is close to the rule applied
in P.BM 10399 § 1, where something is computed as (sq. 13/7) -7 + 7,
which, of course, is equal to (sq. 13)/7 + 7. However, close is not good
enough, so one has to find a rule that corresponds exactly to the steps of
the computation in P.BM 10399 § 1. How this can be done is shown below:

/ / \ P=fs/2,
// \ s/l=f-h

I / \ =>

/ / \ h = (sq. 1//) • p,
]/_ h_ \ d=h + p = (sq.l/f)p + p

K p Q /~ ,''']
\ \ <5! / . - ' ' ' / •S = 2 6 .P = 7

\ \ / , ' ' ' ' / /= 7/13, 1//= 13/7
\ \ /,*-'' / d = (sq. 13/7) -7 + 7 = 31 1/7

Fig. 3.2.2. P.BM 10399 § 1. Computation of the diameter, using similar triangles.

The crucial idea here is the realization if h = (sq. s/2)/p, as shown above,
then it follows that h/(s/2) = (s/2)/p, which means (in modern terms) that
in Fig. 3.2.2 the right triangle with the sides h and s/2 is similar to the right
triangle with the sides s/2 and p. In OB mathematics, this result would have
been expressed in terms of side ratio or growth rate, rather than in terms of
similarity.27 Therefore the similarity of the mentioned right triangles in
Fig. 3.2.2 would be understood by an OB mathematician as the equality of
the side ratios f of the two triangles. In modern notations:

p=f-s/2, and sl2=f-h.

27. See, most recently, MS 3052 § 1 d (Friberg, MCTSC (2005), Sec. 10.2), where the
growth rate of the triangular cross section of a mud wall is called indanum, probably mean-
ing '(increase in) (n)inda(n) (per cubit of descent)'.
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From this follows what may be called the "chord-and-diameter rule".

h = sq.\/fp, and d= h + p = sq. 1/f-p + p.

Hence, a possible explanation of the computations in the preserved part of
P.BM 10399 § 1 is that the exercise is an application of the chord-and-
diameter rule, in the case when the length of the chord is 5 = 26, and when
the height of the segment cut off by the chord is 7. What is computed in the
preserved first part of the solution procedure is then the diameter

d = sq. (13/7)-7+ 7 = 31 1/7.

MS 3049 (Friberg, MCTSC (2005), Sec. 11.1) is a small fragment of a
mathematical recombination text. The text appears to be either late OB or
post-OB (Kassite). According to a subscript, fortuitously preserved at the
end of the inscription, the text originally contained 16 problems, including
6 problems for circles. The first of those 6 problems is preserved. It asks
for the length s of a chord (dal an.ta 'the upper transversal'), when the
diameter d (dal 'the transversal') and the height p of the segment (sa ur-
dam 'that which I went down') are known, d = 20 n., andp = 2 n. The meth-
od used to compute the length of the chord can be explained as follows, in
modern notations, and with the symbols introduced in Fig. 3.2.2:

r = d/2=W, q = r-p = &, s/2 = sqr. ( sq . r - s q . q ) = 6, s = 2 - 6 = \ 2 .

It is probably not a coincidence that there were originally precisely 6
"circle-and-chord problems" in the first paragraph of MS 3049. Indeed, in
problems of this type, there are 4 primary parameters, namely d, p, h, and
s. (Note that the center and the radius of a circle appear to have played only
secondary roles in Babylonian mathematics.) In the preserved exercise, the
known parameters are d and p, and s is computed. (The trivial computation
of h is omitted.) Now, there are 6 ways to choose 2 parameters out of 4. In
the case of the circle-and-chord problems the 6 possible choices are (in no
particular order):

l.dandp, 2. rfand/j,
3.dands, 4. pandh,
5. p and s, 6. h and s.

These 6 possible choices probably correspond to the originally 6 circle-
and-chord problems in MS 3049 § 1. The third choice apparently corre-
sponds to the choice of data in P.BM 10399 § 1.
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3.2 b. P.BM 10399 § 2 (DMP ## 42-45). Masts (truncated cones)

In these four exercises, the heights of 4 'masts' (truncated cones) are h
=100, 90, 80, and 70 cubits, respectively, The diameter of the mast at its
foot is always a - 3cubits, and the diameter at its top b = 1 cubit. The vol-
ume V of the mast is computed using the non-exact equation

V = ( l - 4 ' ) s q . l(a + b)/2] • h.

The volume is (implicitly) expressed in cubic cubits. However, the stated
problem is to find out how many hinu of water a metal casing for the mast
can hold. A hinu is defined as a cubic 'palm'. Since 1 (divine) cubit equals
7 palms, it follows that 1 cubic cubit equals 7 • 7 • 7 = 343 hinu. Therefore,
the final answer is that the casing for the mast holds 343 • V hinu, where V
is the volume of the mast.

An OB parallel text is VAT 8522 # 1 (Neugebauer, MKT 1 (1935),
368). The question in that exercise is the following:

A log of cedar is 5 n inda long, and

1 04 (cylinder) sila 'thick' at the base, 8 (cylinder) s i la 'thick' at the top.

The whole log is worth 3 3' minas of silver.

How much of the log can be cut off (at the top) for 3' mina?

A "cubic" cylinder of diameter d and height d (measured in multiples of
;01 ninda = 6 fingers) contains sq. d • d cylinder sila. (See the definition
of the cylinder sila in the discussion in Sec. 2.3 a of the granary problem
in P.UC 32160 = P.Kahun IV. 3 # 1.) Therefore, if a cubic near-cylinder
measures 1 04 cylinder sila at the base of the log and 8 cylinder sila at the
top of the log, then the diameter of the log is a = ;04 ninda at the base and
b = ;02 ninda at the top.

In VAT 8522 # 1, the volume of the log (or truncated cone) is computed
(incorrectly) as follows:

V= ;05 • sq. {(a + b)l2 • 3} • h = ;05 • ;01 21 sq. n. • 1 00 c. = ;0645 sq. n. • c.

Then the volume is transformed into capacity measure through multiplica-
tion with the constant 6 40 (00), the "storing number" for the cylinder sila.
The result is:

C= ;06 45 sq. n. • c. • 6 40 (00) sila/sq. n. • c. = 45 (00) sila.

Since 1/3 mina is 1/10 of 3 1/3 minas, a tenth of this capacity measure can
be cut off at the top of the log for the price of 1/3 mina. This is 4 30 cylinder
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sila. And soon.

The similarity between VAT 8522 # 1 and the demotic exercises in
P.BM 10399 § 2 is obvious. The encasing of the mast in an envelope of
copper in the demotic exercises is only a slightly ridiculous excuse for
measuring the size of the mast in capacity measure instead of in volume
measure. In VAT 8522 # 1, no such excuse is needed, probably because it
was commonplace in Mesopotamia to measure logs in capacity measure.
Note, by the way, the similarity between the hinu = a cube with the height
7 fingers, and the cylinder sila= a cubic cylinder with the height 6 fingers.

Another parallel text is Haddad 104 # 2 (Al-Rawi and Roaf, Sumer 43
(1984)), which begins like this:

If a log, 5 its bottom, 1 40 its top, 30, a reed, it is long, what is the grain it takes?

The 'log' in this text is a truncated cone. Its volume is computed by use of
the same incorrect rule as the one that is used in P.BM 10399 § 2 (DMP ##
42-45). Then the volume is multiplied by the storing number 6 (00 00). The
result is the capacity measure of the log, in terms of a sila probably de-
fined as a box with the dimensions 6 fingers • 6 fingers • 5 fingers. (See
Friberg, BaM 28 (1997), 306, 312.)

3.2 c. P.BM 10399 § 3 (DMP ## 46-51). The reciprocal of 1 + 1/n, etc.

In exercises DMP ## 46-51, the stated problem is to compute the recipro-
cal of 1 + p, with p = 5, 6', 7, 8, 9, and 6", respectively. Here is the text of
DMP # 50, a relatively well preserved exercise:

1. You are told: 9 is the addition, what is the subtraction?
2. The way of doing it, namely:
3. You add 9 to /.result 1 9.
4. You say: 9 is what of 1 9? Result, its 10.
5. You say: 9 is the addition, TO the subtraction.
6. To make you know it, namely:
7. You subtract 10 from 1, remainder 6" 15.
8. The fraction is 6" 15, namely:
9. Its 9 is TO. You add them, result 1 again.

These exercises are clearly of the same type as the exercises in P.Cairo §
4 (reshaping a piece of cloth, keeping the area). See Fig. 3.1.4 above. The
general rule is here (in modern notations) that
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The reciprocal o f l + n i s l - n + 1 .

This "reciprocity rule" works even in exercise DMP # 5 1 , where 1 + p =
1 6" = 1 + rec. 1 5, and where 15 + 1 = 2 5 (=11/5), so that, consequently,
the answer is

You say: 6" is the addition, 5 U. is the subtraction(where 5 H means 5/11)

OB parallels can be found, as in the case of P.Cairo § 4, in VAT 7532 and
VAT 7535.

In Fowler, MPA (1987 (1999)), 262 (260), the fractions appearing in
line 7 of all the exercises in § 3 are examined closely, in an effort to explain
how DMP # 51 is different from DMP ## 46-50. Below, Fowler's exami-
nation is repeated, but with different details and a different conclusion.

Essentially, the following reciprocals are computed in line 7 of the six
exercises in § 2:

DMP#46, line7: rec. 1 5 = 1 - 6 ' =6"
DMP#47, line 7: rec. 1 6' = 1 - 7 = 6" 42
£>MP#48, Iine7: rec. 1 7 = 1 - 8 =3"T28
DMP # 49, line 7: rec. 1 8 = 1 - 9 =6" 30 45
DMP # 50, line 7: rec. 1 9 = 1 - 1 0 = 6" 15
DMP #51, line 7: rec. 1 6" = 1-5 11 = 6 U

Parker, DMP (1972), 61 and 63 questioned the procedure in the text in the
following two cases:

DMP # 48: For no discernible reason the scribe uses the clumsy fraction
2/3 1/12 1/8, with 1/8 in incorrect order after 1/12, instead of
the more convenient 5/6 1/24.

DMP #51: That 5/11 is the result is sure from lines 5 and 7, but why did
the scribe use this new type of fraction (see problems 2 and 3)
in just one problem out of six?

Fowler (op. cit.), foot notes 83 and 88, tries to explain the first of these ob-
scure points by reference to his observation that "the expression 2' 4' seems
to be avoided", suggesting simply without any kind of justification that

"3" 12' may be the standard expression for the 4th of 3".

Actually, also the answers in exercises DMP ## 47, 49, and 50 are prob-
lematic. If the scribe had counted in the traditional Egyptian way, making
use of the 2/n table, he would have obtained the following alternative re-
sults:
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DMP # 47: rec. 1 6' = 1 - 7 = 6 • 7 = (4 + 2) • 7 = 2' 14 + 4' 28 = 2' 4' 14 28
DMP # 49: rec. 1 8 = 1 - 9 = 8 • 9 = 4 • 6' W= 3" 6' 18 = 6" T5
£>MP # 50: rec. 1 9 = 1 - TO = 9 • TO = (8 + 1) TO = 3" TO 30+TO = 3" 5 30

A possible explanation of the mentioned obscure points is that the au-
thor of P.BM 10399 § 3 simply used any method he could think of, includ-
ing the hidden use of sexagesimal fractions (as often in P. Cairo), and the
use of some rudimentary idea of a common fraction (as in P.Cairo § 1).
Thus, he may have counted as follows:

DMP # 46: rec. 1 5 = 1 - 6' = 6"
DMP#47: rec. 1 6'= 1-7 = 6 - 7 =36-42 = (35 + 1) • 42 = 6" 42
DMP#4S: rec. 17 = 1 - 8 =2 '4 '8 = ;30 + ;15 + 8 = ;45 + 8 = 3"T28

(in this order!)
DMP#49: rec. 18 = 1 - 9 = l - ; 0 6 4 0 = ;53 20 = ;50 + ;02 + ;01 20

= 6" 30 45
DMP#50: rec. 19 = 1 - 1 0 = l - ; 0 6 = ;54 =;50+;04 =6"T5
DMP#5\: rec. 1 6 " = 1 - 5 J I =6Ji

3.3. P.British Museum 10520 (Early(?) Roman)

This document (Parker, DMP ## 53-65) consists of thirteen exercises on
the reverse of a reused papyrus, belonging to seven distinct topics:

§ 1 The iterated sum of the integers from 1 to 10 DMP # 53

§ 2 A multiplication table for 64, from 1 to 16 DMP # 54

§3 A multiplication rule, applied to the product of Band 17 DMP #55

§ 4 Expressing 2/35 as a sum of parts DMP # 56

§5 Operations with the fractions 3' T5 (2/5) and 3" 2T (5/7) DMP ##57-61

§ 6 Approximations of square roots; a) sqr. 10, b) sqr. 2' DMP ## 62-63

§ 7 Areas of rectangular fields DMP ## 64-65

3.3 a. P.BM 10520 § 1 {DMP # 53). The iterated sum of 1 through 10

The most interesting of the exercises in P.BM 10520 is § l).The initial
question there is read and translated in Parker, DMP (1972) as follows:

1 is filled twice up to 10.

In Zauzich, BiOr 32 (1975), a review of Parker, DMP, a modified reading
and translation is suggested:

1 is moved back repeatedly, up to 10.
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Whichever the correct form of the question is, the form of the solution pro-
cedure is clear:

You count 10, 10 times, result 100.
You add 10 to 100, result 110. You take 2', result 55.
You say: 1 up to 10 amounts to 55.
You add 2 to 10, result 12. You take 3' of 12, result 4.
You count 4, 55 times, result 220. It is it.
You say: 1 is filled twice {or 1 is moved back repeatedly) up to 10, result 220.

Apparently, what is computed here is

1) 10 • (10 + l)/2 = (100 + 10)/2 = 55,
2) 10 • (10 + l)/2 • (10 + 2)/3 = 55 • 12/3 = 220.

The first step is, of course, the well known computation of the sum of the
first 10 integers. What the second step means can be explained by refer-
ence to columns 1-3 in the following table:

1 l 1
2 3 4
3 6 10
4 10 20
5 15 35 (15 = 3-5, 35 = 5-7)
6 21 56 (21=3-7, 56 = 7-8)
7 28 84 (28 = 4-7, 84 = 3-4-7)
8 36 120 (36 = 4 • 9, 120 = 3 • 4 • 10)
9 45 165 (45 = 5-9, 165 = 3-5-11)
10 55 220 (55 = 5-11, 220 = 2-10-11)

In col. 1 are recorded the first 10 integers. The numbers in col. 2 are the
sums of the first n numbers in col. 1, with n from 1 to 10. Similarly, the
numbers in col. 3 are the sums of the first n numbers in col. 2, or the "iter-
ated sums" of the first n numbers in col. 1, with n again from 1 to 10.

The general rule giving the sum S^n) of the first n integers can very
well have been discovered by someone looking at the factorizations of the
numbers in col. 2 above. Similarly, the general equation for the iterated
sum S2(n) of the first n integers can have been discovered by someone
looking at the factorizations of the numbers in col. 3 above. The two equa-
tions are

Sl(n) = n- («+l) /2 and S2(n) = n • (n + l)/2 • (n + 2)13.

Zauzich {op. cit.) suggested that the phrase "1 is moved back repeatedly"
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should be understood as referring to some triangular array for the compu-
tation of the iterated sums, such as, for instance,

1 1 1 1 1 1 1 1 1 l

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4

5 5 5 5 5 5

6 6 6 6 6

7 7 7 7

8 8 8

9 9

10

In any case, clearly the iterated sum of the first 10 integers is what is com-
puted in P.BM 10520 § 1.

A Late Babylonian (imperfect) parallel is AO 6484 # 2 (Neugebauer,
MKT 1 (1935), 96), an isolated exercise in a Seleucid mathematical re-
combination text from Uruk:

AO 6484 # 2.

tam-har-tum sd
ta 1 • 1 : 1 en 10 • 10 : 1 40
ki-i en sid-fti
1 • 20 : [3'] / xk-ma 20 :
10 • 40 : 2-to su.2.mes xk-ma 6 40 :
6 40 u 20 7 /
7 • 55 xk-ma 6 25
6 25 sid-Zti

Square-number, that of
from 1 • 1 = 1 to 10 • 10 = 1 40.
Like what is the number?
1 • 20, 3', go, then 20.
10-40, two-hands (2/3) go, then 6 40.
6 40 and 20 (is) 7.
7 • 55 go, then 6 25.
6 25 is the number.

The given task here is to compute the sum Q(10) of the squares of the
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integers from 1 to 10. The computation is clearly based on the following
general equation for the sum of the first n squares:

Q(n) = ( 1 • 1 / 3 + n • 2 / 3 ) • 5 , ( n ) = n - ( n + l ) / 2 - ( 2 n + l ) / 3 .

The general rule may have been found by someone looking closely at a
table like the one below:

1 1 1

2 3 5

3 6 14 (14 = 2 - 7 )

4 10 30 (30 = 5 - 6 )

5 15 55 (15 = 3 - 5 , 55 = 5 -11)

6 21 131 ( 2 1 = 3 - 7 , 1 3 1 = 9 1 = 7 - 13)

7 28 2 20 (28 = 4 - 7 , 2 2 0 = 1 4 0 = 4 - 5 - 7 )

8 36 3 24 (36 = 4 • 9, 3 24 = 204 = 3 • 4 • 17)

9 45 4 45 (45 = 5 • 9, 4 45 = 285 = 3 • 5 • 19)

10 55 6 25 (55 = 5 - 1 1 , 6 25 = 385 = 5 - 7 - 1 1 )

In this table, col. 1 lists the integers n from 1 to 10, col. 2 the sums of the
n first integers, and col. 3 the sums of the squares of the n first integers.

OB related texts are various tables of "quasi-cube-sides". An example
is MS 3048 (Friberg, MCTSC (2005), Sec. 2.4 b):

obv. rev.

ft~*rpS\ fllllpS)

Fig. 3.3.1. MS 3048. A quasi-cube-side table, with 30 entries of the type n • (n + 1) • (n + 2).

The entries in this unusual table text proceed from 6.e 1 ib.sig '6 makes
1 equalsided' to 8 16.e 30 ib . s i 8 '8 16 makes 30 equalsided'. It is easy
to check that 6 = 1 • 2 • 3, and that 8 16 (00) = 3 0 - 3 1 - 3 2 .
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3.3 b. P.BM 10520 § 2 (DMP # 54). A multiplication table for 64

This is simply a table listing multiples of 64, from 64, 128, 192, ••• to ••• ,
896, 960, 1024. It is interesting only because 64 is the 6th power of 2 and
16 is the 4th power of 2. Therefore, the number 1024 =16-64 in the last
line of the table is the 8th power of 2. There are quite a few known exam-
ples of computations of high powers of integers, more generally of "many-
place regular sexagesimal numbers", in OB school boys' hand tablets. See
Friberg, MCTSC (2005), Sees. 1.4-1.5. Computations of and with many-
place regular sexagesimal numbers were even more popular in Late Baby-
lonian/Seleucid mathematics. See Friberg, (op. cit), App. 8, for various
extremely interesting examples.

A survey of all attested "head numbers" for OB multiplication tables is
presented in Friberg, (op. cit.), Sec. 2.6 e. The smallest attested head num-
ber is 1 12 = 72, the head number of the multiplication table MS 3866.
Thus, the list of allowed OB head numbers for multiplication tables stops
just before it reaches the number 1 04 = 64. The reason why 1 04 is not
among the attested head numbers is discussed at length in Friberg, MCTSC
(op. cit.), Sec. 2.6 f. There it is also shown that the restriction that all head
numbers should belong to a fixed list of such numbers is no longer opera-
tive in the case of Late Babylonian multiplication tables.

3.3 c. P.BM 10520 § 3 (DMP # 55). A new multiplication rule

In this exercise, the product of 13 and 17 is computed as follows:

17- 13 = (10 + 7) • (10 + 3)
= 10 • 10 + 10 • 3 + 10 • 7 + 7 • 3 = 100 + 30 + 70 + 21 = 221.

This is interesting because it is a departure from the use a binary expres-
sions for the multiplicator in the Egyptian hieratic mathematical papyri,
where the product of 13 and 17 would have been computed as

17-13 = (1 +16)-13 = 13 + 208 = 221, or
13- 17 = (1+4 +8)- 17=17 + 68+136 = 221.

The only known example of an explicit multiplication in a Babylonian cu-
neiform text is BM 34601 = LBAT1644, a fragment of a Late Babylonian
text, where the square of 34 6 = is computed in the same way as we would
do it. (See Friberg, MCTSC (2005), App. 8 b.)
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3.3 d. P.BM 10520 § 4 (DMP # 56). 2/35 expressed as a sum of parts

This exercise is an explanation of the identity 2 • 35 = 30 42. The same ex-
pression is used for 2 • 35 in the 2/n table in P.Rhind, although it breaks
the pattern of the other 2/n expansions. In his systematic survey of the var-
ious expansion methods used in the 2/n table, Neugebauer, ARA (1930),
366, Table 9, characterizes the expansion of 2 • 35 as "systemlos"
(unsystematic).

The importance of this exercise is that it seems to point to an intimate
connection between a demotic and a hieratic mathematical text, P.BM
10520 on one hand and the 2/n table in P.Rhind on the other.

3.3 e. P.BM 10520 § 5 (DMP ## 57-61). Operations with fractions

Fowler's discussion of "the evidence for the proposal that early Greek
mathematicians conceived and used manipulations of common fractions"
in MPA (1987 (1999)), 7.3(e), 7.4(a), was mentioned above, in Sec. 3.1 c,
in connection with the analysis there of the computations in P.Cairo § 1.
Fowler reinforces his arguments, which aim to refute that proposal, with
the following emphatic statement:

"Of course, the manipulations of fractions expressed as unit fractions are (arithmet-
ically) equivalent to the same manipulations when expressed as common fractions;
but they will be conceived differently in the two systems. Just one example
of some operations such as the addition, subtraction, multiplication, or division of
two fractional quantities, expressed as something like 'the nth of m multiplied by the
gth of p gives the nqth of mpy and clearly unrelated, by context, to any conception in
terms of simple and compound parts, could be fatal to my thesis that we have no good
evidence for the Greek use or conception of common fractions. I know of no such
example."

Immediately after that passage follows Fowler's footnote 91:

"For a recent, useful, detailed study of Greek and Egyptian fractional techniques, see
Knorr, TFAEG ((1982]). But what are represented there as manipulations of com-
mon fractions mln are clearly manipulations of the descriptions 'the nth ofm', which
are conceived throughout the texts under discussion in terms of unit fractions.
(The answer here is surely that the scribes were actually conceiving, teaching, and
developing unit fraction techniques, and had little or no conception of common frac-
tions.)"

This categorical dismissal of Knorr's results is so much more surprising as
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Knorr, HM 9 (1982) specifically mentions a systematic list of five exam-
ples of operations with fractions in P.BM 10520 § 5, a fact which in some
way escaped Fowler's attention. Those examples are worth a closer look:

P.BM 10520 § 5 a (DMP # 57): Multiplication of fractions

This is the text of the exercise:

1. Count 3' T5~3" 2T times.
2. You shall count 5 7 times, result 35.
3. You shall bring 3' T5 (to the) number 5, result 2.
4. You shall bring 3" 2T (to the) number 7, result 5.
5. You shall count 2 5 times, result 10.
6. You shall <cause> that 10 make part of 35, result 4' 28.
7. You shall say: Result 4' 28.

In terms of sums of parts, this example can only be interpreted in the
following way:

3'T5-3"27 = 4'28.

However, this simplistic interpretation does not make any sense at all of
the following five steps of the actual computation:

1. 3'T5-3"2T=?
2. 5-7 = 35.
3. 3'T5-5 = 2 (3 'T5 -5=13" + 3' = 2)
4. 3" 27-7 = 5 (3"2T-7 = 43" + 3' = 5)
5. 2 - 5 = 1 0 .
6. 10 as part of 35 is 41 28.
7. Answer: 4' 28.

(Note that there are two different terms for multiplication in this text,
'count a, b times' when a is an integer, and 'bring a to the number V in
other cases!) The multiplication in line 2 makes sense only if the author of
the text was thinking of the two given fractions as

3 ' T 5 = ( 3 1 1 5 + l ) T 5 = 6 - T 5 = 2 - 5 o r 5 o f 2 ( t h e 5 t h p a r t o f 2 ) ,

and
3 " 2 T = ( 3 " - 2 1 + 2 ) - 2 T = 1 5 - 2 T = 5 - 7 or 7 of 5 (the 7th part of 5).

The text of P.BM 10520 § 5 a can be interpreted a proof by numerical ex-
ample of a "multiplication rule for (common) fractions". The proof is, es-
sentially, of the following form:
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a. P = (3' T5) • (3" 27) is silently understood as (2 • 5) • (5 • 7).
b. 5-7 = 35, 3 '15-5 = 2, 3" 27-7 = 5.
c. P • 35 = (3175 • 5) • (3" 27 • 7) = 2 • 5 = 10.
d. P=10-35 = 2 -7 = 4'28.

Clearly, what is going on here is that the product P of the two given frac-
tions is first multiplied by 5 • 7 = 35, then divided by the same factor. Knorr
{op. cit.) calls this method "raising the terms". In modern notations, the
proof can be understood as follows:

mln • qlp = (m/n • n) • (qlp • p)/(n • p) = (m- q)l{n • p).

It is important to note that both the question, the answer, and much of
the solution procedure in § 5 a are expressed in terms of sums of parts.
Knorr describes the situation by saying that the sums of parts "perform
merely a notational, rather than a computational, role". In other words, just
as there seems to be a hidden use of sexagesimal fractions in P. Cairo, there
seems to be a similar hidden use of common fractions in P.BM 10520. This
suspicion is strengthened by the following explanations of the remaining
exercises in P.BM 10520 § 5.

P.BM 10520 § 5 b (DMP# 58): Division of fractions

1. Cause that 3' T5 make part of 3" 27.
2. You shall count 5 7 times, result 35.
3. Find its 3" 21", result 25.
4. Find its 3'T5, result 14.
5. You shall cause that 14 make part of 25, result 2' 25 50.
6. You shall say: Result 2' 25 50.

These are the steps of the computation:

1. 3 '15/3"2T = ?
2. 5-7 = 35.

3. 3" 21-35 = 25, (3" 2T-35 = 23 3 '+1 3" = 25
4. 3 '15-35=14 (3'T5-35 = 113" + 2 3'=14)
5. 14-25 = 2'25 50.
6. Answer: 2' 25 50.

The text of P.BM 10520/5 b can be interpreted as a proof by numerical
example of a division rule for (common) fractions . The proof is, essen-
tially, of the following form:

a. £ = 3 ' T 5 / 3 " 2 T is silently understood as 2 - 5 / 5 - 7 .

b. 5 - 7 = 35, 3" 2 1 - 3 5 = 25, 3 ' 1 5 - 3 5 = 14.
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c. £ = (31 15 • 35)/(3" 2T• 35)) = 14/25 = 2'25 50.

Clearly, what is going on here is that the quotient Q of the two given frac-
tions is first multiplied by 5 • 7 = 35, then divided by the same factor. This
is another application of what Knorr called the method of raising the
terms. In modern notations, the proof can be understood as follows:

(m/n) I (q/p) = (m/n • n • p) I (q/p • n • p) = (m • p) I (n • q).

P.BM 10520 § 5 c (DMP # 59): Fractions of fractions

1. Take the 3'T5 of 3 "27.

2. You shall count 5 7 times, result 35.
3. Find its 3" 5T, result 25.
4. You shall take the 3' T5 to 25, result 10.
5. You shall cause that 10 make part of 25, ••• (the rest is corrupt).

These are the steps of the computation, according to Parker's reconstruc-
tion of the text:

1. 3'T5of3"2T=?
2. 5-7 = 35.
3. 3" 21-35 = 25,
4. 3'15-25 = 10.
5. 10 as part of 35 is 4'28.
6. Answer: 4' 28.

The question in § 5 c is a differently formulated variant of the question in
§ 5 a. The solution procedure is also different, but the answer is, of course,
the same. Thus, in § 5 c the proof by numerical example of a "composition
rule for (common) fractions" goes as follows:

a) C = (3' 75) of (3" 2~T) is silently understood as (2 • 5) of (5 • 7).
b) 5-7 = 35, 3"2Tof35 = 25, 3'T5of25 = 10.
c) C of 35 = (3' T5) of (3" 2T) of 35 = (3' T5) of 25 = 10.
d) C=35of 10 = 7of2 = 4'28.

In modern terms, this proof can be understood as follows:

m/n of q/p = (m/n of q/p of n • p) I (n • p) = (m/n of q • n) l(n • p) = (m • q) I (n • p).

P.BM 10520 § 5 d (DMP # 60): Subtraction of fractions

1. Subtract 3' 13 from 3" 2L

2. You shall count 5 7 times, result 35.
3. Find its 3" 2T, result 25.
4. Find its 3' 75, result 14.
5. You shall subtract 14 from 25, result 11.
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6. You shall cause that 11 make part of 35, result 4' 28 35.
7. You shall say: Result 4' 28 35.

This time, the steps of the computation are as follows:

1. 3"2T-3'T5 = ?
2. 5 • 7 = 35.
3. 3" 27 • 35 = 25,
4. 3115-35 = 14.
5. 25-14=11.
6- 11 / 35 = 4' 28 35.
7. Answer: 4'28 35.

This is a proof by numerical example of a "subtraction rule for (common)
fractions". As in the three preceding examples, the method used is raising
the terms:

D • 35 = (3" 2T- 3115) • 35 = 3" 27 • 35 - 3' 15 • 35 = 25 - 14 = 11,
D = 11 / 35 (= (10 + 1) / 35) = 2/7 + 1/35 = 4' 28 53.

In modern terms,

mln - qlp = (m/n • n- p-q/p • n- p)/(n • p) = (m- p-q • n)/(n • p).

P.BM 10520 § 5 e (DMP # 61): Addition of fractions

1. Choose 3'T5 to 3" 21".

2. You shall count 5 7 times, result 35.
3. Find its 3" 27, result 25.
4. Find its 3' T5, result 14.
5. You shall add 14 to 25, result 39.
6. You shall carry 35 into 39, result 1 TO 70.
7. You shall say: Result 1 TO 70.

The steps of the computation are:

1. 3'15+ 3" 27=?
2. 5-7 = 35.
3. 3" 21 • 35 = 25,
4. 3' 15 -35 =14.
5. 25 + 14 = 39.
6. 39/ 35 (=1 + 8/70) = 1 1 0 70.
7. Answer: 1 TO 70.

This is a proof by numerical example of an "addition rule for (common)
fractions". Again, the method used is raising the terms:

S • 35 = (3" 2T + 3' T5) • 35 = 3" 21 • 35 + 3' 15 • 35 = 25 + 14 = 39,
5 = 39/35 = 1 10 70.
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In modern terms,

mln + qlp = (m/n • n • p + qlp • n • p)/(n • p) = (m- p + q • ri)l(n • p).

3.3 f. P.BM 10520 § 6 (DMP ## 62-63). The square side rule

P.BM 10520 § 6 a {DMP # 62).

1. Let 10 be reduced to its squareside.

2. You shall count 3 3 times, result 9, remainder 1. (Its) 2', result 2'.
3. You let 2' make part of 3, result 6'.
4. You add 6' to 3, result 3 6'. It is the squareside.
5. Let it be known, namely:
6. You shall count 3 6', 3 6' times, result 10 M.
7. Its difference of square side 36.

The computations in the text above can, of course, be explained as follows:

l)sqr. 10 = sqr. (sq. 3+ l) = appr. 3+ 2' • 1 • 3'= 3 6'.
2) sq. 3 6' = 10 36. Error: 36.

This is a simple application of the "square side rule", which appears to
have been widely used also in both Old and Late Babylonian mathematical
texts (see Friberg, BaM 28 (1997) § 8), although there are no known
Babylonian examples of explicit applications of the rule, such as the one
above.

P.BM 10520 § 6 b (DMP # 63).
1. Let 2' be reduced to its squareside.
2. You shall count 6, 6 times, result 36. Namely, its half, 18.
3. Let 18 be reduced to its square side, result 4 4'.
4. Let 4 4' be <part of 6>.
5. The way of doing it, namely:
6. You shall bring 4 4' (to) <4'>, result 17.
7. You shall bring 6 (to) the <same> number, result 24.
8. You shall let 17 make <part> of 24, result 3" 24.
9. You shall count 3" 24 3" 24 times, result 2' 576.
10. Its difference of square side 576.

The object of the exercise is to compute the square side (the square root)
of 2' = 1/2. This is done in a roundabout way. The idea is to multiply 2' with
a suitable square number, compute the square side of the product, and then
divide the result by the square side of the square number. Apparently, the
computation proceeds (essentially) as follows, in a series of simple steps:
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1)2'-sq. 6=18.
2) sqr. 18 = sqr. (sq. 4 + 2) = appr. 4 + 2' • 2 • 4' = 4 4'.
3) What is 4 4' as part of 6? (In other words, what is 4 47 6?)
4) Now, 4 4' = 4' • 17, and 6 = 4' • 24.
5) Therefore, the answer is: 4 4' / 6 = 17 / 24, namely 3" 24.
6) Test: sq. 3" 24 = sq. (17 • 24) = 289 • 576 = 2' 576. Error: 576.

In this connection, it is interesting to note that

if sqr. 2' = appr. 3" 24 = 17 • 24, then sqr. 2 = appr. 2 • 3" 24 = 1 3" T2 = 17 • T2.

It is also interesting to note that the method used in P.BM 10520 § 6 b can
be used to find improved approximations of square roots, as in the follow-
ing example:

The OB standard approximation to sqr. 3 was:

sqr. 3 = sqr. (4 - 1) = appr. 2 - 1/4 = 1;45 (7/4).

However, in two consecutive exercises in the Late Babylonian mathemat-
ical recombination text W 23291/4 b-c (Friberg, BaM 28 (1997), 286),
two different approximations to (sqr. 3)/4 are used in order to compute the
area of an equilateral triangle. (Compare with the discussion above, in Sec.
3.1 j , of P.Caiw/ll . See also the discussion of P. Vindob. G. 19996 # 10
in Sec. 4.8 b.) The first approximation is ;26 15, obtained from the OB
standard approximation: (sqr. 3)/4 = appr. 1 ;45/4 = ;26 15. The second, ap-
proximation is ;26, corresponding to the approximate value 1 ;44 for sqr. 3.
That value can have been obtained as follows:

sqr. (3 • sq. 3) = sqr. 27 = sqr. (25 + 2) = appr. 5 1/5 = 5;12,
sqr. 3 = appr. 5;12 /3 = 1;44 (= 26/15).

It is interesting to compare the accuracy of the Old and Late Babylonian
approximations to sqr. 3:

sq. 1;45 = 3;03 45, and sq. 1;44 = 3; 00 16.

28. The procedure is the opposite of the OB factorization method used to compute the
square side of many-place semi-regular sexagesimal numbers. The idea of that method is
to first multiply all regular square factors of the given number by their reciprocals, so that
after a number of steps there remains only the non-regular "factor-reduced core" of the giv-
en number. The square side of the given number can then be computed as the product of
the square side of the factor-reduced core and the square sides of all the removed square
factors. For explicit examples, see, for instance, the round hand tablet VET 6/2 222, Frib-
erg, RA 94 (2000) § 2 d, and examples related to the well known table text Plimpton 322,
Friberg, MCTSC (2005), App. 7, § A7 a.
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3.3 g. P.BM 10520 § 7 (DMP ## 64-65). The quadrilateral area rule

P.BM 10520 § 7 a (DMP # 64) is a computation of the area of a rectangle.
The text, which is accompanied by a drawing (Fig. 3.3.2 below), is as
follows:

1. A piece (of land).
2. You shall add the south and the north, result 20. Namely, its half, 10.
3. You shall add the east and the west, 24. Namely, its half, 12.
4. You shall count <it> 10 times, result 120.
5. You shall carry 100 into 120 in order to bring another (formulation),

result 1 5 cubit(-strips).
6. You shall say: In order to bring another (formulation), 1 5 cubit(-strips).

Fig. 3.3.2. P.BM 10520 § 7 a. Data for an application of the quadrilateral area rule.

Here, the area of a rectangle with the sides 12 and 10 is computed accord-
ing to the rule that

the area A = the half-sum of the short sides (south and north) times the half-sum of
the long sides (east and west).

Thus, in this particular case,

A = ( 1 0 + 10 ) / 2 ( 1 2 + 12 ) /2 = 1 0 12 = 120 .

The result is divided by 100, and the answer is given in the following
alternative form:

A*= 120/100= 15'cubits'.

It is silently understood that the sides of the rectangle are measured in
cubits, and the area A in square cubits. The alternative value of the area,
here called A*, is expressed in 'cubits', actually cubit-strips, where 1
cubit-strip = 1 cubit • 100 cubits. Compare with the hieratic text P.Rhind
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# 51 (Sec. 2.1 e), where a triangle has the sides 10 khet and 4 khet, with 1
khet = 1 0 0 cubits. The area is computed as 2,000 (cubit-strips) = 2
(thousand-cubit-strips).

It is interesting that in P.BM 10520 § 7a, the area of the rectangle is not
computed simply as the short side times the long side, but as the half-sum
of the two (equal) short sides times the half-sum of the two (equal) long
sides. This is obviously a step towards teaching the students to use what
may be called the "quadrilateral area rule" in order to compute areas of
non-rectangular quadrilaterals. (The rule is approximatively correct in the
case of nearly rectangular figures.)

P.BM 10520 § 7 b (DMP # 65) is another computation of the area of a
rectangle. The text is accompanied by a simplified drawing (Fig. 3.3.3).
Here is the brief text:

1. A piece (of land). Its plan.
2. You shall add the south and the north, 3. Namely, its half, 1 2's.
3. You shall add the east and the west, 4 2's. Namely, its half, 2 4's.
4. You shall count 2 4's 1 2's times, result 3 4's 8's.
5. It is its specification of field.

In this exercise, the area of a rectangle is again computed by use of the
quadrilateral area rule. The lengths of the sides are written with special
number notations (see below, Fig. 3.7.2), indicating that the unit of length
measure is 1 khet (Greek: schoinion). Consequently, the area is measured
in sq. khet = 1 setat (Greek: aroura). Thus, the computed area in § 7 b is

1 2's • 2 4's = 3 4's 8's = 3 1/4 1/8 setat.

Fig. 3.3.3. P.BM 10520 § 7 b. Data for another application of the quadrilateral area rule.

The two applications of the quadrilateral area rule in P.BM 10520 § 7
a-b with the associated drawings, copied in Figs. 3.3.2-3.3.3, are embar-
rassingly simple, since the quadrilaterals in both examples are rectangles,
for which the use of the rule is superfluous.

As noted by Parker, DMP (1972), 72, there are more interesting exam-
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pies in the demotic Theban Ostracon D12 in Thompson, TO 2 (1913),42-
44 and pi. 3, dated by a superscript to 'year 11, Khoiak day 20'.

2's —^- 7S 16's dmd 2,IT,3ZS Jffip^"HT"~ '

W , — j ^ _ 2'S4'S32'S dmd 2's4's8's16's J | f / • H ^ . , ^ ^ ~ — ' * ' N

4's16'siiSi£i2s8's16'sdmd4's16's "\!/ '" . : ^ - V / ^ - r 1 4 * ' *"'

Fig. 3.3.4. Theban O. D 12. A land survey with the dimensions and areas of four fields.

The ostracon contains four simplified field plans of the same type as the
one in P.BM 10520 § 7b. One of these, the one mentioned by Parker (op.
cit), has unequal opposite sides:

north 2'S8'S, south 2'S4'S, west 1 4's 16's, eas t l4 ' s 8 ' s .

The area of the field is given on the ostracon as 2's 4's 8's 16's.No details
of the actual computation of this value are recorded. However, if the unit
of length used here is a khet (Greek: schoiniori) of 96 cubits (mh), so that
32's = 3 cubits (see below), then it is likely that the computations were car-
ried out in the following way:

A = (2's 8's + 2's 4's)/2 • (1 4's 16's + 1 4's 8's)/2

= 2'S8'S16'S- 14'S16'S32'S

= 2's 8's 32's mh 1 2' + 8's 32's mh 1 8 + 16's mh 2 T6

= 2's 4's 8's 32's mh 1 2' 8 T6 = appr. 2's 4's 8's 16's.

There are many known examples of applications of the quadrilateral
area rule in Mesopotamian cuneiform texts, from the oldest to the young-
est. Outstanding among the oldest examples is W 19408,76 (Friberg, AfO
44/45 (1997/98), Fig. 2.1; Nissen/Damerow/Englund, ABk (1993), Fig.
50), a proto-cuneiform school text from around 3000 BCE. On the reverse
of that text, for instance, are given (according to the most plausible recon-
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struction of damaged parts) two lengths 'along', 16(60) 30 and 23(60) 30,
and two lengths 'across', 21(60) 20 and 8(60) 40, all in non-positional sex-
agesimal numbers, silently understood to be multiples of the ninda (appr.
6 meters). If the quadrilateral area rule is applied to these numbers, the re-
sult is the large and round area number

(16(60) 30 + 23(60) 30)/2 • (21(60) 20 + 8(60) 40)
= 20(60) • 15(60) = 5(60 • 60 • 60) sq. n. = 10 sar.

Here 10 sar is an unrealistically large area number, 38.8 square kilo-
meters.

The rule is used also, quite frequently, in Sumerian administrative

texts. More surprisingly, the simplistic rule is still used in IM 121565, a
relatively sophisticated OB mathematical text with the topic "metric alge-

bra". In that text, one finds the following badly preserved exercise:

IM 121565, obv. iii. (Friberg and Al-Rawi {to appear). From Tell Haddad.

za.e
1 us an.ta it 40 us ki.ta x x x
[1 40] /he-pe-ma [?] 50 ta-mar
tu-ur
20 sag / an.ta u 6 40 sag ki.ta x x x
[26 40] /he-pe-ma 13 20 ta-mar
tu-ur /
50 a-na 13 20 i-ta-as-si-ma [11] 06 40 /
igi 11 06 40 dug 5 24 ta-mar
etc.

You:
1, the upper length, and 40, the lower length, x x x
1 40 break, then 50 you see.
Return.
20, the upper front, and 6 40, the lower front, x x x
26 40 break, then 13 20 you see.
Return.
The 50 to the 13 20 always lift, then 11 06 40.
The opposite of the 11 06 40 resolve, 5 24 you see.
etc.

Before and after the lines copied above, there are some additional lines of
text, less well preserved but at least complete enough for the reconstruc-
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tion of both the statement of the problem and the final part of the solution
procedure. Thus, let ua and uk be the unknown upper and lower lengths,
and let sa and s^ be the unknown upper and lower fronts. Then, apparently,
these four unknowns were supposed to be the solution to the following
rectangular-linear system of four equations:

(ua + uk)l2 • (sa + sk)l2 = A = 2 46;40 sq. n.
uk = 2/3 • ua

sa = 1/2 • uk

sk=\Bsa

The solution procedure started by choosing the following false values for
the four sides:

Ka* = 100, uk*=40, sa* = 20, sk* = 6A0-

With these values, the linear equations are satisfied, but the equation for
the area is not, since

( « / + uk*)/2 • (sa* + sk*)/2 = A * = 50 • 13;20 = 11 06;40,
which means that A = A * • ;15 sq. n.

To get the right value for the area, the false values have to be multiplied by
;30n. (1 reed). Thus,

ua = 1 00 • ;30 n. = 30 n.
uk = 40 • ;30 n. = 20 n.
5a = 20- ;30n. = 10 n.
s* = 6;40 • ;30 n. = 3;20n.

A second example is IM 52301, a single-column tablet from Shadup-
pum (Tell Harmal) inscribed with two metric algebra exercises and a brief
table of constants, with an additional brief text in two(!) columns on the
left edge. The text on the edge, not understood before, was shown in
Friberg, RA 94 (2000) § 2 f, to be a general, non-numerical formulation of
the quadrilateral area rule:

IM 53 301 (Baqir, Sumer 6 (1950). Group 7b, Shaduppum.

sum-ma a.sa us la mi-it-ha-ru-ti
at-ta I
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na-ap-h,a-ar us li-iq-bu-ni-kum-ma /
4 sa-ar er-be-tim lu-<pu>-ut-ma /
i-gi Apu-tu-ur-ma I
a-na na-ap-fea-ar sag i-si-ma /
ma-la i-li-ku
tu-us-ta-ka-al-ma
i-na li-ib-bi/a.sa ta-tam-sa-ah

If a field, the lengths not equal.
You:
The sum of the lengths may they say to you,
4 of the four winds may you touch,
the opposite of the 4 resolve, then
to the sum of the fronts raise (it), then
whatever came up for you,
you let (them) eat each other, then
(that) inside the field you will have measured.

The awkwardly formulated rule should probably be understood as
saying that

A = (ua + uk) • (sa + sk) • 1/4,

where
ua, uk are the two 'lengths' and sa, sk the two 'fronts'.

Several Late Babylonian examples can be found, for instance, in Nem-
et-Nejat, LBFP (1982), a survey of Late Babylonian "field plans" in the
British Museum. Such a field plan is typically a small clay tablet, inscribed
with a schematic drawing of one or several rectangular fields, together
with numerical data and other specifications. A particularly well preserved
field plan is BM 47437 {op. cit., text 24; p. 91, pi. 13), with a drawing of
two fields, one of which has the following side lengths: north 9 cubits 8
fingers, south 19 cubits 18 fingers, west 13 cubits 15 fingers, and east 11
cubits. In the Late Babylonian system of "common linear measure", the
cubit was divided into 24 fingers, and 7 cubits made 1 reed, as shown by
the following "factor diagram":

7 24 7
elm (LB): -•— gi -<— kus •• su.si -<—- se -«—

reed cubit finger barley-corn

Fig. 3.3.5. Factor diagram for the Late Babylonian "common linear measure".
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Hence the area of the mentioned field could be computed as

(19 c. 8 f. + 19 c. 18 f)/2 • (13 c. 15 f. + 11 c.)/2 = 19 c. 13 f • 12 c. 7 1/2 f.

However, this result had to be converted to Late Babylonian "common
reed measure", one of several Late Babylonian replacements for the tradi-
tional, Sumerian/OB system of area measure. In this new system, the main
units were the 'reed', the 'cubit', and the 'finger', as in the system of com-
mon linear measure. However, just as the Egyptian "cubit-strip" = 1 cubit
• 1 khet (100 or 96 cubits), so the mentioned units of common reed measure
have to be understood as

1 'reed' = 1 reed-strip = 1 reed • 1 reed,
1 'cubit' = 1 cubit-strip = 1 cubit • 1 reed,
1 'finger = 1 finger-strip = 1 finger • 1 reed.

Actually, in the Late Babylonian mathematical recombination text
W 23291-x (Friberg, et al, BaM 21 (1990)), § 11 can be described as a
combination of

a) a "multiplication table from common linear measure to common reed measure",
b) a "structure table" for common reed measure.

See (Friberg, et al. {op. cit.) Sec. 10, and Friberg, GMS 3 (1993), text 9):

rev.

§ 11 1 gi a.ra 1 gi 1 gi 1 gi a.ra 1 kuS 1 kus

1 gi a.ra 1 su.si 1 su.si 1 kus a.ra 1 gi 1 kus

1 kus a.ra 1 kus 1 kus tur-fu 1 kus a.ra 1 su.si 1 Se

1 su.si 1 gi 1 su.si 1 su.si a.ra 1 kiis 1 se

1 su.si a.ra 1 su.si tur-tu 2°4 su.si.meS tur.mes

1 se 7 se.mes 1 su.si 2°4 "su.si.me5 1 kus 7 kus.mes l g

3 su.si 3 se 1 kus_tur-^«_7__kuS__tur^rnes I _ k u s

Fig. 3.3.6. W 23291-x § 11. A multiplication table for common linear measure
followed by a structure table.

Reorganized into a proper tabular form, the multiplication table and its as-
sociated structure table can be displayed as follows:
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1 gi a.ra 1 gi 1 gi
1 gi a.ra 1 kus 1 kits
1 gi a.ra 1 su.si 1 su.si
1 kus a.ra 1 gi 1 kus
[1] kus a.ra 1 kus 1 kiis tur-fti
1 kus a.ra 1 su.si 1 s[e]
[1 s]u.si <a.ra> 1 gi 1 su.si
1 su.si a.ra 1 kus 1 [se]
[1 s]u.si a.ra 1 su.si <1 su.si> tur-fti
24 su.si.mes tur.mes [1] se
7 se.mes 1 su.si
24 su.si.mes 1 kus
7 kus.mes 1 gi
3 su.si 3 se 1 kus touv-tu
7 kiis tur.mes 1 kus

1 reed times 1 reed 1 reed
1 reed times 1 cubit 1 cubit
1 reed times 1 finger 1 finger
1 cubit times 1 reed 1 cubit
1 cubit times 1 cubit 1 small cubit
1 cubit times 1 finger 1 barley-corn
1 finger times 1 reed 1 finger
1 finger times 1 cubit 1 barley-corn
1 finger times 1 finger 1 small finger

24 small fingers 1 barley-corn
7 barley-corns 1 finger
24 fingers 1 cubit
7 cubits 1 reed
3 fingers 3 barley-corns 1 small cubit
7 small cubits 1 cubit

Thus, the common reed measure R of the mentioned field in the Late
Babylonian field plan BM 47437 can have been computed as follows:

R = (l9c. 8f. + 19c. 18 f)/2 • (13 c. 15 f. + llc.)/2
= 19c. 13 f - 12 c. 7 1/2 f.
= 228 small cubits 298 1/2 barley-corns 97 1/2 small fingers
= 4 reeds 4 cubits 4 small cubits

+ 1 cubit 18 fingers 4 1/2 barley-corns
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+ 4 barley-corns 1 1/2 small fingers
= 4 reeds 5 cubits 4 small cubits 18 fingers 9 barley-corns

(- 1/2 barley-corn + 1 1/2 small fingers)
= appr. 4 reeds 6 cubits 9 fingers.

Inside the contour of the mentioned rectangular field in BM 47437 is re-
corded precisely this value for the common reed measure of the field,
4 reeds 6 cubits 9 fingers.

Another Late Babylonian example of an application of the quadrilateral
area rule is offered by BM 67314, a computation of the volume and seed
measure of a symmetric trapezoid:

BM 67314 § 3 (Friberg, BaM 28 (1997), 296).

30 us gid.da 24 us lugud.da /
1 sag an.ta 1 sag ki.ta x x /
us gid.da u us lugud.da gar.gar / 54 T-su 27
sag an.ta / u sag ki.ta gar.gar 2 2'-su 1 /
27 a.ra 1 27
27 a.ra 18 / 8 06
8 06 se.numun x / xxx

30 is the long length, 24 the short length,
1 is the upper front, 1 the lower front, x x
The long length and the short length heap, (it is) 54. 1/2 of it is 27.
The upper front and the lower front heap, (it is) 2. 1/2 of it is 1.
The 27 steps of 1 is 27.
The 27 steps of 18 is 8 06.
The 8 06 is the seed xxxx.

3.4. P.British Museum 10794 (Date Uncertain)

Multiplication tables for 90 and 150 (DMP ffi 66-67)

This small fragment contains only the first ten lines of two multiplication
tables, one for 90, the other for T50. Note that 90 and 150 both can be ex-
pressed as regular sexagesimal numbers, 90 - 1 30 and 150 = 2 30. Their
reciprocals are the sexagesimal fractions ;00 40 and ;00 24. The computa-
tion of the two tables probably made use of sexagesimal arithmetic.

In his paper about Greek and Egyptian techniques of counting with
fractions, Knorr, HM 9 (1982), 156, confessed that he (like Parker before
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him) was puzzled by "idiosyncrasies" in the computational procedure in
P.BM 10794. Why was 2 • 150 given as 90 450 and not as 75, and why was
3 • 150 given as 60 300 and not as 50, and so on? Knorr was even moved
to suggest {ibid.), footnote 32, that

"the scribe might hold in view a base of 360 for its association with the number of
days in a year. Then 90 corresponds to the days in a 3-month period, 150 to those in
a 5-month period, and the entries in the tables give the fraction of the base period
which each of the days in a decanal (10-day) period amounts to. Such tables might
be useful for the computation of interest on short-term loans."

The assumption that the scribe used sexagesimal arithmetic leads to a
much simpler explanation, with, for instance, the entries in the multiplica-
tion table for 150 analyzed as follows:

The way of taking T50 to 10:
1 to T50
2 to 90450
3 to 53300
4 to 45225
5 to 30
6 to 30750
7 to 3090450
8 to 20300
9 to 3045225

10 to T5

150 = ;00 24
2 • ;00 24 = ;00 48 = ;00 40 + ;00 08 = 90 450
3 ; 0 0 24 = ;01 12 = ;01 + ;0012 = 60 300
4 ; 0 0 24 = ;0136 = ;0120 + ;00 16 = 45 225
5 ; 0 0 24 = ;02 = 3 0
6 ;0024 = ;0224 = ;02 + ;00 24 = 30150
7 ; 0 0 2 4 = ;0248 = ;02 + ;00 40 + ;00 08 = 3050450
8 ;0024 = ;03 12 = ;03 + ;0012 = 20300
9 • ;00 24 = ;03 36 = ;02 + ;01 20 + ;00 16 = 30 45 225

10;00 24 = ;04 = T5

The only remaining, slightly puzzling feature is why, in line 4, the sexag-
esimal fraction ;01 36 was not simply resolved as ;01 + ;00 36 = 60 100,
and why similarly, in line 9, the sexagesimal fraction ;03 36 was not re-
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solved as ;03 + ;00 36 = 20 TOO. Maybe, in the first case, the answer is that
the given resolution of 4 times 150 is to be understood as "approximately
45, with the much smaller remainder 225", clearly a better result than the
alternative "approximately 60, with the not much smaller remainder 100".
Similarly in the second case.

3.5. RCarlsberg 30 (Probably 2nd Century BCE)29

3.5 a. P.Carlsberg 30 #1 (DMP # 69). The diagonal of a square, etc.

On this fragment, only three drawings and a few lines of text are preserved.
Apparently, the three drawings are meant to represent a) a trapezoid, divid-
ed into two triangles and a central rectangle or square, b) a square, and c)
a second square with a diagonal. The photographic detail in Fig. 3.5.1 be-
low is copied from Parker, DMP (1972), pi. 25.

Fig. 3.5.1. P.Carlsberg 30, obv. Three drawings illustrating an exercise.

One of the squares has all sides equal to 14 7 and the area 200. Here
14 7 is an approximation to the square root of 200, obtained by the method
exemplified in P.BM 10520 § 6 (DMP ## 62-63), a method used also in
Old and Late Babylonian mathematical texts, in P.Cairo, and possibly in
the hieratic text P.Berlin 6619 # 1. (Since 200 = sq. 14 + 4, the square side
rule shows that sqr. 200 = appr. 14 + 4/(2 • 14) = 14 7).

29. For the corrected date, see the review of Parker, DMP (1972) by Kaplony-Heckel,
OLZ16 (1981), 118 footnote 1.
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Fig. 3.5.2. P.Carlsberg 30, obv., conform transliteration.

The second square has all sides equal to 10 and the diagonal equal to
sqr. 200 = 14 7. The trapezoid, finally, has its base equal to 14 7, but the
indications of the lengths of its other sides are not preserved. A rather
likely conjecture is that the trapezoid was meant to be symmetric, and that
its height and the three parts of its top were all equal to 14 7. In that case,
the trapezoid would be divided in three parts, a square in the middle with
the area 200, and two flanking triangles, each with the area 100. (Cf. the
further examples of divided trapezoids in P.Heidelberg 663 in Sec. 3.7.)

Unfortunately, there is not enough left of the text of this exercise to
make it possible to understand what is really going on. Note that all record-
ed numbers are abstract, with no mention of any metrological units for
length or area measure.

3.5 b. P.Carlsberg 30 #2 (DMP ## 71-72). A system of linear equations

On the reverse of the papyrus fragment P.Carlsberg 30, there is, according
to Parker, DMP (1972), 75-77, the brief end of one problem (DMP # 71),
and the beginning of another (DMP # 72). However, a more likely inter-
pretation is that the reverse of the fragment contains the end of one very
long exercise, and a few lines of the beginning of another exercise. Here is
the text of the end of the long exercise, as given by Parker, with recon-
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structed parts of the text in italics:

amounting to 2'.

in it.

The number of the silver (is) 42 76. Namely, the 6' (is) 7, the 7 (is) 6, 13 again.

The number of the gold (is) 72 76. Namely, the 8 (is) 9, the 9 (is) 8, 17 again.
The number of the copper (is) 110 76. Namely, the TO (is) 11, the Jl (is) 10, 21 again.
The number of the lead (is) 156 76. Namely, <the> U (is) 13, the 13 (is) 12, total 25
again.
The 6', the 7 of the silver, 13. The 8, the 9 of the gold, 17.
The TO, the TT of the copper, 21. The T2, <the> T3 of the lead, 25. Four numbers.
Their specification: 13, 17, 21, 25, amounting to 76 again.

Four 'numbers' for silver, gold, copper, and lead are mentioned in this text
fragment, namely:

silver: 5= 4276 (42/76)
gold: g= 7276 (72/76)
copper: c= 11076 (110/76)
lead: /= 15676 (156/76).

There are also some simple computations, namely:

6'7-42= 7 + 6= 13,
8 9-72= 9 + 8= 17,

TOTTl lO = 11 + 10= 21,
T2i3"-156= 13+12= 25.

In the final line of the exercise, it is simply stated that

13 + 17 + 21+25 = 76.

Parker, {op. cit.), 76-77, sees that there is a clear pattern with regard to the
form of the four fractions, but is unable to suggest an explanation.

This fragmentary exercise can be compared with the "combined price
exercise" P.Rhind § 24 (# 62), a problem about buying a bag filled with
<equal> amounts of gold, silver, and lead, for a given total price of 84
sha 'ty, when the price of gold is 12 sha 'ty per deben, that of silver 6 sha 'ty
per deben, and that of lead 3 sha'ty per deben?0 This amounts to a rather
trivial division problem.

30. Cf. Imhausen, AA (2003), footnote 373, concerning the relative value of gold and sil-
ver in Egypt at different times.
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In Sec. 2.1 f above, an indirect OB parallel to P.Rhind § 24 was dis-
cussed, namely YBC 4698 § 3 a (# 4), where it is stated that iron and gold
are 90 (sic!) and 9 times more valuable than silver, and that 1 shekel of
iron and gold together is bought for 1 mina of silver. This leads to a system
of two linear equations for two unknowns, the amounts of gold and iron,
respectively. The solution to this system of equations given in Sec. 2.1 f is
in imitation of the explicit solutions to problems of the same kind in the
OB mathematical texts VAT 8389 and VAT 8391. (See Friberg, MCTSC
(2005), Sec. 11.2 m, Fig. 11.2.14 left.)

Is it possible that P.Carlsberg 30 # 2 is an exercise of the same general
type as YBC 4698 § 3 a, but with four unknowns instead of two? If that is
the case, a system offour linear equations is needed in order to fix the val-
ues of the four unknowns. Actually, it is not difficult to find two linear
equations satisfied by the numbers mentioned in the exercise, namely:

4276 + 7276+11076+ 156 76 = (42 + 72 + 110 + 156) 76 = 380 76 = 5,

and
6' 7 • 42 7j5 + 8 9 • 72 76 + TO TT • 110 76 + 12 T3" • 156 76

= (13 + 17 + 21 + 25) 76 = 76 76 = 1.

The simple forms of these equations can hardly be a coincidence, in par-
ticular as it is explicitly mentioned in the last line of the exercise that the
sum of 13, 17, 21, and 25 is 76.

For the remainder of the discussion it is convenient to introduce, in
addition to the notations s, g, c, and / for the four 'numbers' for silver, gold,
copper, and lead, mentioned in the fragment, also the following notations
for the four associated numbers:

S = 6' 7 • s (= 13/42 • 42/76 = 13/76),
G = 8 9 • g (= 17/72 • 72/76 = 17/76),
C= TOTT-c (=21/110-110/76=21/76),
L= 12 T3-/(= 25/156-156/76 =25/76).

A search for two further simple linear relations between some of the men-
tioned numerical values immediately gives a positive result, namely the
observation that

C+G = 38/76 = L + S, and C-G = 4/76 = 3' • (L-S).

Therefore, it is likely that the object of the exercise, of which only the last
column is preserved in the fragment P.Carlsberg 30#2, was the following
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system of linear equations:

a)s + g + c + l = 5

b)S+G + C + L=l, where S = & 1 • s, G = 8 9 • g, C = jQUc, L = 1 2 l 3 - /

c)C+G = L + S

d)C-G = y-(L-S).

This is a cleverly devised system of four linear equations for the four
unknowns s, g, c, and I. It can be solved by use of a method similar to the
method used in VAT 8389 and VAT 8391 to solve a system of two linear
equations for two unknowns. The basic idea is to start by looking for a
"partial solution" satisfying all but one of the linear equations. In the
present case, a simple partial solution is the one for which C = G, and
which satisfies the three equations b), c), and d). Indeed,

Suppose that C=G.
Then equation d) is also satisfied if, in addition L = S.
Then equation c) is also satisfied if, in addition G - S, so that C=G = L = S.
Then equation b) is also satisfied if, more precisely C=G = L = S =4'.

However, this is not the correct solution. Indeed, since

S= 13 4 2 s, G = 1 7 7 2 - g , C = 2 1 1 I 0 c , L = 25\56l,

it follows that, conversely,

5 = 4 2 1 3 - 5 , 5 = 7 2 1 7 G , c = 1 1 0 2 i C , / = 156 25 •£,.

Hence, if C = G = L = S = 4', then

s + g + c + I = (4213 + 72 17 + 110 21 + 156 25) • 41.

This cannot be equal to 5, as required by equation a). In fact, since

13- 17 • 21 -25=116,025,

it follows that
s + g + c + I = (4213 + 7217 + 110 21 + 156 25) • 41

= (374,850 + 491,400 + 607,750 + 723,996) 116.025 • 4'
= 2,197,996 116.025 = 549,499 116.025.

On the other hand, equation a) requires that sum of the four unknowns s,
g, c, and I to be equal to

5 = 5- 116.025 116.025 = 580.125 116.025.

This means that the mentioned partial solution gives a deficit in equation
a) which is equal to

(580,125 - 549,999) 116.025 = 30,626 116.025.
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In the next step of the proposed solution procedure, which tries to
imitate one of the two different procedures in VAT 8389 and VAT 8391,
an effort is made to eliminate the calculated deficit in equation a) by add-
ing a small amount a to C and subtracting a from G. What then happens is
the following:

Suppose that C = 4' + 1 • a and G = 4' - 1 a.
Then equation d) is satisfied if L - S - 3 • (a + a) = 6 • a,

and equation c) is satisfied if L + S = 2 • 4' = 2'.
Therefore, equations c) and d) are both satisfied if

C = 4' + 1 • a, G = 4 - 1 • a, L = 4' + 3 • a, and S = 4' - 3 • a.
With these values for C, G, L, and S, equation b) is also satisfied.

Simultaneously, in equation a) the following amount is subtracted from
the deficit:

3 • a • (723,996 - 374,850) 116.025 + a • (607,750 - 491,400) 116.025
= a • (1,047,438 + 116,350) = a • 1,163,788 116.025.

Therefore, in order to eliminate the deficit, a must satisfy the equation

a- 1,163,788 = 30,626.

Since 1,163,788 = 38 • 30,626, the deficit 30,626 116.025 is precisely elim-
inated if a - 38. Consequently, the four equations a), b), c), and d) are all
satisfied if

C = 4'+l •38=2176.,
G = 4'-1-38 =1776,
L = 4' + 3-38=25 76,
5 = 4'-3-38=1376.

Ordered by size,

S = 13 76, G = 17 76, C = 21 76, and L = 25 76.

Hence the final result is that

j = 42I3-1376 = 4276,
g = 7217 • 17 76 = 72 26,
c=11021-21 76=11076,
/= 156 25 -25 76 =156 76.

These are precisely the four numbers for silver, gold, copper, and lead
mentioned in the preserved column of text on P. Carlsberg 30, rev. Actu-
ally, that last column of the exercise can be understood as the verification
of the result, namely the demonstration that with departure from the com-



3.5. P. Carlsberg 30 (Probably 2nd Century BCE) 173

puted values for 5, g, c, and /, the corresponding values for 5, G, C, and L
can be computed 'again', and that the sum of S, G, C, and L will then
'again' be equal to 1.

There is no obvious interpretation of the four coefficients 6 7, 8 9,
10 11, and 12 13 as meaningful constants associated in some way with sil-
ver, gold, copper, and lead. They can definitely not, in any case, be inter-
preted as the values per weight unit, or as the weights per volume unit, etc.,
of the four metals. A more likely alternative is that the names of the four
metals are used as arbitrary names for four unknowns, and that the four
mentioned coefficients are arbitrarily chosen numbers.31 Compare with
the way in which a symbol for drachma and the same symbol crossed-over
are used in P.Mich. 620 # 1 (see Sec. 4.4 a below) to denote known and
unknown units, respectively.

Additional surprises in the proposed interpretation of P. Carlsberg 30
# 2 are the counting with many-place decimal numbers, and the extensive
manipulation of binomial fractions. Note however that a list of many-place
decimal number appears already in the hieratic mathematical fragment
P. UC 32161 (Sec. 2.3 c). In Mesopotamia, manipulations of many-place
regular sexagesimal numbers was a popular topic in Old and Late Babylo-
nian mathematical texts, and many-place sexagesimal numbers were indis-
pensable for Late Babylonian/Seleucid mathematical astronomy.

As for the proposed manipulation of binomial fractions in P. Carlsberg
30 # 2, this feature is not an essential part of the suggested interpretation
of the exercise, it just makes the computations so much easier. It is, by the
way, entirely possible that the use of binomial fractions was introduced in
demotic mathematics precisely in order to make it easier to deal with com-
plicated computations of the kind that apparently were necessary for the
solution of systems of linear equations with complicated coefficients like
the one in P. Carlsberg 30 # 2.

31. Cf. the well known passage about education in Plato, Laws vii, 817 E - 820 D (Tho-
mas, SIHGM (1939, 21)), where it is said, among other things, that " ••• the freeborn ought
to learn as much of these things as a vast multitude of boys in Egypt learn along with their
letters ••• the boys should play with bowls containing gold, bronze, silver and the like
mixed together, or the bowls may be distributed as wholes. For, as I was saying, to incor-
porate in the pupils' play the elementary applications of arithmetic will be of advantage to
them later ••• "
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3.6. P.Griffith Inst. I. E. 7 (Late Ptolemaic or Early Roman)

A theme text with linear equations

This fragment (Parker, JNES 18 (1959)) contains what is apparently part
of a theme text, with a semi-systematically arranged series of 3 linear
equations of the following type (in modern notations)

(2' • a + p) + (3' • a + q) = r, a - ?

followed by 2 equations of the type

(2' a-p) + O' a + q) = r, a = ?

Since 2' + 3' = 6" (5/6), all the equations are reduced after some steps to

the simpler form

6" • a = s, a = l

Next, the reciprocal of 6" is computed, in a phrase of the following form:

You say, 6", what customarily goes with it to 1?
Result 1 5.

Finally, the solution is obtained as 1 5 times s. As pointed out by Parker,
solving a division problem/- a = s in this way by first computing the re-
ciprocal of the coefficient/ and then multiplying the right hand side s with
that reciprocal is the method used in OB mathematical texts, and also in
the hieratic P.Moscow, but not in P.Rhind.

In the first group of equations, p = q = 3, 4, 5. In the second group, p =
3, and q = 2,3. In four of the five equations r = 10, but in the third equation
r = 15. The reason is obvious, since if r had been equal to 10 also in the
third equation, then the equation for a would have been reduced to 6" • a =
0. Presumably, the author of the text did not know how to formulate or
handle a case like that.

3.7. P.Heidelberg 663 (Ptolemaic, 2nd or 1st C. BCE)

This document (Parker, JEA 61 (1975)) consists of two narrow papyrus
fragments, containing parts of four geometric exercises illustrated by four
drawings of divided trapezoids. The three first of these exercises were
briefly, though essentially correctly, interpreted by Parker. So little is pre-
served of the fourth exercise that no detailed interpretation can be attempt-
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ed. The photographic details in Figs. 3.7.1, 3.7.4, 3.7.6 are copied from
Parker (op. cit.).

3.7 a. P.Heidelberg 663 # 1. A vertically striped trapezoid

Presumably, P.Heidelberg 663 # 1 is concerned with a symmetric (i. e.
isosceles) trapezoid divided symmetrically in six parts by five transversals.
Just like the equilateral triangles in P.Cairo § 11 (DMP ## 36, 38), the
trapezoid is shown standing on its base, in this case the longer of the two
parallel sides. The transversals are drawn at right angles to the base.

: /j jV

• / - -— •' / x ~^~lx /l*?t'h$k A~/l\ ', r 6 y 'A Jfei
j j I I- 218lkv 32' mh 2 2" *¥. " ; 3 -j£l ^

_ j ^ _ _ j _ a 1 i I —l^iJl^Jf _\ *«»—.j'-^Hhssfe'!^

Fig. 3.7.1. P.Heidelberg 663 # 1. A fragment of a drawing of a vertically striped trapezoid.

In the mirror image conform transliteration of P.Heidelberg 663 in Fig.
3.7. 1, left, and in the reconstruction of the trapezoid in Fig. 3.7.3, the
numbers present in the drawing are interpreted as the lengths «j, a2, a3 of
the three segments of the right half of the base, and the lengths hx,h2 of the
two transversals to the right. The length numbers are written as multiples
and fractions of an unnamed major length unit, followed by multiples and
fractions of a cubit (mh). In the following, this unnamed major length unit
will be assumed to be a khet of 96 cubits, that is a slight modification of
the khet of 100 units used in the hieratic mathematical texts. The correct-
ness of this assumption will be demonstrated in the course of the analysis
of the computations in the text.

In P.Heidelberg 663, ordinary notations for fractions are used for frac-
tions of 1 cubit, but special notations for fractions of 1 khet. The same spe-
cial notations for fractions of 1 khet are used, for instance, in P.BM 10520
§ 7 b (Fig. 3.3.3 above), and in Theban O. D 12 (Fig. 3.3.4 above). In
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Theban O. D 12, the same special notations are used also for fractions of
an unnamed area unit, presumably equal to 1 sq. khet = 1 setat. Following
Parker, JEA 61 (1975), the form of the number signs used in demotic texts
for fractions of the khet (and the setat) can be displayed in a diagram, such
as the one below. The signs for the combinations 1/2+1/4 and 1/16+1/32
(khet or setat) are not ligatures but independent constructions.

16's+32's T 2's+4's

* - / * f 1 < / /
8 4' 2' 32's 16's 8"s 4's 2's

cubits / cubit-strips khet I setat

Fig. 3.7.2. Notations for fractional length and area numbers in demotic mathematical texts.

Thus, for instance, in P.Heidelberg 663 # 1,

the length number a2 = 1 2's 8's 32's mh 1 2' 4' 8

stands for 1 1/2 1/8 1/32 • 96 cubits + 1 1/2 1/4 1/8 • 1 cubit.

The question in P.Heidelberg 663 # 1 is not preserved. It may have been
of the following form:

A trapezoid with the base 18 {khet), the top 2 {khet), and the height 6 {khet) is divided
symmetrically in five parts by four vertical transversals. The area of the two outer
parts, of the two middle parts, and of the central part, are proportional to 5, 3, and 2,
respectively,. Find the lengths of all line segments in the divided trapezoid.

The solution procedure probably started with the computation of the areas:

The whole area is 60 {setat), hence the area of each one of the outer parts is A x = 15,
the area of each one of the middle parts is A2 = 9, and the area of each half of the
central part is A3 = 6.

Consequently, two of the vertical transversals must pass through the upper
corners of the trapezoid, dividing the trapezoid into a central rectangle and
two flanking triangles. (See Fig. 3.7.3.) The inclination of the diagonal of
each flanking triangle i s /= 8/6 = 4/3 = 1 3'. Therefore (cf. P.Moscow § 7,
Sec. 2.2 c above), the base of the triangle can be computed as follows:

ax-hx=2Ax, and ax=fhx, hence sq. ax = 2f- Ax =2 3" • 15 = 40 {setat).

The square root was probably computed by repeated use of the square side
rule (see P.BM 10520 § 6 in Sec. 3.3 f above):
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sqr. 40 = appr. 6 3', sq. 6 3'= 40 9, hence
sqr. 40 = appr. 6 3' - 9 / (2 • 6 3') = 6 37/114 (khet).

The division 37/114 was then performed according to the rules, possibly
in the following way:

37/114 • 32 = 10 22/57, and 22/57 -3 = 13/19 = appr. 1 8.

Therefore,

ax = sqr. 40 setat = appr. 6 10/32 khet 1 8 cubit-strips = 6 4's 16's mh 1 8.

Next, the base of the middle trapezoid was computed as follows:
a2 = 8 - ax = 8 - 6 4's 16's mh 1 8

= 1 2's 8's 32's mh 1 2' 4' 8.

In the drawing, a dot indicates that the rectangle with the base a2 and the
height hx (see Fig. 3.7.3) also has the width a2 at the top. The length of hx

is computed as follows:

hx = \lf- a, = 2' 4' • 6 4's 16's mH 1 8
= 3 8's 32's mH 2 16 + 1 2's 16's mH 1 21 4' 32
= 4 2's 8's 16's 32's mH 2 41 T6 32.

Finally, the height of the triangle on top of the rectangle is computed as

ky = h2-hx

= 6 - 4 2's 8's 16's 32's mH 2 4' 16 32
= 1 4's mH 2' 8 32.

All these complicated calculations were performed without mistakes.

! Al \ .

«3 a 2 a l

A1 = 15, A2 = 9, A3 = 6 ax=sqr. 40= 6 4's [16's m/i 1 8~]

/ t2=6 a 2 = 8 - a , = 1 2's 8's 32's m/j 1 2 '4 '8

ax+a2 = %, a 3 = l ft, = 2' 4' • aj = 4 2's 8's [16's 32's mh 2 4' T6 32]

kx = h2 - hx = 1 4's m/i 2' 8 [32]
Fig. 3.7.3. P.Heidelberg 663 # 1. The divided trapezoid and its parameters.
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3.7 b. P.Heidelberg 663 # 2. A horizontally striped trapezoid

The lengths of the transversals

In P.Heidelberg 663 # 1 a trapezoid was divided by four vertical transver-
sals in such a way that the areas of the outer, middle, and central parts were
30,18, and 12 (setat), respectively. In # 2, the same trapezoid is apparently
divided by two horizontal transversals in such a way that the areas of the
lower, middle, and upper parts of the divided trapezoid are, again, 30, 18,
and 12 (setat). See Figs. 3.7.4-5 below. Apparently, the aim of the exercise
was to compute the lengths of the transversals.

. /

/ ' '-3 1 '/?. .X
/ ' ' f *••> \

, . . . ^ . . . .L : </.i x

/ ei 1 a X

q = (sl - dx)l2 = 2 2's 16's 32's k2 = 2' 4' • e2 = 1 2's 8's 16's mh 2 4'

kx = 21 4" • ej = 1 2's 4's 8's 16's mh 2' 41 e3 = (d2 - s2)/2 = 3 8's

e2 = {dx - d2)l2 = 2 4's 32's k3 = 2' 4' • e3 = 2 4's 16's 32's

Fig. 3.7.4. P.Heidelberg 663 # 2. A drawing of a horizontally striped trapezoid.

Very little is preserved of the solution procedure. Here is one way of
solving the problem. (A slightly different method was proposed in Parker,
JEA 61 (1975). Cf. the discussion below of VAT 7621.)

Let/= 4/3 = 1 3' be the inclination of the sloping sides of the trapezoid.
Then, in Fig. 3.7.5,

A]=(sx+ dx)l2 • (5, - di)/f= (sq. si - sq. dx)l(2f),
A2 = (sq. di - sq. d2)/(2f),
A3 = (sq.d2-sq.s2)/(2f).

On the other hand, it is clear that, with the given values for the areas,

A{=A2 + A3,
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and

Ax + A2 = AA3.

Therefore,

(sq. sx - sq. dx) = (sq. dx - sq. s2),

and

(sq. sx - sq. d2) = 4 (sq. d2 - sq. s2).

This means that the lengths of the transversals can be computed as follows.
First

sq. dx - (sq. Sj +sq. s2)l2 = (324 + 4)/2 = 164 {setai),

so that

dx = sqr. 164 = appr. 12 2' 4' 20 (khef) = appr. 12 2's 4's 16's.

Then

sq. d2 = (sq. sx + 4 sq. J 2 ) /5 = (324 + 4 • 4)/5 = 68 (setat),

so that

d2 = sqr. 68 = appr. 8 4's.

S2

, - ' d2 _ ^

^ - ' ' i X

^ ^ j4' • ^ Xx SA X
Aj =30, A2 = 18, A3 = 12 sq. rf] = (sq. J] + sq. 52)/2 = 164

JJ = 18, S2 = 2 sq. ^2 = (S(l-sl + 4 sq. 52V5 = 68

d\ = sqr. 164 = appr. 12 2's 4's 16's

rf2 = sqr. 68 = appr. 8 4's

Fig. 3.7.5. P.Heidelberg 663 # 2. A proposed explanation of the computation of the lengths
of the transversals.
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The lengths of the partial heights

P.Heidelberg 663 # 3 is a continuation of # 2. The aim of the exercise is to
compute the partial heights k±, k2, k-x, and the corresponding base lines ej,
e2, e3 (see Figs. 3.7.6-7). The computations are relatively simple and
straightforward.

>" v___ _____ ,• .

/ 24;i6;+f; \ *i^J^S^-.
/38sl / _\ wsUV <%v~ -'

[/, i2s8>^24 ' *^^Hfe&^..

, J 12;+4;8;i6>A2'4f '^'^S^^Pl-,^ ,
r^;i6'sJ32' / t^%2££SjJU$%!<

_!___ I

Fig. 3.7.6. F.Heidelberg 663 # 3. A horizontally striped trapezoid.

to

y e3 1 d2 x

X e2 1 ^ X

X ei I -h X

el = (s1- dx)l2 = 2 2's 16's 32's k2 = 2' 4' • e2 = 1 2's 8's 16's mA 2 4'

kl=2'4lel = \ 2's 4's 8's 16's m/i 2' 4' e3 = (J2 - s2)f2 = 3 8's

e2 = (rfi - ^2>/2 = 2 4 's 32 's A:3 = 2' 4' • e3 = 2 4's 16's 32's

Fig. 3.7.7. P.Heidelberg 663 # 3. Computation of the partial heights, etc.

The lengths of the sloping sides

P.Heidelberg 663 # 4 is a continuation of ## 2-3. Very little is preserved
of the text, but in the associated drawing the length '10' of the sloping side
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of the trapezoid is recorded. It is likely, therefore, that the object of this ex-
ercise was to compute various lengths by use of the diagonal rule.

3.7 c. P.Heidelberg 663. Parallel texts

For the history of mathematics, P.Heidelberg 663 is an important text. The
earliest known example of a divided trapezoid of the kind appearing in
P.Heidelberg 663 ## 2-4 is a drawing on IM 58045, an Old Akkadian
school boy's round hand tablet from around 2200 BCE (Friberg, MCTSC
(2005), App. 6 c). The topic was very popular in OB mathematics. See
Friberg, RIA 7 (1990) Sec. 5.4 k. No Late Babylonian example have yet
been found, but the topic reappears in this Ptolemaic papyrus fragment and
in books attributed to Euclid and Hero, both from Egyptian Alexandria.

The only OB parallels to the divided trapezoid with vertical transver-
sals in P.Heidelberg 663 # 1 can be found in the OB text VAT 7531, which
will be discussed below. It is much easier to find parallels to the divided
trapezoid with horizontal transversals in P.Heidelberg 663 ## 2-4, since
divided trapezoids in OB mathematical texts normally have transversals
parallel with the parallel fronts of the trapezoid. The similarity is imper-
fect, however, for several reasons. First, of course, because the trapezoid
in P.Heidelberg stands on its base, while OB trapezoids are orientated to
the left. Secondly, because OB divided trapezoids usually are divided into
an even number of sub-trapezoids, while the trapezoid in P.Heidelberg is
divided into three parts. Finally, because the lengths of the transversals in
the OB examples almost always are finite sexagesimal numbers (and
therefore rational numbers), while the lengths of the transversals in
P.Heidelberg are approximations to square roots of non-square numbers.
In this respect, the divided trapezoids in P.Heidelberg is more like the
striped triangles in the hieratic exercise P.Rhind # 53 a and the OB exer-
cise IM 43996. (See Figs. 2.1.8-9 above.)

A likely explanation is that the exercises in P.Heidelberg are close par-
allels to a kind of Late Babylonian geometric exercises of which no exam-
ples have yet been found. Typically "Late Babylonian" traits in
P.Heidelberg are the orientation of the figures, the computation of heights
as in P.Heidelberg # 3, and the elaborate computations of approximations
to square roots.
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The mentioned OB parallels to P.Heidelberg 663 # 1 are exercises ##
1-4 in the Old Babylonian text VAT 7531, probably from Uruk. The first
accurate reading of this text was published in Thureau-Dangin, TMB
(1938), 98. A correct (although incomplete) interpretation was presented
in Vaiman, SVM (1961), 258-263, where it was noticed that the trapezoids
in these exercises have the unusual property that the long sides (the
'lengths') are parallel, not the short sides (the 'fronts') as in most other
trapezoids in OB texts. The missing details in Vaiman's interpretation will
be filled in below, in an improved interpretation inspired by the example
of P.Heidelberg 663 # 1! Here is the text of VAT 7531:

VAT 7531 ## 1-4.

2 35 50 us gid.da 1 54 10 [us lugud.da] /
50 sag an.na 41 40 sag ki.[ta] /
a.sa.bi ma-la ma-su-u a-mu-[ur-ma] I
a-na 3 ses-a-ni mi-it-)}a-r[i-is zu-uz] I
u uku.us si-ka-a[s-su ku-ut-li-im-s]u

10 37 30 us gid.da 2 17 30 us lugud.da /
10 sag an.na 8 20 sag ki.ta /
a.sa.bi ma-la ma-su a-mu-ur-ma I
a-na 5 su-si erin.ba l4 5 e asa5.[ta].im pu-lu-uk /
u uku.us si-ik-ka-as-su ku-ul-li-im-su I
si-ta-at a.sk-ka a-n[a] 2 su-si er n /
mi-it-ha-ri-is i-di-in u uku.us /
si-ik-ka-as-su ku-ul-li-im-su I
su.nigin 7 su-si erim a.sa.bi en.nam

2 58 30 us gid.da 1 16 30 us lugud.da /
2 sag an.na 1 36 sag ki.ta /
a.sa.bi ma-la m[a-su a]-mu-ur-ma I
a-na 1 li-im 8' me [erin.ba mi-ii]-lja-ri-is I zu-uz
u [uku.us si-ka-as-su] I ku-ul-l\i-im-su\

2 43 30 us gid.da 1 56 30 us lugud.da /
1 37 30 sag an.na 1 30 30 sag ki.ta /
a.sa.bi ma-la ma-sit a-mu-ur-ma I
a-na 5 ses-a-ni mi-it-fia-ri-is / zu-uz
u uku.us si-ka-as-su I ku-ul-li-im-su
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#1 2 35 50 the long length, 1 54 10 the short length,
50 the upper front, 41 40 the lower front.
Its area, how much it is, find out, then
to 3 brothers equal/y divide it,
and (each) soldier show him his stake

#2 10 37 30 the long length, 2 17 30 the short length,
10 the upper front, 8 20 the lower front.
Its area, how much it is, find out, then
to 5 sixties of men 1 ese of field each delimit
and (each) soldier show him his stake.
The remainder of your field to 2 sixties of men
equally give, and (each) soldier
show him his stake.
Altogether 7 sixties of men. Its area is what?

# 3 2 58 30 the long length, 1 16 30 the short length,
2 the upper front, 1 36 the lower front.
Its area, how much it is, y?nd out, then
to 1 thousand 8? hundred men equally divide it,
and (each) soldier show him his stake.

#4 2 43 30 the long length, 1 56 30 the short length,
1 37 30 the upper front, 1 30 30 the lower front.
Its area, how much it is, find out, then
to 5 brothers equally divide it,
and (each) soldier show him his stake.

Properly speaking, VAT 7531 ## 1-4 is a collection of assignments
rather than exercises, since the questions are not followed by solution pro-
cedures. An attempt is made below to show what the solution procedures
would have been like.

In VAT 7531 # 1, the given figure can be interpreted as a trapezoid
composed of a central rectangle, and two flanking non-equal triangles
(Fig. 3.7.8). If the rectangle is removed, what remains is a rotated symmet-
ric triangle, with two sides equal to 41;40 and the third side equal to 50.
The height against the side 50 can be computed by use of the diagonal rule.
It is 33;20, so that the triangle can be reinterpreted as the composition of
two equal right triangles with the sides 8;20 • (3, 4, 5).
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The height h against the side 41;40 can be computed as follows:

h • 41;40/2 = A tr iangle= 33;20 • 50/2,

h = 33;20- 50/41 ;40 = 40.

After h has been computed, the two components a and b of the base of the
triangle can be computed by use of the diagonal rule. They are 30 and
11 ;40. Hence, the triangle has an alternative composition as two right tri-
angles with the sides 10 • (3, 4, 5) and l;40 • (7, 24, 25) joined together.

The aim of exercise # 1 is to divide the given trapezoid equally between
three brothers. Now, it is clear that the area of the trapezoid is equal to

(2 35;50 + 1 54;10)/2 n. • 40 n. = 2 15 n. • 40 n. = 1 30 00 (sq. ninda) = 3 bur.

One third of that area is 30 00 (sq. ninda) = 1 bur, which is equal to the
area of a rectangle with the length 45 n. and the height 40 n. Hence, the
middle brother gets a central rectangle with these sides, while the first
brother gets the left triangle plus a rectangle with the sides 30 and 40, and
the third brother gets the right triangle plus a rectangle with the sides 39; 10
and 40. In this way, each brother gets a field with the area 1 bur. See again
Fig. 3.7.8.

1 54;10

«?/ f'! 1 bur 1 bur 1 btlr %

/ I II i\°
(30) (30) (45) (39;10) (ll;40)

2 35;5O

A A = 1 30 00 sq. n. = 3 bur
/ \\ A/3 = 30 00 sq. n. = 1 biir

S>/ S\ W

(30) (ll;40)
41;40

Fig. 3.7.8. VAT 7531 # 1. Three brothers sharing a trapezoidal field.
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The given trapezoid in VAT 7531 # 2 is, just like the one in # 1, com-
posed of a central rectangle and two flanking, non-equal triangles. See Fig.
3.7.9 below. It is easy to check that the flanking triangles in # 2 are similar
to the flanking triangles in # 1, but with sides that are 12 times larger. The
area of the whole trapezoid is

(10 37;30+ 2 17:30)/2 n. • 8 00 n. = 12 5512 n. • 8 00 n. = 51 40 00 sq. n.

This is surprising, since 51 40 00 (sq. ninda) = 1 43 bur 1 ese, which is
not a round area number, in contrast to the 1 30 00 (sq. ninda) = 3 bur in
# 1. As a matter of fact, it is likely that the author of the text made a mistake
here. Suppose that his intention was to construct a trapezoid with the men-
tioned flanking triangles and with a total area of precisely 1 00 00 00 (sq.
ninda) = 2 00 bur. Since the sum of the areas of the two flanking triangles
is 8 20 n. • h/2 = 8 20 n. • 4 00 n. = 33 20 00 sq. n., he should have computed
the "short length" of the trapezoid as follows:

(1 00 00 00 - 8 20 • 4 00) sq. n./8 00 n. = 26 40 00 sq. n./8 00 n.= 3 20 n.

By mistake, he computed the short length instead as

(1 00 00 00 - 8 20 • 5 00) sq. n./8 00 n.= 18 20 00 sq. n./8 00 n. = 2 17;30 n.

The corrected lengths 3 20 and 3 20 + 8 20 = 11 40 are shown in Fig. 3.7.9.

3 20!

y i l l \& #x£i \s

(6 00) (3 15) (2 25) (6 00) (2 20)
1140! 8 20

Aj = 50 00 00 sq. ninda = 1 40 bur
A2 = 10 00 00 sq. ninda = 20 bur

Fig. 3.7.9. VAT 7531 # 2. Two teams sharing a trapezoidal field. Corrected data.

The assignment in # 2 (corrected) is to divide the trapezoid between
two teams. In the first team, each one of 5 00 men gets 10 00 (sq. ninda)
= 1 ese. This means that the total share of the first team is 5 00 • 10 00 (sq.
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ninda) = 50 00 00 (sq. ninda). In the second team, 2 00 men divide the
remaining part of the field in equal shares. Hence the total share of the sec-
ond team is 10 00 00 (sq. ninda), and each one of the 2 00 men in the sec-
ond team gets 5 00 (sq. ninda) = 1II es e = 3 iku. The share of the second
team is slightly more than the area of the right triangle, which is 2 20/2 • 8
00 = 9 20 00 (sq. n.). The difference is 40 00, to be taken out of the central
rectangle, for a length of 40 00/8 00 = 5 (ninda).

Theoretically, each man in each of the two teams can be allotted his
own narrow strip, bounded by two parallel vertical lines.32 The computa-
tion of the width of the individual strips is particularly simple in the case
of strips falling within the central rectangle. The first team gets 3 15 • 8 00
= 26 00 00 (sq. ninda) in the central rectangle, enough for 6 • 26 = 2 36
men. The width of each one of the 2 36 strips is 3 15/236= 1; 15 (ninda).

It is more complicated to compute the widths of the strips falling within
the left triangle for the remaining 2 24 men of the first team. The method
that has to be used in this case is the same as the method used for a similar
purpose in P.Heidelberg 663 # 1. Thus, let an be the sum of the widths of
the first n strips, and let hn be the length of the nth bounding line. Then

an- V
2 = 10 00 • n, and an = ;45 • hn.

Consequently,

sq. an = ;45 • 2 • 10 00 • n = 15 00 • n,

so that

an = 30 • sqr. n, and hn = 40 • sqr. n.

Similarly for the individual strips in the right triangle, counted from the

right end:

sq. fcn = ;1730-2- 10 00 • n = 5 50 • n,

so that

bn = sqr. (5 50 • n), and hn = 24/7-bn.

32. Compare with the ring wall problem BM 85194 # 4, Thureau-Dangin, TMB (1938),
text 48. There a circular ring-shaped mud-wall around a "city" has the length 1 30 ninda
and the volume 1 07 30 sar. Since the prescribed work norm is ;10 sar/man-day, 6 45 00
man-days are needed for the construction of the ring wall. The length of the ring wall
marked out for each worker to build in a day is then 1 30 ninda/ 6 45 00 = ;00 13 20 ninda
= appr. 2 centimeters, a completely unrealistic figure!
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In VAT 7531 # 3, the trapezoid can be shown to be composed of a rect-
angle and a single right triangle with its sides equal to 24 • (3, 4, 5). The
area, 3 00 00 (sq. ninda) = 6 bur = 18 ese, is divided equally between
1 thousand [8 hundred]' men, so that each man gets 1/100 ese , a surpris-
ingly small share.

VAT 7531 # 4 is a much more interesting text. The trapezoid here, with
the lengths 2 43;30 and 1 56;30, and the fronts 1 37;30 and 1 30;30, is di-
vided equally between 5 brothers.

In this assignment, the trapezoid is again composed of a central rectan-
gle and two unequal flanking triangles. The two triangles together form a
triangle with the sides 1 37;30, 1 30;30, and 47. Since there is no pair of
equal sides, this case is more difficult than the two cases of isosceles trian-
gles in ## 1-2. Evidently, the OB author of this text was confident that his
students knew how to compute the height of a non-isosceles (scalene) tri-
angle! The way they did it was probably as follows:

1 56;30

^ / I ^̂  /̂/'V/"-v -»HHP P ^ "***/ ^"' o

(46;45) (28) (28) (28) (32;45) (37;30) (9;30)

2 43;30 47 —

A = 3 30 00 sq. ninda = 7 bur
A/5 = 42 00 sq. ninda

Fig. 3.7.10. VAT 7531 # 4. Five brothers sharing a trapezoidal field.

Let a, b, c be the sides of the triangle, and suppose that the height
against the side b divides b into the segments p and q, where p is greater
than q. Then,

p + q = b and
sq. a - sq. p = sq. c - sq. q (by the diagonal rule, since both are equal to sq. h).

This leads to a quadratic-linear system of equations for p and q:
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p + q = b and sq. p - sq. q = sq. a - sq. c.

This quadratic-linear system of equations can be solved by use of metric
algebra. (For details, see the discussion of exercise # 2 in the Greek math-
ematical papyrus fragment P.Chic. litt 3 in Sec. 3.7 below.) The solution
can take several forms, for instance the following:

p = [b + (sq. a - sq. c)/b}/2, q={b- (sq. a - sq. c)/b}/2.

With a,b,c=l 37;30, 1 3O;30,47, these equations show that/j = 37;30, q
- 9;30. It is then easy to compute h = 1 30. The remaining part of the so-
lution algorithm is straightforward.

An OB parallel to the trapezoid with horizontal transversals in
P.Heidelberg 663 ## 2-4, can be found in VAT 7621 # 1 (Thureau-Dangin,
TMS(1938),99):

VAT 7621 # 1.

2° 2° ,

i "1 D 1 O 5

1 4°5 3° \ ^ ^ ^ ^

s[i-n]a su-nu 9.ta.am ma-ru-su-nu I
bu-ra-am e-li-a-am a-na ti-si-it zu-uz I
u bu-ra-am sa-ap-li-a-am a-na te-si-it zu-uz I
[u] uku.us si-ik-ka-as-su ku-li-im-su

They are two, 9 each are their sons.
The upper b r in nine divide,
and the lower b r in nine divide,
and (each) soldier show him his stake.

The divided trapezoid in this example is of the standard type, with a
transversal parallel to the two fronts. The lengths sa, d, sk = 15 • (7, 5, 1) of
the upper front, the transversal, and the lower front, respectively, form a
solution to the "equipartitioned trapezoid equation"

sq. sa + sq. j k = 2 • sq. d.

Consequently, the transversal divides the trapezoid in two parts of equal
area. The normalized length of the trapezoid is 1 00 (ninda). Since 5 - 1
= 2 • (7 - 5), the transversal divides the length in two parts, 20 and 40, in
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the ratio 1: 2. The factor 15 multiplying the triple (7, 5,1) is chosen so that
the two equal sub-areas are both equal to the round area number 30 00 (sq.
ninda) = 1 bur.

An unusual feature of this text is that the two sub-trapezoids are further
divided in nine parts each, allotted to the 2 • 9 sons of the two brothers,
Thus, each son gets 1/9 bur = 1/3 ese = 2 iku. To 'show each soldier his
stake' means, as usual, to determine the lengths and positions of the trans-
versals separating the 18 lots from each other. This can be done by use of
the method suggested by Parker, JEA 61 (1975) as an explanation of the
given length numbers in P.Heidelberg 663 # 2.

Let the sum of the first n sons' lots, counted from the left, be the trape-
zoid with the fronts sa, dn, and the length (sa-dn)/f, where/is the inclina-
tion of the sloping side of the trapezoid. Let the corresponding area be An.
Then

An = (sa + dn)/2 • (ja - dn)/f= (sq. j a - sq. dn)/(2f), so that sq. dn = sq. 5a - 2 / • An.

In VAT 7621, sa = 1 45, /= (1 45 - 15)/1 00 = l;30, and An = 1 00 00/18 •
n = 3 20 • n. Hence, the length dn of the n-th transversal can be computed as

dn=sqr. (sq. sa-2f-An) = sqr. (3 03 45 - 10 00 •/i), for n = 1, 2, - , 18.

When the lengths of the transversals are known, it is easy to find also their
positions.

3.8. Conclusion

The importance of P.Cairo for the history of mathematics

The rather detailed analysis in Sec. 3.1 a above of the contents of P.Cairo
clearly shows that in the third century BCE, if not sooner, Egyptian math-
ematics had become deeply influenced by Babylonian mathematics.33

This is shown, to some extent, by the fact that almost all the topics treated
in P.Cairo are known also from Old or Late Babylonian/Seleucid mathe-
matical texts. More important is the circumstance that the equation for the
area of a circle that was used in hieratic mathematical papyri is replaced in
P. Cairo by the kind of equations for the area of a circle that one meets in
mathematical cuneiform texts. Above all, the Babylonian influence is evi-
dent in the hidden use of sexagesimal fractions as a convenient computa-
tional tool, side by side with the Egyptian traditional use of sums of parts
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and the apparent novel use of binomial fractions. (Note that there are no
detailed, explicit computations in P. Cairo of the kind that one meets so fre-
quently in the hieratic P.Rhind.)

The hidden use of sexagesimal fractions in P.Cairo, a text from the
third century BCE, is so much more remarkable in view of the following
remark in Fowler, MPA (1987, 222; 1999, 223):

"In scientific computations from the time of Hipparchus and Hypsicles (c. 150 BC),
and especially in Ptolemy' s Almagest and its commentaries, the Greeks employed an
alphabetic version of the sexagesimal system found earlier in Babylonian cuneiform
clay tablets that date back to almost 2000 BC. But there is no trace whatsoever of
sexagesimal numbers in any Greek text from before the second century BC ••• "
The orientation of the equilateral triangle in P.Cairo § 11 a (# 36),

33. Cf. the following commentary in Parker, DMP (1972), 5: "In the third century B.C.
we are admittedly on very shaky ground if we regard anything that is new in demotic texts
as a purely Egyptian development, free of any influence from Greece or Babylonia. •••
Elsewhere I have shown that the content of a demotic papyrus of the Roman period con-
cerned with celestial omina can be definitely ascribed to Babylonia, the transmission of
such literature having taken place during the Persian rule of Egypt, the late sixth and fifth
centuries B.C. It is very likely, indeed, that some amount of Babylonian mathematical lit-
erature also came to Egypt at the same time ••• in the third century B.C. Egypt, after all,
was a part of the Hellenistic world, in which both Greek and Babylonian science was wide-
ly diffused." — Knorr, HM 9 (1982), footnote 4, concurs, with the words: "On the basis of
the technical evidence from Egypt, Mesopotamia, and Greece, in the light of literary sourc-
es, I have proposed a transmission of Mesopotamian mathematical techniques to the Greeks
through Egypt after the Persian occupation of the late sixth and early fifth centuries B.C.
The details of this argument are given in an unpublished paper, 'The Greeks learn geome-
try' - " (Unfortunately, that paper was never published.) — Jones, GMS 3 (1993), 88,
writes: "The general pattern of transmission of Babylonian astronomy seems to be a grad-
ual trickle of basic concepts and the occasional parameter from about 500 B.C., followed
by a sudden flood of detailed information in the second century B.C." Something similar
may have happened in the case of the transmission of Babylonian mathematics. — The fol-
lowing passage from Jones, UOS (2002]) may also be of some interest here: "Two further
points deserve to be mentioned. One is the conservative character of the tradition. The Sys-
tem B tables surviving in cuneiform fall within an interval of two centuries, from about 250
B.C. to about 50 B.C. Now after a documentary gap of two hundred years or more, in a dif-
ferent region and a different language, we encounter tables not only based on the same as-
tronomical theory and mathematical methods, but even preserving such details of format as
placing the names of zodiacal signs following the degrees and the indications of subtractive
quantities following the quantities. This fact demonstrates, overriding all the historians' a
priori assumptions about the difficulty of deep cultural contacts between Mesopotamia and
the classical world, that an unbroken practical tradition at a high technical level led from
the scribes of Babylon and Uruk to those of provincial Egypt."
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depicted as standing on one of its sides, suggests an influence from Late
Babylonian, rather than OB mathematics. On the other hand, it is known
that many of the traditions from the OB school of mathematics were still
kept alive in Late Babylonian mathematics. (See examples in Friberg, et
al, BaM 21 (1990): W23291-X §§ 1-4, and Friberg, BaM 30 (1999).)
Therefore, the claim that Egyptian mathematics in the third century BCE
was influenced by Babylonian mathematics should, perhaps, be replaced
by the more precise claim that it was influenced by Late Babylonian math-
ematics. What makes it difficult to say anything more precise about the
matter is that very little is known about the true character and extent of
Late Babylonian mathematics. After all, the number of known Late Baby-
lonian mathematical texts is relatively small. (See the survey in Friberg,
BaM 28 (1997), 356-357], to which must now be added the fragment
N 2873 in Robson, SCIAMVS 1 (2000), 44.)34 The truth may be that the
mathematical content of the Egyptian demotic papyri can tell us something
that we otherwise would not know about the kind of problems that were
considered in Late Babylonian mathematics!

There are no traces of influence from high level "academic" Greek
mathematics in P. Cairo. Instead, texts like P. Cairo may have had a deci-
sive influence on Greek mathematics. Indeed, the impact of the existence
of a Ptolemaic demotic mathematical text like P.Cairo on the history of the
origin of Greek mathematics must be considerable. P. Cairo tells us that at
the time when Euclid was working in Alexandria in Egypt (or not much
later), Egyptian mathematicians were familiar with many of the traditions
and methods of Babylonian mathematics. So, when Greek historians like
Herodotus claim that the Greeks got their mathematics from Egypt (see,
for instance, Heath, HGM (1921 (1981)), I: 4, 121, and II: 440, or Peet,
RMP (1923), 31), what that means may very well be that they got it from
the Babylonians, by way of Egypt! However, the situation is complicated
by the fact that it may be difficult to distinguish between ideas that the
demotic mathematical texts borrowed from OB mathematics and ideas

34. See also the discussion of NB mathematical cuneiform texts (c. 750-500 BCE) in
Robson, SCIAMVS 5 (2004), in particular the remark on p. 62 that "The Kish and Babylon
evidence taken together thus suggest that the mathematical elements of elementary scribal
education in the mid-first millennium BCE consisted only of metrological lists and tables
of squares."
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that they inherited directly from Middle Kingdom Egyptian mathematics,
since, as was argued in Chapter 2 of this work, the mathematics of the
Egyptian hieratic mathematical texts was not very different from OB
mathematics.

The other demotic mathematical papyri

There is no other demotic mathematical papyrus obviously covertly using
sexagesimal arithmetic like P.Cairo, although P.BM 10794 comes close.
Cf. Fowler, MPA (1987 (1999)), 7.1(b):

"Among the thousands, possibly tens of thousands, of examples of fractions to be
found in contemporary Egyptian (hieroglyphic, hieratic, and demotic), Greek, and
Coptic texts, all but a few isolated examples in five texts (P.Lond. ii 265; M.P.E.R.,
N.S. i 1; and three demotic papyri published in Parker, DMP), all to be described in
detail in Section 7.3 below, use throughout the following 'Egyptian' system of ex-
pressing fractions: (sums of parts)."

(It is regrettable that Fowler did not think of using the opportunity to look
for the hidden use of sexagesimal fractions in some of those thousands of
examples!)

Nevertheless, all the other demotic mathematical papyri show other
clear signs of being influenced by Babylonian mathematics, with the
exclusion of P. Griffith Inst. with its simple theme of linear equations.

There is, on the other hand, no demotic mathematical papyrus showing
any influence from high level Greek mathematics, not even the ones dating
from the Roman period.

The final conclusion must be that there can be little doubt that there
were no significant differences between the general level and extent of the
knowledge of mathematics in Egyptian demotic mathematical texts and in
Mesopotamian cuneiform mathematical texts towards the end of the first
millennium BCE, and that there are no signs of influence on either from
high-level Greek mathematics. That Greek mathematics was inspired by
Babylonian mathematics is another matter, but to (begin to) make that
claim precise is left to Chapter 4 below.



Chapter 4

Greek-Egyptian Mathematical Documents and
Cuneiform Mathematical Texts

What is usually meant by the term "Greek mathematics" is mainly known
from late Byzantine or Islamic sources, and consists of copies or transla-
tions of important works written by ancient mathematicians and commen-
tators, most of them known by name. However, if one wants to consider
original, "contemporary" texts, rather than late copies and translations,
what is then available is a small number of anonymous mathematical ost-
raca, papyrus leaves, and papyrus fragments. These can be divided into
two discrete groups of documents.

One group of contemporary sources consists of texts closely associated
with Euclid's Elements. A survey of published texts belonging to this
group, with an extensive commentary, can be found in Fowler, MPA (1987
(1999)), Sec. 6.2, and plates 1-3. The documents mentioned by Fowler are

a) six fragmentary ostraca containing text and figures, found on Elephantine Island
{Pack no. 2323), dating to the third quarter of the 3rd century BCE, and dealing with
the results found in Elements XIII, 10 and 16 concerning the pentagon, hexagon,
decagon, and icosahedron,
b) a papyrus roll from Herculaneum, (P.Herc. 1061), thus dating to 79 CE, and con-
taining a hardly legible essay on Elements I by Demetrius Lacon,
c) a papyrus fragment from Oxyrhynchus (P.Oxy. i 29), dated to the end of the 1st
century CE, and possibly part of a manuscript of notes by someone working through
Elements 11,
d) a fragment from Fayum (P.Fay. 9), assigned to the latter half of the 2nd century
CE, and containing parts of Elements I, 39 and 41,
e) the fragment P.Mich. Hi 143, containing the first ten definitions of Elements I.

193
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The second group of contemporary sources consists of anonymous
mathematical ostraca, papyri, and papyrus fragments having no or insig-
nificant associations with Euclidean mathematics. They are all from the
Ptolemaic and Roman periods in Egypt. Since also all the demotic mathe-
matical papyri discussed in Chapter 3 above are from the Ptolemaic and
Roman periods, the two kinds of documents are to some extent contempo-
rary with each other. It can therefore be expected that there should be no
noticeable difference in form and content between demotic and (non-
Euclidean) Greek mathematical papyri. Below, an effort will be made to
show, by means of a survey of examples from various Greek mathematical
papyri, how little difference there really is between mathematical exercises
in Greek and demotic texts.35 To make the point even more obvious, the
discussion will begin with a discussion of a Greek land survey ostracon.

4.1. O.Bodl. ii 1847 (30 BCE), an Ostracon with Schematic Field Plans

Fowler, MPA (1987 (1999)), Sec. 7.1(d), is a fairly detailed discussion of
Greek-Egyptian "land surveys" in the Ptolemaic period, exemplified by
the Greek ostracon O. Bodl. ii /S47(photo: {op. cit.), pi. 6), which is from
Thebes like the demotic Theban Ostracon D12 (Thompson, TO 2 (1913);
Fig. 3.3.4 above). The two look very much alike. The Greek ostracon has
eight schematic drawings of the same type as the one in P.BM 10520 § 7 b
(Fig. 3.3.3), and the ones on Theban Ostracon D 12, although with Greek
letters to denote fractions of the schoinion and the aroura. Cf. Fowler {op.
cit.), 233-234:

"The earliest surviving land registers such as I have described here date from the sec-
ond century BC After the conquest of Egypt by Alexander in 331 BC, the
Greeks took over the existing Egyptian administration, including the land survey,
merely imposing Greek as the official language for virtually all administrative and
financial documents that were of concern to them. On the other hand, the Greeks
never seemed to have operated a land survey in Greece itself ."

35. Several new or improved interpretations are offered here for both Greek-Egyptian
and Babylonian mathematical texts. Thus, new interpretations are offered in Chapter 4 for
the following texts: O.Bodlii 1847 (Sec. 4.1), Michael 62 # 2, YBC 4698 § 4, MLC 1842
(Sec. 4.6), P.Chicago lift. 3 (= pAyer) and P.Cornell 69 (Sec. 4.7 b-c), BM 96954 + BM
102366 + SE 93 (Sec. 4.8 f).
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Fowler tries to explain (op. cit.), 232 (233), how the computation in line 3
of O.Bodl. ii 1847 can have been carried out by "long multiplication". The
result of the proposed long multiplication is a sum of parts, where the
smallest part is 1024' (1/1024). Fowler admits that he has no idea how "the
taxman" performed the computation and rounded off the result. However,
it is not likely that Fowler's reconstruction of the computation is correct,
for the simple reason that the smallest fraction of both the schoinionlkhet
and the arouralsetat was 32's (1/32).36 (See Fig. 3.7.2.) Smaller lengths
were expressed as multiples or fractions of the cubit, and smaller areas as
multiples or fractions of the cubit(-strip) = 1 cubit • 1 schoinion.

Compare the following two computations. First Fowler's proposed
long multiplication:

2' 4' 8' 16' (the half-sum of 2' 4' 81 and 1)
x 4' 16' 64' (the half-sum of 4'8'16'32'and 8'16')

8' 16' 32' 64'
32' 64' 128' 256'

128' 256' 512' 1024'

8' 16' 16' 32" 64' 128' 512' 1024'= appr. 4' 16' (??)

Then the same example, with small lengths or areas expressed in terms
of cubits and cubit-strips, and with the left factor as the multiplier (the mul-
tiples or fractions of the cubit(-strip) are written after the sign a) :

2'4'8T6-4'T6c. 12'
= 8 32c. 2'4' + T6c. 12'4'8 + 32c. 2'4'8T6 + c. 12'4'8l632
= 4' 32 a 2 2' 32 = 4' 76 - a 4' 8 16 32 = appr. 4' 16 (arouras).

4.2. P.Oxyrhynchus Hi 470 (3rd C. CE). A Water Clock

P.Oxyrhynchus Hi 470 (Greenfell and Hunt, OP 3 (1903)) is a single leaf

36. It is known that in Greek-Egyptian mathematical papyri two common units of length
measure were the schoinion and the cubit. According to a metrological table in one such
papyrus (Bell, GPBM (1917), Pap. 1718, lines 85-86, (6th c. CE) there were (at least) two
kinds of schoinion. One, called the "hieratic" schoinion was equal to 100 cubits, while an-
other, the "geometric" schoinion, was equal to 96 cubits. It is likely that the hieratic
schoinion was identical with the khet of 100 cubits occurring in the hieratic mathematical
papyri, while the geometric schoinion ('geometric' in the literal sense of 'used for land
measurement') was a modified khet, with 1/32 of a geometric schoinion = 3 cubits.
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from a papyrus codex. Lines 31 to the end of this manuscript are concerned
with the construction of a water clock(?), shaped like a flower pot. More
precisely, the object is an inverted truncated circular cone, in which the di-
ameter of the circular top is a = 24 fingers and the diameter of the circular
base b = 12 fingers. The depth is h - 18 fingers. The volume is computed
as the depth times the area of the circle whose diameter is the average of
the diameters at the top and the base. This rough approximation of the vol-
ume of a truncated cone can be compared with the exercises in P.BM
10399 § 2 {DMP ## 42-45) (Sec. 3.2 b above), where the volume of a num-
ber of 'masts' with the upper diameter a and the lower diameter b are com-
puted using the non-exact rule

V = (1 - 41) • sq. dm • h, where dm = (a + b)l2.

However, in P.Oxy. Hi 470, the volume is computed using another non-
exact rule:

V = {3' • (3 dm)} • {4' • (3 dm)} • h, where again dm = (a + b)/2.

The difference between the two approximate computation rules is that they
use two different approximately correct rules for the area of a circle of di-
ameter d, namely

a)A = ( l - 4 ' ) - s q . d,

b)A = {3' • (3d)} • {4' • (3 d}} = 4 ' da, where a is the circumference of the circle.

Both rules, that is both a), the one used in the demotic P.BM 10399 § 2,
and b), the one used in the Greek P.Oxy. Hi 470, are also used in the de-
motic P.Cairo § 9 {DMP ## 32-33) (see Sec. 3.1 h above).

4.3. P. Vindobonensis G. 26740. Five Illustrated Geometric Exercises

P.Vindobonensis G. 26740 (Bruins, Sijpesteijn, and Worp, Janus 61
(1974)) was probably originally inscribed on both sides with a demotic
text. The demotic text on the obverse was later washed off and replaced by
a Greek text, consisting of five geometric problems, a passage of Homer,
and two metrological conversion problems. The five geometric problems
will be discussed below. They are separately illustrated by drawings, sche-
matically reproduced together in Fig. 4.3.1 below.

4.3 a. P.Vindob. G. 26740 # 1. A segment of a circular band
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Let there be a crescent, of which the outer circumference is 10 schoinia, the inner one
12 sch., the basis 2 sch.
How many arouras is it? How one has to operate:
Add the two perimeters, result 22. Take one half of these, result 11.
Multiply these schoinia into the 2 of the basis, result 22.
So many arouras is the crescent, as asked for.

The exercise is accompanied by a drawing, which shows that the
"crescent" (ijrivicKOc) actually is a segment of a circular band, bounded
by two concentric circular arcs and two straight line segments. The area A
of the figure is computed as

A = the average length of the arcs times the width of the circular band.

# ! 12 sch. # 2 # 3

/ /^ X \ / circumph. 30 sch. / \
2sdL lOsck^fsck I \ I IP"*- \

22ar. I I \ 1
\ 75 ar. J \ J

75 ar.

#4 #5a /feign; 5 SC?K

L j

diam.10 sch.

(37 1/2 ar.)

675 ar.

Fig. 4.3.1. P.Vindob. G. 26740 ## 1-5. Drawings illustrating five geometric exercises.

A parallel text is W 23291-x § 2 (Friberg, et al, BaM 21 (1990)), an iso-
lated exercise in a Late Babylonian recombination text, illustrated by a
drawing of a series of concentric circles. In that exercise, a circle of perim-
eter 1 00 ninda is given, and 4 inner concentric circles are formed by go-
ing inwards uniformly 4 times, 2 ninda each time. The perimeters of the
four inner circles are then found to be 54,42, 30, and 18 ninda. The orig-
inal circle is in this way divided into four circular bands and a small central
circle, with the areas of the five parts computed as follows:

(1 00 + 48)/2 • 2 = 1 48 sq. ninda, (48 + 36)/2 • 2 = 1 24 sq. ninda, etc.
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Evidently, the rule used for the computation of the areas in W 23291-x § 2
is the same rule as the one used in P. Vindob. G. 26740 # 1.

4.3 b. P. Vindob. G. 26740 ## 2-4. A circle area found in three ways

P. Vindob. G. 26740 #2

Let there be a circle, of which the circumference is 30 schoinia
How many arouras does it contain?
How one has to operate:
Multiply 30 sch. into themselves, result 900. Take one twelfth of those, result 75.
So many arouras is the circle, as asked for.

In this exercise, the area A of a circle is computed as

A = 1/12 • sq. a, where a is the circumference of the circle.

This is the same rule as the one used in Babylonian mathematics, namely:

A = ;05 • sq. a, where a is the circumference of the circle, and ;05 = rec. 12.

It is also, essentially, the same rule as the one used in the demotic exercises
P.Cairo § 11 (DMP ## 36, 38), namely (see above, Sec. 3.1 j):

A = (3' • a) • (4' • a), where a is the circumference of the circle.

P. Vindob. G. 26740 #3

Let there be a circle, of which the diameter is 10 schoinia. How many arouras is it?
How one has to operate: Multiply the 10 schoinia into themselves, result 100.
Take of those 2' 4', result 75. So many arouras is the circle, as asked for.

In this exercise, the area A of a circle is computed in a second way, as

A = 2' 4' • sq. d, where d is the diameter of the circle.

This is, essentially, the same rule as the one applied in the demotic exer-
cises P.Cairo § 9 {DMP ## 32-33) (see above, Sec. 3.1 h), where the di-
ameter d of a circle with given area A is computed as

d = sqr. (A + 3' • A), which means that d=sqr. (13 ' - A), so that, conversely,

A = 2' 4' • sq. d.

P. Vindob. G. 26740 # 4

Let there be a circle, of which the perpendicular is 15 schoinia, the diameter 30 sch.
How many arouras is it?

How one has to operate: Add the schoinia of the perpendicular <and the schoinia of
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the diameter, result 45>.
Multiply with itself, result 2,025.
Take the 3' of these, making 675.
So many arouras is the circle, as asked for.

The area of a circle is computed in this exercise in a third way, as

A = 3' • sq. {d + p),
where d is the diameter and p the "perpendicular" (K&GETOC) of the circle.

Apparently here the "perpendicular" of the circle means the height of a
semi-circle (half the given circle), and the area of the circle is equated with
twice the area of the semi-circle. This is probably how the accompanying
drawing must be interpreted. (See Fig. 4.3.1, # 4.) Indeed, if p is the height
of the semi-circle, then

3' • sq. (d + p) = p • {d + p) = 2 • p • (d + p)l2 = twice the area of the semi-circle

(see below, P.Vindob. G. 26740# 5).

4.3 c. P.Vindob. G. 26740 # 5. The area of a semicircle

Let there be a semi-circle, of which the perpendicular is 5 schoinia
and the diameter 10 sch. From these two, how many arouras is it?
How one has to operate:
Add the schoinia of the perpendicular and the schoinia of the diameter, result 15.
Take 2' of these, result 7 2'.
Multiply these schoinia into the 5 of the perpendicular, making 37 2'.
So many arouras is the semi-circle, as asked for.

In this exercise, the area A of a semi-circle is computed as follows:

A = p • (d + p)/2, where p is the height and d the diameter of the semi-circle.

In Bruins, et al, Janus 61 (1974), this area rule for a semi-circle is ex-
plained as a special case of the area rule for a segment of a circle attributed
to 'the ancients' in Hero's Metrica I: 30 (Heath, HGM 2 (1921 (1981)),
330).) A more relevant reference is, perhaps, the "segment area rule" in the
demotic P.Cairo §§ 11-12 (DMP ## 36-38), discussed in Sec. 3.1 j-k
above. See, in particular, Fig. 3.1.10, right.

The application of the segment area rule in this exercise may be the rea-
son why the associated drawing (Fig. 4.3.1, # 5) shows a semi-circle in
which a chord cuts off a circle segment!
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4.4. P.Mich. 620. Systems of Linear Equations. Tabular Arrays

P.Mich. 620 (Robbins, CP 24 (1929), Vogel, CP 25 (1930), Winter, MP 3
(1936)) is a small Greek papyrus from the early part of the 2nd century CE.
It is inscribed with three mathematical exercises, two of which are illus-
trated by preserved tabular arrays. Of the first exercise, there remains only
the end of the solution procedure, the complete text of the verification (the
"proof), and a tabular array of numbers. However, in the verification the
essential parts of the lost question are quoted, which makes it easy to re-
construct most of the question. Moreover, the tabular array repeats the es-
sential steps of the lost solution procedure in an abbreviated form.

4.4 a. P.Mich. 620 # 1. A system of linear equations: four unknowns

7 300 dr. 300 dr. 9,900 dr.

7 dr.' 8 dr.' 15 dr.' 300 dr. 30 dr.1 600 dr.

60 dr.' 900 dr.

150

1,050 1,200 2,550 5,700

4.4.1. P.Mich. 620 # 1. The tabular array.

(Below, italic style indicates reconstructed parts of the text of P.Mich. 620.)

9,900 drachmas, 4

Let the second exceed the first by the 7th part.
Let the third exceed the two by 300 dr.
Let the fourth exceed the 3 by 300 dr.
Let the four numbers be found.

••• again, multiply the 150 into the 30 numbers of the fourth: 4,500.
And the 600 dr. in its assigned value: 5,100. This is the fourth.
Then add together the four, 1,050 and 1,200 and 2,550 and 5,100: 9,900.
Proof.
Since he says, let the second exceed the first by the 7th part,
take the 7 of the first 1,050: 150.
Add this to the 1,050: 1,200, which is the second.
Again, since he says, let the third exceed the two by 300 dr., add the 1 and 2: 2,250,



4.4. P.Mich. 620. Systems of Linear Equations. Tabular Arrays 201

and add together the 300 dr. of the excess: 2,550, which is the third.
And since he says, let the fourth exceed the 3 by 300 dr., add together the three:
4,800, and the 300 dr. of the excess: 5,100, which is the fourth.
9,900 is the whole.

Robbins {op. cit.) explained this problem as a system of four linear equa-
tions for four unknowns:

1. a + b + c + d = 9,900 drachmas
2. b=\la

3. c = a + b + 300 drachmas
4. d = a + b + c + 300 drachmas

Apparently, the one who made the tabular array had realized that the best
way to solve this system of equations was to move equation 1 to the last
place. That is why the first line of the tabular array mentions the constant
9,900 of equation 1 after the coefficient 7 in equation 2 and the constants
300 and 300 of equations 3 and 4.

The system of equations was solved by use of a simple application of
the rule of false value. As shown by the second line of the tabular array,
the initial step was to choose the false value 7 for the first unknown. Then
equation 2 shows that the false value for the second unknown must be 8,
equation 3 shows that the false value for the third unknown must be 15,
plus 300 drachmas, and equation 4 shows that the false value for the fourth
unknown must be 30, plus 600 drachmas.

Adding these results together, one finds that the false value for the sum
of all four unknowns must be 7 + 8 + 15 + 30 = 60, plus 300 + 600 = 900
drachmas. These are the values recorded in the third line of the tabular
array, to the far right, and two steps below the true sum 9,900, asked for
in equation 1. The final result, then, is that 60 false units plus 900 drach-
mas = 9,900 drachmas. This is a single linear equation, trivially with the
solution that the false unit (the "correction factor") must be 150 drachmas.
The value 150 is recorded in the fourth line of the tabular array.

The answer to the problem is recorded in the fifth line of the tabular
array. It is, without explicitly mentioning the drachmas,

a = 150-7 = 1,050,
6 = 1 5 0 - 8 = 1,200,
c=150- 15 + 300 = 2,550,
d= 150 -30 +600 = 5,100.
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4.4 b. P.Mich. 620 # 2. A system of linear equations: two unknowns

6 12 mo. 4 12 mo.

1 dr.' 4 dr.' 12 mo.

3" 2 mo. / 3" 14 mo.

3' 14 mo.

1 42 168 \\ I 180

Fig. 4.4.2. P.Mich. 620 # 2. The tabular array

P.Mich. 620 # 2 can be interpreted as a system of two linear equations
for two unknowns:

1. a = 6- b+ 12
2. fc = 4 - a + 1 2

This problem, too, is accompanied by a tabular array, summarizing the so-
lution procedure:

In the first line of the tabular array are recorded the data for the prob-
lem. In the second line are recorded the initial false value 1 for a and (in
view of equation 2) the resulting false value 4, plus 12 units, for b. In the
third line are recorded first 6 • b = the false value 3", plus 2 units, then 6 •
b + 12 = 3", plus 14 units, which, according to equation 1, must be equal
to the initial false value 1. Therefore, 1 - 3" = 3' times this false unit must
be equal to 14 units. This is the meaning of the notation in the fourth line
of the tabular array. Now, if 3' times this false unit = 14 units, then 1 times
the false unit must be 42 units. Then also the true value of the 1st unknown
= 42 (units). This is the meaning of the notation to the left in the fifth line
of the tabular array. The notation to the right means that the true value of
the 2nd unknown is 4 • 42 + 12 = 168 + 12 = 180 (units).

4.4 c. P.Mich. 620 # 3. A system of linear equations: three unknowns

The tabular array which probably accompanied P.Mich. 620 # 3 is lost.
However, in this exercise a large part of the question is preserved, together
with the beginning of the solution procedure:

3 numbers.
The 3 are 5,300, and let the first and the second be the third multiplied by 24,
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and let the second and the third be the first multiplied by 5.
Let the three numbers thus be found.

Since the first and the second are the third multiplied by 24,
the three together are 25 times the third.
Divide 5,300 by 25: 212 !. This is the third •••

Thus, it is clear that P.Mich. 620 # 3 can be interpreted as a system of
three linear equations for 3 unknowns, in the text called 'three numbers':

1. a + b + c = 5,300
2. a + b = 24 • c
3. b + c = 5 - a

The solution algorithm begins by noting that, in view of equation 2,

a + b + c = 2 4 - c + c = 2 5 - c .

On the other hand, in view of equation 1 the sum of the 3 numbers is 5,300.
Therefore,

25-c = 5, 300, so that c = 5,300/25 = 4 • 53 = 212.

The remainder of the solution procedure is lost, but it is likely that it pro-

ceeded as follows:

Let a have the false value \.

Then, in view of equation 3,

b + c = 5 times the false unit,

and in view of equation 2

6 times the false unit = 5,300.

Consequently,

a = the false unit = 5,300/6 = 883 31.

Finally, in view of equation 1 again,

b = 5,300 - 212 - 833 3' = 5,088 - 833 3' = 4,204 3".

A parallel to P.Mich. 620 # 1 in a demotic mathematical papyrus is the
system of four linear equations for four unknowns in P.Carlsberg 30 # 2,
according to the proposed reconstruction in Sec. 3.5 b above. Unfortunate-
ly, it is impossible to know how similar the two exercises once were, be-
cause most of the solution procedure in P. Carlsberg 30 # 2 is lost. Note,
however, that in P. Carlsberg 30 # 2 the four unknowns are referred to as
'silver, gold, copper, and lead', while in P.Mich. 620 they are called 'the
first', 'the second', etc.
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Linear equations in hieratic mathematical papyri and in cuneiform
mathematical texts were discussed above, in Sec. 2.1 b. A particularly in-
teresting example is the Late Babylonian exercise on the fragment BM
34800 (Fig. 2.1.2). According to the proposed reconstruction, the linear
equation in that exercise can be expressed, in modern notations, as a divi-
sion problem:

a • (1 - 1/5) • (1 - 1/3) • (1 - 2/5) • (1 - 1/2) • (1 - 3/5) = 1 00 gur = 5 00 sila. a = ?

A somewhat less anachronistic interpretation of this and other similar di-
vision problems is as a system of linear equations, for instance, in the case
of BM 34800, the following chain of linear equations:

a - ( l - l / 5 ) = fc, fc-(l-l/3) = c, c ' ( 1 - 2 / 5 ) = 4
d ( \ - 1/2) = e, e{\- 3/5) = 1 00 gur = 5 00 sila.

The solution procedure in BM 34800 makes use of the rule of false value,
just as the solution procedure in P.Mich. 620 ## 1-2.

The style and general layout of a mathematical exercise in a Greek
mathematical papyrus such as P. Vindob. G. 26740 or P.Mich. 620 is quite
similar to the style and layout of exercises in demotic mathematical papyri,
or in Babylonian cuneiform texts. In the case of P.Mich. 620, there are, in
addition, a pair of special, and very interesting similarities. One is the re-
peated use in P.Mich. 620 # 1 of the phrase 'since he says' (ETTEI Aeyei),
referring back to conditions stated in the question. A Late Babylonian
parallel is the use o f the term sdpi 'as instructed' in BM 34800.

Alos the solution procedures in some Old Babylonian mathematical
texts contain similar references to conditions stated in the question. One
example is YBC 8588, Neugebauer and Sachs, MCT (1945), 75, where the
question is

ki.la 1 30 us 30 sag/
i-na is-te-en ka-la-ak-ki-im I 9 ka-la-ak-ku I
su-up-lum en.nam /

An excavation(?). 1 30 the length, 30 the front.
From one day of digging(?), 9 days of digging(?).
The depth is what?

What this probably means (the terms are otherwise undocumented) is
that a rectangular underground room is excavated by a team of 9 diggers.
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The length and width of the underground room are known, and also, of
course, the work norm for diggers. The depth has to be calculated. The so-
lution procedure begins as follows:

1 30 us gar.ra 30 sag gar.ra /
i-na is-te-en ka-la-ak-ki-im /
9 ka-la-ak-ku sa iq-bu-u /
is-te-en ka-la-ak-kum sa iq-bu es.kar /
15 es.kar gar.ra /
9 ka-la-ak-ku sa iq-bu erin.ha /
9 erin.ha gar.ra /

1 30, the length, set. 30, the front, set.
From one day of digging,
9 days of digging, that he said.
One day of digging, that he said, the work norm?
15, the work norm, set.
9 days of digging, that he said, the workers?
9 workers set.

What is happening here is that the conditions in the questions are reca-
pitulated and explained, and the associated numbers are written down
(gar.ra), probably in some kind of tabular array, which is not preserved
in this text. After these preliminaries, the computations can begin:

15 es.kar a-na 9 erin.ha / il
2 15 sahar.ha /
1 30 us a-na 30 sag il 45 a.sa /
igi 45 a.shpu-tur-ma 1 20 /
1 20 a-na 2 15 sahar.ha / il 3 su-up-lum

15, the work norm, to 9 days of digging, carry,
2 15 the mud (= volume).
1 30, the length, to 30, the front, carry, 45, the field (= area).
The opposite (= reciprocal) of 45 resolve, 1 20.
1 20 to 2 15, the mud, carry, 3, the depth.

Since the number of man-days is m = 9, for 9 days of digging, and since
the fixed work norm is w = 15 volume-shekels (= 1/4 volume-sar) per
man-day, the volume Vcan be computed here as

V= 9 (man-days) • ;15 (volume-sar/man-day) = 2;15 (volume-sar).

Next, the bottom area A of the excavated space is computed as
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A = l;30 n. • ;30 n. = ;45 (sq. ninda).

The depth h of the excavated space can then be computed as

h = V/A = 2;\5 (volume-sar) / ;45 (sq. ninda) = 3 (cubits).

Another example of a similar kind can be found in the OB mathemati-
cal text VAT 8390, where the phrase

ma-la us ugu sag i-te-ru us-ta-ki-il
As much as the length exceeds the front I squared.

in the question (lines 4-5) is echoed in the solution procedure (lines 14-15)
with the words

as-sum ma-la us ugu sag i-te-ru us-ta-ki-il iq-bu-u
Since 'as much as the length exceeds the front I squared' he said

More examples of a similar kind can be found in the post-OB (Kassite)
mathematical text MS 5112 (Friberg, MCTSC (2005), Sec. 11.2). Thus, for
instance, in MS 5112 § 5, two of the conditions in the question are recapit-
ulated as follows at the beginning of the solution procedure:

as-sum 2' igi.5.gal qa-bu-kum
Since ' 1/2 of the 5th-part' it was said to you

and

1 ninda 2 kus sa qa-bu-kum
'1 ninda 2 cubits' that was said to you

Another interesting similarity between P.Mich. 620 and Babylonian
mathematical texts is that the kind of tabular arrays with numbers that
summarize the solution procedures in P.Mich. 620 ## 1-2 (and 3?) are of
the same form and function as a number of known tabular arrays on OB
round or square mathematical hand tablets. A prominent example is UET
6/2 274 rev. (Fig. 2.3.2 above, and Friberg, RA 94 (2000) § 2e), with its
tabular array for the numerical solution of a quadratic-linear system of
equations. Other examples are round hand tablets such as UET 6/2 233
rev. (Friberg, (op. cit.) § 2h) with tabular arrays for the numerical solution
of exercises concerning 'the cost in man-days and silver for digging a
canal, and the daily progress', round hand tablets such as UET6/2 290 rev.
(Friberg (op. cit.) § 2 i) with tabular arrays for the numerical solution of
exercises concerning the computation of capacity measures of cylindrical
containers, etc. There are, in particular, quite a few known examples of
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hand tablets such as MS 2832, MS 2268/19, etc., (Friberg, MCTSC (2005),
Sec. 7.2. a), or YBC 7353, YBC11125, etc. (Neugebauer and Sachs, MCT
(1945), 17; Friberg {op. cit.)), with tabular arrays for the numerical solu-
tion of "combined market rate problems". There are also OB mathematical
texts such as YBC 7326 (Neugebauer and Sachs, {op. cit.), 130: sheep and
lambs) and AO 8862 (Neugebauer, MKT1 (1935), 108 ff: unequal shares)
with both problem texts and tabular arrays.

There is, however, one important difference between such OB tabular
arrays and the tabular arrays in P.Mich. 620, namely the (well known) use
of algebraic symbols in the latter. Thus, in the tabular array in P.Mich. 620
# 1 there are several instances of the use of a common sign for drachma,
originally an abbreviation. It is here transliterated as 'dr.'.In the first line
of the array, the numbers marked dr. are the given numbers in the linear
equations. It is not clear if dr. here stands for a small monetary unit, or if it
simple indicates known numbers in general. The circumstance that the sign
dr. does not appear in the last line of the tabular array, where the computed
values of the four unknowns are recorded, probably speaks in favor of the
assumption that dr. is a symbol indicating known numbers, and not a mon-
etary unit.

There is also (as pointed out by Vogel, CP 25 (1930) another sign in the
tabular array in P.Mich. 620 # 1, which looks like the sign for drachma
with an added diagonal stroke. This sign is transliterated here as 'dr.". It is
obvious that dr.' is a symbol standing for the "false (or unknown) unit",
which plays a central role in the application of the rule of false value. Thus,
it corresponds loosely to the modern use of x for an unknown number.

The first preserved line of text of P.Mich. 620 # 1 mentions 'the 30
numbers (dpiSnouc) of the fourth'. This passage clearly refers to what is
called 30 dr.' in the tabular array. Therefore, 'number' may be the correct
reading of the symbol dr.' in P.Mich. 620 # 1.

The tabular array accompanying P.Mich. 620 # 2 seems to show that
the two exercises P.Mich. 620 ## 1-2 are copied from different source doc-
uments. Indeed, in # 2 the symbol indicating known numbers is not 'dr.' as
in # 1 but instead 'mo.', an abbreviation for uovdc 'unit'. Moreover, al-
though the symbol dr.' is used twice to indicate the unknown unit, it is
twice replaced by a short arc above the numbers, and twice there is no such
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symbol at all. Note that, just as in # 1, the computed numbers in the final
line of the tabular array are written without symbols.

It is deplorable that no OB examples of tabular arrays are known of the
kind where the need would have arisen to distinguish between known and
unknown units, tabular arrays illustrating solution procedures for systems
of linear equations, such as the ones in P.Mich. 620, or tabular arrays illus-
trating solution procedures for mixed quadratic equations solved by use of
the method of 'completing the square', such as the equation sq. m + 2 • m
= 2 in MS 5112 § 1 (Friberg, MCTSC (2005), Sec. 11.2 a; Fig. 11.2.2).
Since no such OB tabular arrays are known, we don't know how OB math-
ematicians would have handled the difficulty. All that is known is that they
thought of the unknown unit as the unknown length of a reed, usually in
the end found to be equal to ;30 ninda, the value of a 'reed' as a standard
unit of length. Cf. gi sa Id ti-du-u 'the reed that you do not know' in the
"broken reed problem" VAT 7532 (Sec. 3.1 f above).

4.5. RAkhmim (7th C. CE). Calculations with Fractions

P.Akhmim (Baillet, PMA (1892)) is a bound codex of 6 papyrus leaves,
each leaf inscribed on both sides with mathematical tables or problem
texts. The table of contents below shows that P.Akhmim is a mathematical
recombination text of the same kind as, for instance, the Egyptian hieratic
papyrus P.Rhind (see Sec. 2.1 a above), the OB clay tablet BM 85194 (Fig.
2.4.1), or the Egyptian demotic papyrus P.Cairo (Sec. 3.1 a).

P.Akhmlm: Contents.

— Tables of fractions. (Multiplication tables for 3", 3', 4, 5, ••• 20.)

§ 1 Capacity measure in Palestine korii
of a truncated circular cone. Constant: 3. #1

§ 2 Capacity measure in artabs
of a rectangular granary. Constant: 3 4 8 (27/8) # 2

§ 3 a-b Unequal sharing of a crop in given proportions:
a) 3 2', 2 2', 3 2' 4, 6 4, 4 #3
b)7,8 ,9 #4

§ 4 a-d Subtraction of fractions:
a)213'-9TT = 59of62 2' #6
b)3"-9TT = 99of46 #7
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c)3"-3 9 99 = TTof2 3 = 633 66 #8
d)3"-444 = TTof43 = 32266 #9

§3c Selling parts of a house in given proportions: 3, 4, 5. #10
§ 3 d Paying seeding tax(?) proportionally for 7, 8, 9 artabs # 11
§4e 3"-TO TT 20 22 30 33 40 44 50 55 60 66 70 77 88 90 99 TOO TlO

= TTOofl35=T050 #12
§ 5 a System of linear equations:

a-13 of a = b, b-Tf of b= 150 artabs. a =192 of 33,150= ••• #13
§4f-g f)l-3TT33=TTof6 = 2'22 #14

g) l -3"2266 = TTof3 = 444 #15
§ 6 a Decomposition of fractions:

Expand 22 of 1 (sic!) into 3 parts. Answer: 53 70 77 # 16
§ 5 b System of linear equations:

a-T7ofa = b, b-19 of b = 200 artabs. a = 288 of 64,600 = ••• # 1 7

§ 7 a Multiplication of fractions:
T87of6T5 40 = T87ofT20of731=22^40of731=88 90 99 #18

§ 6 b Expand 55 56 70 into 4 parts.
Answer: T55 of 3,080 = 63 77 88 99 #19

§ 6 c Expand 323 of 75 into 8 parts.
Answer: 77 T9 34 38 5T 57 68 76 #20

§7b 323 of 11 2'3 TO 60 = 323 of 20 of 6,460
= o\460of239 = 68 85 95 #21

§7c 323 of 7 2'TO 20 = 323 of 20 of 153
= 6360 of 153 = 76 95 #22

§7d 5of428 = 5of7of2 = 35of2 = 3042 #23
§4h TTT3-9 = ? (corrupt) #24
§ 8 Multiplication and subtraction of fractions:

1 3" TT 22 66 • 1 2'29 58 - 63 84 of the same
= (TT of 20) • (29 of 45) - 63 84 of the same
= 3T9of(900-25) = 3T9of875 = 2 3"29 33 87 #25

§ 9 a-b Prices and market rates:
a) 1 3" for cleaning 100 art., what for 195 art.l # 26
b) 8 for 110, how much for 15? #27

§10 Division problem:
Capital plus interest = 100 art. Interest = 4 28 = 7 of 2 of capital. # 28

§4i 2 '3-428 = 6of5-7of2 = 42of(5-7-2-6)
= 42of23 = 2'2T #29

§4j-l j )2 '4 -444 #30
k)2 l3 42-6 66; l) l -12 5T68 #32

§ 9 c-d c) 100 art. for 7 7 gold nomismatia. How much for 1 nom.l # 33
d) 100 art. for5 3"2Tno/n. #34

§9e 15 2' 4 art. for 1 nom. 100 art. for what? #35



210 Unexpected Links Between Egyptian and Babylonian Mathematics

§9f-g f) 500 art. for 85 3" 27 nom., 100 art. for? #36
g) 500art. for312'T9 38nom., 100art. for? #37

§7e-g e)55of 1 2'=TTOof 3 = 7077 #38
f)88of32' = T76of7 = 707780 #39
g)TT9of9 3" = 357of29= - #40

§ 9 h-i h) I gave 3 and received 9 3". If I gave 28, what? #41
i) I gave 5 and received 9 3". If I gave 30, what? # 42

§ 9 j-1 j) 17 2' 3 art. for 1 nom. 1 art. for what? # 44
k) 12 3" art. for 1 nom.; 1) 11 2' 4 art. for 1 nom. # 46

§ 3 e Taking 60 art. proportionally out of 3 granaries with 200, 300, 500 art. #47
§ 3 f-g f) 720 art. proportionally out of 320, 400, 480 art. #48

g) 550 art. prop, out of 720, 830, 950 art. # 49
§6d Expand T2 into 6 parts. Answer: 55 63 70 77 84 99 #50

As the table of contents shows, the 50 exercises in the problem section
of P.Akhmim can be organized into 10 separate paragraphs with different
themes. However, the exercises belonging to any given paragraph do not
always appear together. Thus, for instance, the 12 exercises belonging to
§ 4 (subtraction of fractions) appear in 5 different places in the text. This
is a typical behavior of a recombination text, as opposed to an original
theme text.

4.5 a. P.Akhmim. Ten tables of fractions

P.Akhmim begins with a series of 10 tables of fractions, in which the frac-
tions 3", 3', 4, 5, 6, 7, 8, 9, 10 are applied to 6,000, called 'the number'
(dpiOuoc), and to the whole numbers 1,2, 3, ••• (a, p, y, •••), 10,20, 30,
- (i, K, X, - ), 100, 200, 300, - (p, a, T, - ), 1,000, 2,000, 3,000, -
(a', (3', y', •••), up to 10,000 = 1 myriad. Then follow 10 abbreviated tables
of fractions, in which the fractions n = 11, 12, •••, 20 are applied to 6,000
and to the whole numbers from 1 to n. The results of the applications are
given in the traditional Egyptian way as sums of parts, as in the following
examples:

7 to 'the number' 857 7 TT to 'the number' 545 3' TT 33
of 1 the 7 7 of 1 the TT TT
of 2 4'28 of 2 666
of 3 3'T442 of 3 444

of 1 myriad 1,428 2'14 of 11 1
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The ancestors of Greek-Egyptian fraction tables like the one in
PAkhmim seem to be on one hand multiplication tables of the Babylonian
type, on the other hand the 10 table in P.Rhind (9 lines), and, of course,
the 90 and 150 tables in P.BM 10794 (10 lines each; see Sec. 3.4 above).
For a survey of all known Egyptian fraction tables from various periods,
see Fowler, MPA (1987 (1999)), Sec. 7.5(a), where Fowler, somewhat
reluctantly, agrees to call such tables 'division tables'.

4.5 b. PAkhmim § 1. The capacity measure(?) of a truncated cone

In the single exercise in § 1 of PAkhmim, the object considered is an ex-
cavated store room in the form of a truncated circular cone with the upper
circumference m = 20 cubits, the lower circumference n = 12 cubits, and
the depth d = 6 1/2 cubits. Its capacity measure(?) is computed as

C = sq. {(m + n)/2}-rf/36.

This equation can be compared with the following equation in the OB ex-
ercise VAT 8522 # 1 (see Sec. 3.2 b above) for the capacity measure of a
truncated circular cone (a 'log') with the lower diameter a, the upper di-
ameter b, and the height h:

C = ; 0 5 s q . {(a + b)/2 • 3} • h • c.

Here c is a "storing number", used to make the desired transition from vol-
ume measure to capacity measure. Now, since ;05 = 1/12, and since a • 3
= the lower circumference, and b • 3 = the upper circumference, it follows
that the equation in VAT 8522 # 1 can be rewritten in the form

C = sq. {(m + n)/2] -h-c/12.

Therefore, if the computation in PAkhmim § 1 can be explained in the
same way as the computation in the mentioned OB exercise, then the con-
stant 36 must be explained as 12 • 3, where 3 is a constant used to make the
transition from volume measure to capacity measure. Cf. Baillet, PMA
(1892), 35, where it is suggested that the constant is equal to the number
of Palestinian kor measures in a cubic cubit.

4.5 c. PAkhmim § 2. The capacity measure of a rectangular granary

In PAkhmim § 2, the capacity measure of a rectangular 'granary' with giv-
en length a, width b, and height h is computed as follows
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C = a- b- he, where c = 3 4 8 (= 27/8).

Baillet (op. cit.), 64, explains the constant c = 3 4 8 as the number of artabs
in a cubic cubit. This means that the Greek-Egyptian capacity measure
artab was equal to a cubic foot, a foot being equal to 2/3 of a cubit.37

Parallels to P.Akhmim § 2 are the exercises in the hieratic P.Rhind §§
13-14 (DMP ## 44-46) (Sec. 2.1 d above), where the volumes of both
round and square granaries are converted to capacity measure by use of the
rule that 1 khar = 2/3 cubic cubit. An OB parallel is the exercise BM
96954+BM102366+SE 93 § 1 (Sec. 2.2 d above; Sec. 4.8 e below), where
the volume of a ridge pyramid ('a granary') is converted to capacity mea-
sure by use of the equation 1 volume-sar = 90 gur of 300 si la.

4.5 d. P.Akhmim §§ 3,5. Unequal sharing, and division exercises

The exercises in P.Akhmim § 3, with the theme "unequal sharing", have a
parallel in P.Rhind § 11 b (# 63), where 700 loaves are shared by 4 men
in the proportions 3", 2', 3', 4' (see Sec. 2.1 a). An OB parallel is AO 8862
§ 2 b (Neugebauer, MKT 1 (1935), 112), where 4 men carrying bricks
share the work in the proportions 7, 11, 13, 14.

Hieratic and OB direct parallels to P.Akhmim § 5 are discussed in Sec.
2.1 b above (iterated division exercises). There is also an interesting Late
Babylonian parallel text, the fragment BM 34800 (Fig. 2.1.2).

4.5 e. P.Akhmim §§ 4-10. Examples of counting with fractions

The main theme of P.Akhmim is computation with fractions. This is par-
ticularly evident in § 4 (subtraction of fractions), §§ 7-8 (multiplication of
fractions), and §§ 9-10 (division of fractions). Fractions are nominally of
the traditional Egyptian type, that is sums of parts. However, in nearly all
operations with fractions in the text, the preferred method is to convert the
given sums of parts into binomial fractions (see above, Sec. 3.1 c), operat-
ing with those binomial fractions using the methods systematically dis-
played in P.BM 10520 § 5 (see above, Sec. 3.3 e), and then converting the

37. This explanation of the constant 3 4 8 was later definitely confirmed by Shelton, ZPE
42(1981).
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resulting binomial fractions back to sums of parts. Ingenious methods for
the unnecessary last step, the conversion of given binomial fractions into
sums of parts, are demonstrated in § 6 (decomposition of fractions). See
Baillet, PMA (1892), 32-62, for a very thorough and enlightening analysis
of the nature of the various methods used in PAkhmim for computations
with fractions.

An interesting element of the terminology in PAkhmim is the following
phrase, repeatedly used to describe the conversion of a given sum of parts
into an equivalent binomial fraction:

kv TToia yr|<pcp xauTa TCOV m TO n. In which table(?) is this? Of m the n.

Here, the term used for a binomial fraction is, except for the word order,
'the n-th part of m' or simply 'n of m\ Here m is either an integer or a
"quasi-integer", the latter term meaning an integer plus one or several
basic fractions or parts. The terminology reveals how the author of PAkh-
mim was thinking of binomial fractions. It is clear that 'n of m' does not
mean mln, that is 'm divided by n'. It is equally clear that the term does not
mean 'm times n\ Apparently, there can only be one n-th part, but that n-
th part can be taken of an arbitrary integer or quasi-integer. The surprising
circumstance that in exercise # 16 the 22nd part is called 'of 1 the 22', in-
stead of just 22, indicates that the scribe thought of fractions primarily as
binomial fractions, not as parts or sums of parts!

The most impressive example of a calculation with fractions in
PAkhmim is the subtraction exercise # 12 (§ 4 e), where the student is in-
structed how to compute the difference

3"-a, with a =10IT2022 30 33 4044 50 55 6066 70 77 88 9099TOO TTO.

The first step is to convert a from a sum of parts into a binomial fraction.
Only the result is recorded in the text, but a reasonable conjecture is that a
was converted into a binomial fraction as follows:

a 110 =11 + 10 + 38 2' + 35 + 25 3" + 23 3' + 19 4' + 17 2' + 15 3' T5 + 14
+ 12 6" + 11 3" + 11 + 10 + 8 2' 4' + 8 2' 18 + 7 3" 9 + 7 2' 5 + 7

= 414 + 5 • 2' + 2 • 31 + 3 • 3" + 2 • 4' + 5 + 6" 9 15 T5 = 420 6" TO.

Hence

a = 770 of 420 6" TO = TTO of 60 TO 30.

After a, somehow, has been converted into a binomial fraction, the text
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continues like this:

3" of 110 = 73 3', and 73 3 ' -60 10 30= 13 5. Hence 3"-a = TT0of 13 5.

Next, the unwanted term 5 is removed through raising the terms (cf. the
discussion of the demotic exercise P.BM 10520 § 5 a in 3.3 d above):

TTO of 13 5 = 550 of 66.

This binomial fraction could have been the answer. However, bound by the
tradition, the author of the text converts the binomial fraction to a sum of
parts:

550 of 66 = 350 of (55 + 11) = TO 50.

Remark: The elegance of the repetitive construction of a is spoiled by the
absence of the term 80. If the term 80 had not been left out, the result of
the computation would have been instead

10 50-80=10 200 400.
As a curiosity, it can be mentioned that a similar repetitive construction

of the data for a problem can be found in the OB combined market rate
problem VAT 7530 § 6 (Friberg, MCTSC (2005), Sec. 7.2), where 10
given market rates are

1 ma.na, 1 ma.na 10 gin, 2 ma.na, 2 3' ma.na, 3 ma.na, 3 2' ma.na,
4 ma.na, 4 3" ma.na, 5 ma.na, 5 6" ma.na
= 1, l;10, 2, 2;20, 3, 3;30, 4, 4;40, 5, 5;50 minas (per silver shekel).

4.5 f. P.Akhmim § 9. Prices and market rates

P.Akhmim § 9 contains three exercises dealing with prices and market
rates (inverted prices). Thus, for instance, in # 33 (§ 9 c), it is stated that
the price for 100 artabs of wheat or barley is 7 7 gold nomismatia. Then it
is asked what the corresponding market rate will be, that is, how many
artabs one will get for 1 nomismation. The answer is given in an unfin-
ished form, as '700 divided by 50'. It is not clear why the answer was not
given explicitly as '14 artabs for 1 nomismation'.

In # 35 (§ 9 e), the inverted kind of problem is stated: Given that the
market rate for wheat or barley is 15 2' 4 artabs for 1 nomismation, what
is the price for 100 artabsl The answer is again given in an unfinished
form, as '400 divided by 63', a result that could easily have been replaced
by, for instance, 6 and 63 of 22.
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4.6. WT.Michael 62 (7th? C. CE). Prices and Market Rates

Michael. 62 (Crawford, Aeg. 33 (1953)) is a wooden tablet inscribed on the
obverse with tables of fractions and on the reverse with 8 mathematical ex-
ercises, all about prices and market rates. As in P.Akhmim, the tables of
fractions begin with fractions of 6,000 (the number of drachmas in a tal-
ent). Nevertheless, the exercises count in terms of nomismatia and keratia
(1 nom. = 24 ker.). Here is, for instance, the text of Michael. 62 # 2:

100 artabs of wheat were bought at 8 3' art. per nomismation minus 4 keratia.
They were sold at 7 2' art. per full-weight nom.
I want to know how many nom. (3 3') were made in profit,
and how many art. (25) were made in profit.

There is no solution procedure, only the answers interpolated into the text
of the question. However, since 8 3' = 3' • 25, and 1 nom. - 4 ker. = 20 ker.
= 6" nom., those answers may have been obtained by arguing as follows:

The wheat was bought at a market rate of 3' of 25 art. for 6" nom.,

which is 3' of 1 5 of 25 = 10 art. for 1 nom.
The corresponding buying price for 100 art. is 10 nom.
The wheat was then sold at a market rate of 7 2' art. = 2' of 15 art. per nom.
The corresponding selling price for 100 art. is 2 • 100 • 15 = 13 3' nom.
Hence, if all the 100 art. were sold, the profit would be (13 3' - 10) = 3 3' nom.
However, if only enough was sold to recover the money spent,
the profit would be (100 - 75) = 25 art.

Note how the price difference gives the profit in nomismatia, while the
market rate difference gives the profit in artabs.

An interesting OB parallel is offered by some of the problems on the
small clay tablet YBC 4698 (Fig. 2.1.17) with its 17 mixed problems, all,
like the problems on Michael. 62, about prices and market rates. Here is
the text of 6 related problems:

YBC 4698 § 4 (## 6-11).

#6 3 0 s e g u r /
lg se gur.ta sam-ma / 4bg se.ta biir.ra /
ku.diri en.nam /
7 2' gin kii.babbar diri

#7 sag ku.bi en.nam
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# 8 l g gur i.gis /
lbn-ta sam-ma / 8 sila.ta bur.ra /
ku.diri en.nam /
7 2' gin ku.babbar diri

#9 l g gur i .g i s /
i-na sam 1 gin / 2 sila si /
7 2' gin ku.babbar diri /
en.nam sam-ma / en.nam bur.ra
l b n sam-ma / 8 sila bur.ra

#10 l g gur i .g is /
9 sila.ta sam-ma / 7 2' sila bur.ra /
ku.diri en.nam /
6 3" gin ku.diri

#11 l g gur i .g i s /
i-na sam 1 gin / 1 2' sila si /
6 3" gin ku.diri /
en.nam sam-ma en.nam bur.ra /
9 sila sam-ma 7 2' sila bur.ra

# 6 30 gur of barley.
At 1 gur each I bought, then at 4 barig each I sold.
The excess of silver was what?

7 1/2 shekels of silver is the excess.

# 7 The head (initial amount) of the silver was what?

# 8 1 gur of oil.

At 1 (ban) each I bought, then at 8 sila each I sold.
The silver was what?
7 1/2 shekels of silver was the excess.

# 9 1 gur of oil.
From the buying (rate) for 1 shekel 2 sila was given.
7 1/2 shekels of silver was the excess.
What did I buy (at), then what did I sell (at)?
(At) l(ban) I bought, then (at) 8 si la I sold.

# 1 0 1 gur of oil.
(At) 9 sila I bought, then (at) 7 1/2 sila I sold.
What was the silver?
6 2/3 shekels was the excess.
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# 1 1 lgurofo i l .
From the buying (rate) for 1 shekel 1 1/2 sila was given.
6 2/3 shekels of silver was the excess.
What did I buy (at), then what did I sell (at)?
(At) 9 sila I bought, (at) 7 1/2 sila I sold.

When YBC 4698 was first published, in Neugebauer, MKT 3 (1937),
pi. 5, the problem type and its terminology were both unknown. The first
correct explanation was offered in Friberg, Survey (1982), 57. The solution
procedures, which are missing in the text, are reconstructed below.

In YBC 4698 # 6, barley of the capacity measure C = 30 gur (= 2 30 00
sila) is bought at the standard market rate mj = 1 gur (5 00 sila) per shek-
el (gin) and then sold at the lower market rate m2 = 4 barig (4 00 sila) per
shekel. The corresponding unit prices are, respectively, pj =;00 12 and p2

= ;00 15 shekels per sila, Therefore, the profit made is

P = C • (p2 -Pi) = 2 30 00 sila • ;00 03 shekel/sila = 7;30 shekels (of silver).

In YBC 4698 # 7, the question is what the initially invested silver was.
The answer is, of course,

Sj = C • px = 2 30 00 sila • ;00 12 shekel/sila = 30 shekels = 1/2 mina.

In YBC 4698 # 8, oil of the capacity measure C = 1 gur (= 5 00 sila)
is bought at the normal market rate mx = 1 ban (10 sila) per shekel and
then sold at the lower market rate m2 = 8 sila per shekel. The correspond-
ing unit prices are, respectively,/?! = ;06 andp2 = $7 30 shekels per sila.
Therefore, the profit made is

P = C- (p2-Pi) = 5 00sila • ;01 30shekel/sila =7;30shekels (of silver).

YBC 4698 # 9 is an inverted variant of the problem in # 8. This time, it
is known that oil of the capacity measure C = 1 gur (= 5 00 sila) is bought
at a high market rate and sold at a lower market rate. The difference be-
tween the two market rates and the profit are given as mj - m2 = 2 sila per
shekel, and P = 7 1/2 shekels of silver, respectively. The unknown values
mx and m2 of the buying and selling market rates have to be computed as
the solutions to the following system of equations:

(m,\ - mj) = 2 si la/shekel,
C • iP2~P\> = P = 7;30 shekels, wherep\ and/?2 are the reciprocals of ml and m2.

The way in which the problem was solved is indicated by more complete
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OB texts on the same theme (see below). Thus, the solution procedure is
based on the observation that

P • m\ • m2 = C • (f2~ P\) • mi • rri2 = C • (mx -m2).

Therefore, the values of the market rates mx and m2 can be found as the
solutions to the following linear-rectangular system of equations of an OB
standard type:

m]m2=C(m1- m2)IP = 5 00 sila • 2 sila/sh. / 7;30 sh. = 1 20 sq. (sila/sh.),
(mt -m2) = 2 sila/sh.

Without much trouble, the solution can be shown to be

mx = 9 + 1 = 10 sila/shekel, m2 = 9 - 1 = 8 sila/shekel.

The exercises YBC 4698 ## 10-11 are identical with ## 8-9, except for
slightly different data.

A closely related OB text is the Susa text TMS 13 (Bruins and Rutten,
TMS (1961); H0yrup, LWS (2002), 206). It is a perfectly preserved text,
with an explicit solution procedure. However, only the question is repro-
duced below.

TMS 13, lines 1-4.

2g gur 2 b g barig 5 ban i.gis sam/
i-na sam 1 gin kii.babbar /
4 sila.ta.am i.gis ak-si-it-ma I
3" ma.na kii.babbar ne-me-la a-mu-ur
ki ma-si I as-sa-am u ki ma-si ap-su-ur

2 gur 2 barig 5 ban of oil I bought.
From the buying (rate) for 1 shekel of silver
4 sila each of oil I cut away, then
2/3 mina of silver as profit I saw.
(At) how much did I buy, and (at) how much did I sell?

Here, with the same notations as above,

C = 2 gur 2 barig 5 ban =12 50 sila,
(mi - m2) = 4 sila/shekel,
P = 2/3 ma.na = 40 shekels.

Therefore, the equations for the unknown market rates are, as above,38 but
with the new data,
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mx • m2 - C • (mx- m2)IP = 12 50 sila • 4 sila/sh. / 40 sh. = 1 17 sq. (sila/sh.),
(mi -rri2) = 4 sila/sh.

In lines 5-17 of TMS 13, the solution is shown to be

m i = 9 + 2 = 11 sila/shekel, m2 = 9 - 2 = 7 sila/shekel.

A third related, but not quite parallel, OB text is MLC 1842 (Neuge-
bauer/Sachs, MCT (1945), 106). This is a fragment of a "northern" single
problem text, in which the question is perfectly preserved, but only the be-
ginning of the solution procedure. Only the question is reproduced below.

MLC 1842, lines 1-7.

ganba.e i-li-i-ma 30 se gur a-sa-am I
ganba is-pi-il-ma 30 se gur a-sa-am I
ma-hi-ri-ia ak-mu-ur-ma 9 /
ku.babbar ma-di-ri-ia ak-mu-ur-ma I
1 ma.na 7 2' gin /
ganba a-sa-am u ki-ia / ap-su-ur

The market rate increased, 30 gur of barley I bought,
The market rate decreased, 30 gur of barley I bought.
The market rates I added together, 9.
The silver of the market rates I added together, then
1 mina 7 1/2 shekels.
The market rate I bought (at), and how much I sold (at)?

In this exercise, two different lots of barley are purchased, both of the
same size, but at different market rates. Instead of the difference of the two
market rates as in the examples above, their sum is given, and instead of
the difference between the silver invested and the silver returned, the sum
of the amounts invested is given. Thus, with the same notations as above,
the given values are

C = 30gur = 23000sila, (m,+ m2) = 900sila/sh., S = C- (p, +p2)= 1 07;30 sh.

This time, the solution procedure is based on the observation that

S • m j • m2 = C • (p2 + p{) • m\- m\ = C • ( /nj + m2).

Therefore, with the values of C, mj + m2, and S, given, mj and w2 can be
found as the solutions to the following linear-rectangular system of equa-

38. H0yrup, (op. cit.), 206 ff, proposed a different explanation for the solution procedure.
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tions of an OB standard type:

mx • m2 = C • (m, + m2)/S = 2 30 00 sila • 9 00 sila/sh. / 1 07;30 sh.s
= 20 00 00 sq. (sila/sh.),
(m,+ /n2) = 9 00 sila/sh.

Without much trouble, the solution can be shown to be39

mx = 4 30 + 30 = 5 00 sila/shekel = 1 gur/shekel,
m2 = 4 30 - 30 = 4 00 sila/shekel = 4 barig/shekel.

Note that these are the same market rates for barley as in YBC 4698 # 6.

4.7. Problems for Right Triangles and Quadrilaterals

4.7 a. P.Geneve 259. Problems for the sides of a right triangle

P.Geneve 259 (2nd c. CE; Rudhart, MH 35 (1978), Sesiano, MH 43
(1986), MH 56 (1999)) is a papyrus fragment with three geometric exer-
cises. (A photo of the fragment was published in Sesiano MH 56 (1999).)
Preserved drawings of right triangles illustrate two of the exercises.

In P.Gen. inv. 259 # 1, a right triangle has the perpendicular a = 3 (feet)
and the hypotenuse c - 5 (feet). A trivial application of the (Babylonian)
diagonal rule gives the base b:

sq. b = sq. c - sq. a = 25 - 9 = 16, b - sqr. 16 = 4 (feet).

In P.Gen. inv. 259 # 2, the sum c + a = 8 (feet), and b = 4 (feet) are giv-
en. Hence, a and c can be computed as the solutions to the following
quadratic-linear system of equations:

sq. c - sq. a = sq. b = 4, c + a = 8.

The solution given in the text is, essentially, of the following form:
a = {(c + a) - sq. b l{c + a)}/2 = (8 - 16/8)/2 = 3 (feet),
c = (c + a ) - a = 8 - 3 = 5 (feet).

In P.Gen. inv. 259 # 3, finally, the sum a + b = 17 (feet), and c = [13]
(feet) are given. Hence, a and b can be computed as the solutions to the fol-
lowing quadratic-linear system of equations:

sq. a + sq. b = (sq. c =) 169, a + b=ll.

39. The explanation proposed in Neugebauer and Sachs, MCT (1945), 106, is incorrect
and does not lead to this solution.
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Only a small part of the text is preserved. Nevertheless, as shown in Se-
siano MH 56 (1999), it is likely that the lost solution was of the following
form (in modern notations):

sq. {b - a) = 2 • (sq. a + sq. b) - sq. (a + b) = 338 - [289] = [49],
b-a = [l]

(it is silently assumed that b is greater than a), and

a={{a + b)-{b-a)}/2 = (17-1)12 = [5] (feet),
b = (b-a)-a=n-5 = [12] (feet).

An updated survey of the many known Old and Late Babylonian appli-
cations of the diagonal rule can be found in Friberg, MCTSC (2005), App.
7, section A7 f. A particularly important example is the Seleucid theme
text BM 34568 (Neugebauer, MKT3 (1937), 14 ff; H0yrup, LWS (2002),
391-399), with 18 mixed problems for the sides and the diagonal of a rect-
angle (or a right triangle). Two of these (## 4 and 10) are parallels to the
interesting exercises P.Gen. inv. 259 ## 2-3. However, it is interesting to
note that the solution procedure for BM 34568 # 4 is slightly different from
the solution procedure for P. Gen. inv. 259 # 2, and that the solution proce-
dure for BM 34568 # 10 is completely different from the solution proce-
dure for P.Gen. inv. 259 #3.

In the demotic P.Cairo § 8, three variants of the "pole-against-a-wall"
problem are also closely related to the three exercises in P. Gen. inv. 259.
As mentioned in Sec. 3.1 b above, the Seleucid exercise BM 34568 # 12 is
of the same type as P.Cairo § 8 g, while the OB exercise BM 85169 # 9 is
essentially identical with P.Cairo § 8 d. For some reason, however, no
other OB parallels are known to any one of the exercises in the Seleucid
BM 34568 or to the exercises in the Greek-Egyptian P.Gen. inv. 259.

4.7 b. P.Chicago litt. 3. Three types of non-symmetric trapezoids

P.Chicago litt. 3 = P.Ayer (1st c. CE?; Goodspeed, AJP 19 (1898)) is a
large papyrus fragment with parts of four geometric exercises, illustrated
by three preserved drawings. According to Goodspeed,

"it (is) not impossible that we have in this fragment one of those early mathematical
works of whose materials Heron later became the organizer and compiler; in other
words, the work of which this papyrus was acopy, if not itself one of Heron's sourc-
es, may fairly represent the character of the sources he had and used."
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P. Chic. litt. 3 # 1 is mostly destroyed. Only the last two lines of the text
and a drawing of a symmetric trapezoid are preserved. Apparently the set
task was to find the area of the trapezoid when the lengths of its sides are
given, with the parallel sides equal to 2 and 14 (schoinia), and with the
sloping sides both equal to 10. The height was then found to be 8, and the
area was computed as the sum of the areas of two right triangles, each
equal to 24 (arouras), and the area of a central rectangle, equal to 16 (ar.).
Thus, it is clear that the trapezoid was thought of as two right triangles with
the sides 2 • (5, 4, 3) joined to a central rectangle with the sides 2 and 8.

P. Chic. litt. 3 # 2 is a well preserved exercise, in which the sides of a
non-symmetric trapezoid are given, with 2 and 16 for the parallel sides, 13
and 15 for the sloping sides. The associated drawing is lost, but can be as-
sumed to have looked more or less like the drawing in Fig. 4.7.1, left.

2

13/ j j(12) \ v 15 c / \h \a

/ ' ' * v / ' \
/ (30) 1(24)1 (30) \ (24; \ / \ \

/ 1 1 \ \ / 1 \

Z_ J i \ \ L : A
(5) (2) (5) (4) q b-q

16 b
6 = 1 6 - 2 = 1 4 q=[b- (sq. a - sq. c)/b}/2 = 5

a,b,c= 15, 14, 13 h = sqr. (sq. c - sq. q) = 12

Fig. 4.7.1. P. Chic. litt. 3 #2. The area of a non-symmetric trapezoid.

The solution procedure begins by computing the length of the segment
q (Fig. 4.7.1, right) as follows:

sq. 15-sq. 13 = 56, 16-2=14, 56/14 = 4, 14-4=10, 10/2 = 5 = 9.

After that, the height h = 12 is computed through a straightforward appli-
cation of the diagonal rule. Finally, the area of the trapezoid is computed
as the sum of the areas of the central rectangle, two flanking and equal
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right triangles, and an 'obtuse-angled' triangle.
Apparently, the rule for the computation of the segment q was derived

as follows. First q was shown to be the solution to a quadratic equation of
the following type:

sq. (b-q)- sq. q = sq. a - sq. c, where a = 15, b = 16 - 2 = 14, c = 13.

This quadratic equation was then reduced, by use of the conjugate rule,40

to a linear equation for the unknown q:

b • (b - 2 q) = sq. a - sq. c.

The solution to this linear equation was then easily computed. It is, of
course,

q = [b - (sq. a - sq. c)/b}/2,

which is precisely the form in which q is computed in P.Chic. litt. 3 # 2.
(Cf. the discussion in Sec. 3.7 c above of the OB mathematical text VAT
7531 # 4, in particular Fig. 3.7.10.)41

P. Chic. litt. 3 # 3 is also well preserved, including a well preserved but

40. There is a simple geometric derivation of the conjugate rule. The difference sq. m -
sq. n can be interpreted, for instance, as the area of the "square corner" between a square of
side m and a smaller square of side n, situated in one corner of the larger square. It is easy
to check that the square corner has the thickness m-n and the average length m + n. It is
equally simple to check that the square corner has the area (m + n) • (m - n). Since the area
is also equal to sq. m - sq. n, it follows that sq. m - sq. n = (m + n) • (m - n).

41. Cf. the discussion in Heath, HGM 2 (1921 (1981)), 320 and in H0yrup, BSSM 17
(1997) and A W 7 (1997) of Hero's Metrica I: 5-6. In particular, the latter paper, which is
very interesting, contains a detailed discussion of three different methods used in Hero's
Metrica as well as in Arabic and other medieval mathematical treatises in order to compute
the area of unsymmetric triangles or trapezoids with given sides. H0yrup, apparently un-
aware of the appearance of unsymmetric trapezoids in the Old Babylonian VAT 7531 and
in the Greek-Egyptian mathematical papyri P.Chic. litt. 3 = P.Ayer and P.Cornell inv.69
(see below), assumed that all such methods used to compute the heights of unsymmetric
triangles or trapezoids were based on Euclid's Elements II.6, II. 8, and II. 13. H0yrup's
third method, which he calls "the algebraic alternative" is, essentially, the method used in
P.Chic. litt. 3 and P.Cornell inv.69, although H0yrup assumes that it was obtained by use
of Elements II.6 rather than by use of the conjugate rule as proposed here. Moreover, in the
examples considered by H0yrup, that third method is used only in the case of acute-angled
triangles. From this observation, H0yrup draws the conclusion (possibly incorrect) that "the
practical tradition knew the principle in its 'algebraic' form already before the Greeks, but
that it had only applied it to internal heights".
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quite inaccurate drawing. It is concerned with the computation of the area
of what is called a 'parallelogram', actually an oblique trapezoid, with giv-
en sides, 10 and 6 for the two parallel sides, 13 and 15 for the two sloping
sides (see Fig. 4.7.2, left). The solution procedure in this exercise begins,
as in the preceding example, with the computation of q (Fig. 4.7.2, right),
a segment of the base which in P. Chic. lift. 3 # 3 is called 'the base of the
right-angled triangle':

sq. 15-sq. 13 = 56, 10-6 = 4, 56/4=14, 14-4=10, 10/2 = 5 = .̂

The height h = 12 is then computed through a straightforward application
of the diagonal rule, and the area of the trapezoid is computed as the sum
of the areas of two right triangles and a narrow central rectangle. The com-
puted values are explicitly recorded in the drawing of the trapezoid.

10 b + q
(1) (9) q b
• 7 r 7 7

13 / ! j (12) /l5 h\ c / /a

/ (30) (12*54)/ ; /

(5) (1)

6 b =10-6 = 4 q={(sq.a-sq. c)/b-b}/2 = 5

a,b,c= 15, 4, 13 h - sqs. (sq. c - sq. q) = 12

Fig. 4.7.2. P.Chic. lift. 3 #3. The area of a non-symmetric oblique trapezoid.

Apparently, the rule for the computation of the segment q was derived
as follows. First q was shown to be the solution to a quadratic equation of
the following type:

sq. (b + q)-sq. q = sq. a-sq. c, where a = 15, b = 10-6 = 4, c= 13.

This quadratic equation was then reduced, by use of the conjugate rule, to
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a linear equation:

b • (b + 2 q) = sq. a - sq. c.

The solution to this linear equation is easily computed. It is, of course,

a=l(sq. a-sq. c)/b-b}/2,

which is precisely the form in which q is computed in P. Chic. litt. 3 #3.

Note that the right and oblique trapezoids in P. Chic. litt. 3 ## 2-3 are
closely related. One is constructed as a central rectangle of height 12, to
which is joined a right triangle with the sides 13, 12, 5 on the left and a
right triangle with the sides 15, 12, 9 = 3 • (5, 4, 3) on the right. The other
is constructed as another central rectangle of height 12, to which is joined
again a right triangle with the sides 13, 12, 5 on the left, but an upside-
down right triangle with the sides 15, 12, 9 on the right. Therefore, the ob-
lique trapezoid in P. Chic. litt. 3 # 3 is a simple variant of the right trapezoid
in P. Chic. litt. 3 #2. Thus, even if there are known OB precursors of the
right trapezoid in P. Chic. litt. 3 # 2 but not of the oblique trapezoid in
P. Chic. litt. 3 #3, that is not a fact of great significance. Note, by the way,
that the symmetric trapezoid in P.Chic. litt. 3 # 1 has a Late Babylonian
precursor in VAT 7848 § 3 (Friberg, BaM 28 (1997), Fig. 6.4).

P.Chic. litt. 3 # 4, finally, is concerned with a rhomb, constructed by
joining four right triangles together, all four with the sides 10, 8, 6 = 2 •
(5,4, 3). Since both the sides of the rhombus and one of its diagonals are
given, it is a trivial matter to compute the other diameter and the area.

In the present discussion of possible relations between Egyptian and
Babylonian mathematical texts, P. Chic. litt. 3 is particularly interesting,
for the following reason: Although the topic of the text is close to the topics
of known Old and Late Babylonian mathematical texts, and although the
solution algorithms are of the same general character as typical Babylo-
nian solution algorithms, the statements of the problems have some sur-
prising features. Here is the text of the three preserved statements:

# 2: "If there is given a scalene trapezoid such as the one drawn below."
# 3: "If there is given a parallelogram such as the one drawn below."
# 4. "If there is given a rhomb such as the one drawn below."

Thus, the data for the exercises are not given explicitly but are to be ob-
tained from inspection of the associated drawings. This, on the other hand,
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is not as simple as it may sound, since the drawings, just like many draw-
ings illustrating Old and Late Babylonian mathematical exercises, show
not just the given numbers but also the numbers computed in the course of
the solution procedure.

The terms 'scalene trapezoid' (TpccrrE^iov OKaArjVOv), 'parallelo-
gram' (TTapaXXr|X6ypanuov), and 'rhomb' Cp6|i(3oc) used in these
statements, and also the terms 'right-angled (6p0oycbvioc), 'obtuse-
angled' (dn(3Auycovioc), and 'oblong, of different lengths = rectangular'
(ETEp6|jriKEc), have no known Babylonian counterparts.42 The presence
of these terms may possibly indicate that the author of this text was in some
way acquainted with high level Greek mathematics (cf. the discussion of
Elements I, Definitions 20-22, in Heath, TBE 1 (1956), 154,187-190),
although the erroneous use of the word 'parallelogram' in P. Chic. litt. 3
# 3 may indicate that this acquaintance was not profound.

It is interesting that, in spite of various similarities between P. Chic. litt.
3 and P.Gen. inv. 259 (Sec. 4.7 a), the former expresses lengths (implic-
itly) in schoinia, while the latter expresses lengths in 'feet'. The reason for
the difference is not known to the present author, but it is interesting that
the schoinion of 100 cubits may have had a counterpart in Late Babylonian
texts. This is shown, for instance, by the mathematical exercise W 23291
§ 2 b.2 (Friberg, BaM 28 (1997), 277), where the "seed measure" for a
square with the side 100 cubits is found to be 1 barig. Note, by the way,
that measuring lengths in schoinia and areas in arouras is suitable for
actual fields, while measuring lengths in feet (and areas in square feet) is
suitable for smaller figures.

4.7 c. P.Cornell 69. Non-symmetric trapezoids, and a birectangle

P.Cornell 69 (2nd c. CE; Bulow-Jacobsen and Taisbak, FPR (2003)) is a
papyrus fragment with parts preserved of three geometric exercises, illus-
trated by two preserved drawings and written in two columns. Of the first
column, only the rightmost third is preserved, of the second column the left
half. The lower part of the fragment is lost, as well. See Fig. 4.7.6.

Because the fragment is so extensively damaged, it is impossible to

42. Remember that the concept of angles played no role in Babylonian mathematics.
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reconstruct much of the original text. On the other hand, the two preserved
drawings in the second column make it fairly clear what exercises ## 2-3
were about, and the preserved numbers in what remains of # 1 make it
quite clear what that exercise was about, too.

4

! (240) / ! ! \ (96) !
! / ' ' \ ' 1) ^ = 46 • 16 - (30/2 + 12/2) • 16
j / I ! \ ] = 736 - 336 = 400 (sq. baia)

! 34/ (16)! ! \ 20 !
| / ! i \ | 2)A = 4-16+(30/2+12/2)- 16
I / ! ! \ j = 64 + 336 = 400 (sq. baia)

(30) (4) (12)
46

Fig. 4.7.3. P.Cornell 69 # 1. Computation of the area of a right unsymmetric trapezoid.

P.Cornell 69 #1 deals with an unsymmetric trapezoid of the same kind
as P.Chic. lift. 3 #2 (Fig. 4.7.1 above). The two parallel sides are 4 and46
(baia), the left sloping side (called 'south') is 20, and the right sloping side
('north') is 34. One of the segments of the base, p, is computed as follows:

[46] - 4 = [42], [sq. 34 - sq. 20] = 1156 - [400] = 756 (sq. baia),
[756/42] = 18, [18 + 42 = 60], [60/2 = 30 = p].

Next the height h is computed by use of the diagonal rule,

[sq. 34 - sq. 30] = 256, sqr. 256= 16 = h.

Although the continuation is much less clear, apparently the area A of the
trapezoid is computed in two different ways, first as

A = [46 • 16 - (30/2 + 12/2) • 16] = 736 - 336 = 400,

and then as
A = 4 • 16 + (30/2 + 12/2) • 16 = 64 + 336 = 400.

The length units used in this text are multiples of the baion 'palm
leave'. According to Shelton, ZPE 42 (1981), a baion was 1/2 hamma, and
a hamma was 1/8 schoinion. Since a 'land measuring' aroura contained 96
cubits (see Sec. 4.1 above, fn. 2), it follows that a hamma contained 12 cu-
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bits and a baion 6 cubits. This is the same relation as between three com-
mon OB units of length. Indeed, 1 ninda contained 12 cubits and 1 'reed'
contained 6 cubits.43 (Interestingly, another name for the baion was kala-
mos 'reed'. See Bell, GP 5 (1917), 161.) The mentioned numerical rela-
tions between the schoinion, the hamma, and the baion were proved by
Shelton (op. cit.) through an analysis of the computations of the areas of
some fields in the text VBPIV 92. Here is one of Shelton's examples:

South 41 baia, north 49 baia, east 72 baia, west 69 baia.
Area 12 arouras and 25 8 hammata.

If the area was computed by use of the quadrilateral area rule (Sec. 3.3 f
above), and if the mentioned numerical relations are correct, then the result
can have been be obtained as follows:

(41 + 49)/2 b. • (72 + 69)/2 b. = 45 • 70 21 sq. b. = 22 2' h. • 35 4' h.
= 7,938 8 sq. h. = 12 a. 25 8 sq. h.

(Note that in the text the same notation is used for a square hamma as for
a linear hamma.)

P.Cornell 69 # 2 contains the computation of the area of an oblique un-
symmetric trapezoid (Fig. 4.7.4, left). The lengths of the two sloping sides
are 15 baia (south), 13 baia (north), and the lengths of the two parallel
sides are 8 baia (west) and 4 baia (east). The height of the trapezoid is
computed by essentially the same method as the height h of the trapezoid
in P.Chic. lift. 3 #3 (Fig. 4.7.2 above), although in P.Cornell 69 # 2 the
computation of h is based on the intermediate computation of the segment
p = q + b, not the segment q as in P. Chic. lift. 3 #3. Another difference is
that the area in P. Chic. lift. 3 #3 is computed as the sum of the areas of the
central rectangle and the areas of the two flanking right triangles, while the
area in P. Cornell 69 # 2 is computed as the sum of the areas of two non-
right triangles. The reason for this difference is that the trapezoid in P. Cor-
nell 69 # 2 cannot be interpreted as a central rectangle extended on two
sides through the addition of right triangles, one of them upside down. In-
stead, it must be interpreted as a rectangle with the sides 4 and 12, to the
left side of which is added a triangle with the sides 15, 12, 9, and from the

43. For some unknown reason, a reed usually contains 7 cubits in Late Babylonian texts.
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right side of which is subtracted a right triangle with the sides 13, 12, 5!

p
8 W b p-b

l-s\ ! \ 13 ! (12) o \ \ c \h

s \ ': \ N i \ \ i
J~X/, (24)\ j \ \ !

4 E

b = 8 - 4 = 4 p={(sq. a -sq . c)/b + 6)/2 = 9

a,b,c= 15, 4, 13 ft = sqs. (sq. a - sq. p) = 12

Fig. 4.7.4. P. Cornell 69 # 2. Computation of the area of an oblique unsymmetric trapezoid.

P.Cornell 69 # 3 probably begins in col. ii, line 22. The associated
drawing is perfectly preserved, but the text of the exercise is almost com-
pletely destroyed. All that remains of the question is a schematic drawing
of the same kind as in P.BM 10520 § 7 b (Fig. 3.3.3), and in the land sur-
vey ostraca O.Bodl ii 1847 (Sec. 4.1) and Theban O. D 12 (Fig. 3.3.4),
plus a few uninformative words. The schematic drawing shows 15 south
(left), 5 north (right), 5 east (below), and 15 west (above). What remains
of the solution procedure is, essentially, only the phrases 'the 5 in the west
upon itself, '[the 15] in the south upon itself ••• 225'. In other words, the
squares of 5 'in the west' and 15 'in the south' were computed at some
stage of the solution procedure.

Strangely enough, the drawing shows a quadrilateral with two sides of
length 15 above and to the right, and two sides of length 5 below and to the
left. Apparently, the original drawing were replaced by its mirror image at
some time when a copy was made of the original text. Maybe the reason is
that the original text was a demotic mathematical exercise, written from
right to left, and that the direction of the drawing was changed when the
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direction of writing was changed, as the text was translated into Greek?

(W)

3 12 m*

/

n • b m • a ~ /

*, /

L /
\ n-b /

^ \ /
Fig. 4.7.5. P.Cornell 69 # 3. Computation of the area of a birectangle.

It is likely that it was silently understood that the object considered in
this exercise is what may be called a "birectangle", a quadrilateral with two
opposite right angles, but not with parallel sides as in a rectangle. It is also
likely that the sides of the birectangle were given, and that the set task was
to find first the height against one of the long sides, then the area. For that
purpose, two lines were drawn inside the birectangle, a vertical line from
the lower vertex to the upper (west) side, and a horizontal line from the left
vertex to that vertical line. In this way the given birectangle was divided
into a rectangle and two right triangles. It is not difficult to see that the two
right triangles are similar triangles. For an OB mathematician, for
instance, this would have been obvious because he would intuitively
"know" that a line parallel to one of the short sides of a right triangle, like
the dotted line in Fig. 4.7.5, right, cuts off a small triangle that is of the
same shape as the original triangle. He would also intuitively "know" that
the height against the diagonal of a right triangle cuts the right triangle into
two small triangles of the same shape as the original triangle. Now, if the
birectangle is divided in this way into a rectangle and two right triangles
of the same shape, then both triangles must be multiples of some right tri-
angle, say a right triangle normalized so that the length of its diagonal is 1.
If the sides of this normalized right triangle are called 1, b, a, and if the
given diagonals of the two triangles in the birectangle are called m and n,
then it is clear that the two small triangles must have the sides m, m • b,
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m • a, and n, n • b, n • a, respectively (Fig. 4.7.5, right),

col. i col. ii

: # 1 v * : • , . . . #2

--•j-7 V - * • '

• :
-

; ^ ^ * "

. . . ^ « * » - « . . • : % > •

3 cm
i i i i

Fig. 4.7.6. P.Cornell 69, obv. (The likely original size of the papyrus is shown in grey.)

Let the sides opposite to m and n be called n* and m*. Then it is clear
that if all the four sides of the birectangle are known, the sides a and b of
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the normalized right triangle 1, b, a must be, in modern notations, the solu-
tions to the following system of two linear equations for two unknowns:

m • a + n b = m*, m • b — n a = n*.

In the case of P.Cornell 69 # 3, for instance, these equations take the fol-
lowing form:

\5a + 5b=\5, \5b-5a = 5.

To find the value of a, the two equations can be multiplied by 15 and 5,
respectively. Then

225 a + 75 b = 225, 75 b - 25 a = 25,

from which follows that

250 a = 200, a = 4/5.

Similarly, to find b, the two equations can be multiplied by 5 and 15, re-
spectively, Then

75 a + 25 b = 75, 225 b - 75 a = 75,

from which follows that

250 6=150, b = 3/5.

Therefore, the normalized right triangle has the sides 1,4/5, 3/5. Conse-
quently, the larger right triangle inside the birectangle has the sides 15 •
1, 4/5, 3/5 = 15, 12, 9, and the smaller triangle has the sides 5 • 1, 4/5, 3/5
= 5, 4, 3. These values can also be read off from the drawing associated
with P.Cornell 69#3 (Fig. 4.7.5, left).

The area of the birectangle can now be computed as

A = 5 • 3 + 9 • 12/2 + 4 • 3/2 = 15 + 54 + 6 = 75.

The correctness of this result is easily verified, since the birectangle can,
alternatively, be divided into two right triangles, both with the short sides
15 and 5. Therefore, A can be computed as

A =2- 15-5/2 = 75.

In the general case, the solutions to the system of equations m • a + n •
b = m*, m • b-n • a = n* can be computed in a similar way. Thus, to find
the value of a, one proceeds as follows:

m • m* = sq. m • a + m • n • b, and n • n* = m • n • b - sq. n • a.

Therefore,



4.8. P. Vindobonensis G. 19996 (1st C. CE?). Stereometric Exercises 233

(sq. m + sq. n) • a = m • m* - n • n*, so that a = (m- m* - n • n*)/(sq. m + sq. ri).

Analogously,

n • m* = m • n • a + sq. n • b, and m • n* = sq. m • b - m • n • a.

Therefore,

(sq. m + sq. n) • b = n • m* +m- n*,

so that

b = (n- m* + m • «*)/(sq. m + sq. n).

Obviously, the situation in P.Cornell 69 # 3 is quite special, with m = m*
= 15 and n = n* = 5.

Much more can be said about the interesting properties of birectangles,
but for now the interested reader is referred to the discussion in Friberg,
BaM 28 (1997) § 8.c, in particular to the reference given there to the OB
general method for the construction of "confluent equipartitioned trape-
zoids" by use of birectangles, or some similar device.

4.8. P.Vmdobonensis G. 19996 (1st C. CE?). Stereometric Exercises

P. Vindob. G. 19996 is a fairly well preserved papyrus roll inscribed on one
side with 38 stereometric exercises (Gerstinger and Vogel, GLP1 (1932)),
on the other side with an addition table (Harrauer and Sijpesteijn, NTAU
(1985), 151.) The complexity of the addition table is caused by the Greek
use of letters for numbers, which in no way reflects the structure of the dec-
imal number system.

The side of the papyrus with the 38 stereometric exercises is a typical
recombination text with a mixed bag of exercises sharing a common topic,
but in apparent disarray. The text begins with some metrological notes, for
instance the remark that volumes will be measured in (cubic) feet, and with
a number of trivial computations of volumes of cubes or various kinds of
rectangular slabs. The rest of the text, beginning with # 10, is devoted to
correct computations of volumes of whole or truncated pyramids, cones,
and prisms. Below is presented a table of contents for P. Vindob. G. 19996,
essentially the same as the one in Gerstinger, et al. {op. cit.), 74-75, but in
condensed form:
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4.8 a. P.Vindob. G. 19996: Contents

General remarks about length and volume measures (feet, fingers, •••)## 1, 4, 7
§1 Cubes: s = a) 10, b) 5, c) 16, d) 4, e) 6 and 3 3/4 ##2-3,5-6
§2 Rectangular prisms: a, b, c = a) 24, 6, 4, b) [ ••• ], c) 4, 3, [•••] ##4,9,36
§3 Triangular prisms: a, b, c = a) 20, 3, 4, b) no numbers ##16-17
§ 4 Trapezoidal prisms: a), b) no numbers ## 33, 38
§ 5 Circular cylinders: a, h = a) 30, 10, b) 30, 20, c) 4, 10, d) 6, 20 ## 20-23

e), 0 no numbers ## 34,37
§ 6 Triangular pyramids:^, s = a) 12, 8, b) 12, 7 ## 10, 12

c)s, /!1 ,/i2=12,4, 6 #15
§7 Square pyramids: a, s = a) 12, 9, b) 20, 20, c) no numbers ##18,29,30

d)a,b, /i = 6,3, 14 #32
§ 8 Cone: a, s = 6, [?] # 35
§ 9 Truncated triangular pyramids: a, b, s = a) 14, 2, 13 #11

b) 18, 3, 10, c) 12, 2, 10, d) 12, 4, 13 ## 13-14, 27
§10 Truncated square pyramids: a, b,s = a) 14, 2,9, b) 12, 9, [?] ##19,26

c) 10, 2,6, d) no numbers ##28,31
§ 11 Truncated cones: a, b, s = a) 24, 6, 5, b) 10, 2, 5 ## 24-25

:
 I T O I K /M^\i / 2 i A 2 1 4 1 f\ •

Fig. 4.8.1. P. Vindob. G. 19996, col. vi, bottom. Whole or truncated triangular pyramids.

A number of drawings are inserted more or less at random in the text.
See, for instance, Fig. 4.8.1 above, which shows five drawings below exer-
cise # 13 in col. vi of the papyrus. (Cf. the photo of col. vi in Fowler, MPA
(1987 (1999)), pi. 8. Two other photos of the text are published in
Gerstinger and Vogel, GLP 1 (1932), pi. 1: col. x, ## 24-25, and in Weitz-
mann, ABI (1959), pi. 1: col. xiii, ## 28-32.) Just like drawings of three-
dimensional objects in OB mathematical texts, some of these drawings are
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somewhat awkwardly designed and correspondingly hard to understand.
The numbers associated with the drawings are often more or less obliter-
ated and difficult to read. For this and other reasons, it is in several cases
difficult to see to which exercises the drawings belong, if any.

4.8 b. P.Vindob. G. 19996 # 10. A pyramid with a triangular base

In P.Vindob. G. 19996 # 10 is computed the volume of a right pyramid
with an equilateral triangular base. Given are the side of the triangular
base, a = 12 (feet), and each one of the sloping edges, s = 8 (feet). The so-
lution procedure begins with the computation of the height h of the pyra-
mid by use of the diagonal rule, applied to a right triangle with the sides
h, s, r, where r is the radius of the circumscribed circle for the triangular
base. Thus, the height is computed as follows:

sq. a = sq. 12 = 144, sq. r = (sq. a)/3 = 48, sq. 5 = 64,
sq. h = sq. s-sq. r=64-48= 16, h = 4.

The indicated value of sq. r can be obtained, in several ways, by use of the
diagonal rule. It is, for instance, easy to see that r = 2/3 of the height of the
equilateral triangle (see Fig. 4.8.2). Therefore,

sq. (3/2 • r) = sq. a - sq. (a/2) = 3/4 • sq. a,

so that

sq. r = 4/9- 3/4 • sq. a = 1/3 • sq. a.

After the height h = 4 (feet) has been computed in P.Vindob. G. 19996
# 10, the computation of the volume of the pyramid continues as follows:

The area of the equilateral triangular base of side 12 is 62 25.
This multiplied with the height 4 of the pyramid is 249 35.
3' of that is 83 5. So many (cubic) feet is the pyramid.

It is not disclosed how the area was computed. It was probably done this
way:

A = 3 10 • sq. 5 = 3 TO • 144 = 48 + 14 2/5 = 62 2/5.

This is the square of the side of the equilateral triangle times the constant
c = 3T0 = 26/60(=;26).

The fact that the radius of the circumscribed circle for an equilateral trian-
gle is 2/3 of the height of the triangle was, of course, well known in Egypt
at the time when P. Vindob. G. 19996 was written. See the demotic P.Cairo
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§ 11 (Sec.3.1 j above), where the 'diameter' (meaning the height) of a cir-
cular segment cut off from the circumscribed circle by one of the sides of
the triangle is computed as 1/3 of the height of the triangle (line 23), and
where the diameter of the circumscribed circle (called 'the diameter of the
triangle rounded') is then computed as the height of the triangle plus the
'diameter' of the segment (line 33). See also the discussion in Friberg, et
al, BaM 21 (1990) § 1, of exercise § 1 in the Late Babylonian recombina-
tion text W 23291-x, in particular Fig. 2 a, right.

\ X all I all ^y A - - ' ' ' _ ' / — V ' ' \ I a

sq. a + sq. a/2 = sq. (3/2 • r) sq. h = sq. s - sq. r

sq. r - 1/3 • sq. a sq. h = sq. s - 1/3 • sq. a

Fig. 4.8.2. P. Vindob. G. 19996 # 10. Computation of the height of a pyramid with an
equilateral triangular base.

In the demotic P.Cairo § 11, the area of the equilateral triangle is com-
puted directly as the height of the triangle times half the side, not as the
square of the side times some constant as in P. Vindob. G. 19996 # 10. On
the other hand the use of constants in similar situation is known from a
number of Babylonian mathematical texts. A particularly interesting ex-
ample can be found in the Kassite (post-OB) text MS 3876 (Friberg,
MCTSC (2005), Sec. 11.3). What is computed there, in MS 3876 # 3 is, ap-
parently, the area and the weight of the outer shell of an icosahedron
(called a 'horn figure' gan.si), with that outer shell consisting of 20
finger-thick copper sheets informed as equilateral triangles (called
'gaming-piece figures' gan.za.na), each with a side of 3 cubits.
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Here is an excerpt from MS 3876 # 3, showing how the area of an equi-
lateral triangle of side 12 cubits is computed there:

MS 3876 #3, lines 5-7.

5 sum-ma 3 kus.ta.am za.na im-ta-al}-ru
sahar mi-nu
ba-ma-at 15 sag de-pe-ma 7 30 /

6 7 30 a.ra 15 sag sa-ni-tim 1 52 30 ba-am-ta
14 03 45 sa-am-na-ti-su zi-ma I

7 1 38 26 15 qd-qd-ar gan.za.na is-te-en sa ta-mar

If 3 cubits each (the sides of) a gaming-piece are equal,
the volume (is) what?
Half (of) 15, the front, break, then 7 30.
7 30 steps of 15, the second front, 1 52 30, the halved.
14 03 45, its eighth tear off, then
1 38 26 15 (is) the ground (of) one gaming-piece-field that you see.

Thus, the area of the equilateral triangle of side 12 cubits is computed in
MS 3876 as follows:

a = 3 cubits = 3 • ;05 (ninda) = ;15 (ninda),
1/2 of ;15 (ninda) = ;07 30 (ninda),
(sq. a)l2 = ;07 30 (ninda) • ;15 (ninda) = ;01 52 30 (sq. ninda),
(sq. a)/2 - the eighth of (sq. a)/2 = ;01 52 30 - ;00 14 03 45
= ;01 38 26 15 (sq. ninda) = the area.

This rule for the computation of the area of an equilateral triangle can be
interpreted as follows:

A = (1 - 1/8) • (sq. a)/2,

or
A = h • a/2, with h = {\- 1/8) • a = the height of the equilateral triangle.

The same rule for the computation of the area of an equilateral triangle re-
surfaces in § 4 b of the Late Babylonian recombination text W 23291
(Friberg, BaM 28 (1997). In the first part of that text, an equilateral triangle
of unspecified side length is presented as an equilateral 'peg-head' (trian-
gle) of the kind that has 'its 8th torn off.



238 Unexpected Links Between Egyptian and Babylonian Mathematics

W 23291 § 4 b.

1 gan.sag.kak u r . a i a 5 sa 8-lii na-as-(iu I
mi-hi-il-tuI a.ra ki.2 lia.ra 2[6 1]5 ra

/ i\
/ CN \

1 sag

1 us.a.an ur.a he en asa5.ki.t)a
1 a.[ra 1 1] / [1] a.[ra] / [2]8? 15 ra-ma 26 15
^•eie 3jku a ^ a 5 2'jku asas 25 sar [ ••• ]

1 peghead-field, equilateral, « tha t with 5 » that with its 8th torn off.
Line steps of ditto, and steps of 26 75 go.

,/fy
/ I \

Z iffi ^

1 front

1 us each way, equilateral. What shall the field be?
1 ste/w ofl is 1. 1 steps of 26' 15 go, it is 26 15.
2(ese) 3(iku) l/2(iku) 25 sar

Presumably this means that, as in MS 3876 # 3, the height of an equi-
lateral triangle is computed as the side minus 1/8 of the side. That this is
really the case is shown by the continuation in line 2, where the curious
phrase 'line (side) steps of (times) ditto, and steps of (times) 26 15 go'
means that the area shall be computed as

A = ;26 15 • sq. a,

where the constant ;26 15 can be explained as follows:

;26 15 = ;52 30 • 1/2 = (1 - ;07 30) • 1/2 = (1 - 1/8) • 1/2.

A numerical example of the general rule is given in lines 3-4:
a = 1 us = 1 00 ninda,
A = 1 (00) • 1 (00) • ;26 15 = 26 15 sq. ninda = 2(ese) 3 l/2(iku) 25 sar.

It is likely that W 23291 § 4 b was meant to show how a traditional
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method to compute the area of an equilateral triangle worked, a method in-
herited from the Old Babylonian predecessors. The proper Late Babylo-
nian method with a better constant is demonstrated in W 23291 § 4 c (cf.
the discussion oiP.BM 10520 § 6 b in Sec. 3.3 e above).

W 23291 § 4 c.

1' gan.sag.kak ur.a sa \Q-sii u 30-.su na-as-hu I
mi-hi-il-tu a.ra ki.2 [u a.ra] 26 ri-ak

J n\x

[1 sag]

[1 us a.an ur.a he en asaj.ki.hja
1 a.ra 1 1 1 a.ra 2[6] / [ra-ma 26]
[2e5e 3iku ™&5 2 ' i k u asa5 10 sar]

1 peghead-field, equilateral, that with its 10th and its 30th torn off.
Line steps of ditto, and steps of 26 you go.

1 f \ X

1, the front

1 us each way, equilateral. What shall the field be?
J steps of 1 is J. 1 steps of 26 go, it is 26.
2(ese) 3(iku) l/2(iku) 10 sar -

In this text is presented an equilateral triangle of the kind that has 'its
10th and its 30th torn off. This means that the height of an equilateral tri-
angle shall be computed as the side minus 1/10 1/30 of the side. That this
is a correct interpretation is shown by the continuation in line 2, where the
phrase 'line steps of ditto, and steps of 26 go' means that the area shall be
computed as

A = ;26 • sq. a,

where the constant ;26 can be explained as follows:
;26 = ;52 • 1/2 = (1 - ;06 - ;02) • 1/2 = {1 - (1/10 1/30)) • 1/2.
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A numerical example of the general rule is given in lines 3-4 (partially re-
constructed here):

a = 1 us = 1 OOninda,
A = \ (00)- 1 (00) • ;26 = 26 (00) sq. ninda =2(ese) 3 l/2(iku) 10 sar.

Note that the constant ;26 = 26/60 = 1/3 1/10 is identical with the con-
stant used for the computation of the area of an equilateral triangle in
P. Vindob. G. 19996 #10. Note also the quite remarkable circumstance that
in line 1 of W 23291 § 4 c the expression 10-sii u 30-sw 'its 10th and its
30th' is the only known example of the use of a sum of parts in a Babylo-
nian mathematical text! More precisely, this is a sexagesimally adapted
sum of parts, just like many of the sums of parts in the demotic text
P.Cairo (Sec. 3.1 above).

In P. Vindob. G. 19996 # 10, the diagonal rule is used in a 3-dimensional
setting, to compute the height of the triangular pyramid. It is interesting
that there is now also a Babylonian example of an application of the
diagonal rule in a 3-dimensional setting. That example can be found in MS
3049, a fragment of an OB (or Kassite) mathematical recombination text,
in which § 5 (Friberg, MCTSC (2005), Sec. 11.1 d) contains the computa-
tion of the sa.bar 'inner diagonal' of a gate in a wall. The gate has the
height h = 5 cubits 10 fingers = ;26 40 ninda, the width w = ;08 53 20
ninda, and the depth t - ;06 40 ninda = the thickness of the wall. (Note
that this means that h, w, t = ;02 13 20 ninda • 12,4, 3.) The inner diagonal
d is computed as follows:

sq. d = sq. h + sq. w + sq. / = ;13 54 34 14 26 40,
d = ;28 53 20 (= ;02 13 20 ninda • 13).

One last remark concerning P. Vindob. G. 19996 # 10^ The computed
bottom area of the triangular pyramid is expressed as 62 25, clearly mean-
ing 62 2/5. Similarly, this bottom area multiplied by the height of the
pyramid is expressed as 249 35, which must mean 249 3/5. Thus, it is likely
that 2 , for instance, is an abbreviated expression for TCOV (3 TO E' 'of 2 the
5th part', the kind of expression for binomial fractions that occurs repeat-
edly in P.Akhmim (Sec. 4.5 above).44

44. For a conflicting explanation, see Fowler, MPA (1987 (1999)), Sec. 7.3(d).
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4.8 c. P.Vindob. G. 19996 # 13. A truncated triangular pyramid

In P.Vindob. G. 19996 # 13 is computed the volume of a truncated right
pyramid with an equilateral triangular base. Given are the side of the tri-
angular base, a = 18 (feet), the side of the triangular top, b = 3 (feet), and
each one of the sloping edges, s = 10 (feet). The solution procedure begins
with the computation of the height h of the truncated pyramid by use of the
diagonal rule, applied to a right triangle with the sides h, s, r, where r is the
radius of the circumscribed circle for an equilateral triangle with the side
a - b = 12 (feet). Thus, the height h is computed as follows:

sq. h = sq. .$ - sq. r = sq. s-{sq.(a- b)}/3 = 100 - 75 = 25, h = 5.

After that, the volume Vis computed as the volume of right prism of height
h and with a base in the form of an equilateral triangle with the side (a + b)l
2, plus a correction term:

V=(c-sq.((a + 6)/2]+csq.(((i-6)/2)-3)-ft, where c = 3 TO (= 26/60).

4.8 d. P.Vindob. G. 19996 # 18. A square pyramid

P. Vindob. G. 19996 # 18 is a computation of the volume of a right pyramid
with a square base. Given are the side of the square base, a = 12, and the
sloping edges of the pyramid, s = 9. The solution procedure begins with
the simple computation of sq. r, the square of the radius of the circum-
scribed circle for the square base, which is then used to compute the height
of the pyramid, h = 3. The volume Kis computed as

V = c • sq. a • It, where c = 3.

4.8 e. P.Vindob. G. 19996 # 19. A truncated square pyramid

The volume of a truncated right pyramid with a square base is computed
in P. Vindob. G. 19996 #19. Given are the side of the square base, a = 14,
the side of the square top, b = 2, and the length of the sloping edge, s = 9.
The solution procedure does not explicitly mention the computation of the
height h of the truncated pyramid. It was probably found by use of the di-
agonal rule, applied to a right triangle with the sides h, s, r, where r is the
radius of the circumscribed circle for a square with the side a - b = 12
(feet). Thus, the height h can have been computed as follows:

sq. h = sq. s - sq. r = sq. s - {sq. (a - b)}/2 = 81 - 72 = 9, h = 3.



242 Unexpected Links Between Egyptian and Babylonian Mathematics

The volume is correctly computed as

V = ( s q . { ( a + b)/2) + s q . { ( a - b)/2] - 3 ) - h .

4.8 f. P.Vindob. G. 19996 # 24. A truncated circular cone

There is no well preserved computation of the volume of a cone in P. Vin-
dob. G. 19996. There is, however, a correct computation of the volume of
a truncated right cone with a circular base in P.Vindob. G. 19996 # 24.
Given are the circumference p = 24 (feet) of the base, the circumference q
= 6 of the top, and the length 5 = 5 of a sloping edge. The first step of the
solution procedure is to compute the diameters of the base and the top as

a = p/3 = 8, b = q/3 = 2.

Then the volume is computed as

V=(c-sq.[(a + b)/2} + c-sq.{(a-b)/2}-3)-h, where c = 1 - 4 ' (= 3/4).

Essentially, then, the purpose of P. Vindob. G. 19996 was to exhibit
rules for the computation of volumes of pyramids and truncated pyramids,
cones and truncated cones. In this connection, it may be of interest to make
the following observation. Assuming that the rule for the computation of
the volume of a whole pyramid with a square base had been found, in some
way, it was not difficult to find also the rule for the computation of the vol-
ume of a truncated pyramid with a square base, namely by cutting up the
truncated cone in various pieces, a number of prisms and small pyramids
in the corners. The corresponding volumes of whole or truncated pyramids
with an equilateral triangle for base could then be found by multiplication
with the constant 3 10. Naively, this is obvious, because a triangular pyra-
mid can be thought of as composed of a large number of thin slices, and
the volume of each slice is 3 10 of the volume of a corresponding slice
from a square pyramid with the same height and with the same side of the
base. The idea works also in the case of whole and truncated circular
cones, with the only difference that the constant in these cases is 1 - 1/4.45

45. In Gerstinger and Vogel, GLP1 (1932), 40, the generalization from the cases of trun-
cated triangular and square pyramids (the drawings to the left and in the middle) to the case
of a truncated cone (the drawing to the right) makes no sense at all!
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4.8 g. Pyramids and cones in Old Babylonian mathematical texts

The volume of a truncated square pyramid

A survey of OB texts concerned with both correct and incorrect computa-
tions of volumes of whole or truncated square pyramids was published in
Friberg, PCHM 6 (1996) § 1.5. A particularly interesting example is exer-
cise # 28 in the OB mathematical recombination text BM 85194 (Thureau-
Dangin, TMB (1938), text 72).

BM 85194 # 28.

hi-ri-tum

10.ta.an mu-Ym 18 sukud i-na 1 kus 1 sa.gal /
za.zum sahar.hi.a za.e
5 u 5 ul.gar 10 ta-mar I [10] a-na 18 sukud i-si 3 ta-mar
3 i-na 10 ba.zi 7 / [ta-mar] za.zum
nigin.na
za.zum umu-tia ul.gar 17 ta-mar/ [2' 17 he-pe] 8 30 ta-mar
nigin 1 12 15 ta-mar/ 1 12 [15 gar].ra
igi.2\gal 3 dirig samu-hu ugu / za.zum nigfin] 45
a-na 1 12 15 da\}.\ia-ma / 1 13 ta-mar

18 a-na 1 13 i-si 22 30 ta-mar I
2eSe liku 2'iku a^a5 sahar.hi.a
ki-<a-am> ne-pe-sum

An excavation.
10 (ninda) each way is the top, 18 (cubits) the height, in 1 cubit 1 is the feed.
The base and the mud (volume)?
You:
5 and 5 gather, 10 you see. 10 to 18 the height raise, 3 you see.
3 from 10 tear off, 7 you see, the base.
Turn around.
The base and the top gather, 17 you see. 1/2 of 17 break, 8 30 you see.
Square (it), 1 12 15 you see. 1 12 75 set.
The 12th!-part of 3, the excess of the top over the base, squared, 45.
To 1 12 15 add (it) on, then 1 13 you see.
18 to 1 13 raise, 22 30 you see,
2(ese) 1 l/2(iku) is the mud.
Such is the doing.

The exercise deals with an upside-down truncated pyramid, uninfor-
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matively called an 'excavation'. The text of the exercise is only slightly
damaged but the damaged part is situated in the middle of the most crucial
passage. It has long been suspected that a correct expression for the vol-
ume of a truncated cone was used in this problem, but the evidence has
been deemed to be inconclusive. However, a new reading of the crucial
passage (see below) confirms the suspicion.

Given are the side a (= 10 ninda) of the square top, and the height, or
rather the depth, of the excavation, h (= 18 cubits). Given is also the incli-
nation of the side walls of the excavation, expressed through the customary
phrase i-na 1 kus 1 sa.gal 'in 1 cubit 1 is the feed'. What this means is
that the inclination is 1 cubit/cubit, so that the width of the excavation
decreases with 2 • 1 cubit = ;10 ninda for each descent of 1 cubit.

The solution procedure begins with the computation of the side b of the
square bottom of the excavation. Since the 'feed' is 1 cubit/cubit, and since
all side walls of the excavation slope inwards, the width of the excavation
has decreased with 2 • ;05 • 18 ninda = 3 ninda after a descent of 18
cubits. Therefore b = (10 - 3) ninda = 7 ninda. Next is computed the area
of the excavation halfway between the top and the bottom, which is

sq. {{a + b)/2] = sq. 8;3O = 1 12;15 square ninda.

This result is recorded somewhere, and then the solution procedure contin-
ues with the computation of

1/12 • sq. (a-b) = 1/12 • 9 = ;45 square ninda.

Finally, the scribe added this "correction term" to the initial approximation
sq. {(a + b)l2) = 1 12;15 square ninda, obtaining the correct result 1 13
square ninda. This area, multiplied by the height, h = 18 cubits, would
then have given the correct volume 21 54 volume-sar, but the scribe mis-
read an entry in his multiplication table and got instead the incorrect result
1 5 square ninda • 18 cubits = 22 30 volume-sar, which he then converted
correctly to an area number. Anyway, the expression used by the author of
BM 85 194 § 28 for the volume of a truncated square pyramid seems to
have been, correctly,

V=[sq. {(a + b)/2} + l/l2-sq. {a-b)]-h.

This is, essentially, the same equation for V as the one used in P. Vindob.
G. 19996 #19.
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The volume and grain measure of a ridge pyramid

TMS 14 (Bruins and Rutten, TMB (1961), Friberg, PCHM 6 (1996)) is an
OB text from Susa, dealing with a certain three-dimensional solid, here
called a "ridge pyramid". The Sumerian/Babylonian term for a ridge pyr-
amid is not known. The term gur7 mentioned at the beginning of the ex-
ercise has the general meaning 'granary', that is a large building used to
store grain. Another possibility is that the term means 'grain measure',
since the content of the ridge pyramid is expressed not in terms of its
volume V, but in terms of its (storage) capacity C = c • V, where c is a fixed
storing number,

c = 8 (00 00) sila/sar, where 1 (volume-)sar = 1 sq. ninda • 1 cubit.

It is known (Friberg, BaM 28 (1997), Fig. 7.1) that a "granary sila" with
the storing number 8 (00 00) can be understood as the content of a cylin-
drical measuring vessel with the diameter 6 fingers and the height 5 fingers
(appr. 0.63 liters).

TMS 14.

gur7 a.na 14 24 sahar 3 gi me-lu-[um] I
a.na 14 24 sahar us sag u qd-aq-qa-da I mi-na gar
za.e
igi 12 su-up-lipu-tu-ur I 5 ta-mar
5 a-na 14 24 sahar i-si-ma I 1 12 ta-mar
3 gi me-la-a-am nigin 9 ta-mar I 9 a-na 3 me-le-e te-er-ma 27 ta-mar I
i-na 1 a.ra ka-a-a-ma-ni <sahar> 20 « s a h a r »
sd-lu-us-ti I sd ka-a-a-ma-ni sahar tu-us-sa-bu zi / 40 ta-mar
40 as-sum 2 sag gur7 a-na 2 tab.ba / 2 20 ta-mar
1 20 a-na 27 i-si-ma 36 ta-mar I 36 i-na [1 12] zi 36 [ta-mar]
\tu\-itr-ma I
3 me-la-a-am nigin 9 ta-[mar igi 9 pu-t\u-ur I 6 40 ta-mar
6 40 a-na 36 i-s[i-ma] I 4 ta-mar 4 qd-aq-qa-du
3 me-la-[a-ani\ I \as\-sum i-naam-ma-atam-ma-at [sa.gal]' /
[a-na 2] tab.ba 6 ta-mar 6 sag
6 [a-na 4] / [qd-aq-qa]-di dab 10 ta-mar 10 [us] / [ ] /
[12 a-na] 3 me-la-am [i-si-ma] I 36 ta-mar
[36 a-na 24 i-si-ma] I [14] 24 ta-mar sahar
14 2[4] [sahar] / a-na 8 na-as-pa-ak gur7 [i-si-ma] / 1 55 12 ta-mar
23 [gur7] ? / u 2+su 24g gur se-[um]
[ki-a]-am ne-[pe-sum]
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A granary, as much as 14 24 the mud (volume), 3, reeds, the height.
(If) as much as 14 24 the mud, the length, the front and the top what do I set?
You:
The opposite of 12 of the depth, release, 5 you see,
5 to 14 24 the mud raise, then 1 12 you see.
3, reeds, the height, square, 9 you see. 9 to 3, the height, again, 27 you see.
From 1 the regular step of mud 20,
a third of what <as> the regular mud you added, tear off, 40 you see.
40, since (there are) 2 fronts of the granary, to 2 repeat, then 1 • 20 you see.
1 20 to 27 raise, then 36 you see. 36 from 1 12 tear off, 36 you see.
Return.
3, the height, square, 9 you see. The opposite of 9 break off, 6 40 you see.
6 40 to 36 raise, then 4 you see, 4 the top.
3, the height, since in a cubit a cubit is the feed,
to 2 double, 6 you see. 6 (is) the front.
6 to 4, the top, heap, 10 you see, 10 the length.

12 to 3 the height raise, then 36 you see.
36 to 24 raise, then 14 24 you see, the mud.
14 24, the mud, to 8, the storing number of the granary, raise, then 1 55 12 you see.
23 gur7 2 24 gur of barley.

Such is the doing.

r

/ / \ / / \ / " I \ \ /
/ / \ i i \ / i y;̂ ;;V''' \ /

/ / V / x / I IWKa \'

s/2 = h r s/2 = h
•« u = r + s •

/ = 1 c./c. =* s = 2 h, and V= r • sq. h + sq. (2 h) • hft

Fig. 4.8.3. The ridge pyramid in TMS 14.

The nature of the ridge pyramid in TMS 14 can be deduced from the
computations in the text which mention the 'length' (or long side) u and
the 'front' (or short side) s at the base, the 'ridge' or 'top' r, and the
'height' h. As shown in Fig. 4.8.3 above, the ridge pyramid must have the
form of a roof, sloping uniformly from the ridge all the way to the ground
in four directions.
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The statement of the problem is clear: What are the length u, the front
s, and the ridge r (the 'top') of the ridge pyramid, when it is known that its
volume V = 14 24 sar, and that its height h = 3 ninda? In order to elimi-
nate the risk of misunderstanding, 3 ninda is written as 3 gi '3, reeds',
meant to emphasize that the order of magnitude of the given length number
is that of a small number of reeds, 1 reed being 1/2 ninda = 6 cubits. The
'feed' of the ridge pyramid is assumed to be 1 cubit/cubit, just as in the
case of the 'excavation' in BM 85194 # 28. By mistake this assumption is
not mentioned in the question, but in line 15 the mistake is corrected with
the phrase 'since in 1 cubit 1 cubit is the feed •••'.

The very explicit solution procedure in TMS 14 is interesting. It begins
by expressing the volume in cubic ninda instead of in volume-sar:

V= 14 24 sar = 14 24 sq. n. • c. = 14 24 sq. n. • ;05 n. = 1 12 sq. n. • n.

Next the cube of the height h = 3 ninda is computed as follows:

sq. h • h = sq. (3 n.) • 3 n. = 9 sq. n. • 3 n. = 27 sq. n. • n.

The awkwardly worded passage of the text which then follows,
From 1 the regular step of mud 20,

a third of what <as> the regular mud you added, tear off, 40 you see.
40, since (there are) 2 fronts of the granary, to 2 repeat, then 1! 20 you see.
1 20 to 27 raise, then 36 you see.

can be interpreted as describing the computation of 2 • 2/3 of the cube ofh:

2 • (1 - 1/3) • sq. hh = 2- ;40-27sq. n. • n. = l;20 • 27 sq. n. n. = 36sq. n. • n.

The exact meaning of the word kayyamanu 'regular, usual' as a technical
term in a mathematical cuneiform text is elusive, and there are also other
difficulties in the text. Anyway, the mathematical meaning of the passage
as a whole is clear, namely that the volumes of the two rectangular pyra-
mids at the ends of the ridge pyramid are computed as two thirds of the vol-
umes of the two wedges (triangular prisms) containing them. Indeed, since
the feed of the ridge pyramid is 1 c./c, each end pyramid has the height h,
while its sides at the base are s = 2 h and 1/2 (u- r) = h. Therefore the vol-
ume of each containing wedge is 1/2 • 2 h • h • h = 1 sq. h • h, and the com-
bined volume of the two end pyramids is 2 • (1 - 1/3) • 1 sq. h- h.

In the next step of the procedure, the volume Vc of the central wedge is
computed as the given volume of the whole ridge pyramid, diminished by
the combined volume of the two end pyramids, that is
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Vc =V-2- ( 1 - 1 / 3 ) sq. hh=\ 12 sq. n. • n. - 3 6 sq. n. • n. = 3 6 s q . n. • n.

On the other hand, since the feed/is 1 c./c. so that s = 2 h, it is also true that

Vc = 1/2 • r s h = 1/2 • r • 2 h • h = r • sq. h = r • 9 sq. n.

Consequently, the ridge r can be computed as follows:

r- 9 sq. n. = 36 sq. n. • n. =*• r= 36 sq. n. • n./(9 sq. n.) = 4n.

Next it is shown, explicitly, that

h = 3 n. and/= 1 c./c. (= 1 n./n.) => s = 2 •/• h = 2 • 1 • 3 n. = 6n.

Finally, the length u is computed as
u = r + s = 4 n. + 6 n. = 10 n.

This is correct because all sides of the ridge pyramid have the same feed,
so that/= slh = (u - r)lh and therefore s = u- r.

Summing up, one can conclude that the computation of the ridge r of
the ridge pyramid in TMS 14 is based on the following correct observation:
If V is the volume of a ridge pyramid with the feed 1 c./c. everywhere, if
Vc is the volume of the of the central wedge, and if Vp is the combined vol-
ume of the two end pyramids, then

V= Vc + Vp=rsq. h + sq. (2 h) • fi/3.

Now, consider the second part of the solution procedure in TMS 14, the
verification of the result of the computation in the first part. The beginning
of this verification is lost, but apparently it starts with the computation of

r- h + A h • /i/3 = 24sq. n.

Then the volume V is obtained through multiplication by the height h, and
the result is, as it should be, that

V=24sq. n. • 36c. = 14 24sq. n. • c. = 14 24 sar.

After this successful verification, the computation is carried one step fur-
ther, in that the grain measure of the granary is computed. (The grain mea-
sure was not mentioned in the statement of the problem in lines 1-3.) With
the grain constant c = '8' = 8 00 00 sila/sar, and with 1 gur = 5 00 sila,
the computation proceeds as follows:

C = c • V= 14 24 • 8 00 00 si la = 1 55 12 00 00 sila = 23 02 24 gur .

In the final step of the computation, this sexagesimal multiple of the large
capacity unit gur is expressed in traditional number notation as

C = 23 [ •• ] and 2 sixties 24 gur of barley.
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BM 96954 + 102366 + SE 93 (Friberg, PCHM 6 (1996), Robson,
MMTC (1999), App. 3) is a text composed of three fragments of a large
clay tablet. As shown by the outline below of the clay tablet and the table
of contents, it is a recombination text which, just like P.Vindob. G. 19996,
has "whole or truncated pyramids and cones" as its dominating topic.

BM 102 366 obv.

^ k L j ; BM 96954+102366+SE 93.
^ l l W ' 'SI Contents:

rin======ii ;/§2' l A §§la-e:

I \\ ! ^ § l V ~ s T Equations for the parameters
• ,!= = = = = = = = = ., of a ridge pyramid(?).
i~^~i~ i! ^ & - ' I

: :i/ '"• s « l f :

!= = = = = = = = = = '!-) _ . ̂  The volume of a truncated
| § ! d § ' h § Ik | ridge pyramid.

H l V ^ V5Z2Z2ZZ2Z2SS I § § l g " i :

! ' V^JWiJ^^ ^ ^ > / Equations for the parameters
•a 4_ ._____2 ^ 1 * 11 / of a ridge pyramid.

' § 4~g~ ~" [ ^ l ^ j ^ p ^ II "1 rev- The volume of a square pyramid(?).;i' J i i P ^ §"m
L--___-^p4d ~ § 1 f-m:
! § 4 h LJ 5i Equations for the parameters of a

' ^ ^ ^ ridge pyramid.

! i l W §3a S
! 'i ^ % y = = = = = " §§3a"C:

i ]] ^ x ^ ^ ^ The volumes of various prisms.

j~Colophon i| ! f l ^ ^ = §§4a-d:
' 1 1 _ - _ _ _ _ _ _ _ _ " _ _ _ __j~^_ Equations for the parameters of a cone.

j; §4f f l l ^ "
' |j ^ X I §§4e-h:
', j ! ^ § 4 b | v> Equations for the parameters of
-• ^ i ' ~-^^£2&££ - ' truncated cones.

BM 102 366

Fig. 4.8.4. BM 96954+. An OB recombination text with the theme pyramids and cones.
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§ 1 of the recombination text may have consisted originally of 13 math-
ematical exercises, all dealing with a certain ridge pyramid, similar to the
one treated in TMS 14 (Fig. 4.8.3 above). The Sumerian or Babylonian
term for a ridge pyramid is not known. The term gur7, mentioned in TMS
14 as well as at the beginning of all preserved exercises in § 1 of BM
96954+, refers in § 3 b of BM 96954+ to a solid (a trapezoidal prism) that
is not a ridge pyramid. As in TMS 14, it is likely that the term gur7 simply
has the general meaning 'granary', that is a large building used to store
grain, or that the term simply means 'grain measure'. Indeed, the content
of each solid appearing in TMS 14 and in BM 96954+ §§ 1 and 3, is
expressed not in terms of its volume V, but in terms of its (storage) capacity
C = c • V, where c is a fixed storing number:

c = 1 36 gur/sar = 8 00 00 sila/sarv in TMS 14
c = 1 30 gur/sar = 7 30 00 sila/sarv in BM 96954+ §§ 1, 3

The eight preserved exercises BM 96954+ §§ 1 f-lm, all deal with the
same ridge pyramid, one with the following parameters (see again Fig.
4.8.3 above):

u, s, r= 10, 6, 4 ninda, h = 48 cubits (= 4 ninda),
V=19 12sar, C = 28 48 00gur.

The volume of the ridge pyramid is, again, equal to the volume Vc of a cen-
tral wedge plus the combined volume Vp of two halves of a square pyramid
at the two ends of the ridge pyramid:

V = Vc + Vp = r • s • h/2 + sq. s • h/3 = (r/2 + 5/3) • S • h.

Since s - u - r, an alternative but equivalent equation for the volume of a
ridge pyramid is

V=(u + r/2) • s • h/3.

It is likely that the lost exercises in the first column of BM 96954+ were
all concerned with the same ridge pyramid as the one considered in §§ 1 f-
1 m. In that case, the following series of simple questions may have been
asked there:

§ 1 a: u, s, r, h givenC = ?
§ 1 b: s, r, h, C given« = ?
§ 1 c: u, r, h, C givens = ?
§ 1 d: u, s, h, C givenr = ?
§ 1 e: u, s, r, C given/i = ?
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Similar series of questions can be found elsewhere in the corpus of OB
mathematical texts. A good example is YBC 4663 (Neugebauer and Sa-
chs, MCT( 1945), text H), a text with a series of 8 exercises. In the first ex-
ercise, the linear parameters of a rectangular 'excavation' are specified: the
length u and the front s of the base, the height h, and two constants, namely
the 'work norm' w = ;10 volume-sar per man-day, and the 'pay rate' (the
wages) p = 6 barley-corns (= ;02 shekels) of silver per man-day. The base
area A, the volume V, the man-days M needed for the excavation and the
resulting expense E in silver are then computed as follows:

A = us, V = Ah, M=V-l/w, E = Mp,

so that

E = w s • h- \lw p.

In the next 5 exercises, the parameters u, s, h, and the constants w and/? are
computed, one at a time, by use of the equation above for E and simple
arithmetic. In the last two exercises, the situation is complicated in an ar-
tificial way, typical of OB mathematics, when it is assumed that E, h, w,
and p are known, in addition to the sum u + s or the difference u - s. There
are then two unknowns, u and s, which are computed as solutions to a
rectangular-linear system of equations:

u- s-E- w • \l{h • p), u + s = m (or u - s = n).

The conjectured analogy between BM 96954 § 1 and YBC 4663 suggests
that after the initial series of exercises, §§1 a-e, the next exercise, § 1 f,
ought to be one of the artificial type leading to a rectangular-linear system
of equations. This is not the case, however, possibly because, being a
recombination text, BM 96954 is somewhat chaotically organized.
Instead, § 1 f deals with a truncated ridge pyramid, and the expected con-
tinuation of the series of exercises for the ridge pyramid of §§ 1 a-1 e is
moved up one step, to § lg.

The grain measure of a ridge pyramid truncated at mid-height

Thus, in BM 96954+ § If, which is the first preserved exercise of § 1, the
ridge pyramid common to all the exercises in § 1 is truncated at mid-height
(Fig. 4.8.5 below), and is thus comparable in both size and form to the well
known mastaba graves from the Old Kingdom in Egypt.
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C =28 48 00gur C' = 23 24 00gur

Fig. 4.8.5. BM 96954 § 1 f. A ridge pyramid truncated at mid-height.

Here is the text of § 1 f, of which only the first part is preserved:

BM 96954 + BM 102366 + SE 93 § 1 f.

gur7

10 us 6 sag 4 sagsu 28 48 <se.gur> /
48 sukud 24 ur-dam
dal u se-um en.nam /
[za].e
igi 48 sukud dug.a 1 15 ta-mar
1 15 a-nal [6 dirig?] so* us ugu sagsir i-sil 30 ta-mar I
[7 30 a-na] 24 i-si 3 ta-mar
3 i-na 10 us / [ba.zi 7 ta-mar 7] dal
3 i-na 6 sag ba.zi1 / [3 ta-mar •••]
[ ] [x x] i-si 1 ta-mar I

A granary.
10 the length, 6 the front, 4 the ridge (head-piece), 28 48 <gur of barley>,
48 the height, 241 went down.
The transversal(s) and the barley are what?
You:
The opposite of 48 the height release, 1 15 you see.
1 15 to 6, the excess that the length is beyond the ridge, raise, 7 30 you see.
7 30 to 24 raise, 3 you see.
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3 from 10 the length tear off, 7 you see, 7 the transversal.
3 from 6 the front tear off, 3 you see, the ••• .

raise, 1 you see.

Although only the first part of the text of § 1 f is preserved, it is clear
that the equation for the volume of the truncated ridge pyramid must have
been expressed in terms of its linear parameters, the length u and front 5 at
the base, the "upper length" u and "the upper front" s' at mid-height, and
the lower height K. (Unless, of course, the volume of the truncated ridge
pyramid was computed as the volume of the whole ridge pyramid minus
the volume of the small upper ridge pyramid.) The volume V of the trun-
cated ridge pyramid is easily seen to be equal to the volume V'c of a central
trapezoidal prism plus the combined volume V' of two halves of a ridge
pyramid at the two ends of the truncated ridge pyramid:

V= Vc + Vp = u • (s + O • h'll + ( « - « ' ) • (s +s'/2) • h'B.

An equivalent, more elegant, form of this equation for V is

V = { ( « • 5 + u • s ' ) + ( u s ' + u ' - J ) / 2 } • A 7 3 .

However, before this equation can be used to compute the volume of the
truncated ridge pyramid, the values of u' and s' must be known.

The preserved first part of BM 96954 § 1 f is devoted to the computa-
tion of these values. The first step of the computation is to find the
combined feed for the two ends of the ridge pyramid:

2 • / = ( « - r)lh = (10 - 4) ninda • 1/(48 cubits) = 6 • ;01 15 n./c. = ;07 30 n./c.

The double feed is multiplied by the height of the truncated ridge pyramid:
2f-h' = ;07 30 n./c. • 24 c. = 3 n.

This is how much smaller the upper length and the upper front of the trun-
cated ridge pyramid are than the lower length and the lower front, respec-
tively. Thus,

u' = u - 3 n. = 10 n. - 3 n. = 7 n.,
s' = s-3n. = 6n.-3n. = 3n.

Inserting these computed values into the equation for the volume of the
truncated ridge pyramid, one obtains the following result (unfortunately
not present in the preserved part of the text):

V = {(10 • 6 + 7 • 3) + (10 • 3 + 7- 6)/2} sq. n. • 24 c/3
= 1 57 sq. n. • 8 c. = 15 36 sar,

C = c • V = 1 30 gur/sar • 15 36 sar = 23 24 00 gur.
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Note that the first step in the computation of the volume V would be to
compute the product of u and s as 10 • 6 = 1 (00). This proposed first step
of the computation agrees well with the only preserved part of the calcula-
tion of V, which is '[•••] times [•••] = 1' in the last preserved line of § 1 f.

Systems of linear equations for the length u and the ridge r

BM 96954 + BM 102366 + SE 93 § 1 g.

[gur7]
[6 sag 48 sukud 28 48 se gur] us it I
[us sagsu enj.nam
za.[e]
igi 48 / [dug.a 1 15 ta-mar] 1 15 a-na 28 48 se / [i-si 36] ta-mar
igi 1 30 igi.gub.ba dug.a / [40 a-n]a 36 i-si 24 ta-mar
igi 6 sag / [dug.a] 10 ta-mar 24 a-na 10 i-si 4 ta-mar I
[4] i-na ul.<gar> ba.zi 10 ta-mar 10 us 4V sagsu /
\ki-d\-am ne-pe-sum

A granary.
6 the front, 48 the height 28 48 gur the barley. The length and .
The length and the ridge are what?
You:
The opposite of 48 release, 1 15 you see. 1 15 to 28 48 the barley raise, 36 you see.
The opposite of 1 30, the constant, release, 40 to the 36 raise, 24 you see.
The opposite of 6 the front release, 10 you see. 24 to 10 raise, 4 you see.
4 from the gath<ering>, tear off, 10 you see. 10 the length, 4 the ridge.
Such is the procedure.

The beginning of this exercise, including the question, is almost com-
pletely lost. Nevertheless, it is not difficult to reconstruct both the problem
statement and the missing part of the solution procedure. Indeed, enough
of the text is preserved so that it is clear that the solution procedure begins
with the computation of the following quantities:

\lhC= 1/48 c. • 28 48 00 gur = 36 00 gur/c,
\lh • C • 1/c = 36 00 gur/c. • 1/(1 30 gur/sar) = 24 sar/c. = 24 sq. n.,
\lh • C • 1/c • Vs = 24 sq. n. • 1/ 6 n. = 4 n.

In view of the known equation for the grain measure of the ridge pyramid,
the last of these equations can be interpreted as saying that

C/(c -s-h)={c- (r/2 + s/3) • s • h}l{c • s • h) = (r/2 + s/3) = 4 n.
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Then this quantity is subtracted from a certain 'gathering', that is from a
certain sum S, and it is stated that the remainder is equal to the length u of
the ridge pyramid. Counting backwards, one finds that

5 - (r/2 + s/3) = u => S = u +r/2 + s/3 = 14 n. (given).

What this means is that the stated problem must have been (in modern
symbolic notations) the following system of linear equations for the pa-
rameters of the ridge pyramid:

i = 6n., /i = 48c,
C = c • (u + r/2)/3 • s • h = 28 48 00 gur (where c = 1 30 gur/sar),
u +r/2 + j/3 = S = 14 n.

Through simple arithmetic, this complicated system can be reduced to its
essential part, namely the following pair of linear equations for the two
unknowns:

r/2 + 5/3 = O(c-s-h) = 4 n.

K + r/2 + j/3 = S=14n.
The form of the given sum S was chosen in such a way that this pair of
linear equations can be solved in a trivial way, simply by subtraction.

A similar problem in BM 96954+ § 1 h has to be solved in a less trivial
way. In § 1 h, the values of s, h, and C are once again given. In addition,
there is the following equation:

[2' sa]gsu ki-ma igi.5.gal us
1/2 the ridge is like the 5th-part of the length.

Therefore, the length u and the ridge r have to be found as the solutions to
the following system of linear equations:

(u + r/2)/3 = C/(c • s • /i) = 4 n., 1/2 r = 1/5 u.

This system of linear of equations is solved by use of the rule of false
value. The first step of the solution algorithm is to assume the false values
w* of u and r* of r to be

5 'bal us', 2 'bal sagsu'
(the exact meaning of the term bal is not clear)

Next follows the computation of

(« + r/2)/6 = 1/2 • C/(c • s • h) = 4 n./2 = 2 n.

The necessary correction factor k is computed as follows (although the text
is unclear here):
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(«* + I*I2)I6 = (5 + 1/2 • 2)16 = 1, £ = 2 n./l = 2 n.

The last step of the computation is to compute

u = u* • k = 5 • 2n. = 10 n., r= r* • £ = 2 • 2 n. =4n .

Rectangular-linear systems of equations

In BM 96954+ § 1 i, the length, the height, and the grain measure of the
ridge pyramid are given, u = 10 n., h = 48 c , C = 28 48 gur. In addition,
there is a given linear relation between the front 5 and the ridge r, namely
2/3 • s- r. As a result, the front and the ridge can be determined as the so-
lutions to the following rectangular-linear system of equations:

(10 n. + r/2)/3 • s = Cl(c • h) = 24 sq. n.,
2/3 5 = r.

The solution procedure in the text of § 1 i is brief and omits several crucial
steps. Nevertheless, it is possible to figure out what was in the mind of the
author of the text. With the missing steps reinstated, the solution procedure
gets along as follows. The first step is to replace the rectangular-linear sys-
tem of equations for s and r with a single quadratic equation for s:

(10 n. + 1/2 • 2/3 • s)/3 • s = 24 sq. n.

Next, s is replaced by s* = 1/2 • 2/3 • 1/3 • 5. The resulting quadratic equa-
tion for 5* is then

(3;20 n. + s*) • s* = 1/2 • 2/3 • 1/3 • 24 sq. n. = 2;40 sq. n.

By use of a Babylonian standard procedure, the solution to this quadratic
equation is found to be 5* = ;40 n. On the other hand, 1/2 • 2/3 • 1/3 = ;06
40. Therefore,

s = 5*- l/;0640 = ;40n. • 9 = 6n., and r = 2/3s = 4n.

BM 96954+ §§ 1 j , 1 k, 1 m, are three further examples of problems
leading to rectangular-linear systems of equations for u and s, or for r and
s. The remaining paragraph of the first section, BM 96954+ § 11, is insert-
ed somewhat out of place between two problems leading to rectangular-
linear systems of equations. In § 1 i, the ridge r and the height h are given
(as well as the grain measure C, which is not needed in this exercise). In
addition, the inclination f of the sides of the ridge pyramid, the feed, is giv-
en through the phrase

sa 1 kus 7 30 kus sa.gal
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of 1 cubit 7 30, cubits, is the feed.

What this obscure phrase means is that for each cubit of descent from the
top, the side goes out ;07 30 ninda = 1 1/2 cubits. It is, therefore, a trivial
matter to compute the length:

u = r +f-h = 4 n. +;07 30 n./c. • 48 c. = 4 n. + 6 n. = 10 n.

Problems for a circular cone and its 'feed'

With BM 96954 + § 4 begins a new part of the text, differing in several
ways from the first part, consisting of § 1 and § 3. The solids considered in
§ 4 are whole or truncated circular cones (Figs. 4.8.6-7).46 The height of
the whole cone is ' F , not 48 (cubits) as in the case of all the solids in
§§1 and 3. Most significantly, the content of the cone is expressed in
terms of its volume, not its grain measure.

h iS^^k

a

Fig. 4.8.6. BM 96954+ §§ 4 a-d: A circular cone.

About half of the text of this exercise is destroyed. However, since §§
4 a and 4 b are closely related, the reconstruction below is fairly certain and
will be taken for granted here. The object of the exercise is to find the
'feed' of a circular cone with the height h = ' 1', almost certainly meaning
1 00 cubits = 5 n. (30 meters), and with the 'arc' a, that is the circumfer-
ence of the circular base, correspondingly equal to or 30 n. The diameter
of the circular base is then 10 n. (if the diameter is assumed to be 1/3 of the
circumference, as usual). (Cf. BM 96954 § 4 e below, where a cone with
the height ' F is truncated 2 1/2 ninda = 30 cubits below the top.)

46. What is here called § 4 of BM 96954+ is called problems xx-xxviii in Robson,
MMTC (1999), App. 3. Robson's attempted comments in her footnotes 40-49 show that she
has absolutely no clue what is going on in these exercises.
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BM 96954+ § 4 a.

[ ]
[30 gur 1 sukud] i-na 1 kus / [sa.gal en.nam]
[za].e
igi 1 sukud dug.a 1 ta-mar I [1 a-na 30 i]-si 30 ta-mar I
T 30 he-pel [15 ta-mar] 15 i-na 1 [kus] sa.gal /
\ki-a-d\m ne-pe-sum

A
30 the arc, 1 the height. In 1 cubit, the feed is what?
You:
The opposite of 1, the height, release, 1 you see. / to 30 raise, 30 you see.
1/2 of the 30 break, 15 you see. 15 in 1 cubit is the feed.
Such is the doing.

In the case of the ridge pyramid considered in BM 96954+ § 1, the term
sa.gal 'feed' was a measure for the inclination of the sides of the pyramid.
More precisely, in §§ 1 g and 1 1 the feed/of the ridge pyramid was equal
to s/h - (u - r)lh = ;07 30 n./c. (= 1 1/2 c./c). This is in accordance with
what is known about the use of the term sa.gal 'feed' and the related term
ku 'food' in several other OB mathematical texts. See, for instance, Neu-
gebauer and Sachs, MCT(1945), text K, and the brief survey {ibid.), p. 81,
fn. 191. The meaning of both terms is clearly "the inclination of the sides"
(of a canal, an excavation, or a construction), measured in terms of the
horizontal increase (or decrease) of the width (in ninda, cubits, or fingers)
for each cubit of vertical descent.

Interestingly, this interpretation of sa.gal 'feed' is no longer adequate
in the case of the present text, where the term appears in §§ 4 a, 4 b, and
4 d. What the correct definition is here is not immediately clear. Note,
however, the following rather explicit question and answer mentioning the
feed in the statement of the problem in § 4 a:

i-na 1 kus / [sa.gal en.nam] 15 i-na 1 [kus] sa.gal
'In 1 cubit, the feed is what? 15 in 1 cubit is the feed*.

The interpretation offered here is that the intended definition of the 'feed'
in § 4 of BM 96954 + is a "quadratic inclination", equal to the square of
ratio of the 'arc' of a horizontal section of the cone to the distance (in
cubits) of that arc from the top of the cone. More precisely, this "quadratic
feed" F is computed in the following way:
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F = s q . (alh) = a/h • a/h.

This means that in § 4a, where a = 30 n. and h = 1 00c, this feed F ought
to be equal to

F = s q . (30n. /I 00 c.) = ;15 sq. (n./c.)

However, what actually happens in § 4 a is that F is computed as follows,
in floating place value notation, and without explicit mention of the names
of the units of length:

F= 1/2 -alh = 1/2 • 30/1 = 15.

Numerically, and in the given situation, the result is correct. However, the
scribe who wrote the exercise seems to have been carried away by his suc-
cess, continuing to apply the incorrect relation F = 1/2 • alh also in § 4 b.

BM 96954 + § 4 b

[ ••• \x-ru-tum
30 gur i-na 1 kus 15 sa.gal / sukud en.nam
za.e
15 sa.gal tab.ba 30 ta-mar I igi 30 dug 2 ta-mar
30 gur' a-na 2 i-si I 1 ta-mar sukud
ne-pe-sum

A
30 the arc, in 1 cubit 15 is the feed. The height is what?
You:
15 the feed repeat, 30 you see. The opposite of 30 release, 2 you see.
30 the arc to 2 raise, 1 you see, the height.
The doing.

Apparently, the text of all the exercises BM 96954 §§ 4 a-h begins by
mentioning the name of a 'cone' or a 'truncated cone'. In § 4 b the name
for a cone is [ ••• ]x-ru-tum. In § 4 d, it is [ \-tum. Everywhere else,
the name is lost. Jursa and Radner, who published the piece SE 93 (AfO 42/
43 (1995/96)), suggested that the name could be [b]e-ru-tum 'mound'. An-
other possibility is that the name should be read [ga]m-ru-tum 'the whole',
and that it is the name for a whole (cone), as opposed to a truncated (cone).

In § 4b, which is completely preserved, the arc a = '30' and the feed
F - '15' are given, but the height h is unknown. The correct way of com-
puting the height would have been as follows:

F =sq. (a/h) => sq. /i = (sq. a)/F, h = a/(sqr.F),



260 Unexpected Links Between Egyptian and Babylonian Mathematics

or, in relative numbers,

F=30/(sqr. 15) = 30/30=1

Instead, the height h is computed, incorrectly, in the following way:

F= 1/2 alh (as in §4 a) => h = al{2F),

or

2 F= 2 15 = 30, 1/(2 F) = 1/30 = 2, ft = a/(2 F) = 30 • 2 = 1.

Here again, the result is numerically correct, in the given situation.
The next exercise, BM 96954+ § 4 c, is a brief exercise in four lines.

The text of the exercise is heavily damaged, only the lower right corner is
preserved. It is clear, anyway, that the arc a = 30 n. is mentioned, after 30
has been computed as the square root of something, obviously 15.

A reconstruction of the damaged text of § 4 c is suggested below. Note
that, according to the reconstruction, the quadratic feed plays no role in
this exercise.

BM 96954+ § 4 c.

[ ] [25 sabar.hi.a 1 sukud]
[za].e /
[3 a-na 25 i-si 1 15 ta-mar] gar.ra /
[igi 5 dug.a 12 a-na 1]15 i-si 15 la-mar I
[en.nam ib.sig 30 i]b.si8 30 ninda gur /
[ki-a-am ri]e-pe-sum

A 25 the mud (volume), I the height.
You:
3 to I 15 raise, 1 15 you see. Set it.
The opposite of 5 resolve. To 1 15 raise (it), 15 you see.
What is it equalsided? 30 it is equalsided. 30 n. the arc.
Such is the doing.

Here the given parameters are the volume V and the height h, and the
arc a is computed in the following way:

V = A-h/3 =* A = 3 - V/7i = 3-25 00sar/100c. = 1 15 sq. n.,
A = ;05 • sq. a =* sq. a = l/;05 • 1 15 sq. n. = 12 • 1 15 sq. n.
= 15 00sq. n., a = sqr. 15 00sq. n. = 30n.

(Remember that the Old Babylonian author of the text computed with
relative sexagesimal numbers. The zeros, etc. are inserted here, as else-
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where in this account, only for the readers' convenience.)

The full text of BM 96954+ § 4d is preserved, with the exception of the
name of the solid considered, presumably as in §§ 4 a-c a 'mound', mean-
ing 'cone'. The fact that the name is damaged here, as well as in all the oth-
er exercises of this paragraph, is unfortunate. Note that § 4 d contains a
couple of other syllabically written, previously unknown terms, the Akka-
dian names for the arc and the height of a circular cone. The syllabically
written name u for the arc is ma-sa-rum, a term derived from masdrum 'to
go around'. Cf. the phrase 10 su.si am-su-ur '10, fingers, I went around',
meaning 'I made the circumference (of a cylindrical barig-measure) equal
to ;10 n. = 1 00 fingers', in the Sippar text BM 85194 § 35 (Sec. 2.3 a
above). The syllabically written name for the height is di-ik-sum, derived
from dakdsum, a verb with an elusive meaning, apparently something like
'stick through, stick out'. See the discussion in Friberg, RIA 7 (1990) Sec.
5.4 1. Other noteworthy examples of the appearance of this word can be
found in the OB mathematical catalog text BM 80209, also a Sippar text
(Friberg, JCS 33 (1981)), and in the Late Babylonian mathematical recom-
bination text W 23 291-x (Friberg, et al, BaM 21 (1990) § 1).

BM 96954 + § 4 d.

[ - ]-tum

25 sahar.hi.a <15 sa.gal> ma-sa-rum u di-ik-sum I en.nam
za.e
25 su-ul-li-is 1 15 ta-mar I igi 5 igi.gub dug.a 12 ta-mar
12 a-na 1 15 i-si I 15 ta-mar gar.ra nigin.na
igi 15 sa.gal dug.a 4 ta-mar I 15 a-na 4 i-si 1 ta-mar
1 en.nam ib.sig 1 ib.sig / sukud
15 sa.gal tab.ba 30 ta-mar 30 a-na 1 sukud i-si I
[30] ta-mar ma-sa-rum
ne-pe-sum

A
25 the mud, <15 the feed>. The go-around and the stick-out are what?
You:
25 triple, 1 15 you see. The opposite of 5, the constant, release, 12 you see.
12 to 1 15 raise, 15 you see. Set it! Turn around!
The opposite of 15, the feed, release, 4 you see. 15 to 4 raise, 1 you see.
1, what (is it) equalsided? 1 (it is) equalsided, the height.
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15, the feed, double (sic!), 30 you see. 30 to 1, the height, raise,
30 you see, the go-around.
The procedure.

In the statement of the problem in § 4d, the only numerical parameter
given is the volume V = '25', probably meaning 25 00 s a r. It is silently
understood that the feed is the same as in §§ 4a-b, F = ;15 sq. (n./c.)- The
computation of the height h is straightforward, beginning with

h • A = 3 • V= 3 • 25 00 sar = 1 15 00 sar,
h • sq. a = l/;05 • h • A = 15 sar = 15 00 00 sq. n. • c.

The next step of the computation makes use of the reciprocal value of the
quadratic feed F:

hsq. h = h-sq. a- \IF = (15 00 00 sq. n. • c.) • l/(;15sq. (n./c.))
= 1 00 00 00 sq. c. c.

After that, the value of h is found as a cube root:

h = cube root of 1 sq. c. • c. = 1 c.

Finally, the correct value of the arc a is found by use of the incorrect com-
putation

F = 1/2 • alh (as in § 4 a) => a = 2 • F- h = 2 • 15 • 1 = 30.

Problems for truncated circular cones

Only the upper right corner of the text of BM 96954+ § 4 e, is preserved.
See Fig. 4.8.4 above. (Missing parts of the text are italicized in the trans-
lation below and put within square brackets in the transliteration.) Fortu-
nately, in spite of the extensive damage to § 4 e, it is possible to reconstruct
some of the most important missing parts of the text. In particular, the
whole question, except for the name of the solid considered and the crucial
term [ur-dam] 'I went down', is still there. (Cf. the occurrence of the term
ur-dam in § 1 f, the exercise dealing with a truncated ridge pyramid.) Thus,
it is clear that the object of the exercise is to compute the volume of a trun-
cated cone.

The truncated cone in § 4 e is what remains after a truncation 2 1/2 n.
(= 30 c.) below the top, that is at mid-height, of a cone with the given vol-
ume V= 25 00 sar, the height h = 1 00 cubits = 5 ninda, and the arc a at
the base = 30 ninda. (See Fig. 4.8.7 below, left.)
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BM 96954 + § 4 e.

30 ma-sa-rum
1 sukud 25 sahar.Jji.a 2 2' ninda / [ur-dam]
sahar.hi.a en.nam
za.e
igi 1 sukud dug.a / [1 ta-mar]
[a-na] 30 ma-sa-rum i-si 30 ta-mar
30 a-na I [30 i]-si 15 ta-mar
15 i-na 30 ma-sa-rum I [ba.zi 15 ta-mar]
[sahar].hi.a ki.ta' <en.nam>
30 ma-sa-rum ki.ta / [nigin 15 ta-mar]
[a-na 5 ig]i.gub.ba i-si 1 15 ta-mar/
[15 ma-sa-rum an.ta nigin 3 4]5 ta-mar
3 45 a-na I [5 igi.gub.ba i-si 18 45 ta-mar]
[1 1]5 u 18 45 / [ul.gar 1 33 45 ta-mar]
[2' 1 33 45 he-pe 46 5]2 30 ta-mar I
[30 u 45 ul.gar 45 ta-mar 2'] 45 he-pe I [22 30 ta-mar]
[22 30 nigin 8 26 15 ta-mar]
[8 2]6 15 / [a-na 5 igi.gub.ba i-si42 11 15 ta-mar]

30, the go-around,
1 the height, 25 the mud. 2 1/2 ninda / went down.
The <lower> mud is what?
You:
The opposite of 1, the height, release, / you see.
To 30, the go-around, raise (it), 30 you see.
30 to 30 raise, 15 you see.
15 from 30, the go-around, tear off, 15 you see.
The lower mud <is what>?
30, the lower go-around, square, 15 you see.
To 5, the constant, raise (it), 1 15 you see.
15, the upper go-around, square, 3 45 you see.
3 45 to 5 the constant raise, 18 45 you see.
7 75 and 18 45 gather, 1 33 45 you see.
1/2 ofl 33 45 break, 46 52 30 you see.
30 and 45 gather, 45 you see. 1/2 of 45 break, 22 30 you see.
22 30 square, 8 26 15 you see.
8 26 15 to 5, the constant, raise, 42 11 15 you see.
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Fig. 4.8.7. BM 96954+ §§ 4 e-h: Two truncated cones.

In the first step of the solution procedure, the upper arc a ' of the trun-
cated cone (that is, the circumference of the circular top of the truncated
cone) is computed, by use of what is in effect a similarity argument,
namely as

a' = a-a/hh' = 30n. -(30n./l 00 c.) • 30c. = 30n. - 15 n. = 15 n.

Here h' is the height of the truncated cone.
Next, the lower area A at the base of the truncated cone and the upper

area A' at its top are computed as

A = ;05 • sq. a = ;05 • sq. (30 n.) = ;05 • 15 00 sq. n. = 1 15 sq. n.,

A'=;05sq. a' = ;05 • sq. (15 n.) = ;05 • 3 45 sq. n. = 18;45sq. n.

The arithmetic mean of A and A', the "average area" Aa, is computed as

Aa = ; 05 ( sq . a + sq. a')l2 = (A + A')I2 = 1/2 • 133;45sq. n. = 46;52 30 sq. n.

In the next lines (of which not much remains), the "middle area" Am (the
area at mid-height of the truncated cone) seems to be computed in the fol-
lowing way:

sq. {(a + a')/2} = sq. (22;30n.) = 8 26;15 sq. n.,
Am=;05sq. {(a + a')l2] = ;05 • 8 26;15 sq. n. = 42,11 15 sq. n.265

Note that here (and always) the average area Aa is larger than the mid-
dle area Am.

The rest of the solution procedure is not preserved. A couple of for-
mally slightly different reconstructions are possible. The first steps of both
are the following: Let the "average volume" Va and the "middle volume"
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Vm be the result when Aa and Am, respectively, are multiplied by the height
h' of the truncated cone:

va = Aa' h' = 46;52 30 sq. n. • 30 c. = 23 26;15 sq. n. • c. =23 26;15 sar,

Vm = Amh' = 42M 15 sq. n. • 30 c. = 21 05;37 30 sq. n. • c = 21 05;37 30 sar.

Obviously, Va and Vm are two different approximations to the correct vol-
ume V" of the truncated cone. (Actually, Va is an approximation from
above, Vm an approximation from below.) The difference between the two
approximations is

va -vm=23 2&<15 § " - 21 05;37 30 sar= 2 20;37 30 sar.

Continuing from here, one possibility is that the volume V" was computed
as (cf. Friberg, PCHM 6 (1996) § 4)

V'= vm+ (V a - Vm)/3 = 21 05;37 30 sar + 46;52 30 sar = 21 52;30 sar.

A mathematically equivalent alternative is that V was computed as

V = 1/3 • Va + 2/3 • Vm = 7;48 45 sar + 14;03 45 sar = 21 52;30 sar.

In both cases, the result is the same.
This result can be checked in the following way. The difference

between the volume V of the whole cone and the volume V" of the trun-
cated cone ought to be equal to the volume V" of the small cone above the
truncation plane. Since the cone is truncated at mid-height, and since the
small cone and the whole cone are similar solids, V" ought to be equal to
1/8 of V. In other words, another way of computing the volume of the trun-
cated cone is to proceed as follows: Since

V = A- h/3 = l 15 sq. n. • 20 c. = 25 00 sq. n. • c. = 25 sar

(as stated in the text), it follows that
V'= (1 - 1/8) • V= 25 00 sar - 3;O7 30 sar = 21 52;30 sar.

The result is, as it should be, the same as before. (A similar method would
work in the case of the computation of the volume of the truncated ridge
pyramid in § 1 f. In that case, however, the whole ridge pyramid and the
smaller ridge pyramid above the truncation plane are not similar solids, so
it would be incorrect to draw the conclusion that the volume of the smaller
ridge pyramid is simply 1/8 of the volume of the whole ridge pyramid.)

The text of BM 96954 § 4 f is even more damaged than the text of § 4 e.
Only parts of the last few lines are preserved on the edge of the clay tablet.
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See again Fig. 4.8.4 above. Luckily, that is all that is needed for the under-
standing of what happens in this exercise.

BM 96954 + § 4 f.

[ ta-m\ar I

I ]«!"/
[ ] 29 51 40 [ta-mar ••• ]
[29 51 40] I a-na 1 sukud i-si 29 51 40 ta-mar sahar.[ha]

you see.
raise,

29 51 40 y o u see, [ • • • ]
The 29 51 40 to 1 the height raise, 29 51 40 you see, the mud.

The last preserved line of § 4 f contains the last operation of the solu-
tion procedure and the answer to the problem. Those two pieces of infor-
mation show that the object considered in § 4 f is a solid with the height
' 1 ' and the volume '29 51 40'. It is reasonable to assume that here again
' 1' means 1 00 cubits, as, presumably, in all the preceding exercises of § 4,
and that, correspondingly, the volume is V = 29 51;40 sar. It is also rea-
sonable to assume that the solid considered here is a truncated cone, as in
the preceding exercise § 4 e.

Now, in the comment above to § 4 e, it was shown, through an argu-
ment based on similarity, that the volume of a circular cone truncated at
mid-height is (1 - 1/8) of the volume of the whole cone. The same type of
argument can be used to show that if a circular cone with the height h is
truncated at a distance of 1/n • h from the top, where n is an integer, then
the volume of the truncated cone is (1 - 1/n3) of the volume of the whole
cone. Consider the sexagesimal number 29 51 ;40. It is close to the round
number 30 00. The difference between 30 00 and 29 51;40 is only 8;20,
which in its turn is a simple fraction of 30 00. Indeed,

6 • 8;20 = 50, 6 • 50 = 5 00, and 6 • 5 00 = 30 00.

Therefore, the volume mentioned in the last line of § 4 f is
V= 29 51;40 sar = (1 - 1/63) • 30 00 sar.

This result implies that the solid in § 4 f is what remains when a circular
cone is truncated by a plane a distance 1/6 of the height h of the cone below
the top of the cone. On the other hand, the height h' of the truncated cone
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is 1 cubit. Taken together, these facts demonstrate that

h'= 100 c. = ( 1 - 1 / 6 ) / J ,

so that the height of the whole cone must be

h = (1 + 1/5) • h' = 1 12 cubits = 13 ninda.

Taking one's cue from § 4 c, one can now compute the area A and the arc
a (that is, the circumference) of the base of the cone as follows:

A = 3 • V/h = 3 • 30 00 sq. n. • c./l 12 c. = 1 15 sq. n.,
sq. a = l/;05 • 1 15 sq. n. = 15 00 sq. n.,
a = sqr. 15 00 n. = 30 n.

The arc a' at the top of the truncated cone in § 4 f must then be

a' = 1/6 • a = 5 n.
See Fig. 4.8.7 above, right.

According to the suggested reconstructed outline above of BM 96954+
and its division into paragraphs, there seems to be space left at the top of
col. Hi on the reverse of the clay tablet for a brief paragraph, here called
BM 96954+ § 4 g. However, the space available is so restricted that it is
possible that the first few lines of col. Hi were just a continuation of § 4 f.
(Note that there is no end phrase ne-pe-sum at the bottom of col. ii.)

BM 96954 + § 4 h.

[ ] 29 51 40 sabar.hi.<a>|
[ ]x2 30 |
[ ]x

29 51 40 the mud.
x2 30.

Of the text of this exercise, only a few signs are preserved at the ends
of the first couple of lines. This time, by a lucky coincidence, a part of the
question is preserved, prescribing that the volume of the solid considered
should be '29 51 40', just as in § 4 f. Therefore it is clear that § 4 h is a
problem about the same truncated cone as the one in § 4 f. The only dif-
ference is that, apparently, in § 4 f the three linear parameters a = 30 n., a'
= 5 n., and h' = 1 00 c. were given and the volume V" unknown, whereas
in § 4 h the volume and two of the linear parameters are given while the
third linear parameter is unknown.
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4.9. Conclusion

Relations between Greek-Egyptian and Babylonian mathematics

The discussion above has clearly demonstrated, as promised in the Intro-
duction to Chapter 4, that there is no discernible difference between the
form and content of demotic and (non-Euclidean) Greek-Egyptian mathe-
matical papyri. In addition, there is little difference in form and content be-
tween these two groups of Egyptian mathematical documents and Late or
Old Babylonian mathematical cuneiform texts. As a matter of fact, the
main difference between the mathematics of these (non-Euclidean) Ptole-
maic/Roman Egyptian mathematical papyri and cuneiform mathematical
texts seems to have been not only the counting with sums of parts but also
the counting with binomial fractions in demotic mathematical texts such as
P.Cairo § 1 (Sec. 3.1.c), P.Carlsberg 30#2 (Sec. 3.5 b), P.BM 10520 § 5
(Sec. 3.3 e), and in Greek mathematical papyri such as P.Akhmtm §§ 4-10
(Sec. 4.5 f). As mentioned in Sec. 3.1 c, this counting with binomial frac-
tions may have had its roots in the counting with red auxiliaries in hieratic
mathematical texts, as in the example in Fig. 3.1.3. Another seemingly im-
portant difference in comparison with Babylonian mathematical texts is
the new(?) idea of using a symbol for the unknown quantity in the tabular
arrays illustrating solution procedures for systems of linear equations in
the Greek mathematical papyrus P.Mich. 620 (Sec. 4.4).



New Thoughts About the History of
Ancient Mathematics

The aim of the discussion in this book has been to try to spread some light
over the difficult question of differences and similarities between form and
content of mathematics in the corpus of mathematical papyri from Egypt
on one hand and the corpus of mathematical cuneiform texts from Meso-
potamia on the other. The result of the discussion should be a better under-
standing of the development of what may be called the ancient
mathematical tradition . Here is a brief summary of what the situation
seems to be like, in the opinion of the present writer.

Conceivably, the initial development of mathematical ideas started at a
very early date with the invention of words for sexagesimal or decimal
numbers in various ancient languages, and with the widespread use of
number tokens in the Middle East. A major step forward was then the
invention of an integrated family of number and measure systems, in con-
nection with the invention of writing in Mesopotamia and neighboring
areas of Iran in the late fourth millennium BCE. There must have been a
similar development in Egypt, about which not much is known at present.
A small number of known examples of proto-Sumerian, Old Sumerian,
Old Akkadian, and Eblaite mathematical exercises and table texts are wit-
nesses of the continuing important role played by education in mathemat-
ics in the scribe schools of Mesopotamia throughout the third millennium.

Then there is a strange gap in the documentation, with almost no math-
ematical texts known from the Ur III period in Mesopotamia towards the
end of the third millennium BCE. Nevertheless, at some time in the Ur III
period a new major step in the development of mathematics was taken with
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the invention of sexagesimal place value notation. To a large part as a
result of that invention, mathematics flourished in the Old Babylonian
scribe schools in Mesopotamia. Simultaneously, mathematics may have
reached a comparable level in Egypt, and, in spite of the fundamentally
different ways of counting in the two regions, there was clearly some com-
munication of mathematical ideas between Egypt and Mesopotamia.

A few late Kassite mathematical texts seem to indicate that the Old
Babylonian mathematical tradition was still operative, although reduced to
a small trickle, in the second half of the second millennium BCE.

Then follows a new strange gap in the documentation. When mathe-
matics flourished again in Mesopotamia in the Late Babylonian and Seleu-
cid periods in the second half of the first millennium BCE, possibly in
connection with the rise of mathematical astronomy, a great part of the Old
Babylonian corpus of mathematical knowledge had been taken over rela-
tively intact. However, for some reason, the transmission of knowledge
cannot have been direct, which is shown by an almost complete transfor-
mation of the mathematical vocabulary.

Similarly in Egypt, after a comparable gap in the documentation, there
was a new flourishing of mathematics, documented by demotic and Greek
mathematical papyri and ostraca from the Ptolemaic and Roman periods.
Some of the Greek mathematical texts are associated with the Euclidean
type of high-level mathematics. Except for those, the remainder of the
demotic and Greek mathematical texts show clear signs of having been
influenced both by Egyptian traditions, principally the counting with sums
of parts, and by Babylonian traditions. An interesting new development
was the experimentation with new kinds of representations of fractions,
first sexagesimally adapted sums of parts, soon to be abandoned in favor
of binomial fractions, the predecessors of our common fractions.

The observation that Greek ostraca and papyri with Euclidean style
mathematics existed side by side with demotic and Greek papyri with
Babylonian style mathematics is important for the reason that this surpris-
ing circumstance is an indication that when the Greeks themselves claimed
that they got their mathematics from Egypt, they can really have meant that
they got their mathematical inspiration from Egyptian texts with mathe-
matics of the Babylonian type. To make this thought much more explicit
would be a natural continuation of the present investigation.
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Text Sec. Fig. Topic Kind

AO5449 1.2 d growth of a heard of cows UrIII
AO6484#1 L i e sum of 10 first powers of 2 Sel.
AO6484#2 3.3 a sum of 10 first square numbers Sel.
AO 8862 § 2 4.4 c, 4.5 d tabular array, unequal shares OB
BM 13901 # 13 2.3 a quadratic-linear system of equations OB
BM 22706 1.1b table of powers OB
BM 34568 4.7 a exerc. for sides and diagonal of rect. Sel.
BM 34568 #12 3.1b pole against a wall Sel.
BM 34601 3.3 c explicit multiplication algorithm LB
BM 34800 2.1b, 4.4 c 2.1.2-3 repeated division problem OB
BM 47437 3.3 g field plan LB
BM 67314 3.3 g application of quadrilateral area rule LB
BM 85194 2.4 2.4.1 outline, contents OB
BM85194#4 3.7c volume of a ring wall; work norm OB
BM 85194 ##22,35 2.3 b content of cylindrical vessels OB
BM 85194 #28 4.8 g volume of a truncated pyramid OB
BM 85194 #29 3.1k circle segment (corrupt text) OB
BM 85194 #36 3.1 j orientation of circular segments OB
BM 85196 # 9 3.1b pole against a wall OB
BM 85210 2.2 e constants for semicircle OB
BM 96954+ 2.1 d, 2.2 d, 4.5 c pyramids and cones OB
BM 96954+ 4.8 g 4.8.4 outline, table of contents OB
Elements XII 2.2 d volume of a pyramid Greek
Haddad 104 # 2 3.2 b capacity measure of a truncated cone OB
IM 43996 2.1 d, 3.7 c 2.1.9 striped triangle OB
IM 52301 3.3 g the general quadrilateral area rule OB
IM 53957 2.1b applied division problem OB
IM 58045 3.7 c equipartitioned trapezoid OAkk
IM 67118 = Db2-146 3.1 i metric algebra, rectangle OB
IM 73355 L i b 1.1.3 two tables of powers OB
IM 121565 3.3 g quadrilateral area rule OB
IM 121613 # 1 2.2 c, 3.1 e 1.4.4 a rectangle, metric algebra OB
Inventor of chess 1.2 d 64 powers of 2 Ind.
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1st. O 236 2.1 e 2.1.21 bread rations of various sizes OB
1st. 0 3826 1.1b table of powers OB
JZSS 1:35-36 3.1k segment area rule Chin.
JZSS5 2.2 A volume of a pyramid Chin.
7255 6:18 2.1c arithmetic progression Chin.
Liber abaci, fol. 138 r 1.1 g Septem vetule vadunt romam Eur.
M. 7857 1.1a 1.1.2 sum of geometric progression OB
M. 8631 1.2 1.2.1 geometric progression., 30 terms OB
Metrica 1:5-6 4.7 b height of unsymmetric triangles Greek
Metrica 1; 30 3.1 k, 4.3 c segment area rule Greek
Michael 62 1.2 c, 4.6 prices and market rates Greek
MLC 1354 2.2 e problem for a semicircle OB
MLC 1842 4.6 buying and selling exercise OB
Mother Goose 1.1 g sum of geometric progression Eur.
MS 1844 1.1 d, 3.1 g 1.1.6 7 brothers, geometric progression OB
MS 2049, obv. 3.1 j orientation of circular segment OB
MS 2221, rev. 2.2 b 2.2.1 a combined work norm OB
MS 2242 1.1b 1.1.4 descending table of powers OB
MS 2268/19 4.4 c tabular array, combined market rate OB
MS 2830, obv. 3.1 g 4 brothers, geometric progression OB
MS 2832 4.4 c tabular array, combined market rate OB
MS 3037 1.1b descending table of powers OB
MS 3048 3.3 a 3.3.1 a quasi-cube table OB
MS 3049 3.2 a circle-and-chord problem late OB?
MS 3050 3.1k 3.1.12 square in a circle OB
MS 3051 3.1 j 3.1.8 equilateral triangle in a circle OB
MS 3052 § 1 3.2 a growth rate of a mud wall OB
MS 3866 3.3 b smallest head number OB
MS 3876 4.8 a outer shell of an icosahedron Kassite
MS 5112 §1 4.4 c completing the square OB
MS 5112 §§1,5 4.4 c 'since it was said to you' Kassite?
MS 3971 §2 3.1 i metric algebra, rectangle OB
MS 5112 § 9 3.1 f reshaping a rectangle OB
MSV0 4,66 2.1 e 2.1.18-19bread-and-beer-text proto-cun.
NCBT1913 2.1 d 2.1.10 almost round area number OB
O.Bodl. ii 1847 4.1, 4.7 c land survey, eight fields Greek
Pack no. 2323 4, Intr. El. XIII, 10,16 Greek
P.Akhmim 1.2 c, 4.5 table of contents Greek
P.Berlin 6619 # 1 2.3 a 2.3.1 quadratic-linear system of equations hier.
P.BM 10399 § 1 3.2 a 3.2.2 circle-and-chord problem? dem.
P.BM 10399 § 2 3.2 b, 4.3 capacity measure of masts dem.
P.BM 10399 § 3 3.2 c the reciprocal of 1 + \ln dem.
P.BM 10520 § 1 3.3 a the iterated sum of 1 through 10 dem.
P.BM 10520 §2 3.3 b a multiplication table for 64 dem.
P.BM 10520 § 3 3.3 c a new multiplication rule dem.
P.BM 10520 § 4 3.3 d 2/35 expressed as a sum of parts dem.
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P.BM 10520 § 5 3.3 e, 4.5 e operations with fractions dem.
P.BM 10520 § 6 3.1 d, 3.3 f the square side rule dem.
P.BM 10520 §7 a 3.3 g 3.3.2 the quadrilateral area rule dem.
P.BM 10520 § 7 b 3.3 g, 3.7 a, 4.7 c schematic quadrilateral dem.
P.BM 10794 3.4,4.5 a the 90 and T50 tables dem.
P.Cairo 3.1a table of contents dem.
P.Cairo § I 3.1c 3.1.2 two related division problems dem
P.Cairo §2 3.1 d completion problems dem
P.Cairo §3 3.1 e a rectangular sail dem
P.Cairo § 4 3.1 f, 3.2 c 3.1.4 reshaping a rectangular cloth dem
P.Cairo §7 3.1 g shares in a geometric progression dem
P.Cairo §8 3.1b, 4.7 a 3.1.1 pole against a wall dem.
P.Cairo § 9 4.2,4.3 b circle area rule dem.
P.Cairo §9 a 3.1 h 3.1.5 diameter of a circle w. given area dem.
P.Cairo § 10 3.1 b, 3.1 i 3.1.6 rectangle w. given area and diagonal dem.
P.Cairo § 11 4.3 b, 4.8 a circle area rule dem.
P.Cairo § 11 a 3.1 j , 3.3 f 3.1.7 equilateral triangle in a circle dem.
P.Cairo § 12 3.1k 3.1.9 square in a circle dem.
P.Cairo §§ 13-14 3.11 pyramids with a square base dem.
P.Cairo §§ 15-16 3.1m 3.1.13 metric algebra dem.
P.Carlsberg 30 # 1 3.1b, 3.5 a 3.5.1 drawings of geometric figures dem.
P.Carlsberg 30 #2 3,5 b, 4.4 c linear equations, four metals dem.
P.Chicago lift. 3 A.I b 4.7.1-2 non-symmetric trapezoids Greek
P.Cornell 69 4.7 c 4.7.3-6 non-symm. trap, and birectangle Greek
P.Fay.9 4,Intr. El. 1,39,41 Greek
P.Geneve 259 4.7 a problems for right triangles Greek
P.Griffith Inst. I. E. 7 3.6 linear equations dem.
P.Heidelberg 663 3.1 j , 3.7 striped trapezoids dem.
P.Herc. 1061 4, Intr. essay on El. I Greek
P.IFAOSS 1.2 c 1.2.3 geometric progression, 30 terms Greek
Plato, Laws vii 3.5 b counting w. gold, bronze, silver Greek
Plimpton 322 3.3 f semi-regular square sides OB
P.Mich. 620 4.4 systems of linear equations Greek
P.Mich. Hi 143 4, Intr. El. I, Definitions Greek
P.Moscow 2.2 b table of contents hier.
P.Moscow #10 2.2 e 2.2.6 area of semicircle (basket) hier.
P.Moscow # 14 2.2 d 2.2.5 volume of truncated pyramid hier.
P.Moscow § 11 3.1 e, 2.2 c 2.2.2 a triangle, metric algebra hier.
P.Moscow # 23 2.2 a a combined work norm hier.
P.Oxy. i 29 4, Intr. El. II exercises Greek
P.Oxy. Hi 470 4.2 truncated cone (water clock) Greek
P.Rhind 2.1a table of contents hier.
P.Rhind 3.3 d the 2/n table hier.
P.Rhind 4.5 a the TO table hier.
P.Rhind #23 3.1c 3.1.3 completion problem hier.
P.Rhind ## 28-29 2.1b 2.1.1 incomplete division exercises hier.
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P.Rhind ftif 35-38 2.1b applied division problem hier.
P.Rhind ## 40,64 2.1c sharing problems hier.
P.Rhind ffif 41-55 2.4 ' 2.4.3 outline hier.
P.Rhind ##41-43 2.1 d, 4.5 c cylindrical granaries hier.
P.Rhind ## 44-46 2.1 d, 4.5 c rectangular granaries hier.
P.Rhind ##48,50 2.1 d 2.1.4 circle area rule, hieratic hier.
P.Rhind #51 3.3 g the area of a triangle hier.
P.Rhind # 53 a 2.1 d, 3.7 c 2.1.7-8 a striped triangle hier.
P.Rhind # 53 b 2.1 d 2.1.7, 15 almost round area number hier.
P.Rhind ## 54-55 2.1 d subtracting pieces of land hier.
P.Rhind## 56-60 2.1 d 2.1.16 slope of pyramids and cone hier.
P./WHW #62 2.1 f, 3.5 b bag of gold, silver, lead hier.
P.Rhind # 63 4.5 d unequal sharing hier.
P.Rhind if 64 2.1c, 2.3 c unequal sharing hier.
P.Rhind ## 65-81 2.4 2.4.4 outline hier.
P.Rhind ##69-78 2.1 e baking and brewing numbers hier.
P.Rhind if 79 1.1.f 1.1.7 sum of powers of 7 hier.
P.UC 32160 2.4 2.4.2 outline hier.
P.UC32160ft \ 2.3 b 2.3.3 content of cylindrical granary hier.
P.UC 32160 if 2 2.3 c 2.3.4 problem for arithm. progression hier.
P.UC 32161 2.3 d 2.3.5 many-digit decimal numbers hier.
P.Vindob.G 26740 3.1k segment area rule Greek
P.Vindob. G. 19996 3.3 f, 4.8 4.8.1 pyramids and cones Greek
P.Vindob. G.26740 4.3 4.3.1 five illustrated geom. exercises Greek
Str. 362 # 1 2.1c 10 brothers, arithmetic progression OB
Str. 364 2.1 d striped triangle OB
ThebanO.D12 3.3 g, 3.7 a 3.3.4 land survey, four fields dem.
7M51 3.2 a 3.2.1 circle-and-chord problem OB
TMS 3 (BR) 2.1 d, 3.1k 3.1.11 constants for circle segments OB
TMS13 4.6 buying and selling exercise OB
7MS14 2.2 d, 4.8 g volume of a ridge pyramid OB
UET6/2 222, rev. 3.3 f semi-regular square sides OB
UET 6/2 233, rev. 4.4 c tabular array for cost of digging OB
UET 612 21 A, rev. 2.3 a, 4.4 c 2.3.2 tabular array for quadratic equations OB
UET 6/2 290, rev. 4.4 c tabular array for capacity measures OB
UM 29.13.21 1.2.b 1.2.2 doubling and halving algorithm OB
VAT 7530 §6 4.5 e repetitive construction of data OB
VAT 7531 3.7 c 3.7.8-10 trapezoid with vertical transversals OB
VAT 7532 3.1 f, 3.2 c unknown original length of a reed OB
VAT 7535 3.1 f, 3,2 c reciprocal of 1 - 1/5 OB
VAT 7621 #1 3.7 c striped trapezoid OB
VAT 7848 §1 3.1 j area of equilateral triangle LB
VAT 7848 §3 4.7 b symmetric trapezoid OB
VAT 8389 2.1 f, 3.5 b system of linear equations OB
VAT 8390 4.4 c 'since he said' OB
VAT 8391 2.1 f, 3.5 b system of linear equations OB
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VAT 8522 #1 3.2 b, 4.5 b capacity measure of a truncated cone OB
VAT 8522 # 2 2.1c arithmetic progression OB
VPBIV92 4.7 c areas of fields Greek
W14148 2.1 d 2.1.12 almost round area number proto-cun.
W19408,76 3.3 g quadrilateral area rule proto-cun.
W 20044,28 2.1 d 2.1.12 almost round area number proto-cun.
W 23021 1.1c 1.1.5 trailing part algorithm LB
W 23291 § 1 f 3.2 a metric algebra, seed measure LB
W 23291 § § 4 b-c 3.1 j drawings of heights in triangles LB
W 23291 § 4 c 3.1 j area of equilateral triangle LB
W23291-x§l 4.8 a circle segment LB
W 23291-x § 2 4.3 a four concentric circular bands LB
W 23291-x § 11 3.3 g tables for reed measure LB
YBC4652#9 2.1b repeated division problem OB
YBC 4663 4.8 g series of exercises OB
YBC4698 2.1 e 2.1.17 outline, table of contents OB
YBC 4698 § 1 1.2 d interest on capital OB
YBC4698§2a 2.1 e 2.1.17 combined market rate OB
YBC 4698 § 3 a 2.1 f, 3.5 b linear equations: iron and gold OB
YBC 4698 § 4 4.6 prices and market rates OB
YBC 5022 (NSd) 2.1 d, 2.2 e circle constants OB
YBC 7243 (NSe) 2.1 d, 2.2 e circle constants OB
YBC 7290 2.1 d 2.1.11 almost round area number OB
YBC 7326 4.4 c tabular array, sheep and lambs OB
YBC 7353 4.4 c tabular array, combined market rate OB
YBC 8588 4.4 c 'that he said' OB
YBC 9856 2.1c arithmetic progression OB
YBC 11125 4.4 c tabular array, combined market rate OB
YBC 11126 2.2 c, 3.1 e 2.2.3 metric algebra: trapezoid OB
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2/n table P.Rhind 29,96,144,150
10- stable P.Rhind 29,32,211
90 and 150 tables P.BM 10794 165, 211
algorithm, doubling and halving UM 29.13.21 18
algorithm, trailing part W 23021 8
almost round area numbers NCBT1913 51

P.Rhind # 53 a-b 56,114
W14148 53
W 20044, 28 53
YBC 7290 52

basket, area of semicircle P.Moscow # 10 78
bread rations of various sizes 1st. O 236 66

MSVO 4, 66 63
buying and selling exercise TMS \3 218

YBC 4698 #9 217
circle area rule, Babylonian TMS 3 (BR) 42
circle area rule, demotic P.BM 10399 § 2 142

P.Cairo § 9 a 123
P.Cairo §11 127
P.Cairo § 12 131

circle area rule, Greek P.Oxy. Hi 470 195
P. Vindob. G.26740 ## 2-4 198

circle area rule, hieratic P.Rhind # 48 40, 42, 44, 98
P.UC 32160 85

circle constants TMS 3 (BR) 42
YBC 5022 (NSd) 42
YBC 7243 (NSe) 42

circle segment (corrupt text) BM 85194 # 29 133
circle segments, constants TMS3(BR) 134
circle segment area rule see segment area rule
circle-and-chord problem MS 3049 141

P.BM 10399 §1 138
TMS 1 139

circle, given area, unknown diameter P.Cairo § 9 a 122
circles and a segment of a circular band P. Vindob. G. 26740 ## 1-5 196

277
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circular bands, concentric W 23291-x § 2 197
combined baking number P.Rhind # 76 60
combined market rate MS 2832, YBC 7535, etc. 207

VAT 7530 §6 214
YBC 4698 § 2 a 60, 103

combined work norm MS 2221 70
P.Moscow # 23 69

completing the square MS 5112 §1 208
completion problem P.Cairo % 2 106,112

P.Rhind ## 21-23 27, 29, 96, 112
cone, truncated BM 96954+ § 4 e 262

P.Vindob. G. 19996 234, 242
("log") Haddad 104 # 2 143

VAT 8522 #1 142,211
(mast) P.BM 10399 § 2 142
(storeroom) P.Akhmlm\\ 211
(water clock) P.Oxy.iii470 195

corrupt text BM 85194 # 29 133
P.BM 10520 § 5 c 153
P.Rhind ## 28-29 30
P.Rhind ## 40, 43 37, 44

cylindrical vessels, content BM 85194 ## 22, 35 86, 88
UET 6/2 290 rev. 206

division problems P.Cairo ##2-3 109
P.Rhind ## 24-38 28, 30

division problem, applied IM 53957 25,36
P.Rhind ## 35-38 35

division problem, repeated BM 34800 33,204
P.Rhind ## 28-29 30,102
YBC 4652 #9 32

doubling and halving algorithm UM 29.13.21 18,22
drawing of basket (semicircle?) P.Moscow # 10 79

birectangle P.Cornell 69 #3 230
circle P.Rhind # 50, P.UC 32160 42,85,98
circle and square P.Rhind #48 41
circles, etc. P. Vindob. G. 26740 ##1-5 197
equilateral triangle in circle P.Cairo # 36 128

MS 3051 130
pyramid and cone P.Rhind ## 56,60 58
striped trapezoids P.Heidelberg 663 ##1-3 175 ff
rectangles and trapezoid P.Carlsberg 30, obv. 167
rectangular field P.BM 10520 § 7 a 157
rectangular field, schematic P.BM 10520 § 7 b 158
rectangular granary P.Rhind # 44 44
square in circle P.Cairo #37 131

MS 3050 135
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striped triangle P.Rhind # 53a 45 ff
striped triangle IM 43996 49
trapezoid YBC 7290, YBC 11126 52,72
trapezoids, nonsymmetric P Chic. litt. 3, P.Cornell 69 ## 1-2 221 ff
triangle in circle TMS1 139
triangular pyramids P.Vindob. G. 19996, col. v; 234
truncated pyramid P'Moscow # 14 76
upright triangles W23291§4b-c 238

Elements I, essay on P.Herc. 1061 193
Elements I, Definitions P.Mich. Hi 143 193
Elements I, 39, 41 P.Fay. 9 193
Elements II, exercises P.Oxy.i29 193
Elements XIII, 10, 16 Pack no. 2323 193
equilateral triangle, area MS 3876 # 3 237

VAT 7848 §1 129
W23291§§4b-c 127,156,238

equilateral triangle in a circle MS 3051 129
P.Cairo #36 126

equilateral triangular base of pyramid P.Vindob. G. 19996 # 10 235
equipartitioned trapezoid IM 58045 181

VAT 7621 #1 188
fractions, counting with P.BM 10520 § 5 150 ff
fractions, operations with P.Akhmim §§ 4-10 212 ff
granary, cylindrical P.UC 32160 #1 85

, rectangular P.Akhmim § 2 211
, repeated division problem BM 34800 33
, square and circular P.Rhind ## 44-46 44

height of unsymmetric triangle Metrica 1:5-6 224
icosahedron, outer shell MS 3876 236
iterated sum of 10 first integers P.BM 10520 § 1 145
land survey, one field BM 47437 162

, four fields Theban Ostracon D 12 159,194
, eight fields O.Bodl. ii 1847 194

linear equations P.Griffith Inst. I. E. 7 174
linear equations, four metals P.Carlsberg 30 #2 67,168
linear equations, iron and gold YBC 4698 #4 67, 170
linear equations, system of VAT 8389, VAT 8391 68, 170
linear equations, systems of P.Mich. 620 173, 200 ff
many-digit decimal numbers P.UC 32161 90
metric algebra, rectangle BM 34568 221

P.Cairo ##"32-333" 136
, area and side ratio IM 121613 # 1 73, 115

P.Moscow#6 75fn.l6
, diagonal and side ratio P.Berlin 6619 #1 81
, expanded rectangle P.Rhind # 53 b 57
, area and diagonal P.Cairo ## 34-35 125
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IM 67118 = Db2-146 126
MS 3971 § 2 126

, striped triangle P.Rhind # 53 a 45 f, 54
, reshaping a rectangle P.Cairo § 1 110

P.Cairo §3 115
MS 5112 §9 120

.quadrilateral IM 121565 160
, trapezoid YBC 11126 72, 115
.triangle P.Moscow # 17 71

multiplication algorithm, explicit BM 34601 = LBAT1644 149
multiplication rule P.BM 10520 § 3 149
multiplication table, times 64 P.BM 10520 § 2 (# 54) 149
non-symmetric trapezoids P.Chicago lift. 3 (= P.Ayer) 221
non-symmetric trapezoids, birectangle P.Cornell 69 224 fn. 40, 226
orientation of circular segment BM 85194 § 11 (## 20-21) 128

MS 2049, obv. 128
original length of a reed VAT 7532 117, 144, 208
outline of text BM 85194 95

BM 96954+ 249
P.Rhind ## 41-55 100
P.Rhind ## 65-81 101
P. UC 32160 98
YBC 4698 61

Plimpton 322 82,93,155
pole against a wall BM 34568 # 12 108

BM 85196 #9 108
P.Cairo % 8 (##24-31) 107

powers of 2, 64 Inventor of game of chess 23
prices and market rates Michael 62 215

PAkhmim § 9 214
YBC 4698 61,68, 215 f

progression, arithmetic, 5 persons Jiu Zhang Suan Shu 6:18 39
, 5 brothers YBC 9856 38
, 10 terms P.UC32160 # 2 89
, 10 brothers Str. 362 # 1 37

progression, geometric, sum of M. 7857 2
Mother Goose rhyme 12
P.Rhind #19 11

, sum of, 7 brothers MS 1844 9
, 4 terms (tgs1?) P.Cairo § 7 (# 23) 121
,4 brothers MS 2830, obv. 122
,30 terms M. 8631 14

P.IFAO 88 21
progression, quasi-arithmetic, 5 brothers VAT 8522 #2 38
pyramid and cone? seked P.Rhind §§ 21-22 (## 56,60) 58
pyramids and cones BM 96954+ 76, 249



Index of Subjects 281

P.Vindob. G. 19996 233 ff
quadratic-linear system of equations BM 13901 # 13 83

P.Berlin 6619 # 1 81
UET 6/2 214 rev. 84,206

quadrilateral, schematic P.BM 10520 §7 b 158,194
quadrilateral area rule BM 67314 165

IM121565 160
P.BM 10520 %1& 157
W 19408, 76 159

, general IM 52301 161
quasi-cube table MS 3048 148
reciprocal of 1 - 1/5 VAT 7535 117

1 -1 /6 VAT 7532 117
1 + l//j P.BM 10399 ## 46-51 143

reshaping a rectangle MS 5112 § 9 120
reshaping a rectangular cloth P.Cairo # 8 115
ridge pyramid, volume of TMS14 77,245
right triangles, problems P.Geneve 259 220
segment area rule Jiu Zhang Suan Shu 1:35-36 133

Metrical: 30 133,199
P.Cairo ##36-37 129 ff
P.Vindob. G 26140 #5 133

semicircle (basket), area of P.Moscow #10 78
semicircle, constants BM 85210 81

TMS 3 (BR) 80
semicircle, problem for a MLC 1354 80
semi-regular square sides Plimpton 322, UET 6/2 222, rev. 156, fn. 27
series of exercises YBC 4663 251
sharing problems P.Rhind §§ 11-12, 27 29
'since he said' VAT 8390 206
'since it was said to you' MS 5112 §§1,5 206
square in a circle P.Cairo § 12 (#37) 131
sum of 10 first square numbers AO 6484 #2 10
square in a circle MS 3050 135
square side rule P.BM 10520 § 6 155
striped trapezoids P.Heidelberg 663 174 ff

VAT 7621 #1 188
striped triangle IM 43996 49,102,181

P.Rhind #53 a 45,98
Str. 364 48

symmetric trapezoid VAT 7848 § 3 225
table of contents P.Akhmtm 208

P.Cairo J. E. 89127-30 + 106
P.Moscow 69
P.Rhind 27
P.Vindob. G. 19996 234
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and outline of the text BM 85194 95
BM96954+102366+SE93 249
P. UC 32160. 98
YBC 4698 61

tables of fractions P.Akhmim 210
table of powers BM 22706, IM 73355,1st. O 3826 6

, descending MS 2242, MS 3037 7
tables for reed measure W 23291-x § 11 163
tabular array, combined market rate MS 2268/19, MS 2832 207

YBC 7353, YBC 11125 207
tabular array, combined work norm MS 2221 rev. 70
tabular array, cost of excavation UET 6/2 233, rev. 206

, quadratic-linear equations UET 6/2 21 A, rev. 84
, systems of linear equations P.Mich. 620 200 ff
, sheep and lambs YBC 7326 207
, unequal shares AO 8862 207

thousand-cubit-strip P.Rhind § 17 (# 51) 40,158
trailing part algorithm. W 23021 8
trapezoid with vertical transversals VAT 7531 182 ff
truncated cone BM 96954+ § 4 264

P.Vindob. G. 19996 234
truncated pyramid, square BM 85194 § 16 (# 28) 243

P.Moscow # 14, P.Vindob. G. 19996 74, 234
, triangular P.Vindob. G. 19996 234
, with ridge BM 96954 § 1 f 252

unequal sharing, loaves P.Rhind§ 12 36 ff
, gold, silver, lead P.Rhind # 62 67

work norm, volume of a ring wall BM 85194 § 3 (# 4) 186, fn. 31
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